Descripción morfofuncional de la histología del miocardio
ilustraciones a color, diagramas, fotografías
- Autores:
-
Saavedra Torres, Nicolas Eduardo
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85285
- Palabra clave:
- 610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::616 - Enfermedades
Infarto del miocardio
Medicina regenerativa
Ingeniería de tejidos
Materiales biocompatibles
Electrofisiología cardíaca
Myocardial infarction
Regenerative medicine
Tissue engineering
Biocompatible materials
Cardiac electrophysiology
Dispositivos electromecánicos-Aplicaciones médicas
Electromechanical devices-Medical applications
Infarto al miocardio
Medicina regenerativa
Materiales biocompatibles
Miocardio
Anatomía cardíaca
Ingeniería de tejidos
Histología cardiaca
Electrofisiología
Myocardial infraction
Regenerative medicine
Tissue engineering
Biocompatible materials
Myocardium
Cardiac anatomy
Cardiac histology
Electrophysiology
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_e1a7fd356911fb29a681728d81ef5602 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85285 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Descripción morfofuncional de la histología del miocardio |
dc.title.translated.eng.fl_str_mv |
Morpho-functional description of myocardial histology |
title |
Descripción morfofuncional de la histología del miocardio |
spellingShingle |
Descripción morfofuncional de la histología del miocardio 610 - Medicina y salud::612 - Fisiología humana 610 - Medicina y salud::616 - Enfermedades Infarto del miocardio Medicina regenerativa Ingeniería de tejidos Materiales biocompatibles Electrofisiología cardíaca Myocardial infarction Regenerative medicine Tissue engineering Biocompatible materials Cardiac electrophysiology Dispositivos electromecánicos-Aplicaciones médicas Electromechanical devices-Medical applications Infarto al miocardio Medicina regenerativa Materiales biocompatibles Miocardio Anatomía cardíaca Ingeniería de tejidos Histología cardiaca Electrofisiología Myocardial infraction Regenerative medicine Tissue engineering Biocompatible materials Myocardium Cardiac anatomy Cardiac histology Electrophysiology |
title_short |
Descripción morfofuncional de la histología del miocardio |
title_full |
Descripción morfofuncional de la histología del miocardio |
title_fullStr |
Descripción morfofuncional de la histología del miocardio |
title_full_unstemmed |
Descripción morfofuncional de la histología del miocardio |
title_sort |
Descripción morfofuncional de la histología del miocardio |
dc.creator.fl_str_mv |
Saavedra Torres, Nicolas Eduardo |
dc.contributor.advisor.spa.fl_str_mv |
Clavijo Grimaldo, Aleida Dianey |
dc.contributor.author.spa.fl_str_mv |
Saavedra Torres, Nicolas Eduardo |
dc.contributor.orcid.spa.fl_str_mv |
Saavedra Torres, Nicolás Eduardo [0009-0009-2125-0547] |
dc.contributor.cvlac.spa.fl_str_mv |
SAAVEDRA TORRES, NICOLÁS EDUARDO [ |
dc.contributor.googlescholar.spa.fl_str_mv |
NE Saavedra Torres |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::612 - Fisiología humana 610 - Medicina y salud::616 - Enfermedades |
topic |
610 - Medicina y salud::612 - Fisiología humana 610 - Medicina y salud::616 - Enfermedades Infarto del miocardio Medicina regenerativa Ingeniería de tejidos Materiales biocompatibles Electrofisiología cardíaca Myocardial infarction Regenerative medicine Tissue engineering Biocompatible materials Cardiac electrophysiology Dispositivos electromecánicos-Aplicaciones médicas Electromechanical devices-Medical applications Infarto al miocardio Medicina regenerativa Materiales biocompatibles Miocardio Anatomía cardíaca Ingeniería de tejidos Histología cardiaca Electrofisiología Myocardial infraction Regenerative medicine Tissue engineering Biocompatible materials Myocardium Cardiac anatomy Cardiac histology Electrophysiology |
dc.subject.decs.spa.fl_str_mv |
Infarto del miocardio Medicina regenerativa Ingeniería de tejidos Materiales biocompatibles Electrofisiología cardíaca |
dc.subject.decs.eng.fl_str_mv |
Myocardial infarction Regenerative medicine Tissue engineering Biocompatible materials Cardiac electrophysiology |
dc.subject.lemb.spa.fl_str_mv |
Dispositivos electromecánicos-Aplicaciones médicas |
dc.subject.lemb.eng.fl_str_mv |
Electromechanical devices-Medical applications |
dc.subject.proposal.spa.fl_str_mv |
Infarto al miocardio Medicina regenerativa Materiales biocompatibles Miocardio Anatomía cardíaca Ingeniería de tejidos Histología cardiaca Electrofisiología |
dc.subject.proposal.eng.fl_str_mv |
Myocardial infraction Regenerative medicine Tissue engineering Biocompatible materials Myocardium Cardiac anatomy Cardiac histology Electrophysiology |
description |
ilustraciones a color, diagramas, fotografías |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-01-15T18:10:03Z |
dc.date.available.none.fl_str_mv |
2024-01-15T18:10:03Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85285 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85285 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abraham, K., & Laura, T. (2016). HISTOLOGÍA Y BIOLOGÍA CELULAR Introducción a la anatomía patológica (Cuarta, Vol. 1). Elsevier España. Alhejailan, R., Garoffolo, G., Raveendran, V., & Pesce, M. (2023). Cells and Materials for Cardiac Repair and Regeneration. Journal of Clinical Medicine, 12(10), 3398. https://doi.org/10.3390/jcm12103398 Almeida, H. V., Tenreiro, M. F., Louro, A. F., Abecasis, B., Santinha, D., Calmeiro, T., Fortunato, E., Ferreira, L., Alves, P. M., & Serra, M. (2021). Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS Applied Bio Materials, 4(2), 1888–1899. https://doi.org/10.1021/acsabm.0c01490 Barresi, M. J. F., & Gilbert, S. F. (2020). Developmental biology (12th ed.). Oxford University Press. Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., Riabov Bassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://doi.org/10.1038/nature22978 Beleño Acosta, B., Advincula, R. C., & Grande-Tovar, C. D. (2023). Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules, 28(4), 1920. https://doi.org/10.3390/molecules28041920 Brandenburg, S., Arakel, E. C., Schwappach, B., & Lehnart, S. E. (2016). The molecular and functional identities of atrial cardiomyocytes in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(7), 1882–1893. https://doi.org/10.1016/j.bbamcr.2015.11.025 Braz, J. K. F. S., Freitas, M. L., Magalhães, M. S., Oliveira, M. F., Costa, M. S. M. O., Resende, N. S., Clebis, N. K., Silva, N. B., & Moura, C. E. B. (2016). Histology and Immunohistochemistry of the Cardiac Ventricular Structure in the Green Turtle (Chelonia mydas). Anatomia, Histologia, Embryologia, 45(4), 277–284. https://doi.org/10.1111/ahe.12195 Caro, L. (2013). La biología del desarrollo, heredera de la embriología clásica. Morfolia. Portal de Revistas UN, 5. Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7 DANE. (2022). Estadísticas Vitales (EEVV) Boletín Técnico. Boletín Técnico. De Almeida, M. C., Spicer, D. E., & Anderson, R. H. (2019). Why do we break one of the first rules of anatomy when describing the components of the heart? Clinical Anatomy, 32(4), 585–596. https://doi.org/10.1002/ca.23356 De Boer, J. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7 De Pieri, A., Rochev, Y., & Zeugolis, D. I. (2021). Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. Npj Regenerative Medicine, 6(1), 18. https://doi.org/10.1038/s41536-021-00133-3 Drake, R. L. (Richard L., Vogl, W., Mitchell, A. W. M., & Gray, H. (2021). Gray’s anatomy for students. Escobar Díaz, G. L., Orozco Molina, A. M., Núñez Montes, J. R., & Muñoz, F. L. (2022). Mortality from Cardiovascular Diseases in Colombia. An analysis of public policies. Salud Uninorte, 36(3), 558–570. https://doi.org/10.14482/sun.36.3.616.12 Fawcett, D. W., & McNutt, N. S. (1969). THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM. The Journal of Cell Biology, 42(1), 1–45. https://doi.org/10.1083/jcb.42.1.1 Fernández-Avilés, F., Sanz-Ruiz, R., Climent, A. M., Badimon, L., Bolli, R., Charron, D., Fuster, V., Janssens, S., Kastrup, J., Kim, H.-S., Lüscher, T. F., Martin, J. F., Menasché, P., Simari, R. D., Stone, G. W., Terzic, A., Willerson, J. T., Wu, J. C., Fernández-Avilés, F., … Ylä-Herttuala, S. (2017). Global position paper on cardiovascular regenerative medicine. European Heart Journal, 38(33), 2532–2546. https://doi.org/10.1093/eurheartj/ehx248 Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 127(5), 1600–1612. https://doi.org/10.1172/JCI87491 Gartner, L., & Hiatt, J. (2018). Histologia básica (7th ed.). WOLTERS KLUWER. Georgiadis, V., Knight, R. A., Jayasinghe, S. N., & Stephanou, A. (2014). Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr. Biol., 6(2), 111–126. https://doi.org/10.1039/C3IB40097B GODBEY, W. T., & ATALA, A. (2002). In Vitro Systems for Tissue Engineering. Annals of the New York Academy of Sciences, 961(1), 10–26. https://doi.org/10.1111/j.1749-6632.2002.tb03041.x Gómez-Torres, F. A., Sebastian, R., & Ruíz-Sauri, A. (2020). Morphometry and comparative histology of sinus and atrioventricular nodes in humans and pigs and their relevance in the prevention of nodal arrhythmias. Research in Veterinary Science, 128, 275–285. https://doi.org/10.1016/j.rvsc.2019.12.008 Harrison, T., & Petersdorf, R. (2015). Harrison: Principios de medicina interna (17th ed., Vol. 2). McGraw Hill. Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 15(10), 585–600. https://doi.org/10.1038/s41569-018-0036-6 Hollister, S. J. (2009). Scaffold Design and Manufacturing: From Concept to Clinic. Advanced Materials, 21(32–33), 3330–3342. https://doi.org/10.1002/adma.200802977 Hu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.895035 Inamdar, N. K., & Borenstein, J. T. (2011). Microfluidic cell culture models for tissue engineering. Current Opinion in Biotechnology, 22(5), 681–689. https://doi.org/10.1016/j.copbio.2011.05.512 International Organization for Standardization. (2020). General requirements of tissue-engineered medical product. Kalkhoran, S. B., Munro, P., Qiao, F., Ong, S.-B., Hall, A. R., Cabrera-Fuentes, H., Chakraborty, B., Boisvert, W. A., Yellon, D. M., & Hausenloy, D. J. (2017). Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning. Discoveries, 5(1), e71. https://doi.org/10.15190/d.2017.1 Kane, C., & Terracciano, C. M. N. (2017). Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells, 35(8), 1881–1897. https://doi.org/10.1002/stem.2649 Kesharwani, R. (2022). Tissue Engineering Applications and Advancements (1st ed., Vol. 1). Kupfer, M. E., Lin, W.-H., Ravikumar, V., Qiu, K., Wang, L., Gao, L., Bhuiyan, D. B., Lenz, M., Ai, J., Mahutga, R. R., Townsend, D., Zhang, J., McAlpine, M. C., Tolkacheva, E. G., & Ogle, B. M. (2020). In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circulation Research, 127(2), 207–224. https://doi.org/10.1161/CIRCRESAHA.119.316155 Lavery, D. L., Martin, J., Turnbull, Y. D., & Hoppler, S. (2008). Wnt6 signaling regulates heart muscle development during organogenesis. Developmental Biology, 323(2), 177–188. https://doi.org/10.1016/j.ydbio.2008.08.032 Loukas, M., Youssef, P., Gielecki, J., Walocha, J., Natsis, K., & Tubbs, R. S. (2016). History of cardiac anatomy: A comprehensive review from the egyptians to today. Clinical Anatomy, 29(3), 270–284. https://doi.org/10.1002/ca.22705 Lynch, C. R., Kondiah, P. P. D., & Choonara, Y. E. (2021). Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules, 26(9), 2518. https://doi.org/10.3390/molecules26092518 Maitra, M., Schluterman, M. K., Nichols, H. A., Richardson, J. A., Lo, C. W., Srivastava, D., & Garg, V. (2009). Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Developmental Biology, 326(2), 368–377. https://doi.org/10.1016/j.ydbio.2008.11.004 Maji, S., & Lee, H. (2022). Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 23(5), 2662. https://doi.org/10.3390/ijms23052662 Marchianò, S., Bertero, A., & Murry, C. E. (2019). Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatric Cardiology, 40(7), 1367–1387. https://doi.org/10.1007/s00246-019-02165-5 Marunouchi, T., & Tanonaka, K. (2015). Cell Death in the Cardiac Myocyte. Biological & Pharmaceutical Bulletin, 38(8), 1094–1097. https://doi.org/10.1248/bpb.b15-00288 Mattes, W. B. (2020). In vitro to in vivo translation. Current Opinion in Toxicology, 23–24, 114–118. https://doi.org/10.1016/j.cotox.2020.09.001 Méndez-Muñoz, P. C., Martínez-Espitia, E., Paba-Rojas, C. E., Rodríguez-Perdomo, J., & Silva-Hernández, L. M. (2020). Mortalidad por enfermedad isquémica cardiaca según variables sociodemográficas en Bogotá, Colombia. Revista Salud Bosque, 10(1). https://doi.org/10.18270/rsb.v10i1.2828 Mori, S., Spicer, D. E., & Anderson, R. H. (2016). Revisiting the Anatomy of the Living Heart. Circulation Journal, 80(1), 24–33. https://doi.org/10.1253/circj.CJ-15-1147 Mori, S., Tretter, J. T., Spicer, D. E., Bolender, D. L., & Anderson, R. H. (2019). What is the real cardiac anatomy? Clinical Anatomy, 32(3), 288–309. https://doi.org/10.1002/ca.23340 Mouthuy, P.-A., Groszkowski, L., & Ye, H. (2015). Performances of a portable electrospinning apparatus. Biotechnology Letters, 37(5), 1107–1116. https://doi.org/10.1007/s10529-014-1760-6 O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X Olaopa, M., Zhou, H., Snider, P., Wang, J., Schwartz, R. J., Moon, A. M., & Conway, S. J. (2011). Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Developmental Biology, 356(2), 308–322. https://doi.org/10.1016/j.ydbio.2011.05.583 OPS. (2021). La carga de las enfermedades cardiovasculares en la Región de las Américas, 2000-2019. Portal de Datos de NMH. Organización Panamericana de La Salud. Patel, P., & Karch, J. (2020). Regulation of cell death in the cardiovascular system (pp. 153–209). https://doi.org/10.1016/bs.ircmb.2019.11.005 Payne, S., Burney, M. J., McCue, K., Popal, N., Davidson, S. M., Anderson, R. H., & Scambler, P. J. (2015). A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Developmental Biology, 405(1), 82–95. https://doi.org/10.1016/j.ydbio.2015.06.017 Pfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of Cardiac Electromechanical Coupling and Mechanoelectric Feedback. Journal of Biomechanical Engineering, 136(2). https://doi.org/10.1115/1.4026221 Pina, S., Ribeiro, V. P., Marques, C. F., Maia, F. R., Silva, T. H., Reis, R. L., & Oliveira, J. M. (2019). Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 12(11), 1824. https://doi.org/10.3390/ma12111824 Quijada, P., Trembley, M. A., & Small, E. M. (2020). The Role of the Epicardium During Heart Development and Repair. Circulation Research, 126(3), 377–394. https://doi.org/10.1161/CIRCRESAHA.119.315857 Radisic, M., & Christman, K. L. (2013). Materials Science and Tissue Engineering: Repairing the Heart. Mayo Clinic Proceedings, 88(8), 884–898. https://doi.org/10.1016/j.mayocp.2013.05.003 Rey, C., García-Cendón, C., Martínez-Camblor, P., López-Herce, J., Concha-Torre, A., Medina, A., Vivanco-Allende, A., & Mayordomo-Colunga, J. (2016). Asociación de valores elevados de péptido natriurético auricular y copeptina con riesgo de mortalidad. Anales de Pediatría, 85(6), 284–290. https://doi.org/10.1016/j.anpedi.2016.02.002 Roa, D., & Quitian, R. (2016). SITUACIÓN ACTUAL DE LA INGENIERIA DE TEJIDOS Y MEDICINA REGENERATIVA EN COLOMBIA [Tesis]. UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES U.D.C.A Robert, L. (2014). Principles of Tissue Engineering. Elsevier. https://doi.org/10.1016/C2011-0-07193-4 Robison, P., & Prosser, B. L. (2017). Microtubule mechanics in the working myocyte. The Journal of Physiology, 595(12), 3931–3937. https://doi.org/10.1113/JP273046 Ross, M., & Pawlina, W. (2016). Histology: A Text and Atlas. With Correlated Cell and Molecular Biology (Septima, Vol. 1). Wolters Kluwer. Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., & Badylak, S. F. (2017). Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia, 49, 1–15. https://doi.org/10.1016/j.actbio.2016.11.068 Salem, T., Frankman, Z., & Churko, J. M. (2022). Tissue Engineering Techniques for Induced Pluripotent Stem Cell Derived Three-Dimensional Cardiac Constructs. Tissue Engineering Part B: Reviews, 28(4), 891–911. https://doi.org/10.1089/ten.teb.2021.0088 Savova, K., Yordanova, P., Dimitrov, D., Tsenov, S., Trendafilov, D., & Georgieva, B. (2017). Light Microscopic Morphological Characteristics and Data on the Ultrastructure of the Cardiomyocytes. Academia Anatomica International, 3(2). https://doi.org/10.21276/aanat.2017.3.2.2 Scott, J. (2021). Publisher: Jeremy Bowes Senior Content Development Specialist: Trinity Hutton Deputy Content Development Manager. https://doi.org/10.1016/B978-0-7020-7705-0.09001-7 Sharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells, 10(10), 2538. https://doi.org/10.3390/cells10102538 Simon, C. G., Yaszemski, M. J., Ratcliffe, A., Tomlins, P., Luginbuehl, R., & Tesk, J. A. (2015). ASTM international workshop on standards and measurements for tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(5), 949–959. https://doi.org/10.1002/jbm.b.33286 Sun, J., Vijayavenkataraman, S., & Liu, H. (2017). An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus. Materials, 10(1), 29. https://doi.org/10.3390/ma10010029 Szczepanek, E., Jasińska, K. A., Godula, D., Kucharska, E., Walocha, J., & Mazur, M. (2020). Correct human cardiac nomenclature. Folia Medica Cracoviensia, 60(1), 103–113. https://doi.org/10.24425/fmc.2020.133491 Tzahor, E., & Poss, K. D. (2017). Cardiac regeneration strategies: Staying young at heart. Science, 356(6342), 1035–1039. https://doi.org/10.1126/science.aam5894 Uquillas, J., & Malik, N. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7 Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To Scaffold, or Not to Scaffold, That Is the Question. International Journal of Molecular Sciences, 22(23), 12690. https://doi.org/10.3390/ijms222312690 Wang, F., & Guan, J. (2010). Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy☆. Advanced Drug Delivery Reviews, 62(7–8), 784–797. https://doi.org/10.1016/j.addr.2010.03.001 Wang, Z., Lee, S. J., Cheng, H.-J., Yoo, J. J., & Atala, A. (2018). 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 70, 48–56. https://doi.org/10.1016/j.actbio.2018.02.007 Yu, D., Wang, X., & Ye, L. (2021). Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. Journal of Cardiovascular Development and Disease, 8(11), 153. https://doi.org/10.3390/jcdd8110153 Yuan, H. (2019). Introducing the Language of “Relativity” for New Scaffold Categorization. Bioengineering, 6(1), 20. https://doi.org/10.3390/bioengineering6010020 Zhao, Z., Vizetto-Duarte, C., Moay, Z. K., Setyawati, M. I., Rakshit, M., Kathawala, M. H., & Ng, K. W. (2020). Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00611 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xix, 67 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Medicina - Maestría en Morfología Humana |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Medicina |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85285/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/85285/2/1014255978.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/85285/3/1014255978.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 88bf354f5263cc712818061e996fa13e 6f0c0f2554ed90b367f66aaace0bbcb9 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089502927355904 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Clavijo Grimaldo, Aleida Dianeye6fed841c4c5c1d9370d9734023dc81dSaavedra Torres, Nicolas Eduardoed51ab762efa13902eb517f3c640eb12Saavedra Torres, Nicolás Eduardo [0009-0009-2125-0547]SAAVEDRA TORRES, NICOLÁS EDUARDO [NE Saavedra Torres2024-01-15T18:10:03Z2024-01-15T18:10:03Z2023https://repositorio.unal.edu.co/handle/unal/85285Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramas, fotografíasLa enfermedad cardiovascular, especialmente la enfermedad isquémica del corazón tiene importantes repercusiones funcionales y económicas, por lo que se busca desarrollar terapias regenerativas para restaurar el tejido dañado. La Ingeniería de Tejidos es un campo multidisciplinario que utiliza herramientas como biomateriales, células y tecnologías de fabricación para crear estructuras que promuevan la regeneración del tejido. El estudio realizado es una monografía que recopila y analiza la literatura científica de los últimos 10 años sobre la histología del miocardio, el acople electromecánico y los avances en Ingeniería de Tejidos para abordar las complicaciones derivadas del infarto al miocardio. En el caso del corazón, el estudio de la histología es esencial para entender el proceso de infarto y desarrollar estrategias de regeneración. La Ingeniería de Tejidos cardiaca ha avanzado en terapias regenerativas basadas en células y parches cardiacos, aunque aún enfrenta desafíos como el acople electromecánico. A pesar de estos desafíos, la Ingeniería de Tejidos cardiaca ofrece esperanza para mejorar la función cardíaca en pacientes con infarto al miocardio. (Texto tomado de la fuente)Cardiovascular disease, especially ischemic heart disease, has significant functional and economic repercussions, prompting the search for regenerative therapies to restore damaged tissue. Tissue Engineering is a multidisciplinary field that employs tools such as biomaterials, cells, and manufacturing technologies to create structures that promote tissue regeneration. The study conducted is a monograph that compiles and analyzes scientific literature from the last 10 years on myocardial histology, electromechanical coupling, and advances in Tissue Engineering to address complications arising from myocardial infarction. In the case of the heart, the study of histology is essential to understand the infarction process and develop regeneration strategies. Cardiac Tissue Engineering has made progress in cell-based regenerative therapies and cardiac patches, although it still faces challenges such as electromechanical coupling. Despite these hurdles, cardiac Tissue Engineering offers hope for improving cardiac function in patients with myocardial infarction.MaestríaMagíster en Morfología Humanaxix, 67 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en Morfología HumanaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::612 - Fisiología humana610 - Medicina y salud::616 - EnfermedadesInfarto del miocardioMedicina regenerativaIngeniería de tejidosMateriales biocompatiblesElectrofisiología cardíacaMyocardial infarctionRegenerative medicineTissue engineeringBiocompatible materialsCardiac electrophysiologyDispositivos electromecánicos-Aplicaciones médicasElectromechanical devices-Medical applicationsInfarto al miocardioMedicina regenerativaMateriales biocompatiblesMiocardioAnatomía cardíacaIngeniería de tejidosHistología cardiacaElectrofisiologíaMyocardial infractionRegenerative medicineTissue engineeringBiocompatible materialsMyocardiumCardiac anatomyCardiac histologyElectrophysiologyDescripción morfofuncional de la histología del miocardioMorpho-functional description of myocardial histologyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbraham, K., & Laura, T. (2016). HISTOLOGÍA Y BIOLOGÍA CELULAR Introducción a la anatomía patológica (Cuarta, Vol. 1). Elsevier España.Alhejailan, R., Garoffolo, G., Raveendran, V., & Pesce, M. (2023). Cells and Materials for Cardiac Repair and Regeneration. Journal of Clinical Medicine, 12(10), 3398. https://doi.org/10.3390/jcm12103398Almeida, H. V., Tenreiro, M. F., Louro, A. F., Abecasis, B., Santinha, D., Calmeiro, T., Fortunato, E., Ferreira, L., Alves, P. M., & Serra, M. (2021). Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS Applied Bio Materials, 4(2), 1888–1899. https://doi.org/10.1021/acsabm.0c01490Barresi, M. J. F., & Gilbert, S. F. (2020). Developmental biology (12th ed.). Oxford University Press.Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., Riabov Bassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://doi.org/10.1038/nature22978Beleño Acosta, B., Advincula, R. C., & Grande-Tovar, C. D. (2023). Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules, 28(4), 1920. https://doi.org/10.3390/molecules28041920Brandenburg, S., Arakel, E. C., Schwappach, B., & Lehnart, S. E. (2016). The molecular and functional identities of atrial cardiomyocytes in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(7), 1882–1893. https://doi.org/10.1016/j.bbamcr.2015.11.025Braz, J. K. F. S., Freitas, M. L., Magalhães, M. S., Oliveira, M. F., Costa, M. S. M. O., Resende, N. S., Clebis, N. K., Silva, N. B., & Moura, C. E. B. (2016). Histology and Immunohistochemistry of the Cardiac Ventricular Structure in the Green Turtle (Chelonia mydas). Anatomia, Histologia, Embryologia, 45(4), 277–284. https://doi.org/10.1111/ahe.12195Caro, L. (2013). La biología del desarrollo, heredera de la embriología clásica. Morfolia. Portal de Revistas UN, 5.Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7DANE. (2022). Estadísticas Vitales (EEVV) Boletín Técnico. Boletín Técnico.De Almeida, M. C., Spicer, D. E., & Anderson, R. H. (2019). Why do we break one of the first rules of anatomy when describing the components of the heart? Clinical Anatomy, 32(4), 585–596. https://doi.org/10.1002/ca.23356De Boer, J. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7De Pieri, A., Rochev, Y., & Zeugolis, D. I. (2021). Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. Npj Regenerative Medicine, 6(1), 18. https://doi.org/10.1038/s41536-021-00133-3Drake, R. L. (Richard L., Vogl, W., Mitchell, A. W. M., & Gray, H. (2021). Gray’s anatomy for students.Escobar Díaz, G. L., Orozco Molina, A. M., Núñez Montes, J. R., & Muñoz, F. L. (2022). Mortality from Cardiovascular Diseases in Colombia. An analysis of public policies. Salud Uninorte, 36(3), 558–570. https://doi.org/10.14482/sun.36.3.616.12Fawcett, D. W., & McNutt, N. S. (1969). THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM. The Journal of Cell Biology, 42(1), 1–45. https://doi.org/10.1083/jcb.42.1.1Fernández-Avilés, F., Sanz-Ruiz, R., Climent, A. M., Badimon, L., Bolli, R., Charron, D., Fuster, V., Janssens, S., Kastrup, J., Kim, H.-S., Lüscher, T. F., Martin, J. F., Menasché, P., Simari, R. D., Stone, G. W., Terzic, A., Willerson, J. T., Wu, J. C., Fernández-Avilés, F., … Ylä-Herttuala, S. (2017). Global position paper on cardiovascular regenerative medicine. European Heart Journal, 38(33), 2532–2546. https://doi.org/10.1093/eurheartj/ehx248Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 127(5), 1600–1612. https://doi.org/10.1172/JCI87491Gartner, L., & Hiatt, J. (2018). Histologia básica (7th ed.). WOLTERS KLUWER.Georgiadis, V., Knight, R. A., Jayasinghe, S. N., & Stephanou, A. (2014). Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr. Biol., 6(2), 111–126. https://doi.org/10.1039/C3IB40097BGODBEY, W. T., & ATALA, A. (2002). In Vitro Systems for Tissue Engineering. Annals of the New York Academy of Sciences, 961(1), 10–26. https://doi.org/10.1111/j.1749-6632.2002.tb03041.xGómez-Torres, F. A., Sebastian, R., & Ruíz-Sauri, A. (2020). Morphometry and comparative histology of sinus and atrioventricular nodes in humans and pigs and their relevance in the prevention of nodal arrhythmias. Research in Veterinary Science, 128, 275–285. https://doi.org/10.1016/j.rvsc.2019.12.008Harrison, T., & Petersdorf, R. (2015). Harrison: Principios de medicina interna (17th ed., Vol. 2). McGraw Hill.Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 15(10), 585–600. https://doi.org/10.1038/s41569-018-0036-6Hollister, S. J. (2009). Scaffold Design and Manufacturing: From Concept to Clinic. Advanced Materials, 21(32–33), 3330–3342. https://doi.org/10.1002/adma.200802977Hu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.895035Inamdar, N. K., & Borenstein, J. T. (2011). Microfluidic cell culture models for tissue engineering. Current Opinion in Biotechnology, 22(5), 681–689. https://doi.org/10.1016/j.copbio.2011.05.512International Organization for Standardization. (2020). General requirements of tissue-engineered medical product.Kalkhoran, S. B., Munro, P., Qiao, F., Ong, S.-B., Hall, A. R., Cabrera-Fuentes, H., Chakraborty, B., Boisvert, W. A., Yellon, D. M., & Hausenloy, D. J. (2017). Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning. Discoveries, 5(1), e71. https://doi.org/10.15190/d.2017.1Kane, C., & Terracciano, C. M. N. (2017). Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells, 35(8), 1881–1897. https://doi.org/10.1002/stem.2649Kesharwani, R. (2022). Tissue Engineering Applications and Advancements (1st ed., Vol. 1).Kupfer, M. E., Lin, W.-H., Ravikumar, V., Qiu, K., Wang, L., Gao, L., Bhuiyan, D. B., Lenz, M., Ai, J., Mahutga, R. R., Townsend, D., Zhang, J., McAlpine, M. C., Tolkacheva, E. G., & Ogle, B. M. (2020). In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circulation Research, 127(2), 207–224. https://doi.org/10.1161/CIRCRESAHA.119.316155Lavery, D. L., Martin, J., Turnbull, Y. D., & Hoppler, S. (2008). Wnt6 signaling regulates heart muscle development during organogenesis. Developmental Biology, 323(2), 177–188. https://doi.org/10.1016/j.ydbio.2008.08.032Loukas, M., Youssef, P., Gielecki, J., Walocha, J., Natsis, K., & Tubbs, R. S. (2016). History of cardiac anatomy: A comprehensive review from the egyptians to today. Clinical Anatomy, 29(3), 270–284. https://doi.org/10.1002/ca.22705Lynch, C. R., Kondiah, P. P. D., & Choonara, Y. E. (2021). Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules, 26(9), 2518. https://doi.org/10.3390/molecules26092518Maitra, M., Schluterman, M. K., Nichols, H. A., Richardson, J. A., Lo, C. W., Srivastava, D., & Garg, V. (2009). Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Developmental Biology, 326(2), 368–377. https://doi.org/10.1016/j.ydbio.2008.11.004Maji, S., & Lee, H. (2022). Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 23(5), 2662. https://doi.org/10.3390/ijms23052662Marchianò, S., Bertero, A., & Murry, C. E. (2019). Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatric Cardiology, 40(7), 1367–1387. https://doi.org/10.1007/s00246-019-02165-5Marunouchi, T., & Tanonaka, K. (2015). Cell Death in the Cardiac Myocyte. Biological & Pharmaceutical Bulletin, 38(8), 1094–1097. https://doi.org/10.1248/bpb.b15-00288Mattes, W. B. (2020). In vitro to in vivo translation. Current Opinion in Toxicology, 23–24, 114–118. https://doi.org/10.1016/j.cotox.2020.09.001Méndez-Muñoz, P. C., Martínez-Espitia, E., Paba-Rojas, C. E., Rodríguez-Perdomo, J., & Silva-Hernández, L. M. (2020). Mortalidad por enfermedad isquémica cardiaca según variables sociodemográficas en Bogotá, Colombia. Revista Salud Bosque, 10(1). https://doi.org/10.18270/rsb.v10i1.2828Mori, S., Spicer, D. E., & Anderson, R. H. (2016). Revisiting the Anatomy of the Living Heart. Circulation Journal, 80(1), 24–33. https://doi.org/10.1253/circj.CJ-15-1147Mori, S., Tretter, J. T., Spicer, D. E., Bolender, D. L., & Anderson, R. H. (2019). What is the real cardiac anatomy? Clinical Anatomy, 32(3), 288–309. https://doi.org/10.1002/ca.23340Mouthuy, P.-A., Groszkowski, L., & Ye, H. (2015). Performances of a portable electrospinning apparatus. Biotechnology Letters, 37(5), 1107–1116. https://doi.org/10.1007/s10529-014-1760-6O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-XOlaopa, M., Zhou, H., Snider, P., Wang, J., Schwartz, R. J., Moon, A. M., & Conway, S. J. (2011). Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Developmental Biology, 356(2), 308–322. https://doi.org/10.1016/j.ydbio.2011.05.583OPS. (2021). La carga de las enfermedades cardiovasculares en la Región de las Américas, 2000-2019. Portal de Datos de NMH. Organización Panamericana de La Salud.Patel, P., & Karch, J. (2020). Regulation of cell death in the cardiovascular system (pp. 153–209). https://doi.org/10.1016/bs.ircmb.2019.11.005Payne, S., Burney, M. J., McCue, K., Popal, N., Davidson, S. M., Anderson, R. H., & Scambler, P. J. (2015). A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Developmental Biology, 405(1), 82–95. https://doi.org/10.1016/j.ydbio.2015.06.017Pfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of Cardiac Electromechanical Coupling and Mechanoelectric Feedback. Journal of Biomechanical Engineering, 136(2). https://doi.org/10.1115/1.4026221Pina, S., Ribeiro, V. P., Marques, C. F., Maia, F. R., Silva, T. H., Reis, R. L., & Oliveira, J. M. (2019). Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 12(11), 1824. https://doi.org/10.3390/ma12111824Quijada, P., Trembley, M. A., & Small, E. M. (2020). The Role of the Epicardium During Heart Development and Repair. Circulation Research, 126(3), 377–394. https://doi.org/10.1161/CIRCRESAHA.119.315857Radisic, M., & Christman, K. L. (2013). Materials Science and Tissue Engineering: Repairing the Heart. Mayo Clinic Proceedings, 88(8), 884–898. https://doi.org/10.1016/j.mayocp.2013.05.003Rey, C., García-Cendón, C., Martínez-Camblor, P., López-Herce, J., Concha-Torre, A., Medina, A., Vivanco-Allende, A., & Mayordomo-Colunga, J. (2016). Asociación de valores elevados de péptido natriurético auricular y copeptina con riesgo de mortalidad. Anales de Pediatría, 85(6), 284–290. https://doi.org/10.1016/j.anpedi.2016.02.002Roa, D., & Quitian, R. (2016). SITUACIÓN ACTUAL DE LA INGENIERIA DE TEJIDOS Y MEDICINA REGENERATIVA EN COLOMBIA [Tesis]. UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES U.D.C.ARobert, L. (2014). Principles of Tissue Engineering. Elsevier. https://doi.org/10.1016/C2011-0-07193-4Robison, P., & Prosser, B. L. (2017). Microtubule mechanics in the working myocyte. The Journal of Physiology, 595(12), 3931–3937. https://doi.org/10.1113/JP273046Ross, M., & Pawlina, W. (2016). Histology: A Text and Atlas. With Correlated Cell and Molecular Biology (Septima, Vol. 1). Wolters Kluwer.Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., & Badylak, S. F. (2017). Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia, 49, 1–15. https://doi.org/10.1016/j.actbio.2016.11.068Salem, T., Frankman, Z., & Churko, J. M. (2022). Tissue Engineering Techniques for Induced Pluripotent Stem Cell Derived Three-Dimensional Cardiac Constructs. Tissue Engineering Part B: Reviews, 28(4), 891–911. https://doi.org/10.1089/ten.teb.2021.0088Savova, K., Yordanova, P., Dimitrov, D., Tsenov, S., Trendafilov, D., & Georgieva, B. (2017). Light Microscopic Morphological Characteristics and Data on the Ultrastructure of the Cardiomyocytes. Academia Anatomica International, 3(2). https://doi.org/10.21276/aanat.2017.3.2.2Scott, J. (2021). Publisher: Jeremy Bowes Senior Content Development Specialist: Trinity Hutton Deputy Content Development Manager. https://doi.org/10.1016/B978-0-7020-7705-0.09001-7Sharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells, 10(10), 2538. https://doi.org/10.3390/cells10102538Simon, C. G., Yaszemski, M. J., Ratcliffe, A., Tomlins, P., Luginbuehl, R., & Tesk, J. A. (2015). ASTM international workshop on standards and measurements for tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(5), 949–959. https://doi.org/10.1002/jbm.b.33286Sun, J., Vijayavenkataraman, S., & Liu, H. (2017). An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus. Materials, 10(1), 29. https://doi.org/10.3390/ma10010029Szczepanek, E., Jasińska, K. A., Godula, D., Kucharska, E., Walocha, J., & Mazur, M. (2020). Correct human cardiac nomenclature. Folia Medica Cracoviensia, 60(1), 103–113. https://doi.org/10.24425/fmc.2020.133491Tzahor, E., & Poss, K. D. (2017). Cardiac regeneration strategies: Staying young at heart. Science, 356(6342), 1035–1039. https://doi.org/10.1126/science.aam5894Uquillas, J., & Malik, N. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To Scaffold, or Not to Scaffold, That Is the Question. International Journal of Molecular Sciences, 22(23), 12690. https://doi.org/10.3390/ijms222312690Wang, F., & Guan, J. (2010). Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy☆. Advanced Drug Delivery Reviews, 62(7–8), 784–797. https://doi.org/10.1016/j.addr.2010.03.001Wang, Z., Lee, S. J., Cheng, H.-J., Yoo, J. J., & Atala, A. (2018). 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 70, 48–56. https://doi.org/10.1016/j.actbio.2018.02.007Yu, D., Wang, X., & Ye, L. (2021). Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. Journal of Cardiovascular Development and Disease, 8(11), 153. https://doi.org/10.3390/jcdd8110153Yuan, H. (2019). Introducing the Language of “Relativity” for New Scaffold Categorization. Bioengineering, 6(1), 20. https://doi.org/10.3390/bioengineering6010020Zhao, Z., Vizetto-Duarte, C., Moay, Z. K., Setyawati, M. I., Rakshit, M., Kathawala, M. H., & Ng, K. W. (2020). Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00611EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85285/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1014255978.2024.pdf1014255978.2024.pdfTesis de Maestría en Morfología Humanaapplication/pdf2230728https://repositorio.unal.edu.co/bitstream/unal/85285/2/1014255978.2024.pdf88bf354f5263cc712818061e996fa13eMD52THUMBNAIL1014255978.2024.pdf.jpg1014255978.2024.pdf.jpgGenerated Thumbnailimage/jpeg4538https://repositorio.unal.edu.co/bitstream/unal/85285/3/1014255978.2024.pdf.jpg6f0c0f2554ed90b367f66aaace0bbcb9MD53unal/85285oai:repositorio.unal.edu.co:unal/852852024-08-21 23:12:59.729Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |