Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material

ilustraciones, mapas

Autores:
Sandoval Montoya, Sebastián
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/79665
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/79665
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Materia-Propiedades
Fenomenos de la superficie
Deslizamientos
Distancias de viaje
Velocidades de deslizamientos
Método del Punto Material
Landslides
Travel distances
Landslide velocities
Material Point Method
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_e0a66780f0cb1f73662e14b86a472ede
oai_identifier_str oai:repositorio.unal.edu.co:unal/79665
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material
dc.title.translated.eng.fl_str_mv Estimation of travel distances and velocities of Landslides using the Material Point Method
title Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material
spellingShingle Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Materia-Propiedades
Fenomenos de la superficie
Deslizamientos
Distancias de viaje
Velocidades de deslizamientos
Método del Punto Material
Landslides
Travel distances
Landslide velocities
Material Point Method
title_short Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material
title_full Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material
title_fullStr Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material
title_full_unstemmed Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material
title_sort Estimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto material
dc.creator.fl_str_mv Sandoval Montoya, Sebastián
dc.contributor.advisor.none.fl_str_mv Rodriguez Pineda, Carlos Eduardo
dc.contributor.author.none.fl_str_mv Sandoval Montoya, Sebastián
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
topic 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Materia-Propiedades
Fenomenos de la superficie
Deslizamientos
Distancias de viaje
Velocidades de deslizamientos
Método del Punto Material
Landslides
Travel distances
Landslide velocities
Material Point Method
dc.subject.lemb.none.fl_str_mv Materia-Propiedades
Fenomenos de la superficie
dc.subject.proposal.spa.fl_str_mv Deslizamientos
Distancias de viaje
Velocidades de deslizamientos
Método del Punto Material
dc.subject.proposal.eng.fl_str_mv Landslides
Travel distances
Landslide velocities
Material Point Method
description ilustraciones, mapas
publishDate 2021
dc.date.accessioned.none.fl_str_mv 2021-06-21T21:37:00Z
dc.date.available.none.fl_str_mv 2021-06-21T21:37:00Z
dc.date.issued.none.fl_str_mv 2021
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Image
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/79665
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/79665
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abbo, A. J., & Sloan, S. (1995). A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers & structures 54(3), 427-441.
Abe, K., Soga, K., & Bandara, S. (2014). Material Point Method for Coupled Hydromechanical Problems. . Journal of Geotechnical and Geoenvironmental Engineering 140, 1-16.
Andersen, S. M. (2009). Material-Point Analysis of Large-Strain Problems: Modelling of Landslides. . Tesis de doctorado, AALBORG University.
Bates, R., & Jackson, J. (1987). Glossary of Geology. Virginia: American Geological Institute.
Belytschko, T., Kam-Liu, W., & Moran, B. (2000). 4 - Lagrangian meshes. Nonlinear Finite Elements for Continua and Structures. , 141-215.
Beuth, L. (2012). Formulation and application of a quasi-static material point method. Tesis PhD , Universit¨at Stuttgart.
Bhandari, T., Hamad, F., Moormann, C., Sharma, K., & Westrich, B. (2015). Numerical modelling od seismic slope failure using MPM. Computers and Geotechnics, 126-134.
Brackbill, J., & Ruppel, H. (1986). Flip: A method for adaptively zoned, particlein-cell calculations of fluid flows in two dimensions. Journal of Computational Physics 65, 314-343.
Castellví Linde, H. (2015). El deslizamiento de Selborne: Modelación mediante el Método del Punto Material (Tesis de maestría). Barcelona.
Ceccato, F. (2014). Studio di problemi geotecnici a grandi deformazioni con il Material Point Method. Universitá degli studi di Padova: Tesi di Laurea dottorale.
Cooper, M. (1996). The progressive development of a failure surface in overconsolidated clay at Selborne. Proceedings 7th International Symposium on Landslides, Trondheim, 683-688.
Cornforth, D. (2005). Landslide in practice:Investigation, Analysis, and Remedial Opions in Soils. Wiley.
Coulomb, C. A. (1773). On an application of the rules of maximum and minimum to some statical problems, relevant to architecture.
Cruden, D. (1991). A simple definition of a landslide. Bulletin of the International Association of ENGINEERING GEOLOGY. Paris: No. 43.
Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. Landslides: investigation and mitigation. Transportation Research Board, Special Report 247, 36-75.
Duncan, J., & Chang, C. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division-ASCE 96(SM5), 1629-1653.
Duncan, J., & Wright, S. (2005). Soil strenght and slope stability. John Wiley and sons.
Fell, R., Hungr, O., & Leroueil, S. (2000). Geotechnical engineering of the stability of natural slopes, and cuts and fills in soil. Keynote lecture.
Finlay, P. J., Mostyn, G., & Fell, R. (1999). Landslide risk assessment: prediction of travel distance. Canadian Geotechnical Journal 36 (3), 556-562.
Gingold, R. A., & Monaghan. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, 375-389.
Harlow, F. H. (1957). The particle-in-cell method for hydrodynamic calculations. Technical report, DTIC Document.
Hungr, O., Corominas, J., & Eberhardt, E. (2005). State of the Art Paper # 4. Estimating landslide motion mechanism, travel distance and velocity. Vancouver, Canada: Landslides Risk Management.
Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslides types, an update. Landslide, 167-194.
Idelsohm, S., Onate, & F., P. (2004). The particle finite element method: a powerful tool to solve incompressible flows with free-surface and breaking waves. International Journal for Numerical Methods in Engineering , 964-989.
Labuz, J., & Zang, A. (2012). Mohr–Coulomb Failure Criterion. Rock Mech Rock Eng 45, 975–979.
León, D. E. (2019). Impementación del Método del Punto Material para aplicaciones geotécnicas bajo cargas estáticas. Universidad Nacional de Colombia, Bogotá: Tesis de Maestría.
Li, X., He, S., Luo, Y., & Wu, Y. (2011). Simulation of the sliding process of Donghekou landslide triggered by the Wenchuan earthquake using a distinct element method. Environmental Earth Sciences, 1049-1054.
Lucy, L. (1977). A numerical approach to the testing of the . The astronomical journal 82, 1013-1024.
McDougall, S. (2017). 2014 Canadian Geotechnical Colloquium: Landslide runout analysis. Canadian Geotechnical Journal 54(5), , 605-620.
Melo, E. (2013). Manual de reconocimiento de deslizamientos a partir de características geomorfológicas (Tésis de Maestría). Bogotá: Pontificia Universidad Javeriana.
Mirada Larroca, F. (2015). The Material Point Method in Slope Stability Analysis (Tesis de Maestría). Escola de Camins, Barcelona.
Montero, J. (2017). Clasifiación de movimientos en masa y su distribución en terrenos geológicos de Colombia. Bogotá: Servicio Geológico Colombiano.
Nguyen, V. P. (2014). Material point method: basics and applications. Institute of Advanced Mechanics and Materials, Cardiff University.
Oñate, E., Celigueta, M., Idelsohn, S., & Salazar, F. (2011). Possibilities of the particle finite element method for fluid-soil-structure interaction problemas. Computational Mechanics, 48(3), 307-318.
Oñate, E., Idelsohm, S., Pin, D., & Aubry, R. (2004). The Particle Finite Element Method an overview. International Journal of Computational Methods 01(2), 267-307.
Servicio Geológico Colombiano & Universidad Nacional de Colombia. (2016). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Bogotá.
Sulsky, D., & Schreyer, H. (1996). Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems. Computer Methods in Applied Mechanics and Engineering.
Sulsky, D., Chen, Z., & Schreyer, H. (1994). A particle method for hystory-dependent materials. Computer Methods in Applied Mechanics and Engineering 118, 179-186.
Terzaghi, K. (1950). Mechanism of landslides. Geotechnical Society of America, 83-125.
Von Soos, S. (1991). Normalized oedometric stiffness for various soil classes”. Berlin: Ernst and Son.
Wieckowski, Z. (2004). The material point method in large strain engineering problems. . Computer Methods in Applied Mechanics and Engineering, 193(39-41):4417–4438.
Wieckowski, Z., Youn, S. K., & Yeon, J. H. (1999). A particle-in-cell solution to the silo discharging problem. International Journal for Numerical Methods in Engineering, 45, 1203-1225.
Yerro, A. (2015). MPM modelling of landslides in brittle and unsaturated soils. Universitat Politecnica de Catalunya: Tesis de doctorado.
Yerro, A., Alonso, E., & Pinyol, N. (2013). A promising computational tool in Geotechnics. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical, Paris, 853-856.
Yue, Z. (2014). Dynamics of large and rapid landslides with long travel distance under dense gas expanding power. Springer, 233-240.
Zhao, T., Utili, S., & Crosta, G. B. (2015). Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analysis. Rock Mechanics and Rock Engineering.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 238 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Geotecnia
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Civil y Agrícola
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/79665/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/79665/2/1032472063.2021.pdf
https://repositorio.unal.edu.co/bitstream/unal/79665/3/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/79665/4/1032472063.2021.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
a23bdf90a29c9932591ae9b1dacb42ef
0175ea4a2d4caec4bbcc37e300941108
433bfcf6e2531b870fee6eb4112fdbbc
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089204460683264
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Rodriguez Pineda, Carlos Eduardo301a7a1f140671d1f04b573df02253bbSandoval Montoya, Sebastián5232682ed619ff2d0172aa9ebb5180492021-06-21T21:37:00Z2021-06-21T21:37:00Z2021https://repositorio.unal.edu.co/handle/unal/79665Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapasEn el presente trabajo de investigación se elaboró un marco metodológico para determinar distancias y velocidades de deslizamientos utilizando el Método del Punto Material, usando el MPM_UN desarrollado por León (2019) como software de análisis del comportamiento de los taludes. De esta manera, se desarrollaron una serie de modelos de taludes con diferentes propiedades mecánicas y geométricas, para así obtener resultados de velocidades y distancias de viaje de deslizamientos para los diferentes casos en análisis. Así, se estudió el efecto de las propiedades mecánicas y geométricas en las propiedades cinemáticas en estudio para los deslizamientos. Paralelo a lo anterior, se realizó el cálculo de velocidades y distancias de viaje utilizando el método del bloque deslizante, planteado en la “Guía Metodológica para estudios de Amenaza, Vulnerabilidad y Riesgo por movimientos en masa” del Servicio Geológico Colombiano, para los mismos casos desarrollados con el MPM y de esta manera se compararon los resultados obtenidos.In this research work, a methodological framework was developed to determine travel distances and velocities of landslides using the Material Point Method, using the MPM_UN as software for analysis of the behavior of slopes. Thereby, a series of slope models with different mechanical and geometric properties was developed, to obtain results of travel distances and velocities of landslides for the different cases under analysis. Thus, the effect of mechanical and geometric properties on the kinematic properties under study for landslides was studied. In the same way, the calculation of travel distances and velocities of landslides was performed using the sliding block method, proposed in the "Methodological Guide for studies of Threat, Vulnerability and Risk due to mass movements" of the Colombian Geological Survey, for the same cases developed with the MPM and in this way the results obtained were compared.MaestríaMagíster en Ingeniería - GeotecniaTaludes, laderas, cauces y zonificación geotécnica, modelación y análisis en geotecnia238 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - GeotecniaDepartamento de Ingeniería Civil y AgrícolaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaMateria-PropiedadesFenomenos de la superficieDeslizamientosDistancias de viajeVelocidades de deslizamientosMétodo del Punto MaterialLandslidesTravel distancesLandslide velocitiesMaterial Point MethodEstimación de velocidades y distancias de viaje de deslizamientos utilizando el método del punto materialEstimation of travel distances and velocities of Landslides using the Material Point MethodTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionImageTexthttp://purl.org/redcol/resource_type/TMAbbo, A. J., & Sloan, S. (1995). A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion. Computers & structures 54(3), 427-441.Abe, K., Soga, K., & Bandara, S. (2014). Material Point Method for Coupled Hydromechanical Problems. . Journal of Geotechnical and Geoenvironmental Engineering 140, 1-16.Andersen, S. M. (2009). Material-Point Analysis of Large-Strain Problems: Modelling of Landslides. . Tesis de doctorado, AALBORG University.Bates, R., & Jackson, J. (1987). Glossary of Geology. Virginia: American Geological Institute.Belytschko, T., Kam-Liu, W., & Moran, B. (2000). 4 - Lagrangian meshes. Nonlinear Finite Elements for Continua and Structures. , 141-215.Beuth, L. (2012). Formulation and application of a quasi-static material point method. Tesis PhD , Universit¨at Stuttgart.Bhandari, T., Hamad, F., Moormann, C., Sharma, K., & Westrich, B. (2015). Numerical modelling od seismic slope failure using MPM. Computers and Geotechnics, 126-134.Brackbill, J., & Ruppel, H. (1986). Flip: A method for adaptively zoned, particlein-cell calculations of fluid flows in two dimensions. Journal of Computational Physics 65, 314-343.Castellví Linde, H. (2015). El deslizamiento de Selborne: Modelación mediante el Método del Punto Material (Tesis de maestría). Barcelona.Ceccato, F. (2014). Studio di problemi geotecnici a grandi deformazioni con il Material Point Method. Universitá degli studi di Padova: Tesi di Laurea dottorale.Cooper, M. (1996). The progressive development of a failure surface in overconsolidated clay at Selborne. Proceedings 7th International Symposium on Landslides, Trondheim, 683-688.Cornforth, D. (2005). Landslide in practice:Investigation, Analysis, and Remedial Opions in Soils. Wiley.Coulomb, C. A. (1773). On an application of the rules of maximum and minimum to some statical problems, relevant to architecture.Cruden, D. (1991). A simple definition of a landslide. Bulletin of the International Association of ENGINEERING GEOLOGY. Paris: No. 43.Cruden, D. M., & Varnes, D. J. (1996). Landslide types and processes. Landslides: investigation and mitigation. Transportation Research Board, Special Report 247, 36-75.Duncan, J., & Chang, C. (1970). Nonlinear analysis of stress and strain in soils. Journal of the Soil Mechanics and Foundations Division-ASCE 96(SM5), 1629-1653.Duncan, J., & Wright, S. (2005). Soil strenght and slope stability. John Wiley and sons.Fell, R., Hungr, O., & Leroueil, S. (2000). Geotechnical engineering of the stability of natural slopes, and cuts and fills in soil. Keynote lecture.Finlay, P. J., Mostyn, G., & Fell, R. (1999). Landslide risk assessment: prediction of travel distance. Canadian Geotechnical Journal 36 (3), 556-562.Gingold, R. A., & Monaghan. (1977). Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly notices of the royal astronomical society, 375-389.Harlow, F. H. (1957). The particle-in-cell method for hydrodynamic calculations. Technical report, DTIC Document.Hungr, O., Corominas, J., & Eberhardt, E. (2005). State of the Art Paper # 4. Estimating landslide motion mechanism, travel distance and velocity. Vancouver, Canada: Landslides Risk Management.Hungr, O., Leroueil, S., & Picarelli, L. (2014). The Varnes classification of landslides types, an update. Landslide, 167-194.Idelsohm, S., Onate, & F., P. (2004). The particle finite element method: a powerful tool to solve incompressible flows with free-surface and breaking waves. International Journal for Numerical Methods in Engineering , 964-989.Labuz, J., & Zang, A. (2012). Mohr–Coulomb Failure Criterion. Rock Mech Rock Eng 45, 975–979.León, D. E. (2019). Impementación del Método del Punto Material para aplicaciones geotécnicas bajo cargas estáticas. Universidad Nacional de Colombia, Bogotá: Tesis de Maestría.Li, X., He, S., Luo, Y., & Wu, Y. (2011). Simulation of the sliding process of Donghekou landslide triggered by the Wenchuan earthquake using a distinct element method. Environmental Earth Sciences, 1049-1054.Lucy, L. (1977). A numerical approach to the testing of the . The astronomical journal 82, 1013-1024.McDougall, S. (2017). 2014 Canadian Geotechnical Colloquium: Landslide runout analysis. Canadian Geotechnical Journal 54(5), , 605-620.Melo, E. (2013). Manual de reconocimiento de deslizamientos a partir de características geomorfológicas (Tésis de Maestría). Bogotá: Pontificia Universidad Javeriana.Mirada Larroca, F. (2015). The Material Point Method in Slope Stability Analysis (Tesis de Maestría). Escola de Camins, Barcelona.Montero, J. (2017). Clasifiación de movimientos en masa y su distribución en terrenos geológicos de Colombia. Bogotá: Servicio Geológico Colombiano.Nguyen, V. P. (2014). Material point method: basics and applications. Institute of Advanced Mechanics and Materials, Cardiff University.Oñate, E., Celigueta, M., Idelsohn, S., & Salazar, F. (2011). Possibilities of the particle finite element method for fluid-soil-structure interaction problemas. Computational Mechanics, 48(3), 307-318.Oñate, E., Idelsohm, S., Pin, D., & Aubry, R. (2004). The Particle Finite Element Method an overview. International Journal of Computational Methods 01(2), 267-307.Servicio Geológico Colombiano & Universidad Nacional de Colombia. (2016). Guía metodológica para estudios de amenaza, vulnerabilidad y riesgo por movimientos en masa. Bogotá.Sulsky, D., & Schreyer, H. (1996). Axisymmetric form of the material point method with applications to upsetting and Taylor impact problems. Computer Methods in Applied Mechanics and Engineering.Sulsky, D., Chen, Z., & Schreyer, H. (1994). A particle method for hystory-dependent materials. Computer Methods in Applied Mechanics and Engineering 118, 179-186.Terzaghi, K. (1950). Mechanism of landslides. Geotechnical Society of America, 83-125.Von Soos, S. (1991). Normalized oedometric stiffness for various soil classes”. Berlin: Ernst and Son.Wieckowski, Z. (2004). The material point method in large strain engineering problems. . Computer Methods in Applied Mechanics and Engineering, 193(39-41):4417–4438.Wieckowski, Z., Youn, S. K., & Yeon, J. H. (1999). A particle-in-cell solution to the silo discharging problem. International Journal for Numerical Methods in Engineering, 45, 1203-1225.Yerro, A. (2015). MPM modelling of landslides in brittle and unsaturated soils. Universitat Politecnica de Catalunya: Tesis de doctorado.Yerro, A., Alonso, E., & Pinyol, N. (2013). A promising computational tool in Geotechnics. Proceedings of the 18th International Conference on Soil Mechanics and Geotechnical, Paris, 853-856.Yue, Z. (2014). Dynamics of large and rapid landslides with long travel distance under dense gas expanding power. Springer, 233-240.Zhao, T., Utili, S., & Crosta, G. B. (2015). Rockslide and Impulse Wave Modelling in the Vajont Reservoir by DEM-CFD Analysis. Rock Mechanics and Rock Engineering.GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79665/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1032472063.2021.pdf1032472063.2021.pdfTesis de Maestría Ingeniería - Geotecniaapplication/pdf44168560https://repositorio.unal.edu.co/bitstream/unal/79665/2/1032472063.2021.pdfa23bdf90a29c9932591ae9b1dacb42efMD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8908https://repositorio.unal.edu.co/bitstream/unal/79665/3/license_rdf0175ea4a2d4caec4bbcc37e300941108MD53THUMBNAIL1032472063.2021.pdf.jpg1032472063.2021.pdf.jpgGenerated Thumbnailimage/jpeg4819https://repositorio.unal.edu.co/bitstream/unal/79665/4/1032472063.2021.pdf.jpg433bfcf6e2531b870fee6eb4112fdbbcMD54unal/79665oai:repositorio.unal.edu.co:unal/796652024-07-22 00:40:49.624Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==