Descripción morfofuncional de la histología del miocardio

ilustraciones a color, diagramas, fotografías

Autores:
Saavedra Torres, Nicolas Eduardo
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85285
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85285
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::616 - Enfermedades
Infarto del miocardio
Medicina regenerativa
Ingeniería de tejidos
Materiales biocompatibles
Electrofisiología cardíaca
Myocardial infarction
Regenerative medicine
Tissue engineering
Biocompatible materials
Cardiac electrophysiology
Dispositivos electromecánicos-Aplicaciones médicas
Electromechanical devices-Medical applications
Infarto al miocardio
Medicina regenerativa
Materiales biocompatibles
Miocardio
Anatomía cardíaca
Ingeniería de tejidos
Histología cardiaca
Electrofisiología
Myocardial infraction
Regenerative medicine
Tissue engineering
Biocompatible materials
Myocardium
Cardiac anatomy
Cardiac histology
Electrophysiology
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_e1a7fd356911fb29a681728d81ef5602
oai_identifier_str oai:repositorio.unal.edu.co:unal/85285
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Descripción morfofuncional de la histología del miocardio
dc.title.translated.eng.fl_str_mv Morpho-functional description of myocardial histology
title Descripción morfofuncional de la histología del miocardio
spellingShingle Descripción morfofuncional de la histología del miocardio
610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::616 - Enfermedades
Infarto del miocardio
Medicina regenerativa
Ingeniería de tejidos
Materiales biocompatibles
Electrofisiología cardíaca
Myocardial infarction
Regenerative medicine
Tissue engineering
Biocompatible materials
Cardiac electrophysiology
Dispositivos electromecánicos-Aplicaciones médicas
Electromechanical devices-Medical applications
Infarto al miocardio
Medicina regenerativa
Materiales biocompatibles
Miocardio
Anatomía cardíaca
Ingeniería de tejidos
Histología cardiaca
Electrofisiología
Myocardial infraction
Regenerative medicine
Tissue engineering
Biocompatible materials
Myocardium
Cardiac anatomy
Cardiac histology
Electrophysiology
title_short Descripción morfofuncional de la histología del miocardio
title_full Descripción morfofuncional de la histología del miocardio
title_fullStr Descripción morfofuncional de la histología del miocardio
title_full_unstemmed Descripción morfofuncional de la histología del miocardio
title_sort Descripción morfofuncional de la histología del miocardio
dc.creator.fl_str_mv Saavedra Torres, Nicolas Eduardo
dc.contributor.advisor.spa.fl_str_mv Clavijo Grimaldo, Aleida Dianey
dc.contributor.author.spa.fl_str_mv Saavedra Torres, Nicolas Eduardo
dc.contributor.orcid.spa.fl_str_mv Saavedra Torres, Nicolás Eduardo [0009-0009-2125-0547]
dc.contributor.cvlac.spa.fl_str_mv SAAVEDRA TORRES, NICOLÁS EDUARDO [
dc.contributor.googlescholar.spa.fl_str_mv NE Saavedra Torres
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::616 - Enfermedades
topic 610 - Medicina y salud::612 - Fisiología humana
610 - Medicina y salud::616 - Enfermedades
Infarto del miocardio
Medicina regenerativa
Ingeniería de tejidos
Materiales biocompatibles
Electrofisiología cardíaca
Myocardial infarction
Regenerative medicine
Tissue engineering
Biocompatible materials
Cardiac electrophysiology
Dispositivos electromecánicos-Aplicaciones médicas
Electromechanical devices-Medical applications
Infarto al miocardio
Medicina regenerativa
Materiales biocompatibles
Miocardio
Anatomía cardíaca
Ingeniería de tejidos
Histología cardiaca
Electrofisiología
Myocardial infraction
Regenerative medicine
Tissue engineering
Biocompatible materials
Myocardium
Cardiac anatomy
Cardiac histology
Electrophysiology
dc.subject.decs.spa.fl_str_mv Infarto del miocardio
Medicina regenerativa
Ingeniería de tejidos
Materiales biocompatibles
Electrofisiología cardíaca
dc.subject.decs.eng.fl_str_mv Myocardial infarction
Regenerative medicine
Tissue engineering
Biocompatible materials
Cardiac electrophysiology
dc.subject.lemb.spa.fl_str_mv Dispositivos electromecánicos-Aplicaciones médicas
dc.subject.lemb.eng.fl_str_mv Electromechanical devices-Medical applications
dc.subject.proposal.spa.fl_str_mv Infarto al miocardio
Medicina regenerativa
Materiales biocompatibles
Miocardio
Anatomía cardíaca
Ingeniería de tejidos
Histología cardiaca
Electrofisiología
dc.subject.proposal.eng.fl_str_mv Myocardial infraction
Regenerative medicine
Tissue engineering
Biocompatible materials
Myocardium
Cardiac anatomy
Cardiac histology
Electrophysiology
description ilustraciones a color, diagramas, fotografías
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-15T18:10:03Z
dc.date.available.none.fl_str_mv 2024-01-15T18:10:03Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85285
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85285
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abraham, K., & Laura, T. (2016). HISTOLOGÍA Y BIOLOGÍA CELULAR Introducción a la anatomía patológica (Cuarta, Vol. 1). Elsevier España.
Alhejailan, R., Garoffolo, G., Raveendran, V., & Pesce, M. (2023). Cells and Materials for Cardiac Repair and Regeneration. Journal of Clinical Medicine, 12(10), 3398. https://doi.org/10.3390/jcm12103398
Almeida, H. V., Tenreiro, M. F., Louro, A. F., Abecasis, B., Santinha, D., Calmeiro, T., Fortunato, E., Ferreira, L., Alves, P. M., & Serra, M. (2021). Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS Applied Bio Materials, 4(2), 1888–1899. https://doi.org/10.1021/acsabm.0c01490
Barresi, M. J. F., & Gilbert, S. F. (2020). Developmental biology (12th ed.). Oxford University Press.
Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., Riabov Bassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://doi.org/10.1038/nature22978
Beleño Acosta, B., Advincula, R. C., & Grande-Tovar, C. D. (2023). Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules, 28(4), 1920. https://doi.org/10.3390/molecules28041920
Brandenburg, S., Arakel, E. C., Schwappach, B., & Lehnart, S. E. (2016). The molecular and functional identities of atrial cardiomyocytes in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(7), 1882–1893. https://doi.org/10.1016/j.bbamcr.2015.11.025
Braz, J. K. F. S., Freitas, M. L., Magalhães, M. S., Oliveira, M. F., Costa, M. S. M. O., Resende, N. S., Clebis, N. K., Silva, N. B., & Moura, C. E. B. (2016). Histology and Immunohistochemistry of the Cardiac Ventricular Structure in the Green Turtle (Chelonia mydas). Anatomia, Histologia, Embryologia, 45(4), 277–284. https://doi.org/10.1111/ahe.12195
Caro, L. (2013). La biología del desarrollo, heredera de la embriología clásica. Morfolia. Portal de Revistas UN, 5.
Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7
DANE. (2022). Estadísticas Vitales (EEVV) Boletín Técnico. Boletín Técnico.
De Almeida, M. C., Spicer, D. E., & Anderson, R. H. (2019). Why do we break one of the first rules of anatomy when describing the components of the heart? Clinical Anatomy, 32(4), 585–596. https://doi.org/10.1002/ca.23356
De Boer, J. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7
De Pieri, A., Rochev, Y., & Zeugolis, D. I. (2021). Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. Npj Regenerative Medicine, 6(1), 18. https://doi.org/10.1038/s41536-021-00133-3
Drake, R. L. (Richard L., Vogl, W., Mitchell, A. W. M., & Gray, H. (2021). Gray’s anatomy for students.
Escobar Díaz, G. L., Orozco Molina, A. M., Núñez Montes, J. R., & Muñoz, F. L. (2022). Mortality from Cardiovascular Diseases in Colombia. An analysis of public policies. Salud Uninorte, 36(3), 558–570. https://doi.org/10.14482/sun.36.3.616.12
Fawcett, D. W., & McNutt, N. S. (1969). THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM. The Journal of Cell Biology, 42(1), 1–45. https://doi.org/10.1083/jcb.42.1.1
Fernández-Avilés, F., Sanz-Ruiz, R., Climent, A. M., Badimon, L., Bolli, R., Charron, D., Fuster, V., Janssens, S., Kastrup, J., Kim, H.-S., Lüscher, T. F., Martin, J. F., Menasché, P., Simari, R. D., Stone, G. W., Terzic, A., Willerson, J. T., Wu, J. C., Fernández-Avilés, F., … Ylä-Herttuala, S. (2017). Global position paper on cardiovascular regenerative medicine. European Heart Journal, 38(33), 2532–2546. https://doi.org/10.1093/eurheartj/ehx248
Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 127(5), 1600–1612. https://doi.org/10.1172/JCI87491
Gartner, L., & Hiatt, J. (2018). Histologia básica (7th ed.). WOLTERS KLUWER.
Georgiadis, V., Knight, R. A., Jayasinghe, S. N., & Stephanou, A. (2014). Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr. Biol., 6(2), 111–126. https://doi.org/10.1039/C3IB40097B
GODBEY, W. T., & ATALA, A. (2002). In Vitro Systems for Tissue Engineering. Annals of the New York Academy of Sciences, 961(1), 10–26. https://doi.org/10.1111/j.1749-6632.2002.tb03041.x
Gómez-Torres, F. A., Sebastian, R., & Ruíz-Sauri, A. (2020). Morphometry and comparative histology of sinus and atrioventricular nodes in humans and pigs and their relevance in the prevention of nodal arrhythmias. Research in Veterinary Science, 128, 275–285. https://doi.org/10.1016/j.rvsc.2019.12.008
Harrison, T., & Petersdorf, R. (2015). Harrison: Principios de medicina interna (17th ed., Vol. 2). McGraw Hill.
Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 15(10), 585–600. https://doi.org/10.1038/s41569-018-0036-6
Hollister, S. J. (2009). Scaffold Design and Manufacturing: From Concept to Clinic. Advanced Materials, 21(32–33), 3330–3342. https://doi.org/10.1002/adma.200802977
Hu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.895035
Inamdar, N. K., & Borenstein, J. T. (2011). Microfluidic cell culture models for tissue engineering. Current Opinion in Biotechnology, 22(5), 681–689. https://doi.org/10.1016/j.copbio.2011.05.512
International Organization for Standardization. (2020). General requirements of tissue-engineered medical product.
Kalkhoran, S. B., Munro, P., Qiao, F., Ong, S.-B., Hall, A. R., Cabrera-Fuentes, H., Chakraborty, B., Boisvert, W. A., Yellon, D. M., & Hausenloy, D. J. (2017). Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning. Discoveries, 5(1), e71. https://doi.org/10.15190/d.2017.1
Kane, C., & Terracciano, C. M. N. (2017). Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells, 35(8), 1881–1897. https://doi.org/10.1002/stem.2649
Kesharwani, R. (2022). Tissue Engineering Applications and Advancements (1st ed., Vol. 1).
Kupfer, M. E., Lin, W.-H., Ravikumar, V., Qiu, K., Wang, L., Gao, L., Bhuiyan, D. B., Lenz, M., Ai, J., Mahutga, R. R., Townsend, D., Zhang, J., McAlpine, M. C., Tolkacheva, E. G., & Ogle, B. M. (2020). In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circulation Research, 127(2), 207–224. https://doi.org/10.1161/CIRCRESAHA.119.316155
Lavery, D. L., Martin, J., Turnbull, Y. D., & Hoppler, S. (2008). Wnt6 signaling regulates heart muscle development during organogenesis. Developmental Biology, 323(2), 177–188. https://doi.org/10.1016/j.ydbio.2008.08.032
Loukas, M., Youssef, P., Gielecki, J., Walocha, J., Natsis, K., & Tubbs, R. S. (2016). History of cardiac anatomy: A comprehensive review from the egyptians to today. Clinical Anatomy, 29(3), 270–284. https://doi.org/10.1002/ca.22705
Lynch, C. R., Kondiah, P. P. D., & Choonara, Y. E. (2021). Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules, 26(9), 2518. https://doi.org/10.3390/molecules26092518
Maitra, M., Schluterman, M. K., Nichols, H. A., Richardson, J. A., Lo, C. W., Srivastava, D., & Garg, V. (2009). Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Developmental Biology, 326(2), 368–377. https://doi.org/10.1016/j.ydbio.2008.11.004
Maji, S., & Lee, H. (2022). Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 23(5), 2662. https://doi.org/10.3390/ijms23052662
Marchianò, S., Bertero, A., & Murry, C. E. (2019). Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatric Cardiology, 40(7), 1367–1387. https://doi.org/10.1007/s00246-019-02165-5
Marunouchi, T., & Tanonaka, K. (2015). Cell Death in the Cardiac Myocyte. Biological & Pharmaceutical Bulletin, 38(8), 1094–1097. https://doi.org/10.1248/bpb.b15-00288
Mattes, W. B. (2020). In vitro to in vivo translation. Current Opinion in Toxicology, 23–24, 114–118. https://doi.org/10.1016/j.cotox.2020.09.001
Méndez-Muñoz, P. C., Martínez-Espitia, E., Paba-Rojas, C. E., Rodríguez-Perdomo, J., & Silva-Hernández, L. M. (2020). Mortalidad por enfermedad isquémica cardiaca según variables sociodemográficas en Bogotá, Colombia. Revista Salud Bosque, 10(1). https://doi.org/10.18270/rsb.v10i1.2828
Mori, S., Spicer, D. E., & Anderson, R. H. (2016). Revisiting the Anatomy of the Living Heart. Circulation Journal, 80(1), 24–33. https://doi.org/10.1253/circj.CJ-15-1147
Mori, S., Tretter, J. T., Spicer, D. E., Bolender, D. L., & Anderson, R. H. (2019). What is the real cardiac anatomy? Clinical Anatomy, 32(3), 288–309. https://doi.org/10.1002/ca.23340
Mouthuy, P.-A., Groszkowski, L., & Ye, H. (2015). Performances of a portable electrospinning apparatus. Biotechnology Letters, 37(5), 1107–1116. https://doi.org/10.1007/s10529-014-1760-6
O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-X
Olaopa, M., Zhou, H., Snider, P., Wang, J., Schwartz, R. J., Moon, A. M., & Conway, S. J. (2011). Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Developmental Biology, 356(2), 308–322. https://doi.org/10.1016/j.ydbio.2011.05.583
OPS. (2021). La carga de las enfermedades cardiovasculares en la Región de las Américas, 2000-2019. Portal de Datos de NMH. Organización Panamericana de La Salud.
Patel, P., & Karch, J. (2020). Regulation of cell death in the cardiovascular system (pp. 153–209). https://doi.org/10.1016/bs.ircmb.2019.11.005
Payne, S., Burney, M. J., McCue, K., Popal, N., Davidson, S. M., Anderson, R. H., & Scambler, P. J. (2015). A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Developmental Biology, 405(1), 82–95. https://doi.org/10.1016/j.ydbio.2015.06.017
Pfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of Cardiac Electromechanical Coupling and Mechanoelectric Feedback. Journal of Biomechanical Engineering, 136(2). https://doi.org/10.1115/1.4026221
Pina, S., Ribeiro, V. P., Marques, C. F., Maia, F. R., Silva, T. H., Reis, R. L., & Oliveira, J. M. (2019). Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 12(11), 1824. https://doi.org/10.3390/ma12111824
Quijada, P., Trembley, M. A., & Small, E. M. (2020). The Role of the Epicardium During Heart Development and Repair. Circulation Research, 126(3), 377–394. https://doi.org/10.1161/CIRCRESAHA.119.315857
Radisic, M., & Christman, K. L. (2013). Materials Science and Tissue Engineering: Repairing the Heart. Mayo Clinic Proceedings, 88(8), 884–898. https://doi.org/10.1016/j.mayocp.2013.05.003
Rey, C., García-Cendón, C., Martínez-Camblor, P., López-Herce, J., Concha-Torre, A., Medina, A., Vivanco-Allende, A., & Mayordomo-Colunga, J. (2016). Asociación de valores elevados de péptido natriurético auricular y copeptina con riesgo de mortalidad. Anales de Pediatría, 85(6), 284–290. https://doi.org/10.1016/j.anpedi.2016.02.002
Roa, D., & Quitian, R. (2016). SITUACIÓN ACTUAL DE LA INGENIERIA DE TEJIDOS Y MEDICINA REGENERATIVA EN COLOMBIA [Tesis]. UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES U.D.C.A
Robert, L. (2014). Principles of Tissue Engineering. Elsevier. https://doi.org/10.1016/C2011-0-07193-4
Robison, P., & Prosser, B. L. (2017). Microtubule mechanics in the working myocyte. The Journal of Physiology, 595(12), 3931–3937. https://doi.org/10.1113/JP273046
Ross, M., & Pawlina, W. (2016). Histology: A Text and Atlas. With Correlated Cell and Molecular Biology (Septima, Vol. 1). Wolters Kluwer.
Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., & Badylak, S. F. (2017). Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia, 49, 1–15. https://doi.org/10.1016/j.actbio.2016.11.068
Salem, T., Frankman, Z., & Churko, J. M. (2022). Tissue Engineering Techniques for Induced Pluripotent Stem Cell Derived Three-Dimensional Cardiac Constructs. Tissue Engineering Part B: Reviews, 28(4), 891–911. https://doi.org/10.1089/ten.teb.2021.0088
Savova, K., Yordanova, P., Dimitrov, D., Tsenov, S., Trendafilov, D., & Georgieva, B. (2017). Light Microscopic Morphological Characteristics and Data on the Ultrastructure of the Cardiomyocytes. Academia Anatomica International, 3(2). https://doi.org/10.21276/aanat.2017.3.2.2
Scott, J. (2021). Publisher: Jeremy Bowes Senior Content Development Specialist: Trinity Hutton Deputy Content Development Manager. https://doi.org/10.1016/B978-0-7020-7705-0.09001-7
Sharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells, 10(10), 2538. https://doi.org/10.3390/cells10102538
Simon, C. G., Yaszemski, M. J., Ratcliffe, A., Tomlins, P., Luginbuehl, R., & Tesk, J. A. (2015). ASTM international workshop on standards and measurements for tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(5), 949–959. https://doi.org/10.1002/jbm.b.33286
Sun, J., Vijayavenkataraman, S., & Liu, H. (2017). An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus. Materials, 10(1), 29. https://doi.org/10.3390/ma10010029
Szczepanek, E., Jasińska, K. A., Godula, D., Kucharska, E., Walocha, J., & Mazur, M. (2020). Correct human cardiac nomenclature. Folia Medica Cracoviensia, 60(1), 103–113. https://doi.org/10.24425/fmc.2020.133491
Tzahor, E., & Poss, K. D. (2017). Cardiac regeneration strategies: Staying young at heart. Science, 356(6342), 1035–1039. https://doi.org/10.1126/science.aam5894
Uquillas, J., & Malik, N. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7
Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To Scaffold, or Not to Scaffold, That Is the Question. International Journal of Molecular Sciences, 22(23), 12690. https://doi.org/10.3390/ijms222312690
Wang, F., & Guan, J. (2010). Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy☆. Advanced Drug Delivery Reviews, 62(7–8), 784–797. https://doi.org/10.1016/j.addr.2010.03.001
Wang, Z., Lee, S. J., Cheng, H.-J., Yoo, J. J., & Atala, A. (2018). 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 70, 48–56. https://doi.org/10.1016/j.actbio.2018.02.007
Yu, D., Wang, X., & Ye, L. (2021). Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. Journal of Cardiovascular Development and Disease, 8(11), 153. https://doi.org/10.3390/jcdd8110153
Yuan, H. (2019). Introducing the Language of “Relativity” for New Scaffold Categorization. Bioengineering, 6(1), 20. https://doi.org/10.3390/bioengineering6010020
Zhao, Z., Vizetto-Duarte, C., Moay, Z. K., Setyawati, M. I., Rakshit, M., Kathawala, M. H., & Ng, K. W. (2020). Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00611
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xix, 67 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Medicina - Maestría en Morfología Humana
dc.publisher.faculty.spa.fl_str_mv Facultad de Medicina
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85285/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85285/2/1014255978.2024.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
88bf354f5263cc712818061e996fa13e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886179360997376
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Clavijo Grimaldo, Aleida Dianeye6fed841c4c5c1d9370d9734023dc81dSaavedra Torres, Nicolas Eduardoed51ab762efa13902eb517f3c640eb12Saavedra Torres, Nicolás Eduardo [0009-0009-2125-0547]SAAVEDRA TORRES, NICOLÁS EDUARDO [NE Saavedra Torres2024-01-15T18:10:03Z2024-01-15T18:10:03Z2023https://repositorio.unal.edu.co/handle/unal/85285Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramas, fotografíasLa enfermedad cardiovascular, especialmente la enfermedad isquémica del corazón tiene importantes repercusiones funcionales y económicas, por lo que se busca desarrollar terapias regenerativas para restaurar el tejido dañado. La Ingeniería de Tejidos es un campo multidisciplinario que utiliza herramientas como biomateriales, células y tecnologías de fabricación para crear estructuras que promuevan la regeneración del tejido. El estudio realizado es una monografía que recopila y analiza la literatura científica de los últimos 10 años sobre la histología del miocardio, el acople electromecánico y los avances en Ingeniería de Tejidos para abordar las complicaciones derivadas del infarto al miocardio. En el caso del corazón, el estudio de la histología es esencial para entender el proceso de infarto y desarrollar estrategias de regeneración. La Ingeniería de Tejidos cardiaca ha avanzado en terapias regenerativas basadas en células y parches cardiacos, aunque aún enfrenta desafíos como el acople electromecánico. A pesar de estos desafíos, la Ingeniería de Tejidos cardiaca ofrece esperanza para mejorar la función cardíaca en pacientes con infarto al miocardio. (Texto tomado de la fuente)Cardiovascular disease, especially ischemic heart disease, has significant functional and economic repercussions, prompting the search for regenerative therapies to restore damaged tissue. Tissue Engineering is a multidisciplinary field that employs tools such as biomaterials, cells, and manufacturing technologies to create structures that promote tissue regeneration. The study conducted is a monograph that compiles and analyzes scientific literature from the last 10 years on myocardial histology, electromechanical coupling, and advances in Tissue Engineering to address complications arising from myocardial infarction. In the case of the heart, the study of histology is essential to understand the infarction process and develop regeneration strategies. Cardiac Tissue Engineering has made progress in cell-based regenerative therapies and cardiac patches, although it still faces challenges such as electromechanical coupling. Despite these hurdles, cardiac Tissue Engineering offers hope for improving cardiac function in patients with myocardial infarction.MaestríaMagíster en Morfología Humanaxix, 67 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Medicina - Maestría en Morfología HumanaFacultad de MedicinaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::612 - Fisiología humana610 - Medicina y salud::616 - EnfermedadesInfarto del miocardioMedicina regenerativaIngeniería de tejidosMateriales biocompatiblesElectrofisiología cardíacaMyocardial infarctionRegenerative medicineTissue engineeringBiocompatible materialsCardiac electrophysiologyDispositivos electromecánicos-Aplicaciones médicasElectromechanical devices-Medical applicationsInfarto al miocardioMedicina regenerativaMateriales biocompatiblesMiocardioAnatomía cardíacaIngeniería de tejidosHistología cardiacaElectrofisiologíaMyocardial infractionRegenerative medicineTissue engineeringBiocompatible materialsMyocardiumCardiac anatomyCardiac histologyElectrophysiologyDescripción morfofuncional de la histología del miocardioMorpho-functional description of myocardial histologyTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbraham, K., & Laura, T. (2016). HISTOLOGÍA Y BIOLOGÍA CELULAR Introducción a la anatomía patológica (Cuarta, Vol. 1). Elsevier España.Alhejailan, R., Garoffolo, G., Raveendran, V., & Pesce, M. (2023). Cells and Materials for Cardiac Repair and Regeneration. Journal of Clinical Medicine, 12(10), 3398. https://doi.org/10.3390/jcm12103398Almeida, H. V., Tenreiro, M. F., Louro, A. F., Abecasis, B., Santinha, D., Calmeiro, T., Fortunato, E., Ferreira, L., Alves, P. M., & Serra, M. (2021). Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS Applied Bio Materials, 4(2), 1888–1899. https://doi.org/10.1021/acsabm.0c01490Barresi, M. J. F., & Gilbert, S. F. (2020). Developmental biology (12th ed.). Oxford University Press.Bassat, E., Mutlak, Y. E., Genzelinakh, A., Shadrin, I. Y., Baruch Umansky, K., Yifa, O., Kain, D., Rajchman, D., Leach, J., Riabov Bassat, D., Udi, Y., Sarig, R., Sagi, I., Martin, J. F., Bursac, N., Cohen, S., & Tzahor, E. (2017). The extracellular matrix protein agrin promotes heart regeneration in mice. Nature, 547(7662), 179–184. https://doi.org/10.1038/nature22978Beleño Acosta, B., Advincula, R. C., & Grande-Tovar, C. D. (2023). Chitosan-Based Scaffolds for the Treatment of Myocardial Infarction: A Systematic Review. Molecules, 28(4), 1920. https://doi.org/10.3390/molecules28041920Brandenburg, S., Arakel, E. C., Schwappach, B., & Lehnart, S. E. (2016). The molecular and functional identities of atrial cardiomyocytes in health and disease. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1863(7), 1882–1893. https://doi.org/10.1016/j.bbamcr.2015.11.025Braz, J. K. F. S., Freitas, M. L., Magalhães, M. S., Oliveira, M. F., Costa, M. S. M. O., Resende, N. S., Clebis, N. K., Silva, N. B., & Moura, C. E. B. (2016). Histology and Immunohistochemistry of the Cardiac Ventricular Structure in the Green Turtle (Chelonia mydas). Anatomia, Histologia, Embryologia, 45(4), 277–284. https://doi.org/10.1111/ahe.12195Caro, L. (2013). La biología del desarrollo, heredera de la embriología clásica. Morfolia. Portal de Revistas UN, 5.Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanism for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7DANE. (2022). Estadísticas Vitales (EEVV) Boletín Técnico. Boletín Técnico.De Almeida, M. C., Spicer, D. E., & Anderson, R. H. (2019). Why do we break one of the first rules of anatomy when describing the components of the heart? Clinical Anatomy, 32(4), 585–596. https://doi.org/10.1002/ca.23356De Boer, J. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7De Pieri, A., Rochev, Y., & Zeugolis, D. I. (2021). Scaffold-free cell-based tissue engineering therapies: advances, shortfalls and forecast. Npj Regenerative Medicine, 6(1), 18. https://doi.org/10.1038/s41536-021-00133-3Drake, R. L. (Richard L., Vogl, W., Mitchell, A. W. M., & Gray, H. (2021). Gray’s anatomy for students.Escobar Díaz, G. L., Orozco Molina, A. M., Núñez Montes, J. R., & Muñoz, F. L. (2022). Mortality from Cardiovascular Diseases in Colombia. An analysis of public policies. Salud Uninorte, 36(3), 558–570. https://doi.org/10.14482/sun.36.3.616.12Fawcett, D. W., & McNutt, N. S. (1969). THE ULTRASTRUCTURE OF THE CAT MYOCARDIUM. The Journal of Cell Biology, 42(1), 1–45. https://doi.org/10.1083/jcb.42.1.1Fernández-Avilés, F., Sanz-Ruiz, R., Climent, A. M., Badimon, L., Bolli, R., Charron, D., Fuster, V., Janssens, S., Kastrup, J., Kim, H.-S., Lüscher, T. F., Martin, J. F., Menasché, P., Simari, R. D., Stone, G. W., Terzic, A., Willerson, J. T., Wu, J. C., Fernández-Avilés, F., … Ylä-Herttuala, S. (2017). Global position paper on cardiovascular regenerative medicine. European Heart Journal, 38(33), 2532–2546. https://doi.org/10.1093/eurheartj/ehx248Frangogiannis, N. G. (2017). The extracellular matrix in myocardial injury, repair, and remodeling. Journal of Clinical Investigation, 127(5), 1600–1612. https://doi.org/10.1172/JCI87491Gartner, L., & Hiatt, J. (2018). Histologia básica (7th ed.). WOLTERS KLUWER.Georgiadis, V., Knight, R. A., Jayasinghe, S. N., & Stephanou, A. (2014). Cardiac tissue engineering: renewing the arsenal for the battle against heart disease. Integr. Biol., 6(2), 111–126. https://doi.org/10.1039/C3IB40097BGODBEY, W. T., & ATALA, A. (2002). In Vitro Systems for Tissue Engineering. Annals of the New York Academy of Sciences, 961(1), 10–26. https://doi.org/10.1111/j.1749-6632.2002.tb03041.xGómez-Torres, F. A., Sebastian, R., & Ruíz-Sauri, A. (2020). Morphometry and comparative histology of sinus and atrioventricular nodes in humans and pigs and their relevance in the prevention of nodal arrhythmias. Research in Veterinary Science, 128, 275–285. https://doi.org/10.1016/j.rvsc.2019.12.008Harrison, T., & Petersdorf, R. (2015). Harrison: Principios de medicina interna (17th ed., Vol. 2). McGraw Hill.Hashimoto, H., Olson, E. N., & Bassel-Duby, R. (2018). Therapeutic approaches for cardiac regeneration and repair. Nature Reviews Cardiology, 15(10), 585–600. https://doi.org/10.1038/s41569-018-0036-6Hollister, S. J. (2009). Scaffold Design and Manufacturing: From Concept to Clinic. Advanced Materials, 21(32–33), 3330–3342. https://doi.org/10.1002/adma.200802977Hu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9. https://doi.org/10.3389/fcvm.2022.895035Inamdar, N. K., & Borenstein, J. T. (2011). Microfluidic cell culture models for tissue engineering. Current Opinion in Biotechnology, 22(5), 681–689. https://doi.org/10.1016/j.copbio.2011.05.512International Organization for Standardization. (2020). General requirements of tissue-engineered medical product.Kalkhoran, S. B., Munro, P., Qiao, F., Ong, S.-B., Hall, A. R., Cabrera-Fuentes, H., Chakraborty, B., Boisvert, W. A., Yellon, D. M., & Hausenloy, D. J. (2017). Unique morphological characteristics of mitochondrial subtypes in the heart: the effect of ischemia and ischemic preconditioning. Discoveries, 5(1), e71. https://doi.org/10.15190/d.2017.1Kane, C., & Terracciano, C. M. N. (2017). Concise Review: Criteria for Chamber-Specific Categorization of Human Cardiac Myocytes Derived from Pluripotent Stem Cells. Stem Cells, 35(8), 1881–1897. https://doi.org/10.1002/stem.2649Kesharwani, R. (2022). Tissue Engineering Applications and Advancements (1st ed., Vol. 1).Kupfer, M. E., Lin, W.-H., Ravikumar, V., Qiu, K., Wang, L., Gao, L., Bhuiyan, D. B., Lenz, M., Ai, J., Mahutga, R. R., Townsend, D., Zhang, J., McAlpine, M. C., Tolkacheva, E. G., & Ogle, B. M. (2020). In Situ Expansion, Differentiation, and Electromechanical Coupling of Human Cardiac Muscle in a 3D Bioprinted, Chambered Organoid. Circulation Research, 127(2), 207–224. https://doi.org/10.1161/CIRCRESAHA.119.316155Lavery, D. L., Martin, J., Turnbull, Y. D., & Hoppler, S. (2008). Wnt6 signaling regulates heart muscle development during organogenesis. Developmental Biology, 323(2), 177–188. https://doi.org/10.1016/j.ydbio.2008.08.032Loukas, M., Youssef, P., Gielecki, J., Walocha, J., Natsis, K., & Tubbs, R. S. (2016). History of cardiac anatomy: A comprehensive review from the egyptians to today. Clinical Anatomy, 29(3), 270–284. https://doi.org/10.1002/ca.22705Lynch, C. R., Kondiah, P. P. D., & Choonara, Y. E. (2021). Advanced Strategies for Tissue Engineering in Regenerative Medicine: A Biofabrication and Biopolymer Perspective. Molecules, 26(9), 2518. https://doi.org/10.3390/molecules26092518Maitra, M., Schluterman, M. K., Nichols, H. A., Richardson, J. A., Lo, C. W., Srivastava, D., & Garg, V. (2009). Interaction of Gata4 and Gata6 with Tbx5 is critical for normal cardiac development. Developmental Biology, 326(2), 368–377. https://doi.org/10.1016/j.ydbio.2008.11.004Maji, S., & Lee, H. (2022). Engineering Hydrogels for the Development of Three-Dimensional In Vitro Models. International Journal of Molecular Sciences, 23(5), 2662. https://doi.org/10.3390/ijms23052662Marchianò, S., Bertero, A., & Murry, C. E. (2019). Learn from Your Elders: Developmental Biology Lessons to Guide Maturation of Stem Cell-Derived Cardiomyocytes. Pediatric Cardiology, 40(7), 1367–1387. https://doi.org/10.1007/s00246-019-02165-5Marunouchi, T., & Tanonaka, K. (2015). Cell Death in the Cardiac Myocyte. Biological & Pharmaceutical Bulletin, 38(8), 1094–1097. https://doi.org/10.1248/bpb.b15-00288Mattes, W. B. (2020). In vitro to in vivo translation. Current Opinion in Toxicology, 23–24, 114–118. https://doi.org/10.1016/j.cotox.2020.09.001Méndez-Muñoz, P. C., Martínez-Espitia, E., Paba-Rojas, C. E., Rodríguez-Perdomo, J., & Silva-Hernández, L. M. (2020). Mortalidad por enfermedad isquémica cardiaca según variables sociodemográficas en Bogotá, Colombia. Revista Salud Bosque, 10(1). https://doi.org/10.18270/rsb.v10i1.2828Mori, S., Spicer, D. E., & Anderson, R. H. (2016). Revisiting the Anatomy of the Living Heart. Circulation Journal, 80(1), 24–33. https://doi.org/10.1253/circj.CJ-15-1147Mori, S., Tretter, J. T., Spicer, D. E., Bolender, D. L., & Anderson, R. H. (2019). What is the real cardiac anatomy? Clinical Anatomy, 32(3), 288–309. https://doi.org/10.1002/ca.23340Mouthuy, P.-A., Groszkowski, L., & Ye, H. (2015). Performances of a portable electrospinning apparatus. Biotechnology Letters, 37(5), 1107–1116. https://doi.org/10.1007/s10529-014-1760-6O’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-XOlaopa, M., Zhou, H., Snider, P., Wang, J., Schwartz, R. J., Moon, A. M., & Conway, S. J. (2011). Pax3 is essential for normal cardiac neural crest morphogenesis but is not required during migration nor outflow tract septation. Developmental Biology, 356(2), 308–322. https://doi.org/10.1016/j.ydbio.2011.05.583OPS. (2021). La carga de las enfermedades cardiovasculares en la Región de las Américas, 2000-2019. Portal de Datos de NMH. Organización Panamericana de La Salud.Patel, P., & Karch, J. (2020). Regulation of cell death in the cardiovascular system (pp. 153–209). https://doi.org/10.1016/bs.ircmb.2019.11.005Payne, S., Burney, M. J., McCue, K., Popal, N., Davidson, S. M., Anderson, R. H., & Scambler, P. J. (2015). A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development. Developmental Biology, 405(1), 82–95. https://doi.org/10.1016/j.ydbio.2015.06.017Pfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of Cardiac Electromechanical Coupling and Mechanoelectric Feedback. Journal of Biomechanical Engineering, 136(2). https://doi.org/10.1115/1.4026221Pina, S., Ribeiro, V. P., Marques, C. F., Maia, F. R., Silva, T. H., Reis, R. L., & Oliveira, J. M. (2019). Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. Materials, 12(11), 1824. https://doi.org/10.3390/ma12111824Quijada, P., Trembley, M. A., & Small, E. M. (2020). The Role of the Epicardium During Heart Development and Repair. Circulation Research, 126(3), 377–394. https://doi.org/10.1161/CIRCRESAHA.119.315857Radisic, M., & Christman, K. L. (2013). Materials Science and Tissue Engineering: Repairing the Heart. Mayo Clinic Proceedings, 88(8), 884–898. https://doi.org/10.1016/j.mayocp.2013.05.003Rey, C., García-Cendón, C., Martínez-Camblor, P., López-Herce, J., Concha-Torre, A., Medina, A., Vivanco-Allende, A., & Mayordomo-Colunga, J. (2016). Asociación de valores elevados de péptido natriurético auricular y copeptina con riesgo de mortalidad. Anales de Pediatría, 85(6), 284–290. https://doi.org/10.1016/j.anpedi.2016.02.002Roa, D., & Quitian, R. (2016). SITUACIÓN ACTUAL DE LA INGENIERIA DE TEJIDOS Y MEDICINA REGENERATIVA EN COLOMBIA [Tesis]. UNIVERSIDAD DE CIENCIAS APLICADAS Y AMBIENTALES U.D.C.ARobert, L. (2014). Principles of Tissue Engineering. Elsevier. https://doi.org/10.1016/C2011-0-07193-4Robison, P., & Prosser, B. L. (2017). Microtubule mechanics in the working myocyte. The Journal of Physiology, 595(12), 3931–3937. https://doi.org/10.1113/JP273046Ross, M., & Pawlina, W. (2016). Histology: A Text and Atlas. With Correlated Cell and Molecular Biology (Septima, Vol. 1). Wolters Kluwer.Saldin, L. T., Cramer, M. C., Velankar, S. S., White, L. J., & Badylak, S. F. (2017). Extracellular matrix hydrogels from decellularized tissues: Structure and function. Acta Biomaterialia, 49, 1–15. https://doi.org/10.1016/j.actbio.2016.11.068Salem, T., Frankman, Z., & Churko, J. M. (2022). Tissue Engineering Techniques for Induced Pluripotent Stem Cell Derived Three-Dimensional Cardiac Constructs. Tissue Engineering Part B: Reviews, 28(4), 891–911. https://doi.org/10.1089/ten.teb.2021.0088Savova, K., Yordanova, P., Dimitrov, D., Tsenov, S., Trendafilov, D., & Georgieva, B. (2017). Light Microscopic Morphological Characteristics and Data on the Ultrastructure of the Cardiomyocytes. Academia Anatomica International, 3(2). https://doi.org/10.21276/aanat.2017.3.2.2Scott, J. (2021). Publisher: Jeremy Bowes Senior Content Development Specialist: Trinity Hutton Deputy Content Development Manager. https://doi.org/10.1016/B978-0-7020-7705-0.09001-7Sharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells, 10(10), 2538. https://doi.org/10.3390/cells10102538Simon, C. G., Yaszemski, M. J., Ratcliffe, A., Tomlins, P., Luginbuehl, R., & Tesk, J. A. (2015). ASTM international workshop on standards and measurements for tissue engineering scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103(5), 949–959. https://doi.org/10.1002/jbm.b.33286Sun, J., Vijayavenkataraman, S., & Liu, H. (2017). An Overview of Scaffold Design and Fabrication Technology for Engineered Knee Meniscus. Materials, 10(1), 29. https://doi.org/10.3390/ma10010029Szczepanek, E., Jasińska, K. A., Godula, D., Kucharska, E., Walocha, J., & Mazur, M. (2020). Correct human cardiac nomenclature. Folia Medica Cracoviensia, 60(1), 103–113. https://doi.org/10.24425/fmc.2020.133491Tzahor, E., & Poss, K. D. (2017). Cardiac regeneration strategies: Staying young at heart. Science, 356(6342), 1035–1039. https://doi.org/10.1126/science.aam5894Uquillas, J., & Malik, N. (2023). Tissue Engineering (3rd ed.). Elsevier. https://doi.org/10.1016/C2020-0-01481-7Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To Scaffold, or Not to Scaffold, That Is the Question. International Journal of Molecular Sciences, 22(23), 12690. https://doi.org/10.3390/ijms222312690Wang, F., & Guan, J. (2010). Cellular cardiomyoplasty and cardiac tissue engineering for myocardial therapy☆. Advanced Drug Delivery Reviews, 62(7–8), 784–797. https://doi.org/10.1016/j.addr.2010.03.001Wang, Z., Lee, S. J., Cheng, H.-J., Yoo, J. J., & Atala, A. (2018). 3D bioprinted functional and contractile cardiac tissue constructs. Acta Biomaterialia, 70, 48–56. https://doi.org/10.1016/j.actbio.2018.02.007Yu, D., Wang, X., & Ye, L. (2021). Cardiac Tissue Engineering for the Treatment of Myocardial Infarction. Journal of Cardiovascular Development and Disease, 8(11), 153. https://doi.org/10.3390/jcdd8110153Yuan, H. (2019). Introducing the Language of “Relativity” for New Scaffold Categorization. Bioengineering, 6(1), 20. https://doi.org/10.3390/bioengineering6010020Zhao, Z., Vizetto-Duarte, C., Moay, Z. K., Setyawati, M. I., Rakshit, M., Kathawala, M. H., & Ng, K. W. (2020). Composite Hydrogels in Three-Dimensional in vitro Models. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00611EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85285/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1014255978.2024.pdf1014255978.2024.pdfTesis de Maestría en Morfología Humanaapplication/pdf2230728https://repositorio.unal.edu.co/bitstream/unal/85285/2/1014255978.2024.pdf88bf354f5263cc712818061e996fa13eMD52unal/85285oai:repositorio.unal.edu.co:unal/852852024-01-15 13:14:23.103Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=