Cobordism invariants and characteristic classes

The concept of cobordism owes its origin to the Frenchman Henri Poincar e. The relation of cobordism is de ned for two closed manifolds M and N with same dimensión n. By de nition M And Nare cobordant if there is a manifold of di mension n+ 1 whose boundary is MtN; that is, the disjoint union of M a...

Full description

Autores:
Cuadros Hernández, Kevin José
Tipo de recurso:
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/64088
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/64088
http://bdigital.unal.edu.co/64847/
Palabra clave:
51 Matemáticas / Mathematics
Cobordism
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e1f9df54eb53dfaa359a93c33abc8847
oai_identifier_str oai:repositorio.unal.edu.co:unal/64088
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Arias Abad, CamiloCuadros Hernández, Kevin Josécd13c083-1df7-433c-8b8c-42271524f41e3002019-07-02T22:29:36Z2019-07-02T22:29:36Z2018-05-10https://repositorio.unal.edu.co/handle/unal/64088http://bdigital.unal.edu.co/64847/The concept of cobordism owes its origin to the Frenchman Henri Poincar e. The relation of cobordism is de ned for two closed manifolds M and N with same dimensión n. By de nition M And Nare cobordant if there is a manifold of di mension n+ 1 whose boundary is MtN; that is, the disjoint union of M and N. Being a relation of equivalence weaker than homeomorphism and di eomor-phism, the search for a classi cation of manifolds under this one seems easier to describe. This concept has a leading role in geometric topology and algebraic topology thanks to contributions from mathematicians such as Ren e Thom and Lev Pontrjagin. More recently, it has been a central part of the development of topological theory of quantum elds. Thom in the mid-twentieth century proved the theorem exhibiting an isomorphism between the ring of equivalence classes of cobordism and the homotopy group of the Thom spectrum, being this one of his most important contributions in geometry. This theorem allows us, for example, to describe the torsion free part of the ring of cobordism as a polynomial ring in in nite many variables, a really impressive resultMaestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Matemáticas MatemáticasMatemáticasCuadros Hernández, Kevin José (2018) Cobordism invariants and characteristic classes. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.51 Matemáticas / MathematicsCobordismCobordism invariants and characteristic classesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINAL1035863043.2018.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf4129923https://repositorio.unal.edu.co/bitstream/unal/64088/1/1035863043.2018.pdfea7664229c90cabe8a424739aa1aea97MD51THUMBNAIL1035863043.2018.pdf.jpg1035863043.2018.pdf.jpgGenerated Thumbnailimage/jpeg2397https://repositorio.unal.edu.co/bitstream/unal/64088/2/1035863043.2018.pdf.jpg600d1c87785d70515df466d2be3ced55MD52unal/64088oai:repositorio.unal.edu.co:unal/640882024-05-02 23:24:59.683Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Cobordism invariants and characteristic classes
title Cobordism invariants and characteristic classes
spellingShingle Cobordism invariants and characteristic classes
51 Matemáticas / Mathematics
Cobordism
title_short Cobordism invariants and characteristic classes
title_full Cobordism invariants and characteristic classes
title_fullStr Cobordism invariants and characteristic classes
title_full_unstemmed Cobordism invariants and characteristic classes
title_sort Cobordism invariants and characteristic classes
dc.creator.fl_str_mv Cuadros Hernández, Kevin José
dc.contributor.author.spa.fl_str_mv Cuadros Hernández, Kevin José
dc.contributor.spa.fl_str_mv Arias Abad, Camilo
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Cobordism
dc.subject.proposal.spa.fl_str_mv Cobordism
description The concept of cobordism owes its origin to the Frenchman Henri Poincar e. The relation of cobordism is de ned for two closed manifolds M and N with same dimensión n. By de nition M And Nare cobordant if there is a manifold of di mension n+ 1 whose boundary is MtN; that is, the disjoint union of M and N. Being a relation of equivalence weaker than homeomorphism and di eomor-phism, the search for a classi cation of manifolds under this one seems easier to describe. This concept has a leading role in geometric topology and algebraic topology thanks to contributions from mathematicians such as Ren e Thom and Lev Pontrjagin. More recently, it has been a central part of the development of topological theory of quantum elds. Thom in the mid-twentieth century proved the theorem exhibiting an isomorphism between the ring of equivalence classes of cobordism and the homotopy group of the Thom spectrum, being this one of his most important contributions in geometry. This theorem allows us, for example, to describe the torsion free part of the ring of cobordism as a polynomial ring in in nite many variables, a really impressive result
publishDate 2018
dc.date.issued.spa.fl_str_mv 2018-05-10
dc.date.accessioned.spa.fl_str_mv 2019-07-02T22:29:36Z
dc.date.available.spa.fl_str_mv 2019-07-02T22:29:36Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/64088
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/64847/
url https://repositorio.unal.edu.co/handle/unal/64088
http://bdigital.unal.edu.co/64847/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Matemáticas Matemáticas
Matemáticas
dc.relation.references.spa.fl_str_mv Cuadros Hernández, Kevin José (2018) Cobordism invariants and characteristic classes. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/64088/1/1035863043.2018.pdf
https://repositorio.unal.edu.co/bitstream/unal/64088/2/1035863043.2018.pdf.jpg
bitstream.checksum.fl_str_mv ea7664229c90cabe8a424739aa1aea97
600d1c87785d70515df466d2be3ced55
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089774406828032