Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia

ilustraciones, mapas

Autores:
Quintana Puentes, Robinson
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/84087
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/84087
https://repositorio.unal.edu.co/
Palabra clave:
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
530 - Física::532 - Mecánica de fluidos
510 - Matemáticas::518 - Análisis numérico
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::621 - Física aplicada
Topografía
Medición de superficies
Modelos geométricos
Surveying
Area measurement
Geometrical models
Modelo 2D
Subducción
Modelamiento termo-mecánico
Euleriano
Lagrangiano y Colombia
2D model
Subduction
Thermo-mechanical
Eulerian
Lagrangian and Colombia modeling
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_e069fc6d9dbe5c99a208ac1abfb8c09a
oai_identifier_str oai:repositorio.unal.edu.co:unal/84087
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia
dc.title.translated.eng.fl_str_mv Thermo-mechanical deformation modeling of the southern Colombian subduction zone
title Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia
spellingShingle Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia
550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
530 - Física::532 - Mecánica de fluidos
510 - Matemáticas::518 - Análisis numérico
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::621 - Física aplicada
Topografía
Medición de superficies
Modelos geométricos
Surveying
Area measurement
Geometrical models
Modelo 2D
Subducción
Modelamiento termo-mecánico
Euleriano
Lagrangiano y Colombia
2D model
Subduction
Thermo-mechanical
Eulerian
Lagrangian and Colombia modeling
title_short Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia
title_full Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia
title_fullStr Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia
title_full_unstemmed Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia
title_sort Modelado de deformación termo-mecánico de la zona de subducción del sur de Colombia
dc.creator.fl_str_mv Quintana Puentes, Robinson
dc.contributor.advisor.none.fl_str_mv Montes, Luis Alfredo
Zuluaga, Carlos
dc.contributor.author.none.fl_str_mv Quintana Puentes, Robinson
dc.contributor.researchgroup.spa.fl_str_mv Grupo de geofísica
dc.contributor.orcid.spa.fl_str_mv Quintana Puentes, Robinson [0000-0002-3523-6203]
dc.subject.ddc.spa.fl_str_mv 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
530 - Física::532 - Mecánica de fluidos
510 - Matemáticas::518 - Análisis numérico
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur
530 - Física::532 - Mecánica de fluidos
510 - Matemáticas::518 - Análisis numérico
000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación
620 - Ingeniería y operaciones afines::621 - Física aplicada
Topografía
Medición de superficies
Modelos geométricos
Surveying
Area measurement
Geometrical models
Modelo 2D
Subducción
Modelamiento termo-mecánico
Euleriano
Lagrangiano y Colombia
2D model
Subduction
Thermo-mechanical
Eulerian
Lagrangian and Colombia modeling
dc.subject.lemb.spa.fl_str_mv Topografía
Medición de superficies
Modelos geométricos
dc.subject.lemb.eng.fl_str_mv Surveying
Area measurement
Geometrical models
dc.subject.proposal.spa.fl_str_mv Modelo 2D
Subducción
Modelamiento termo-mecánico
Euleriano
Lagrangiano y Colombia
dc.subject.proposal.eng.fl_str_mv 2D model
Subduction
Thermo-mechanical
Eulerian
Lagrangian and Colombia modeling
description ilustraciones, mapas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-06-27T20:46:02Z
dc.date.available.none.fl_str_mv 2023-06-27T20:46:02Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/84087
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/84087
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Allmendinger, R., Reilinger, R., y Loveless, J. (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. TECTONICS, 1-8. doi: https://doi.org/10.1029/2006TC002030
Altamimi, Z., Rebischung, P., Métivier, L., y Collilieux, X. (2014). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 6109-6131. doi: https://doi.org/10.1002/2016JB013098
Bahrouni, N., Masson, F., Meghraoui, F., Saleh, M., Maamri, R., Dhaha, F., y Arfaoui, M. (2020). Active tectonics and GPS data analysis of the Maghrebian thrust belt and Africa-Eurasia plate convergence in Tunisia. Tectonophysics, 228440. doi: https://doi.org/10.1016/j.tecto.2020.228440
Briseño Guarupe, L. A., y Díaz Campos, R. (1995). Medidas de propiedades dinámicas en rocas "in situ" y computo de parámetros elastomecánicos. Geofísica Colombiana, 73-79. Obtenido de https://revistas.unal.edu.co/index.php/esrj/article/view/31238
Bustamante, C., Archanjo, C. J., Cardona, A., Andrés, B., y Valencia, V. (2017). U-Pb Ages and Hf Isotopes in Zircons from Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane Configurations in the Northern Andes. (T. U. Journals, Ed.) The Journal of Geology, 487–500. doi: https://www.journals.uchicago.edu/doi/10.1086/693014
Cardona, A., Cordani, H., y Macdonald, W. (2006). Tectonic correlations of pre-Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. Journal of South American Earth Sciences, 337-354. doi: https://doi.org/10.1016/j.jsames.2006.07.009
Cardozo, N., Allmendinger, R., y Fisher, D. (2012). Structural Geology Algorithms vector and tensor. New York: CAMBRIDGE UNIVERSITY PRESS. doi: https://doi.org/10.1017/CBO9780511920202
Egbue, O., Kellogg, J., Aguirre, H., y Torres, C. (2013). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 8-21. doi: https://doi.org/10.1016/j.jsg.2013.10.004
Engelkemeir, R., Khan, S. D., y Burke, K. (2010). Surface deformation in Houston, Texas using GPS. Tectonophysics, 47–54. doi: https://doi.org/10.1016/j.tecto.2010.04.016
Freymueller, J., Kellogg, J., y Vega, V., (1993). Plate Motions in the North Andean Region. Journal of Geophysical Research, 21853-21863. Doi: https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1003&context=geol_facpub
González, C. P., Quintana, P. R., y Montes, L. V. (2019). Cálculo de la elongación, dilatación y vectores de rotación de la deformación con algunas estaciones GPS en Colombia. Vínculos, 16, 262–269. doi: https://doi.org/10.14483/2322939X.15749
Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B,. Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M., Zoback, M., y Zoback, M. (2016). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 484-498. doi: https://doi.org/10.1016/j.tecto.2018.07.007
Ji, K. H., y Henrring, T. A. (2013). A method for detecting transient signals in GPS position time-series: smoothing and principal component analysis. Geophysical Journal International, 171–186. doi: https://doi.org/10.1093/gji/ggt003
Kellogg, J.N., Freymueller, J.T., Dixon, T.H., Neilan, R.E., Ropain, C.U., Camargo, S.M., Fernandez, B., Stowell, J.L., Salazar, A., Mora, J., Espin, L., Perdue, V., Leos, L., (1990). First GPS baseline results from the north Andes, CASA UNO special issue. Geophys. Res. Lett. 17, 211-214. https://doi.org/10.1029/GL017i003p00211
Klos, A., Bogusz, J., Figurski, M., & Kosek, W. (2014). Uncertainties of geodetic velocities from permanent GPS observations: the sudeten case study. Geomater, 201–209. doi: https://doi.org/10.13168/AGG.2014.0005
Martínez-Garzón, P., Heidbach, O., y Bohnhoff, M. (2020). Contemporary stress and strain field in the Mediterranean from stress inversion of focal mechanisms and GPS data. Tectonophysics, 228286. doi: https://doi.org/10.1016/j.tecto.2019.228286
Mora Páez, H., y Audemard, F. (2021). GNSS Networks for Geodynamics in the Caribbean, Northwestern South America, and Central America. En B. E. Erol, Geodetic Sciences - Theory, Applications and Recent Developments (págs. 1-22). Bogotá, Colombia: Intechopen. doi: https://www.intechopen.com/chapters/76166
Mora-Páez, H., J. R. Peléz-Gaviria, H. Diederix, O. Bohórquez-Orozco, L. Cardona-Piedrahita, y. Cochuelo-Cuervo, . . . F. Díaz-Mila. (2018). Space Geodesy Infrastructure in Colombia for Geodynamics Research. Seismological Research Letter, 446-451. doi: https://doi.org/10.1785/0220170185
Mora-Páez, H., Kellog, J. N., Freymuller, J. T., Mencin, D., Rui, F. M., Hans, D., . . . Corchuelo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 76-91. doi: https://doi.org/10.1016/j.jsames.2018.11.002
Mora-Páez, H., Kellogg, J. N., y Freymuller, J. T. (2020). Contributions of space geodesy for geodynamic studies in Colombia: 1988 to 2017. En S. G. Colombiano, The Geology of Colombia (págs. 479–498). Bogotá: Gómez, J. y Pinilla–Pachon. doi: https://doi.org/10.32685/pub.esp.38.2019.14
Mostafavi, M., Gold, C., y Dakowicz, M. (2003). Delete and insert operations in Voronoi/Delaunay methods. Computers y Geosciences, 523–530 doi: https://doi.org/10.1016/S0098-3004(03)00017-7
Parra, M., Mora, A., López, C., Luis, R., y Horton, B. (2012). Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology. doi: https://doi.org/10.1130/G32519.1
Restrepo, J., Ordoñez, O., Armstrong, R., y Pimentel, M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the central cordillera of Colombia. Journal of South American Earth Sciences, 497-507. doi: https://doi.org/10.1016/j.jsames.2011.04.009
Saikia, M., y Hussain, A. (2019). Delaunay Triangulation Based Key Distribution for Wireless Sensor Network. Journal of Communications, 530-537. doi: https://doi.org/10.12720/jcm.14.7.530-537
Toussaint, J. F., y Restrepo, J. J. (2020). Tectonostratigraphic Terranes in Colombia. In S. G. Colombiano, The Geology of Colombia (pp. 237–260). Bogotá: Publicaciones Geológicas Especiales. doi: https://doi.org/10.32685/pub.esp.36.2019.07
Turcotte, D., y Schubert, G. (2001). Geodynamics. En D. Turcotte, y G. Schubert, Geodynamics (págs. 185-188). Cambridge: Cambridge University. doi: https://doi.org/10.1017/CBO9780511807442
Vargas, C. A. (2020). Subduction Geometries in Northwestern South America. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales. doi: https://doi.org/10.32685/pub.esp.38.2019.11
Vargas, C. A., y Durán Tovar, J. (2005). State of strain and stress in northwestern of South America. Earth sciences research journal, 43-50. Obtenido de http://www.scielo.org.co/scielo.php?script=sci_arttex t&pid=S1794-61902005000100005
Zhu, S., Chen, J., y Shi, Y. (2022). Earthquake potential in the peripheral zones of the Ordos Block based on contemporary GPS strain rates and seismicity. Tectonophysics, 229224. doi: https://doi.org/10.1016/j.tecto.2022.229224
Zoback, M. (1992). First and second order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res., 97, 11703-11728, http://doi.org/10.1029/92jb00132
Andersen, O. B. (2013). Marine gravity and geoid from satellite altimetry. Lecture Notes in Earth System Sciences, 401–451. doi:https://doi.org/10.1007/978-3-540-74700-0_9
Antokoletz, E. D. (2017). Red gravimétrica de primer orden de la República Argentina. Mar de Plata: Doctoral Dissertation, Universidad Nacional de La Plata.
Blakely, R. (1996). Potential Theory in gravity and magnetic applications. Cambridge, United Kingdom: Cambridge University Press.
Chai, Y. H. (1988). Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 837–845. doi:https://doi.org/10.1190/1.1442518
Gómez-Ortiz, D. A. (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers and Geosciences, 513–520. doi:https://doi.org/10.1016/j.cageo.2004.11.004
Hackney, R. I. (2003). Geodetic versus geophysical perspectives of the ’gravity anomaly. Geophysical Journal International, 35–43. doi:https://doi.org/10.1046/j.1365-246X.2003.01941.x
Hall A. R. y Tilling L., (1978). The Correspondence of Isaac Newton. Cambridge University Press. Vol. 2 (1676-1687). doi:https://doi.org/10.1017/9781108651820
Hernández Moraleda, A. y. (2013). Determinación de la profundidad de la discontinuidad de Mohorovičić en la península lbérica a partir del problema isostático inverso de Vening Meinesz. comparación con el método sísmico. Boletín Geológico y Minero, 563–571.
Hernandez, F. S. (2000). Altimetric Mean Sea Surfaces and Gravity Anomaly maps. (I. o. Development, Ed.) d’Etudes Spatiales.
Hofmann Wellenhof, B. M. (2005). Physical geodesy. Springer Science y Business Media. Kane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044
López, E. (2020). Estudio de microgravimetría urbana en el centro histórico de Querétaro en relación con el proceso de subsidencia en el área metropolitana. IPICYT, 1-15.
Lowrie, W. (2007). Fundamentals of Geophysics. Cambridge University Press, Cambridge, UK. doi: https://doi.org/10.1017/CBO9780511807107
Kane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044
Nagy, D. (1966). The gravitational attraction of a right rectangular prism. GEOPHYSICS, 320-428. doi:https://doi.org/10.1190/1.1439779
Niño Ferro, E. M. (2018). Sistema de Inversión de Datos Gravimétricos Basados en Simulated Annealing para Objetos Geométricos Simples. Bucaramanga: Universidad Industrial de Santander.
Parker R.L. y Oldenburg L. (1972). The rapid calculation of potential anomalies. Geophys, J. R. astr. Soc. 31, 447-455.
Pham, L. T. (2018). GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers and Geosciences, 40–47. doi:https://doi.org/10.1016/j.cageo.2018.07.009
Sandwell, D. T. (2002). Laplace’s Equation in Cartesian Coordinates and Satellite Altimetry. Science, 346.
Sears, F. W. (2005). Física Universitaria Con Física Moderna Vol II. México: Pearson Education. doi:https://doi.org/10.2307/j.ctvvn8f6.8
SLRG. (2020). Sea Level Research Group. University of Colorado. https://sealevel.colorado.edu
Smith, W. H. (2010). The Marine Geoid and Satellite Altimetry. Oceanography from Space: Revisited, 1–375. doi:https://doi.org/10.1007/978-90-481-8681-5
Suriñach, E. F.-M. (2006). Inversión numérica 3D de datos gravimétricos procedentes de campañas marinas y de satélite. Aplicación a un área antártica. (Dialnet, Ed.) Madrid: Física de La Tierra. doi:https://doi.org/10.5209/rev_FITE. 2006.v18.12515
Sutra, E. M. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the iberia margin. Geology, 139–142. Obtenido de https://doi.org/10.1130/G32786.1 Torge, W. (1991). Geodesy. Berlin: Gruyter.
Alken, P. T. (11 de 02 de 2021). International Geomagnetic Reference Field: the thirteenth generation. doi:https://doi.org/10.1186/s40623-020-01288-x
ANH, 2010. Agencia Nacional de Hidrocarburos. Anomaías intensidad magnética total. https://www.anh.gov.co/es/hidrocarburos/informaci%C3%B3n-geol%C3%B3gica-y-geof%C3%ADsica/m%C3%A9todos-remotos/anomal%C3%ADas-intensidad-magn%C3%A9tica-total/
Blakely, R. (1996). Potential Theory in gravity and magnetic applications. Cambridge, United Kingdom: Cambridge University Press.
Butler, R. (2004). PALEOMAGNETISM: Magnetic Domains to Geologic Terranes. Portland, Oregon: University of Portland. Obtenido de https://www.geo.arizona.edu/Paleomag/tocpref.pdf
Cooper, G., y Cowan, D. (2005). Differential reduction to the pole. Computers y Geosciences, 989-999. doi:10.1016/j.cageo.2005.02.005
Dobrin, M., y Sabit, C. (1988). Introduction to geophysical prospecting Fourth edition. New York: McGraw-Hill.
Gombert, B., Duputel, Z., Jolivet, R., Simons, M., Jiang, J., Liang, C., . . . Rivera, L. (2018). Strain budget of the Ecuador–Colombia subduction zone a stochastic. Earth and Planetary Science Letters, 288-299. doi:https://doi.org/10.1016/j.epsl.2018.06.046
Gubbins, D., y Herrero, E. (2007). Encyclopedia of Geomagnetism and Paleomagnetism. Dordrecht, The Netherlands: Springer.
Huangu, P., Wang, Y., Fan, W., Li, Z., y Zhou, Y. (2007). Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research, 1-19. doi:10.1029/2007JB005021
Idárraga-García, J., y Vargas, C. (2018). Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior. Geodesy and Geodynamics, 93-107.
Kearey, P., Brooks, M., & Hill, I.A. (2002). An Introduction to Geophysical Exploration. Oxford U.K. Blackwell Science Ltd.
Kaufman, A. (1992). Geophysical Field Theory and Method. Colorado: Academic Press, Inc.
Lallemand, S., y Arcay, D. (2021). Magnetic anomaly interpretation across the southern central. Earth-Science Reviews, 103779. doi: https://doi.org/10.1016/j.earscirev.2021.103779
Langel, R., y Hinze, W. (1998). The magnetic field of the earth's Lithosphere. Cambridge, United Kindom: Cambridge University Press.
León, S., Monsalve, G., Jaramillo, C., Posada, G., Siquiera, T., Echeverri, S., y Valencia, V. (2021). Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics, 229132
Monsalve-Jaramillo, H., Valencia-Mina, W., Cano-Saldaña, L., y Vargas, C. (2018). Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 47-61. doi: https://doi.org/10.1016/j.jog.2018.02.005
Moreno, E., y Manea, M. (2021). Geodynamic evaluation of the pacific tectonic model for chortis block evolution using 3D numerical models of subduction. Journal of South American Earth Sciences, 103604. doi:https://doi.org/10.1016/j.jsames.2021.103604
Valenta, J. (2015). Introduction to Geophysics. Czech: Development Cooperation. Obtenido de http://www.geology.cz/projekt681900/english/learning-resources/Geophysics_lecture_notes.pdf
Vargas, C. A. (2020). Subduction Geometries in Northwestern. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales.
Yáñez, G., Ranero, C., Huene, R., y Díaz, J. (2001). Magnetic anomaly interpretation across the southern central Andes (32°-34°S): The role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. Journal of Geophtsical Research, 6325-6345. doi:https://doi.org/10.1029/2000JB900337
Barrero, D., Pardo, A., Vargas, C., y Martínez, J. (2007). Colombian Sedimentary Basins. Bogotá: ANH and ByM Exploration Ltda.
Baumann, J. (2016). Appraisal of geodynamic inversion results: a data mining approach. Geophysical Journal International, 667–679. doi:10.1093/gji/ggw279 Becker, T., y Boris, K. (2011). Numerical Geodynamics. California: University of Southern California.
Briseño Guarupe, L. A., y Díaz Campos, R. (1995). Medidas de propiedades dinámicas en rocas "in situ" y computo de parámetros elastomecánicos. Geofísica Colombiana, 73-79.
Cardozo, N., Allmendinger, R., y Fisher, D. (2012). Structural Geology Algorithms vector and tensor. New York: CAMBRIDGE UNIVERSITY PRESS.
Cediel, F., Shaw, R.P., Cáceres, C., 2003, Tectonic assembly of the Northern Andean Block, in C. Bartolini, R.T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. Am. Assoc. Petrol. Geol., Memoir, v. 79, p. 815-848.
Chai, Y. H. (1988). Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 837–845. doi:https://doi.org/10.1190/1.1442518
Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geoscientific Model Development, 2541–2562.
Dobrin, M., y Sabit, C. (1988). Introduction to geophysical prospecting Fourth edition. New York: McGraw-Hill.
Dabrowski, M., M. Krotkiewski, and D. W. Schmid, (2008). MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9, Q04030, doi:10.1029/2007GC001719.
Earle, S. y Panchuk, K. (2019). Physical Geology – 2nd Edition. British, Columbia. Retrieved from https://opentextbc.ca/physicalgeology2ed/
Egbue, O., Kellogg, J., Aguirre, H., y Torres, C. (2013). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 8-21.
Fraters, M., Thieulot, C., den, A., y Spakman, W. (2019). The Geodynamic World Builder: a solution for complex initial conditions in numerical modelling. Journal Solid Earth, 1-27. doi:10.5194/se-2019-24
Jaillard, E. (1987), Sedimentary evolution of an active margin during middle and upper Cretaceous times: the North Peruvian margin from Late Aptian up to Senonian. Geologische Rundschau, 76, 677-697.
Jaillard, E. P., Solar, P., Carlier, G. and Mourier, T., (1990), Geodynamic evolution of the northern and central Andes during early to midle Mesozoic times: a Tethyan model. Jour. Geol. Soc., London, 147:1009-1022.
Jaillard, E., Soler, P., Carlier, G., Mourier, T., (1990), Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. Journal of the Geological Society, London 147, 1009e1022.
Fullsack, P., (1995). An arbitrary Lagrangian-Eulerian formulation for creeping flows and applications in tectonic models, Geophys. J. Int ., 120 , 1-23.
Gerya, T.V., y Meilick, F.I., (2011). Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology. 29, 7-39. doi:10.1111/j.1525-1314.2010.00904.x
Gerya, T. (2010). Introduction to Numerical Geodynamic Modelling. Cambridge. Cambridge University Press.
Gerya, T. (2018). Numerical Geodynamic Modelling. Second Edition. Swiss Federal University (ETH), Zürich. http://jupiter.ethz.ch/~tgerya/Book
Gombert, B., Duputel, Z., Jolivet, R., Simons, M., Jiang, J., Liang, C., Rivera, L. (2018). Strain budget of the Ecuador–Colombia subduction zone a stochastic. Earth and Planetary Science Letters, 288-299. doi:https://doi.org/10.1016/j.epsl.2018.06.046
Gómez Ortiz, D. A. (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers and Geosciences, 513–520. doi:https://doi.org/10.1016/j.cageo.2004.11.004
González, C. P., Quintana, P. R., y Montes, L. V. (2019). Cálculo de la elongación, dilatación y vectores de rotación de la deformación con algunas estaciones GPS en Colombia. Vínculos, 16, 262–269. Obtenido de https://revistas.udistrital.edu.co/index.php/vinculos/article/view/15749
Gray, R. (2013). Numerical Geodynamic Experiments of Continental Collision: Past and Present. Toronto: University of Toronto.
Guerrero, J. (1 de Octubre de 2018). Pre-andean tectonic events from albian to eocene in the middle magdalena valley and situation of the western flank of the proto-eastern cordillera (Colombia). Tesis. Bogotá: Universidad Nacional de Colombia.
Kane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044
Kaufman, A. (1992). Geophysical Field Theory and Method. Colorado: Academic Press, Inc.
Kaus, B. (2010). Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophysics, 36-47. doi:10.1016/j.tecto.2009.08.042
Kaus, B., y Mühlhaus, H. (2009). A stabilization algorithm for geodynamic numerical simulations with a free surface. Physics of the Earth and Planetary Interiors, 9-18. doi:10.1016/j.pepi.2010.04.007
Klos, A., Bogusz, J., Figurski, M., y Kosek, W. (2014). Uncertainties of geodetic velocities from permanent GPS observations: the sudeten case study. Geomater, 201–209.
Lallemand, S., y Arcay, D. (2021). Magnetic anomaly interpretation across the southern central. Earth-Science Reviews, 103779. doi:https://doi.org/10.1016/j.earscirev.2021.103779
Langel, R., y Hinze, W. (1998). The magnetic field of the earth's Lithosphere. Cambridge, United Kindom: Cambridge University Press.
León, S., Monsalve, G., Jaramillo, C., Posada, G., Siquiera, T., Echeverri, S., y Valencia, V. (2021). Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics, 229132.
López, E. (2020). Estudio de microgravimetría urbana en el centro histórico de Querétaro en relación con el proceso de subsidencia en el área metropolitana. IPICYT, 1-15.
Monsalve-Jaramillo, H., Valencia-Mina, W., Cano-Saldaña, L., y Vargas, C. (2018). Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 47-61. doi:https://doi.org/10.1016/j.jog.2018.02.005
Monsalve-Jaramillo, H. y Mora-Páez, H., 2005. Esquema geodinámico regional para el noroccidente de Suramérica (Modelo de subducción y desplazamientos relativos). Boletín de Geología, Vol. 27, No. 1. Bogotá, Colombia. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/download/865/1195/2543
Mora-Páez, H., y Audemard, F. (2021). GNSS Networks for Geodynamics in the Caribbean, Northwestern South America, and Central America. En B. E. Erol, Geodetic Sciences - Theory, Applications and Recent Developments (págs. 1-22). Bogotá, Colombia: Intechopen.
Mora-Páez, H., J. R. Peléz-Gaviria, H. Diederix, O. Bohórquez-Orozco, L. Cardona-Piedrahita, y. Cochuelo-Cuervo, . . . F. Díaz-Mila. (2018). Space Geodesy Infrastructure in Colombia for Geodynamics Research. Seismological Research Letter, 446-451. doi:10.1785/0220170185
Moreno, E., y Manea, M. (2021). Geodynamic evaluation of the pacific tectonic model for chortis block evolution using 3D numerical models of subduction. Journal of South American Earth Sciences, 103604. doi:https://doi.org/10.1016/j.jsames.2021.103604
Moseri L., Quenette S., Lemiale V., Meriaux C., Appelbe B., and Mühlhaus H. B. (2007). Computational approaches to studying non-linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interiors 163, 69 - 82.
Moseri, L.N., F. Dufour, and H.-B. Mühlhaus, (2003). A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, J. Comp. Phys., 184, pp. 476-497.
Nagy, D. (1966). The gravitational attraction of a right rectangular prism. GEOPHYSICS, 320-428. doi:https://doi.org/10.1190/1.1439779
Niño Ferro, E. M. (2018). Sistema de Inversión de Datos Gravimétricos Basados en Simulated Annealing para Objetos Geométricos Simples. Bucaramanga: Universidad Industrial de Santander.
Olivella, X., y Saracíbar, C. (2010). Mecánica de los medios continuos para ingenieros. Barcelona: Universiad Politécnica de Cataluña.
Pham, L. T. (2018). GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers and Geosciences, 40–47. doi:https://doi.org/10.1016/j.cageo.2018.07.009
Pindell, J., Kennan, L., (2001), Kinematic evolution of the Gulf of Mexico and Caribbean, in R.H. Fillon, N.C. Rosen, and P. Weimer (Eds.), Petroleum Systems of Deep-Water Basins: Global and Gulf of Mexico Experience: GCS-SEPM Foundation, XXI Annual Research Conference, Transactions, p.193-220.
Pindell, J.L., Kennan, L. (2001), Kinematic evolution of the Gulf of Mexico and Caribbean. In: Petroleum Systems of Deep-water Basins: Global and Gulf of Mexico Experience, SEPM Gulf Coast Section, Proceedings of the 21st Annual Research Conference. Society for Sedimentary Geology (SEPM), 193–220.
Pindell, J., Kennan, L., (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: The Origin and Evolution of the Caribbean Plate (K.H. James, M.A. Lorente and J. Pindell, eds), Geol.Soc. [Lond.] Spec. Publ., 328, 1–56. doi:10.1144/SP328.1
Pindell, J.L. and Kennan, L., (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update.
Ramos, V. A. (2010). The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geological Journal, 45, 2-25. DOI:10.1002/gj.1193
Restrepo-Pace P. A., Colmenares, F., Higuera, C., and Mayorga, M., et al., (2004), A fold and Thrust belt along the western flank of the Eastern Cordillera of Colombia. Style, Kinematics, and timing constrains derived from seismic data and detailed surface mapping. In: McClay, K. R. (ed.) Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, Tulsa, OK, Memoirs, 82, 598-613.
Saikia, M., y Hussain, A. (2019). Delaunay Triangulation Based Key Distribution for Wireless Sensor Network. Journal of Communications, 530-537
Sears, F. W. (2005). Física Universitaria Con Física Moderna Vol II. México: Pearson Education. doi:https://doi.org/10.2307/j.ctvvn8f6.8
Strauss, W. (2008). Partial Differencial Equations. Danvers: John Wiley y Sons, Inc.
Stüwe, K. (2007). Geodynamics of the Lithosphere. Austria: Springer.
Suriñach, E. F.-M. (2006). Inversión numérica 3D de datos gravimétricos procedentes de campañas marinas y de satélite. Aplicación a un área antártica. (Dialnet, Ed.) Madrid: Física de La Tierra. doi:https://doi.org/10.5209/rev_FITE.2006.v18.12515
Sutra, E. M. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the iberia margin. Geology, 139–142. Obtenido de https://doi.org/10.1130/G32786.1
Tarbuck, E. J. (2017). Earth: an introduction to physical geology. Canadá: Pearson.
Toussaint, J. F., y Restrepo, J. J. (2020). Tectonostratigraphic Terranes in Colombia. In S. G. Colombiano, The Geology of Colombia (pp. 237–260). Bogotá: Publicaciones Geológicas Especiales. doi:https://doi.org/10.32685/pub.esp.36.2019.07
Turcotte, D., y Schubert, G. (2001). Geodynamics. En D. Turcotte, y G. Schubert, Geodynamics (págs. 185-188). Cambridge: Cambridge University.
Valenta, J. (2015). Introduction to Geophysics. Czech: Development Cooperation. Obtenido de http://www.geology.cz/projekt681900/english/learning-resources/Geophysics_lecture_notes.pdf
Vargas, C. A. (2020). Subduction Geometries in Northwestern. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales. Vargas, C. A., y Durán Tovar, J. (2005). State of strain and stress in northwestern of south America. Earth sciences research journal, 43-50.
Villagómez D. D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America. Terre & Environement. Thesis.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 90 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.country.none.fl_str_mv Colombia
Colombia
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Geociencias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá,Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/84087/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/84087/4/79512283.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/84087/5/79512283.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
c55e4015ca0da16be075e496b4065eae
491da4f79e117626adbad42888e46d51
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089186147303424
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Montes, Luis Alfredobda70a171897f0dcbf5db8ec685bdb22Zuluaga, Carlosc93f885e3ed61421bb118202b7647cdeQuintana Puentes, Robinsona61226818c9c5075bab82be7e05d213fGrupo de geofísicaQuintana Puentes, Robinson [0000-0002-3523-6203]2023-06-27T20:46:02Z2023-06-27T20:46:02Z2022https://repositorio.unal.edu.co/handle/unal/84087Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, mapasLa forma de la topografía de la superficie en la parte sur del territorio colombiano es el resultado de la deformación producida por la subducción de la placa de Nazca debajo de la Placa de Suramérica. Se genera un modelado numérico termo-mecánico para solucionar varias ecuaciones que describen los fenómenos físicos principales asociados a calor y esfuerzo. Este proceso de subducción es modelado bajo el marco de la mecánica de los medios continuos. Se presenta la evolución en la subducción escogida modelando los escenarios en aproximadamente 150 millones de años desde el periodo geológico Jurásico hasta ahora, parametrizado por el control que ejerce la forma de la topografía actual. Este modelamiento se realiza con el programa computacional MatLab y se tienen en cuenta códigos computacionales de varios autores que están trabajando en estas soluciones. Un aspecto fundamental es discretizar el espacio basándose en coordenadas planas formando un grillado de 24.888 marcas y representando un área de 300 km de alto y 3000 km de largo sobre la latitud de 3° grados. Se determinan esfuerzo, temperatura, composición, velocidad, geometría y propiedades de las cortezas oceánica y continental para un total de 10 escenarios. El código i3Elvis resulta ser un código robusto para modelar fenómenos de la subducción tales como; la ruptura, ángulo bajo con respecto al horizonte de la placa oceánica. Pero no resulta ser efectivo para el desprendimiento de la placa cuando se adhiere un terreno oceánico. Se genera un modelo de geometría actual de las rocas involucradas en la subducción por medio de datos de gravimetría y magnetometría, el cual, es el objetivo de llegada del modelamiento. (Texto tomado de la fuente)The shape of the surface topography in the southern part of the Colombian territory is the result of the deformation produced by the subduction of the Nazca plate under the South American Plate. We generate a thermo-mechanical numerical modeling to solve several equations that describe the main physical phenomena associated with heat and stress. We model this subduction process under the framework of continuum mechanics. We present the evolution in the chosen subduction modeling the scenarios in approximately 150 million years from the Jurassic geologic period until now, parameterized by the control exerted by the shape of the current topography. This modeling was carried out with the MatLab computer program and computer codes of various authors who are working on these solutions were taken into account. A fundamental aspect is to discretize the space based on plane coordinates, forming a grid of 24,888 marks and representing an area 300 km high and 3000 km long on the latitude of 3° degrees. We determined stress, temperature, composition, velocity, geometry, and properties of the oceanic and continental crusts for a total of 10 scenarios. The i3Elvis code turned out to be a robust code to model subduction phenomena such as; the rupture, low angle with respect to the horizon of the oceanic plate. But it did not turn out to be effective for plate detachment when an oceanic terrain is attached. We generated a current geometry model of the rocks involved in the subduction through gravimetry and magnetometry data, which was the goal of the modeling.DoctoradoDoctor en GeocienciasEstratigrafía, tectónica y Geodinámicaxv, 90 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en GeocienciasFacultad de CienciasBogotá,ColombiaUniversidad Nacional de Colombia - Sede Bogotá550 - Ciencias de la tierra::558 - Ciencias de la tierra de América del Sur530 - Física::532 - Mecánica de fluidos510 - Matemáticas::518 - Análisis numérico000 - Ciencias de la computación, información y obras generales::005 - Programación, programas, datos de computación620 - Ingeniería y operaciones afines::621 - Física aplicadaTopografíaMedición de superficiesModelos geométricosSurveyingArea measurementGeometrical modelsModelo 2DSubducciónModelamiento termo-mecánicoEulerianoLagrangiano y Colombia2D modelSubductionThermo-mechanicalEulerianLagrangian and Colombia modelingModelado de deformación termo-mecánico de la zona de subducción del sur de ColombiaThermo-mechanical deformation modeling of the southern Colombian subduction zoneTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDColombiaColombiaAllmendinger, R., Reilinger, R., y Loveless, J. (2007). Strain and rotation rate from GPS in Tibet, Anatolia, and the Altiplano. TECTONICS, 1-8. doi: https://doi.org/10.1029/2006TC002030Altamimi, Z., Rebischung, P., Métivier, L., y Collilieux, X. (2014). ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. Journal of Geophysical Research: Solid Earth, 6109-6131. doi: https://doi.org/10.1002/2016JB013098Bahrouni, N., Masson, F., Meghraoui, F., Saleh, M., Maamri, R., Dhaha, F., y Arfaoui, M. (2020). Active tectonics and GPS data analysis of the Maghrebian thrust belt and Africa-Eurasia plate convergence in Tunisia. Tectonophysics, 228440. doi: https://doi.org/10.1016/j.tecto.2020.228440Briseño Guarupe, L. A., y Díaz Campos, R. (1995). Medidas de propiedades dinámicas en rocas "in situ" y computo de parámetros elastomecánicos. Geofísica Colombiana, 73-79. Obtenido de https://revistas.unal.edu.co/index.php/esrj/article/view/31238Bustamante, C., Archanjo, C. J., Cardona, A., Andrés, B., y Valencia, V. (2017). U-Pb Ages and Hf Isotopes in Zircons from Parautochthonous Mesozoic Terranes in the Western Margin of Pangea: Implications for the Terrane Configurations in the Northern Andes. (T. U. Journals, Ed.) The Journal of Geology, 487–500. doi: https://www.journals.uchicago.edu/doi/10.1086/693014Cardona, A., Cordani, H., y Macdonald, W. (2006). Tectonic correlations of pre-Mesozoic crust from the northern termination of the Colombian Andes, Caribbean region. Journal of South American Earth Sciences, 337-354. doi: https://doi.org/10.1016/j.jsames.2006.07.009Cardozo, N., Allmendinger, R., y Fisher, D. (2012). Structural Geology Algorithms vector and tensor. New York: CAMBRIDGE UNIVERSITY PRESS. doi: https://doi.org/10.1017/CBO9780511920202Egbue, O., Kellogg, J., Aguirre, H., y Torres, C. (2013). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 8-21. doi: https://doi.org/10.1016/j.jsg.2013.10.004Engelkemeir, R., Khan, S. D., y Burke, K. (2010). Surface deformation in Houston, Texas using GPS. Tectonophysics, 47–54. doi: https://doi.org/10.1016/j.tecto.2010.04.016Freymueller, J., Kellogg, J., y Vega, V., (1993). Plate Motions in the North Andean Region. Journal of Geophysical Research, 21853-21863. Doi: https://scholarcommons.sc.edu/cgi/viewcontent.cgi?article=1003&context=geol_facpubGonzález, C. P., Quintana, P. R., y Montes, L. V. (2019). Cálculo de la elongación, dilatación y vectores de rotación de la deformación con algunas estaciones GPS en Colombia. Vínculos, 16, 262–269. doi: https://doi.org/10.14483/2322939X.15749Heidbach, O., Rajabi, M., Cui, X., Fuchs, K., Müller, B,. Reinecker, J., Reiter, K., Tingay, M., Wenzel, F., Xie, F., Ziegler, M., Zoback, M., y Zoback, M. (2016). The World Stress Map database release 2016: Crustal stress pattern across scales. Tectonophysics, 484-498. doi: https://doi.org/10.1016/j.tecto.2018.07.007Ji, K. H., y Henrring, T. A. (2013). A method for detecting transient signals in GPS position time-series: smoothing and principal component analysis. Geophysical Journal International, 171–186. doi: https://doi.org/10.1093/gji/ggt003Kellogg, J.N., Freymueller, J.T., Dixon, T.H., Neilan, R.E., Ropain, C.U., Camargo, S.M., Fernandez, B., Stowell, J.L., Salazar, A., Mora, J., Espin, L., Perdue, V., Leos, L., (1990). First GPS baseline results from the north Andes, CASA UNO special issue. Geophys. Res. Lett. 17, 211-214. https://doi.org/10.1029/GL017i003p00211Klos, A., Bogusz, J., Figurski, M., & Kosek, W. (2014). Uncertainties of geodetic velocities from permanent GPS observations: the sudeten case study. Geomater, 201–209. doi: https://doi.org/10.13168/AGG.2014.0005Martínez-Garzón, P., Heidbach, O., y Bohnhoff, M. (2020). Contemporary stress and strain field in the Mediterranean from stress inversion of focal mechanisms and GPS data. Tectonophysics, 228286. doi: https://doi.org/10.1016/j.tecto.2019.228286Mora Páez, H., y Audemard, F. (2021). GNSS Networks for Geodynamics in the Caribbean, Northwestern South America, and Central America. En B. E. Erol, Geodetic Sciences - Theory, Applications and Recent Developments (págs. 1-22). Bogotá, Colombia: Intechopen. doi: https://www.intechopen.com/chapters/76166Mora-Páez, H., J. R. Peléz-Gaviria, H. Diederix, O. Bohórquez-Orozco, L. Cardona-Piedrahita, y. Cochuelo-Cuervo, . . . F. Díaz-Mila. (2018). Space Geodesy Infrastructure in Colombia for Geodynamics Research. Seismological Research Letter, 446-451. doi: https://doi.org/10.1785/0220170185Mora-Páez, H., Kellog, J. N., Freymuller, J. T., Mencin, D., Rui, F. M., Hans, D., . . . Corchuelo, Y. (2019). Crustal deformation in the northern Andes – A new GPS velocity field. Journal of South American Earth Sciences, 76-91. doi: https://doi.org/10.1016/j.jsames.2018.11.002Mora-Páez, H., Kellogg, J. N., y Freymuller, J. T. (2020). Contributions of space geodesy for geodynamic studies in Colombia: 1988 to 2017. En S. G. Colombiano, The Geology of Colombia (págs. 479–498). Bogotá: Gómez, J. y Pinilla–Pachon. doi: https://doi.org/10.32685/pub.esp.38.2019.14Mostafavi, M., Gold, C., y Dakowicz, M. (2003). Delete and insert operations in Voronoi/Delaunay methods. Computers y Geosciences, 523–530 doi: https://doi.org/10.1016/S0098-3004(03)00017-7Parra, M., Mora, A., López, C., Luis, R., y Horton, B. (2012). Detecting earliest shortening and deformation advance in thrust belt hinterlands: Example from the Colombian Andes. Geology. doi: https://doi.org/10.1130/G32519.1Restrepo, J., Ordoñez, O., Armstrong, R., y Pimentel, M. (2011). Triassic metamorphism in the northern part of the Tahamí Terrane of the central cordillera of Colombia. Journal of South American Earth Sciences, 497-507. doi: https://doi.org/10.1016/j.jsames.2011.04.009Saikia, M., y Hussain, A. (2019). Delaunay Triangulation Based Key Distribution for Wireless Sensor Network. Journal of Communications, 530-537. doi: https://doi.org/10.12720/jcm.14.7.530-537Toussaint, J. F., y Restrepo, J. J. (2020). Tectonostratigraphic Terranes in Colombia. In S. G. Colombiano, The Geology of Colombia (pp. 237–260). Bogotá: Publicaciones Geológicas Especiales. doi: https://doi.org/10.32685/pub.esp.36.2019.07Turcotte, D., y Schubert, G. (2001). Geodynamics. En D. Turcotte, y G. Schubert, Geodynamics (págs. 185-188). Cambridge: Cambridge University. doi: https://doi.org/10.1017/CBO9780511807442Vargas, C. A. (2020). Subduction Geometries in Northwestern South America. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales. doi: https://doi.org/10.32685/pub.esp.38.2019.11Vargas, C. A., y Durán Tovar, J. (2005). State of strain and stress in northwestern of South America. Earth sciences research journal, 43-50. Obtenido de http://www.scielo.org.co/scielo.php?script=sci_arttex t&pid=S1794-61902005000100005Zhu, S., Chen, J., y Shi, Y. (2022). Earthquake potential in the peripheral zones of the Ordos Block based on contemporary GPS strain rates and seismicity. Tectonophysics, 229224. doi: https://doi.org/10.1016/j.tecto.2022.229224Zoback, M. (1992). First and second order patterns of stress in the lithosphere: The World Stress Map Project, J. Geophys. Res., 97, 11703-11728, http://doi.org/10.1029/92jb00132Andersen, O. B. (2013). Marine gravity and geoid from satellite altimetry. Lecture Notes in Earth System Sciences, 401–451. doi:https://doi.org/10.1007/978-3-540-74700-0_9Antokoletz, E. D. (2017). Red gravimétrica de primer orden de la República Argentina. Mar de Plata: Doctoral Dissertation, Universidad Nacional de La Plata.Blakely, R. (1996). Potential Theory in gravity and magnetic applications. Cambridge, United Kingdom: Cambridge University Press.Chai, Y. H. (1988). Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 837–845. doi:https://doi.org/10.1190/1.1442518Gómez-Ortiz, D. A. (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers and Geosciences, 513–520. doi:https://doi.org/10.1016/j.cageo.2004.11.004Hackney, R. I. (2003). Geodetic versus geophysical perspectives of the ’gravity anomaly. Geophysical Journal International, 35–43. doi:https://doi.org/10.1046/j.1365-246X.2003.01941.xHall A. R. y Tilling L., (1978). The Correspondence of Isaac Newton. Cambridge University Press. Vol. 2 (1676-1687). doi:https://doi.org/10.1017/9781108651820Hernández Moraleda, A. y. (2013). Determinación de la profundidad de la discontinuidad de Mohorovičić en la península lbérica a partir del problema isostático inverso de Vening Meinesz. comparación con el método sísmico. Boletín Geológico y Minero, 563–571.Hernandez, F. S. (2000). Altimetric Mean Sea Surfaces and Gravity Anomaly maps. (I. o. Development, Ed.) d’Etudes Spatiales.Hofmann Wellenhof, B. M. (2005). Physical geodesy. Springer Science y Business Media. Kane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044López, E. (2020). Estudio de microgravimetría urbana en el centro histórico de Querétaro en relación con el proceso de subsidencia en el área metropolitana. IPICYT, 1-15.Lowrie, W. (2007). Fundamentals of Geophysics. Cambridge University Press, Cambridge, UK. doi: https://doi.org/10.1017/CBO9780511807107Kane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044Nagy, D. (1966). The gravitational attraction of a right rectangular prism. GEOPHYSICS, 320-428. doi:https://doi.org/10.1190/1.1439779Niño Ferro, E. M. (2018). Sistema de Inversión de Datos Gravimétricos Basados en Simulated Annealing para Objetos Geométricos Simples. Bucaramanga: Universidad Industrial de Santander.Parker R.L. y Oldenburg L. (1972). The rapid calculation of potential anomalies. Geophys, J. R. astr. Soc. 31, 447-455.Pham, L. T. (2018). GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers and Geosciences, 40–47. doi:https://doi.org/10.1016/j.cageo.2018.07.009Sandwell, D. T. (2002). Laplace’s Equation in Cartesian Coordinates and Satellite Altimetry. Science, 346.Sears, F. W. (2005). Física Universitaria Con Física Moderna Vol II. México: Pearson Education. doi:https://doi.org/10.2307/j.ctvvn8f6.8SLRG. (2020). Sea Level Research Group. University of Colorado. https://sealevel.colorado.eduSmith, W. H. (2010). The Marine Geoid and Satellite Altimetry. Oceanography from Space: Revisited, 1–375. doi:https://doi.org/10.1007/978-90-481-8681-5Suriñach, E. F.-M. (2006). Inversión numérica 3D de datos gravimétricos procedentes de campañas marinas y de satélite. Aplicación a un área antártica. (Dialnet, Ed.) Madrid: Física de La Tierra. doi:https://doi.org/10.5209/rev_FITE. 2006.v18.12515Sutra, E. M. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the iberia margin. Geology, 139–142. Obtenido de https://doi.org/10.1130/G32786.1 Torge, W. (1991). Geodesy. Berlin: Gruyter.Alken, P. T. (11 de 02 de 2021). International Geomagnetic Reference Field: the thirteenth generation. doi:https://doi.org/10.1186/s40623-020-01288-xANH, 2010. Agencia Nacional de Hidrocarburos. Anomaías intensidad magnética total. https://www.anh.gov.co/es/hidrocarburos/informaci%C3%B3n-geol%C3%B3gica-y-geof%C3%ADsica/m%C3%A9todos-remotos/anomal%C3%ADas-intensidad-magn%C3%A9tica-total/Blakely, R. (1996). Potential Theory in gravity and magnetic applications. Cambridge, United Kingdom: Cambridge University Press.Butler, R. (2004). PALEOMAGNETISM: Magnetic Domains to Geologic Terranes. Portland, Oregon: University of Portland. Obtenido de https://www.geo.arizona.edu/Paleomag/tocpref.pdfCooper, G., y Cowan, D. (2005). Differential reduction to the pole. Computers y Geosciences, 989-999. doi:10.1016/j.cageo.2005.02.005Dobrin, M., y Sabit, C. (1988). Introduction to geophysical prospecting Fourth edition. New York: McGraw-Hill.Gombert, B., Duputel, Z., Jolivet, R., Simons, M., Jiang, J., Liang, C., . . . Rivera, L. (2018). Strain budget of the Ecuador–Colombia subduction zone a stochastic. Earth and Planetary Science Letters, 288-299. doi:https://doi.org/10.1016/j.epsl.2018.06.046Gubbins, D., y Herrero, E. (2007). Encyclopedia of Geomagnetism and Paleomagnetism. Dordrecht, The Netherlands: Springer.Huangu, P., Wang, Y., Fan, W., Li, Z., y Zhou, Y. (2007). Three-dimensional gravity and magnetic modeling of crustal indentation and wedging in the western Pyrenees-Cantabrian Mountains. Journal of Geophysical Research, 1-19. doi:10.1029/2007JB005021Idárraga-García, J., y Vargas, C. (2018). Depth to the bottom of magnetic layer in South America and its relationship to Curie isotherm, Moho depth and seismicity behavior. Geodesy and Geodynamics, 93-107.Kearey, P., Brooks, M., & Hill, I.A. (2002). An Introduction to Geophysical Exploration. Oxford U.K. Blackwell Science Ltd.Kaufman, A. (1992). Geophysical Field Theory and Method. Colorado: Academic Press, Inc.Lallemand, S., y Arcay, D. (2021). Magnetic anomaly interpretation across the southern central. Earth-Science Reviews, 103779. doi: https://doi.org/10.1016/j.earscirev.2021.103779Langel, R., y Hinze, W. (1998). The magnetic field of the earth's Lithosphere. Cambridge, United Kindom: Cambridge University Press.León, S., Monsalve, G., Jaramillo, C., Posada, G., Siquiera, T., Echeverri, S., y Valencia, V. (2021). Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics, 229132Monsalve-Jaramillo, H., Valencia-Mina, W., Cano-Saldaña, L., y Vargas, C. (2018). Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 47-61. doi: https://doi.org/10.1016/j.jog.2018.02.005Moreno, E., y Manea, M. (2021). Geodynamic evaluation of the pacific tectonic model for chortis block evolution using 3D numerical models of subduction. Journal of South American Earth Sciences, 103604. doi:https://doi.org/10.1016/j.jsames.2021.103604Valenta, J. (2015). Introduction to Geophysics. Czech: Development Cooperation. Obtenido de http://www.geology.cz/projekt681900/english/learning-resources/Geophysics_lecture_notes.pdfVargas, C. A. (2020). Subduction Geometries in Northwestern. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales.Yáñez, G., Ranero, C., Huene, R., y Díaz, J. (2001). Magnetic anomaly interpretation across the southern central Andes (32°-34°S): The role of the Juan Fernández Ridge in the late Tertiary evolution of the margin. Journal of Geophtsical Research, 6325-6345. doi:https://doi.org/10.1029/2000JB900337Barrero, D., Pardo, A., Vargas, C., y Martínez, J. (2007). Colombian Sedimentary Basins. Bogotá: ANH and ByM Exploration Ltda.Baumann, J. (2016). Appraisal of geodynamic inversion results: a data mining approach. Geophysical Journal International, 667–679. doi:10.1093/gji/ggw279 Becker, T., y Boris, K. (2011). Numerical Geodynamics. California: University of Southern California.Briseño Guarupe, L. A., y Díaz Campos, R. (1995). Medidas de propiedades dinámicas en rocas "in situ" y computo de parámetros elastomecánicos. Geofísica Colombiana, 73-79.Cardozo, N., Allmendinger, R., y Fisher, D. (2012). Structural Geology Algorithms vector and tensor. New York: CAMBRIDGE UNIVERSITY PRESS.Cediel, F., Shaw, R.P., Cáceres, C., 2003, Tectonic assembly of the Northern Andean Block, in C. Bartolini, R.T. Buffler, and J. Blickwede, eds., The Circum-Gulf of Mexico and the Caribbean: Hydrocarbon habitats, basin formation, and plate tectonics. Am. Assoc. Petrol. Geol., Memoir, v. 79, p. 815-848.Chai, Y. H. (1988). Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics, 837–845. doi:https://doi.org/10.1190/1.1442518Crameri, F. (2018). Geodynamic diagnostics, scientific visualisation and StagLab 3.0. Geoscientific Model Development, 2541–2562.Dobrin, M., y Sabit, C. (1988). Introduction to geophysical prospecting Fourth edition. New York: McGraw-Hill.Dabrowski, M., M. Krotkiewski, and D. W. Schmid, (2008). MILAMIN: MATLAB-based finite element method solver for large problems, Geochem. Geophys. Geosyst., 9, Q04030, doi:10.1029/2007GC001719.Earle, S. y Panchuk, K. (2019). Physical Geology – 2nd Edition. British, Columbia. Retrieved from https://opentextbc.ca/physicalgeology2ed/Egbue, O., Kellogg, J., Aguirre, H., y Torres, C. (2013). Evolution of the stress and strain fields in the Eastern Cordillera, Colombia. Journal of Structural Geology, 8-21.Fraters, M., Thieulot, C., den, A., y Spakman, W. (2019). The Geodynamic World Builder: a solution for complex initial conditions in numerical modelling. Journal Solid Earth, 1-27. doi:10.5194/se-2019-24Jaillard, E. (1987), Sedimentary evolution of an active margin during middle and upper Cretaceous times: the North Peruvian margin from Late Aptian up to Senonian. Geologische Rundschau, 76, 677-697.Jaillard, E. P., Solar, P., Carlier, G. and Mourier, T., (1990), Geodynamic evolution of the northern and central Andes during early to midle Mesozoic times: a Tethyan model. Jour. Geol. Soc., London, 147:1009-1022.Jaillard, E., Soler, P., Carlier, G., Mourier, T., (1990), Geodynamic evolution of the northern and central Andes during early to middle Mesozoic times: a Tethyan model. Journal of the Geological Society, London 147, 1009e1022.Fullsack, P., (1995). An arbitrary Lagrangian-Eulerian formulation for creeping flows and applications in tectonic models, Geophys. J. Int ., 120 , 1-23.Gerya, T.V., y Meilick, F.I., (2011). Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. Journal of Metamorphic Geology. 29, 7-39. doi:10.1111/j.1525-1314.2010.00904.xGerya, T. (2010). Introduction to Numerical Geodynamic Modelling. Cambridge. Cambridge University Press.Gerya, T. (2018). Numerical Geodynamic Modelling. Second Edition. Swiss Federal University (ETH), Zürich. http://jupiter.ethz.ch/~tgerya/BookGombert, B., Duputel, Z., Jolivet, R., Simons, M., Jiang, J., Liang, C., Rivera, L. (2018). Strain budget of the Ecuador–Colombia subduction zone a stochastic. Earth and Planetary Science Letters, 288-299. doi:https://doi.org/10.1016/j.epsl.2018.06.046Gómez Ortiz, D. A. (2005). 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3D horizontal density interface by Parker-Oldenburg’s algorithm. Computers and Geosciences, 513–520. doi:https://doi.org/10.1016/j.cageo.2004.11.004González, C. P., Quintana, P. R., y Montes, L. V. (2019). Cálculo de la elongación, dilatación y vectores de rotación de la deformación con algunas estaciones GPS en Colombia. Vínculos, 16, 262–269. Obtenido de https://revistas.udistrital.edu.co/index.php/vinculos/article/view/15749Gray, R. (2013). Numerical Geodynamic Experiments of Continental Collision: Past and Present. Toronto: University of Toronto.Guerrero, J. (1 de Octubre de 2018). Pre-andean tectonic events from albian to eocene in the middle magdalena valley and situation of the western flank of the proto-eastern cordillera (Colombia). Tesis. Bogotá: Universidad Nacional de Colombia.Kane, M. F. (1962). A comprehensive system of terrain corrections using a digital computer. Geophysicists, 455-462. doi:https://doi.org/10.1190/1.1439044Kaufman, A. (1992). Geophysical Field Theory and Method. Colorado: Academic Press, Inc.Kaus, B. (2010). Factors that control the angle of shear bands in geodynamic numerical models of brittle deformation. Tectonophysics, 36-47. doi:10.1016/j.tecto.2009.08.042Kaus, B., y Mühlhaus, H. (2009). A stabilization algorithm for geodynamic numerical simulations with a free surface. Physics of the Earth and Planetary Interiors, 9-18. doi:10.1016/j.pepi.2010.04.007Klos, A., Bogusz, J., Figurski, M., y Kosek, W. (2014). Uncertainties of geodetic velocities from permanent GPS observations: the sudeten case study. Geomater, 201–209.Lallemand, S., y Arcay, D. (2021). Magnetic anomaly interpretation across the southern central. Earth-Science Reviews, 103779. doi:https://doi.org/10.1016/j.earscirev.2021.103779Langel, R., y Hinze, W. (1998). The magnetic field of the earth's Lithosphere. Cambridge, United Kindom: Cambridge University Press.León, S., Monsalve, G., Jaramillo, C., Posada, G., Siquiera, T., Echeverri, S., y Valencia, V. (2021). Increased megathrust shear force drives topographic uplift in the Colombian coastal forearc. Tectonophysics, 229132.López, E. (2020). Estudio de microgravimetría urbana en el centro histórico de Querétaro en relación con el proceso de subsidencia en el área metropolitana. IPICYT, 1-15.Monsalve-Jaramillo, H., Valencia-Mina, W., Cano-Saldaña, L., y Vargas, C. (2018). Modeling subduction earthquake sources in the central-western region of Colombia using waveform inversion of body waves. Journal of Geodynamics, 47-61. doi:https://doi.org/10.1016/j.jog.2018.02.005Monsalve-Jaramillo, H. y Mora-Páez, H., 2005. Esquema geodinámico regional para el noroccidente de Suramérica (Modelo de subducción y desplazamientos relativos). Boletín de Geología, Vol. 27, No. 1. Bogotá, Colombia. https://revistas.uis.edu.co/index.php/revistaboletindegeologia/article/download/865/1195/2543Mora-Páez, H., y Audemard, F. (2021). GNSS Networks for Geodynamics in the Caribbean, Northwestern South America, and Central America. En B. E. Erol, Geodetic Sciences - Theory, Applications and Recent Developments (págs. 1-22). Bogotá, Colombia: Intechopen.Mora-Páez, H., J. R. Peléz-Gaviria, H. Diederix, O. Bohórquez-Orozco, L. Cardona-Piedrahita, y. Cochuelo-Cuervo, . . . F. Díaz-Mila. (2018). Space Geodesy Infrastructure in Colombia for Geodynamics Research. Seismological Research Letter, 446-451. doi:10.1785/0220170185Moreno, E., y Manea, M. (2021). Geodynamic evaluation of the pacific tectonic model for chortis block evolution using 3D numerical models of subduction. Journal of South American Earth Sciences, 103604. doi:https://doi.org/10.1016/j.jsames.2021.103604Moseri L., Quenette S., Lemiale V., Meriaux C., Appelbe B., and Mühlhaus H. B. (2007). Computational approaches to studying non-linear dynamics of the crust and mantle. Physics of the Earth and Planetary Interiors 163, 69 - 82.Moseri, L.N., F. Dufour, and H.-B. Mühlhaus, (2003). A Lagrangian integration point finite element method for large deformation modeling of viscoelastic geomaterials, J. Comp. Phys., 184, pp. 476-497.Nagy, D. (1966). The gravitational attraction of a right rectangular prism. GEOPHYSICS, 320-428. doi:https://doi.org/10.1190/1.1439779Niño Ferro, E. M. (2018). Sistema de Inversión de Datos Gravimétricos Basados en Simulated Annealing para Objetos Geométricos Simples. Bucaramanga: Universidad Industrial de Santander.Olivella, X., y Saracíbar, C. (2010). Mecánica de los medios continuos para ingenieros. Barcelona: Universiad Politécnica de Cataluña.Pham, L. T. (2018). GCH_gravinv: A MATLAB-based program for inverting gravity anomalies over sedimentary basins. Computers and Geosciences, 40–47. doi:https://doi.org/10.1016/j.cageo.2018.07.009Pindell, J., Kennan, L., (2001), Kinematic evolution of the Gulf of Mexico and Caribbean, in R.H. Fillon, N.C. Rosen, and P. Weimer (Eds.), Petroleum Systems of Deep-Water Basins: Global and Gulf of Mexico Experience: GCS-SEPM Foundation, XXI Annual Research Conference, Transactions, p.193-220.Pindell, J.L., Kennan, L. (2001), Kinematic evolution of the Gulf of Mexico and Caribbean. In: Petroleum Systems of Deep-water Basins: Global and Gulf of Mexico Experience, SEPM Gulf Coast Section, Proceedings of the 21st Annual Research Conference. Society for Sedimentary Geology (SEPM), 193–220.Pindell, J., Kennan, L., (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update. In: The Origin and Evolution of the Caribbean Plate (K.H. James, M.A. Lorente and J. Pindell, eds), Geol.Soc. [Lond.] Spec. Publ., 328, 1–56. doi:10.1144/SP328.1Pindell, J.L. and Kennan, L., (2009), Tectonic evolution of the Gulf of Mexico, Caribbean and northern South America in the mantle reference frame: an update.Ramos, V. A. (2010). The tectonic regime along the Andes: Present-day and Mesozoic regimes. Geological Journal, 45, 2-25. DOI:10.1002/gj.1193Restrepo-Pace P. A., Colmenares, F., Higuera, C., and Mayorga, M., et al., (2004), A fold and Thrust belt along the western flank of the Eastern Cordillera of Colombia. Style, Kinematics, and timing constrains derived from seismic data and detailed surface mapping. In: McClay, K. R. (ed.) Thrust Tectonics and Hydrocarbon Systems. American Association of Petroleum Geologists, Tulsa, OK, Memoirs, 82, 598-613.Saikia, M., y Hussain, A. (2019). Delaunay Triangulation Based Key Distribution for Wireless Sensor Network. Journal of Communications, 530-537Sears, F. W. (2005). Física Universitaria Con Física Moderna Vol II. México: Pearson Education. doi:https://doi.org/10.2307/j.ctvvn8f6.8Strauss, W. (2008). Partial Differencial Equations. Danvers: John Wiley y Sons, Inc.Stüwe, K. (2007). Geodynamics of the Lithosphere. Austria: Springer.Suriñach, E. F.-M. (2006). Inversión numérica 3D de datos gravimétricos procedentes de campañas marinas y de satélite. Aplicación a un área antártica. (Dialnet, Ed.) Madrid: Física de La Tierra. doi:https://doi.org/10.5209/rev_FITE.2006.v18.12515Sutra, E. M. (2012). How does the continental crust thin in a hyperextended rifted margin? Insights from the iberia margin. Geology, 139–142. Obtenido de https://doi.org/10.1130/G32786.1Tarbuck, E. J. (2017). Earth: an introduction to physical geology. Canadá: Pearson.Toussaint, J. F., y Restrepo, J. J. (2020). Tectonostratigraphic Terranes in Colombia. In S. G. Colombiano, The Geology of Colombia (pp. 237–260). Bogotá: Publicaciones Geológicas Especiales. doi:https://doi.org/10.32685/pub.esp.36.2019.07Turcotte, D., y Schubert, G. (2001). Geodynamics. En D. Turcotte, y G. Schubert, Geodynamics (págs. 185-188). Cambridge: Cambridge University.Valenta, J. (2015). Introduction to Geophysics. Czech: Development Cooperation. Obtenido de http://www.geology.cz/projekt681900/english/learning-resources/Geophysics_lecture_notes.pdfVargas, C. A. (2020). Subduction Geometries in Northwestern. En S. G. Colombiano, The Geology of Colombia, Volume 4 Quaternary (págs. 397–422). Bogotá: Publicaciones Geológicas Especiales. Vargas, C. A., y Durán Tovar, J. (2005). State of strain and stress in northwestern of south America. Earth sciences research journal, 43-50.Villagómez D. D. (2010). Thermochronology, geochronology and geochemistry of the Western and Central cordilleras and Sierra Nevada de Santa Marta, Colombia: The tectonic evolution of NW South America. Terre & Environement. Thesis.AdministradoresBibliotecariosConsejerosEstudiantesGrupos comunitariosInvestigadoresMaestrosMedios de comunicaciónPadres y familiasPersonal de apoyo escolarProveedores de ayuda financiera para estudiantesPúblico generalReceptores de fondos federales y solicitantesResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84087/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL79512283.2022.pdf79512283.2022.pdfTesis de Doctorado en Geocienciasapplication/pdf8295748https://repositorio.unal.edu.co/bitstream/unal/84087/4/79512283.2022.pdfc55e4015ca0da16be075e496b4065eaeMD54THUMBNAIL79512283.2022.pdf.jpg79512283.2022.pdf.jpgGenerated Thumbnailimage/jpeg4605https://repositorio.unal.edu.co/bitstream/unal/84087/5/79512283.2022.pdf.jpg491da4f79e117626adbad42888e46d51MD55unal/84087oai:repositorio.unal.edu.co:unal/840872024-08-11 01:06:23.405Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=