End-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulations
Ilustraciones y tablas
- Autores:
-
Ochoa Parra, Luz Anny Pamela
- Tipo de recurso:
- Fecha de publicación:
- 2020
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80195
- Palabra clave:
- 530 - Física
Medical radiology
Radiología médica
Ions
Iones
Monte carlo method
Método de Montecarlo
Proton therapy
Radiotherapy
Range verification
Prompt gamma rays
Cross section
Proton terapia
Radioterapia
Sección eficaz
Rayos gamma rápidos
Topas
MatRad
FLUKA
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_e061ff00e9481678ada33aa84cd56e23 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80195 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
End-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulations |
dc.title.translated.spa.fl_str_mv |
Predicción del rango en radioterapia con iones pesados usando simulación Monte Carlo |
title |
End-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulations |
spellingShingle |
End-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulations 530 - Física Medical radiology Radiología médica Ions Iones Monte carlo method Método de Montecarlo Proton therapy Radiotherapy Range verification Prompt gamma rays Cross section Proton terapia Radioterapia Sección eficaz Rayos gamma rápidos Topas MatRad FLUKA |
title_short |
End-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulations |
title_full |
End-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulations |
title_fullStr |
End-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulations |
title_full_unstemmed |
End-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulations |
title_sort |
End-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulations |
dc.creator.fl_str_mv |
Ochoa Parra, Luz Anny Pamela |
dc.contributor.advisor.none.fl_str_mv |
Veloza, Luz Stella Seco, Joao |
dc.contributor.author.none.fl_str_mv |
Ochoa Parra, Luz Anny Pamela |
dc.subject.ddc.spa.fl_str_mv |
530 - Física |
topic |
530 - Física Medical radiology Radiología médica Ions Iones Monte carlo method Método de Montecarlo Proton therapy Radiotherapy Range verification Prompt gamma rays Cross section Proton terapia Radioterapia Sección eficaz Rayos gamma rápidos Topas MatRad FLUKA |
dc.subject.lemb.none.fl_str_mv |
Medical radiology Radiología médica Ions Iones Monte carlo method Método de Montecarlo |
dc.subject.proposal.eng.fl_str_mv |
Proton therapy Radiotherapy Range verification Prompt gamma rays Cross section |
dc.subject.proposal.spa.fl_str_mv |
Proton terapia Radioterapia Sección eficaz Rayos gamma rápidos Topas MatRad |
dc.subject.proposal.none.fl_str_mv |
FLUKA |
description |
Ilustraciones y tablas |
publishDate |
2020 |
dc.date.issued.none.fl_str_mv |
2020 |
dc.date.accessioned.none.fl_str_mv |
2021-09-15T13:07:57Z |
dc.date.available.none.fl_str_mv |
2021-09-15T13:07:57Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80195 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80195 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.none.fl_str_mv |
F Albertini, E B Hug, and A J Lomax. Is it necessary to plan with safety margins for actively scanned proton therapy? Physics in Medicine and Biology, 56(14):4399–4413, jun 2011. J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, and et al. Recent developments in geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835:186–225, Nov 2016. Pedro Andreo. On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams. Physics in Medicine and Biology, 54(11):N205– N215, may 2009. V.S. Barashenkov, F.G. Gereghi, A.S. Iljinov, G.G. Jonsson, and V.D. Toneev. A cascade-evaporation model for photonuclear reactions. Nuclear Physics A, 231(3):462–476, Oct 1974. A. Belhout, J. Kiener, A. Coc, J. Duprat, C. Engrand, C. Fitoussi, M. Gounelle, A. Lefebvre-Schuhl, N. de S ́er ́eville, V. Tatischeff, J.-P. Thibaud, M. Chabot, F. Hammache, and H. Benhabiles-Mezhoud. γ-ray production by proton and α-particle induced reactions on 12C, 16O, 24Mg, and fe. Phys. Rev. C, 76:034607, Sep 2007. Riccardo Dal Bello, Paulo Magalhaes Martins, Stephan Brons, German Hermann, Thomas Kihm, Michael Seimetz, and Joao Seco. Prompt gamma spectroscopy for absolute range verification of 12c ions at synchrotron-based facilities. Physics in Medicine & Biology, 65(9):095010, may 2020. Riccardo Dal Bello, Paulo Magalhaes Martins, Stephan Brons, German Hermann, Thomas Kihm, Michael Seimetz, and Joao Seco. Prompt gamma spectroscopy for absolute range verification of 12c ions at synchrotron-based facilities. Physics in Medicine & Biology, 65(9):095010, may 2020. E.V. Benton and R.P. Henke. Heavy particle range-energy relations for dielectric nuclear track detectors. Nuclear Instruments and Methods, 67(1):87–92, Jan 1969. H. Bethe. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Annalen der Physik, 397(3):325–400, 1930. J. P. Biersack and J. F. Ziegler. The Stopping and Range of Ions in Solids, page 122–156. Springer Berlin Heidelberg, 1982. M. Blann. Precompound analyses of spectra and yields following nuclear capture of stopped π−. Phys. Rev. C, 28:1648–1662, Oct 1983. F. Bloch. Zur bremsung rasch bewegter teilchen beim durchgang durch materie. Annalen der Physik, 408(3):285–320, 1933. T.T. Bohlen, F. Cerutti, M.P.W. Chin, A. Fass`o, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, and V. Vlachoudis. The fluka code: Developments and challenges for high energy and medical applications. Nuclear Data Sheets, 120:211 – 214, 2014. Mark B. Chadwick. Endf nuclear data in the physical, biological, and medical sciences. International Journal of Radiation Biology, 88(1-2):10–14, 2012. A B Clegg, K J Foley, G L Salmon, and R E Segel. Gamma radiation from the medium energy proton bombardment of lithium, beryllium, boron, carbon and nitrogen. Proceedings of the Physical Society, 78(5):681–694, nov 1961. Riccardo Dal Bello, Paulo Magalhaes Martins, Jo ̃ao Gra ̧ca, German Hermann, Thomas Kihm, and Joao Seco. Results from the experimental evaluation of cebr scintillators for he prompt gamma spectroscopy. Medical Physics, 46(8):3615–3626, 2019. Riccardo Dal Bello, Paulo Magalhaes Martins, and Joao Seco. Cebr3 scintillators for 4he prompt gamma spectroscopy: Results from a monte carlo optimization study. Medical Physics, 45(4):1622–1630, 2018. Joseph O. Deasy, Angel I. Blanco, and Vanessa H. Clark. Cerr: A computational environment for radiotherapy research. Medical Physics, 30(5):979–985, 2003. E Draeger, D Mackin, S Peterson, H Chen, S Avery, S Beddar, and J C Polf. 3d prompt gamma imaging for proton beam range verification. Physics in Medicine & Biology, 63(3):035019, jan 2018. K R Hogstrom, M D Mills, and P R Almond. Electron beam dose calculations. Physics in Medicine and Biology, 26(3):445–459, may 1981. Fernando Hueso-González, Wolfgang Enghardt, Fine Fiedler, Christian Golnik, Guillaume Janssens, Johannes Petzoldt, Damien Prieels, Marlen Priegnitz, Katja E Romer, Julien Smeets, Fran ̧cois Vander Stappen, Andreas Wagner, and Guntram Pausch. First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility. Physics in Medicine and Biology, 60(16):6247– 6272, aug 2015. Fernando Hueso-González, Moritz Rabe, Thomas A Ruggieri, Thomas Bortfeld, and Joost M Verburg. A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy. Physics in Medicine & Biology, 63(18):185019, sep 2018. F. Hueso-González, G. Pausch, J. Petzoldt, K. E. Romer, and W. Enghardt. Prompt gamma rays detected with a bgo block compton camera reveal range deviations of therapeutic proton beams. IEEE Transactions on Radiation and Plasma Medical Sciences, 1(1):76–86, 2017. Jeyasingam Jeyasugiththan and Stephen W Peterson. Evaluation of proton inelastic reaction models in geant4 for prompt gamma production during proton radiotherapy. Physics in Medicine and Biology, 60(19):7617–7635, sep 2015. Bertini H.W. Gabriel T.A. Santoro R.T. Hermann O.W. Larson N.M. Hunt J.M. Hic- 1: a first approach to the calculation of heavy-ion reactions at energies greater than or equal to 50 mev/nucleon. ORNL-TM–4134, 1974. Iwan Kawrakow, Matthias Fippel, and Klaus Friedrich. 3d electron dose calculation using a voxel based monte carlo algorithm (vmc). Medical Physics, 23(4):445–457, Apr 1996. J. Kiener, M. Berheide, N. L. Achouri, A. Boughrara, A. Coc, A. Lefebvre, F. de Oliveira Santos, and Ch. Vieu. γ-ray production by inelastic proton scattering on 16O and 12C. Phys. Rev. C, 58:2174–2179, Oct 1998. J. Kiener, N. de S ́er ́eville, and V. Tatischeff. Shape of the 4.438 mev γ-ray line of 12C from proton and α-particle induced reactions on 12C and 16O. Phys. Rev. C, 64:025803, Jun 2001. Peter K. Kijewski and Bengt E. Bjarngard. The use of computed tomography data for radiotherapy dose calculations. International Journal of Radiation Oncology*Biology*Physics, 4(5–6):429–435, May 1978. A Knopf, K Parodi, T Bortfeld, H A Shih, and H Paganetti. Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans. Physics in Medicine and Biology, 54(14):4477–4495, jun 2009. Antje-Christin Knopf and Antony Lomax. In vivoproton range verification: a review. Physics in Medicine and Biology, 58(15):R131–R160, jul 2013. Benzion Kozlovsky, Ronald Murphy, and and Ramaty. Nuclear deexcitation gamma- ray lines from accelerated particle interactions. The Astrophysical Journal Supplement Series, 141:523, 12 2008. Benzion Kozlovsky, Ronald J. Murphy, and Reuven Ramaty. Nuclear deexcitation gamma-ray lines from accelerated particle interactions. The Astrophysical Journal Supplement Series, 141(2):523–541, Aug 2002. Aafke Christine Kraan. Range verification methods in particle therapy: Underlying physics and monte carlo modeling. Frontiers in Oncology, 5:150, 2015. J. Krimmer, G. Angellier, L. Balleyguier, D. Dauvergne, N. Freud, J. H ́erault, J. M. Letang, H. Mathez, M. Pinto, E. Testa, and et al. A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration. Applied Physics Letters, 110(15):154102, Apr 2017. J. Krimmer, J.-L. Ley, C. Abellan, J.-P. Cachemiche, L. Caponetto, X. Chen, M. Dahoumane, D. Dauvergne, N. Freud, B. Joly, D. Lambert, L. Lestand, J.M. Letang, M. Magne, H. Mathez, V. Maxim, G. Montarou, C. Morel, M. Pinto, C. Ray, V. Reithinger, E. Testa, and Y. Zoccarato. Development of a compton camera for medical applications based on silicon strip and scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 787:98 – 101, 2015. New Developments in Photodetection NDIP14. F. L. Lang, C. W. Werntz, C. J. Crannell, J. I. Trombka, and C. C. Chang. Cross sections for production of the 15.10-mev and other astrophysically significant gamma- ray lines through excitation and spallation of 12C and 16O with protons. Phys. Rev. C, 35:1214–1227, Apr 1987. William R Leo. Techniques for nuclear and particle physics experiments: a how-to approach; 2nd ed. Springer, Berlin, 1994. K. T. Lesko, E. B. Norman, R.-M. Larimer, S. Kuhn, D. M. Meekhof, S. G. Crane, and H. G. Bussell. Measurements of cross sections relevant to γ-ray line astronomy. Phys. Rev. C, 37:1808–1817, May 1988. H. W. Lewis. Multiple scattering in an infinite medium. Phys. Rev., 78:526–529, Jun 1950. Gabriela Llosa, Marco Trovato, John Barrio, Ane Etxebeste, Enrique Mu ̃noz, Carlos Lacasta, Josep F. Oliver, Magdalena Rafecas, Carles Solaz, and Paola Solevi. First images of a three-layer compton telescope prototype for treatment monitoring in hadron therapy. Frontiers in Oncology, 6:14, 2016. Paulo Magalhaes Martins, Riccardo Dal Bello, Michael Seimetz, German Hermann, Thomas Kihm, and Joao Seco. A single-particle trigger for time-of-flight measurements in prompt-gamma imaging. Frontiers in Physics, 8:169, 2020. Paulo Magalhaes Martins, Riccardo Dal Bello, Andreas Rinscheid, Katja Roemer, Theresa Werner, Wolfgang Enghardt, Guntram Pausch, and Joao Seco. Prompt gamma spectroscopy for range control with cebr3. Current Directions in Biomedical Engineering, 3(2):113 – 117, 01 Sep. 2017. MATLAB. version 9.8.01 (R2020a). The MathWorks Inc., Natick, Massachusetts, 2020. M. McCleskey, W. Kaye, D.S. Mackin, S. Beddar, Z. He, and J.C. Polf. Evaluation of a multistage cdznte compton camera for prompt γ imaging for proton therapy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 785:163 – 169, 2015. C.H. Min, J.W. Kim, M.Y. Youn, and C.H. Kim. Determination of distal dose edge location by measuring right-angled prompt-gamma rays from a 38mev proton beam. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 580(1):562 – 565, 2007. Proceedings of the 10 th International Symposium on Radiation Physics. Chul Hee Min, Chan Hyeong Kim, Minyoung Youn, and Jong-Won Kim. Prompt gamma measurements for locating the dose falloff region in the proton therapy. Applied Physics Letters, 89:183517–183517, 11 2006. G. Moliere. Theorie der Streuung schneller geladener Teilchen II. Mehrfach- und Vielfachstreuung. Zeitschrift Naturforschung Teil A, 3(2):78–97, February 1948. S. N. Mukherjee. Nuclear reactions. New Age International Limited, New Delhi, 1996. K.A. Olive. Review of particle physics. Chinese Physics C, 38(9):090001, Aug 2014. Harald Paganetti. Range uncertainties in proton therapy and the role of monte carlo simulations. Physics in Medicine and Biology, 57(11):R99–R117, May 2012. R P Parker, P A Hobday, and K J Cassell. The direct use of CT numbers in radiotherapy dosage calculations for inhomogeneous media. Physics in Medicine and Biology, 24(4):802–809, jul 1979. Katia Parodi. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring. Medical Physics, 42(12):7153–7168, 2015. Francesco Pennazio, Giuseppe Battistoni, Maria Giuseppina Bisogni, Niccolo Camarlinghi, Alfredo Ferrari, Veronica Ferrero, Elisa Fiorina, Matteo Morrocchi, Paola Sala, Giancarlo Sportelli, Richard Wheadon, and Piergiorgio Cerello. Carbon ions beam therapy monitoring with the INSIDE in-beam PET. Physics in Medicine & Biology, 63(14):145018, jul 2018. J. Perl, J. Shin, J. Schumann, B. Faddegon, and H. Paganetti. Topas: An innovative proton monte carlo platform for research and clinical applications. Medical Physics, 39(11):6818–6837, Oct 2012. Andreas Peters. Medical applications – instrumentation and diagnostics, 2020. J Petzoldt, K E Roemer, W Enghardt, F Fiedler, C Golnik, F Hueso-Gonz ́alez, S Helmbrecht, T Kormoll, H Rohling, J Smeets, T Werner, and G Pausch. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility. Physics in Medicine and Biology, 61(6):2432–2456, mar 2016. Csaba Pinter, Andras Lasso, An Wang, David Jaffray, and Gabor Fichtinger. Slicerrt: Radiation therapy research toolkit for 3d slicer. Medical Physics, 39(10):6332–6338, 2012. M Pinto, D Dauvergne, N Freud, J Krimmer, J M Letang, C Ray, F Roellinghoff, and E Testa. Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring. Physics in Medicine and Biology, 59(24):7653–7674, nov 2014. Lisa Polster, Jan Schuemann, Ilaria Rinaldi, Lucas Burigo, Aimee L McNamara, Robert D Stewart, Andrea Attili, David J Carlson, Tatsuhiko Sato, Jos ́e Ramos M ́endez, Bruce Faddegon, Joseph Perl, and Harald Paganetti. Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Physics in Medicine and Biology, 60(13):5053–5070, jun 2015. R. Ramaty, B. Kozlovsky, and R. E. Lingenfelter. Nuclear gamma-rays from energetic particle interactions. The Astrophysical Journal Supplement Series, 40:487, Jul 1979. R. Ramaty, B. Kozlovsky, and R. E. Lingenfelter. Nuclear gamma-rays from energetic particle interactions. apjs, 40:487–526, July 1979. J Ramos-M ́endez, J Perl, J Schumann, J Shin, H Paganetti, and B Faddegon. A framework for implementation of organ effect models in TOPAS with benchmarks extended to proton therapy. Physics in Medicine and Biology, 60(13):5037–5052, jun 2015. H Rohling, M Priegnitz, S Schoene, A Schumann, W Enghardt, F Hueso-Gonz ́alez, G Pausch, and F Fiedler. Requirements for a compton camera for in vivo range verification of proton therapy. Physics in Medicine and Biology, 62(7):2795–2811, mar 2017. D Sanchez-Parcerisa, M Kondrla, A Shaindlin, and A Carabe. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes. Physics in Medicine and Biology, 59(23):7341–7360, nov 2014. [82] Uwe Schneider, Eros Pedroni, and Antony Lomax. The calibration of CT hounsfield units for radiotherapy treatment planning. Physics in Medicine and Biology, 41(1):111– 124, jan 1996. Wilfried Schneider, Thomas Bortfeld, and Wolfgang Schlegel. Correlation between CT numbers and tissue parameters needed for monte carlo simulations of clinical dose distributions. Physics in Medicine and Biology, 45(2):459–478, jan 2000. A Schumann, J Petzoldt, P Dendooven, W Enghardt, C Golnik, F Hueso-Gonz ́alez, T Kormoll, G Pausch, K Roemer, and F Fiedler. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation. Physics in Medicine and Biology, 60(10):4197–4207, may 2015. Stephen Seltzer. Stopping-powers and range tables for electrons, protons, and helium ions, nist standard reference database 124, 1993. Kyu Seok Seo, Chan Hyeong Kim, and Jong Won Kim. Comparison of titanium hydride (tih 2) and paraffin as neutron moderator material in a prompt gamma scanning system. Journal of the Korean Physical Society, 48(4 I):855–858, April 2006. R. Serber. Nuclear reactions at high energies. Phys. Rev., 72:1114–1115, Dec 1947. J Smeets, F Roellinghoff, D Prieels, F Stichelbaut, A Benilov, P Busca, C Fiorini, R Peloso, M Basilavecchia, T Frizzi, J C Dehaes, and A Dubus. Prompt gamma imaging with a slit camera for real-time range control in proton therapy. Physics in Medicine and Biology, 57(11):3371–3405, may 2012. [89] Marshall A. Tewell and Robert Adams. The plunc 3d treatment planning system: a dynamic alternative to commercially available systems. Medical Dosimetry, 29(2):134 – 138, 2004. P.G. Thirolf, S. Aldawood, M. Bohmer, J. Bortfeldt, I. Castelhano, G. Dedes, F. Fiedler, R. Gernhauser, C. Golnik, S. Helmbrecht, and et al. A compton camera prototype for prompt gamma medical imaging. EPJ Web of Conferences, 117:05005, 2016. RK Tripathi, FA Cucinotta, and JW Wilson. Accurate universal parameterization of absorption cross sections iii–light systems. Nuclear instruments and methods in physics research. Section B, Beam interactions with materials and atoms, 155(4):349—356, September 1999. Jan Unkelbach, Timothy C Y Chan, and Thomas Bortfeld. Accounting for range uncertainties in the optimization of intensity modulated proton therapy. Physics in Medicine and Biology, 52(10):2755–2773, apr 2007. Joost M Verburg and Joao Seco. Proton range verification through prompt gamma-ray spectroscopy. Physics in Medicine and Biology, 59(23):7089–7106, nov 2014. Joost M Verburg, Helen A Shih, and Joao Seco. Simulation of prompt gamma-ray emission during proton radiotherapy. Physics in Medicine and Biology, 57(17):5459–5472, aug 2012. V. Weisskopf. Statistics and nuclear reactions. Phys. Rev., 52:295–303, Aug 1937. H. P. Wellisch and D. Axen. Total reaction cross section calculations in proton-nucleus scattering. Phys. Rev. C, 54:1329–1332, Sep 1996. Hans-Peter Wieser, Eduardo Cisternas, Niklas Wahl, Silke Ulrich, Alexander Stadler, Henning Mescher, Lucas-Raphael Muller, Thomas Klinge, Hubert Gabrys, Lucas Burigo, Andrea Mairani, Swantje Ecker, Benjamin Ackermann, Malte Ellerbrock, Katia Parodi, Oliver Jakel, and Mark Bangert. Development of the open-source dose calculation and optimization toolkit matrad. Medical Physics, 44(6):2556–2568, 2017. Harald Paganetti. Range uncertainties in proton therapy and the role of monte carlo simulations. Physics in Medicine and Biology, 57(11):R99–R117, May 2012. Andreas Peters. Medical applications – instrumentation and diagnostics, 2020. J. Kiener, M. Berheide, N. L. Achouri, A. Boughrara, A. Coc, A. Lefebvre, F. de Oliveira Santos, and Ch. Vieu. γ-ray production by inelastic proton scattering on 16O and 12C. Phys. Rev. C, 58:2174–2179, Oct 1998. Benzion Kozlovsky, Ronald Murphy, and and Ramaty. Nuclear deexcitation gamma- ray lines from accelerated particle interactions. The Astrophysical Journal Supplement Series, 141:523, 12 2008. R. Ramaty, B. Kozlovsky, and R. E. Lingenfelter. Nuclear gamma-rays from energetic particle interactions. apjs, 40:487–526, July 1979. Hans-Peter Wieser, Eduardo Cisternas, Niklas Wahl, Silke Ulrich, Alexander Stadler, Henning Mescher, Lucas-Raphael Muller, Thomas Klinge, Hubert Gabrys, Lucas Burigo, Andrea Mairani, Swantje Ecker, Benjamin Ackermann, Malte Ellerbrock, Katia Parodi, Oliver Jakel, and Mark Bangert. Development of the open-source dose calculation and optimization toolkit matrad. Medical Physics, 44(6):2556–2568, 2017 J. F. Ziegler. Stopping of energetic light ions in elemental matter. Journal of Applied Physics, 85(3):1249–1272, Feb 1999. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xi, 78 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Física Médica |
dc.publisher.department.spa.fl_str_mv |
Departamento de Física |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80195/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80195/2/1018424940.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80195/3/1018424940.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 7226af2acbc2870024225592644a5475 52bf17776a0e2a6b44abfc9398f80ed3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089849407275008 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Veloza, Luz Stella1c6bc70141c581c586ccdacdd1ce278bSeco, Joao5ff47b0eed312420c3b2e52561cd4df8Ochoa Parra, Luz Anny Pamela5ca7dd48301a99359efc926ca47a35812021-09-15T13:07:57Z2021-09-15T13:07:57Z2020https://repositorio.unal.edu.co/handle/unal/80195Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones y tablasThe presence of range uncertainties in charged particle therapy with light ions (CPT) requires the employment of safety margins during treatment planning. These affect treatment quality, not allowing to fully exploit the dosimetric potential of CPT. CPT is characterized by an escalation of the dose deposition towards the end of the range of the primary particles followed by a steep decrease to a low-dose tail (Bragg Peak). The dimension of the safety margins can be reduced by adopting novel methods to verify the primary particle ranges in patients. Non-invasive in vivo monitoring can be performed by detecting secondary radiation emitted from the patient after nuclear interactions of the beam with tissue. Among secondary radiation, the gamma de-excitation of nuclei has the favorable properties of an instantaneous emission and a discrete energy spectrum, which allows performing range control through prompt gamma spectroscopy (PGS). Recent studies demonstrated the capabilities of PGS for online range verification for proton beams. Along with the experimental developments, a critical step towards the application of PGS for range control during patient treatments is the implementation of the prompt gamma generation in a treatment planning system. The comparison of the experimental data acquired during the treatment to the predicted spectral features is the fundamental step to achieve absolute range measurements in vivo. The project aimed to obtain a fully integrated method to perform end-to-end range predictions in anthropomorphic phantoms. In the first stage, a Monte Carlo simulation was conducted to obtain the values of the cross-section for 19 prompt gamma-ray lines from proton-nuclear interactions with 16O and 12C. The central part of the project included the implementation of the cross-sections in the research treatment planning system matRad.La presencia de incertidumbres de rango en la terapia de partı́culas cargadas con iones ligeros (CPT) requiere el empleo de márgenes de seguridad durante la planificación del tratamiento. Estos afectan la calidad del tratamiento, no permitiendo aprovechar al máximo el potencial dosimétrico de la CPT. La CPT se caracteriza por una escalada de la deposición de la dosis hacia el final del rango de las partı́culas primarias seguida de una fuerte disminución a una cola de dosis baja (pico de Bragg). La dimensión de los márgenes de seguridad se puede reducir mediante la adopción de métodos novedosos para verificar los rangos de partı́culas primarias en los pacientes. La monitorización in vivo no invasiva se puede realizar detectando la radiación secundaria emitida por el paciente después de las interacciones nucleares del haz con el tejido. Entre las radiaciones secundarias, la desexcitación gamma de núcleos tiene las propiedades favorables de una emisión instantánea y un espectro de energı́a discreto, lo que permite realizar un control de rango mediante espectroscopia gamma rápida (PGS). Estudios recientes demostraron las capacidades de PGS para la verificación del rango en lı́nea para haces de protones. Junto con los desarrollos experimentales, un paso crı́tico hacia la aplicación de PGS para el control de rango durante los tratamientos del paciente es la implementación de la generación rápida de gamma en un sistema de planificación del tratamiento. La comparación de los datos experimentales adquiridos durante el tratamiento con las caracterı́sticas espectrales predichas es el paso fundamental para lograr mediciones de rango absoluto in vivo. El proyecto tenı́a como objetivo obtener un método totalmente integrado para realizar predicciones de rango de extremo a extremo en fantasmas antropomórficos. En la primera etapa, se realizó una simulación de Monte Carlo para obtener los valores de la sección transversal de 19 lı́neas de rayos gamma rápidas de interacciones protón-nuclear con 16 O y 12 C. La parte central del proyecto incluyó la implementación de las secciones transversales en el sistema de planificación de tratamientos matRad. (Texto tomado de la fuente).MaestríaMagíster en Física Médicaxi, 78 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Física MédicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaMedical radiologyRadiología médicaIonsIonesMonte carlo methodMétodo de MontecarloProton therapyRadiotherapyRange verificationPrompt gamma raysCross sectionProton terapiaRadioterapiaSección eficazRayos gamma rápidosTopasMatRadFLUKAEnd-to-end range prediction for heavier ion radiation therapy based on Monte Carlo simulationsPredicción del rango en radioterapia con iones pesados usando simulación Monte CarloTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMF Albertini, E B Hug, and A J Lomax. Is it necessary to plan with safety margins for actively scanned proton therapy? Physics in Medicine and Biology, 56(14):4399–4413, jun 2011.J. Allison, K. Amako, J. Apostolakis, P. Arce, M. Asai, T. Aso, E. Bagli, A. Bagulya, S. Banerjee, G. Barrand, and et al. Recent developments in geant4. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 835:186–225, Nov 2016.Pedro Andreo. On the clinical spatial resolution achievable with protons and heavier charged particle radiotherapy beams. Physics in Medicine and Biology, 54(11):N205– N215, may 2009.V.S. Barashenkov, F.G. Gereghi, A.S. Iljinov, G.G. Jonsson, and V.D. Toneev. A cascade-evaporation model for photonuclear reactions. Nuclear Physics A, 231(3):462–476, Oct 1974.A. Belhout, J. Kiener, A. Coc, J. Duprat, C. Engrand, C. Fitoussi, M. Gounelle, A. Lefebvre-Schuhl, N. de S ́er ́eville, V. Tatischeff, J.-P. Thibaud, M. Chabot, F. Hammache, and H. Benhabiles-Mezhoud. γ-ray production by proton and α-particle induced reactions on 12C, 16O, 24Mg, and fe. Phys. Rev. C, 76:034607, Sep 2007.Riccardo Dal Bello, Paulo Magalhaes Martins, Stephan Brons, German Hermann, Thomas Kihm, Michael Seimetz, and Joao Seco. Prompt gamma spectroscopy for absolute range verification of 12c ions at synchrotron-based facilities. Physics in Medicine & Biology, 65(9):095010, may 2020.Riccardo Dal Bello, Paulo Magalhaes Martins, Stephan Brons, German Hermann, Thomas Kihm, Michael Seimetz, and Joao Seco. Prompt gamma spectroscopy for absolute range verification of 12c ions at synchrotron-based facilities. Physics in Medicine & Biology, 65(9):095010, may 2020.E.V. Benton and R.P. Henke. Heavy particle range-energy relations for dielectric nuclear track detectors. Nuclear Instruments and Methods, 67(1):87–92, Jan 1969.H. Bethe. Zur theorie des durchgangs schneller korpuskularstrahlen durch materie. Annalen der Physik, 397(3):325–400, 1930.J. P. Biersack and J. F. Ziegler. The Stopping and Range of Ions in Solids, page 122–156. Springer Berlin Heidelberg, 1982.M. Blann. Precompound analyses of spectra and yields following nuclear capture of stopped π−. Phys. Rev. C, 28:1648–1662, Oct 1983.F. Bloch. Zur bremsung rasch bewegter teilchen beim durchgang durch materie. Annalen der Physik, 408(3):285–320, 1933.T.T. Bohlen, F. Cerutti, M.P.W. Chin, A. Fass`o, A. Ferrari, P.G. Ortega, A. Mairani, P.R. Sala, G. Smirnov, and V. Vlachoudis. The fluka code: Developments and challenges for high energy and medical applications. Nuclear Data Sheets, 120:211 – 214, 2014.Mark B. Chadwick. Endf nuclear data in the physical, biological, and medical sciences. International Journal of Radiation Biology, 88(1-2):10–14, 2012.A B Clegg, K J Foley, G L Salmon, and R E Segel. Gamma radiation from the medium energy proton bombardment of lithium, beryllium, boron, carbon and nitrogen. Proceedings of the Physical Society, 78(5):681–694, nov 1961.Riccardo Dal Bello, Paulo Magalhaes Martins, Jo ̃ao Gra ̧ca, German Hermann, Thomas Kihm, and Joao Seco. Results from the experimental evaluation of cebr scintillators for he prompt gamma spectroscopy. Medical Physics, 46(8):3615–3626, 2019.Riccardo Dal Bello, Paulo Magalhaes Martins, and Joao Seco. Cebr3 scintillators for 4he prompt gamma spectroscopy: Results from a monte carlo optimization study. Medical Physics, 45(4):1622–1630, 2018.Joseph O. Deasy, Angel I. Blanco, and Vanessa H. Clark. Cerr: A computational environment for radiotherapy research. Medical Physics, 30(5):979–985, 2003.E Draeger, D Mackin, S Peterson, H Chen, S Avery, S Beddar, and J C Polf. 3d prompt gamma imaging for proton beam range verification. Physics in Medicine & Biology, 63(3):035019, jan 2018.K R Hogstrom, M D Mills, and P R Almond. Electron beam dose calculations. Physics in Medicine and Biology, 26(3):445–459, may 1981.Fernando Hueso-González, Wolfgang Enghardt, Fine Fiedler, Christian Golnik, Guillaume Janssens, Johannes Petzoldt, Damien Prieels, Marlen Priegnitz, Katja E Romer, Julien Smeets, Fran ̧cois Vander Stappen, Andreas Wagner, and Guntram Pausch. First test of the prompt gamma ray timing method with heterogeneous targets at a clinical proton therapy facility. Physics in Medicine and Biology, 60(16):6247– 6272, aug 2015.Fernando Hueso-González, Moritz Rabe, Thomas A Ruggieri, Thomas Bortfeld, and Joost M Verburg. A full-scale clinical prototype for proton range verification using prompt gamma-ray spectroscopy. Physics in Medicine & Biology, 63(18):185019, sep 2018.F. Hueso-González, G. Pausch, J. Petzoldt, K. E. Romer, and W. Enghardt. Prompt gamma rays detected with a bgo block compton camera reveal range deviations of therapeutic proton beams. IEEE Transactions on Radiation and Plasma Medical Sciences, 1(1):76–86, 2017.Jeyasingam Jeyasugiththan and Stephen W Peterson. Evaluation of proton inelastic reaction models in geant4 for prompt gamma production during proton radiotherapy. Physics in Medicine and Biology, 60(19):7617–7635, sep 2015.Bertini H.W. Gabriel T.A. Santoro R.T. Hermann O.W. Larson N.M. Hunt J.M. Hic- 1: a first approach to the calculation of heavy-ion reactions at energies greater than or equal to 50 mev/nucleon. ORNL-TM–4134, 1974.Iwan Kawrakow, Matthias Fippel, and Klaus Friedrich. 3d electron dose calculation using a voxel based monte carlo algorithm (vmc). Medical Physics, 23(4):445–457, Apr 1996.J. Kiener, M. Berheide, N. L. Achouri, A. Boughrara, A. Coc, A. Lefebvre, F. de Oliveira Santos, and Ch. Vieu. γ-ray production by inelastic proton scattering on 16O and 12C. Phys. Rev. C, 58:2174–2179, Oct 1998.J. Kiener, N. de S ́er ́eville, and V. Tatischeff. Shape of the 4.438 mev γ-ray line of 12C from proton and α-particle induced reactions on 12C and 16O. Phys. Rev. C, 64:025803, Jun 2001.Peter K. Kijewski and Bengt E. Bjarngard. The use of computed tomography data for radiotherapy dose calculations. International Journal of Radiation Oncology*Biology*Physics, 4(5–6):429–435, May 1978.A Knopf, K Parodi, T Bortfeld, H A Shih, and H Paganetti. Systematic analysis of biological and physical limitations of proton beam range verification with offline PET/CT scans. Physics in Medicine and Biology, 54(14):4477–4495, jun 2009.Antje-Christin Knopf and Antony Lomax. In vivoproton range verification: a review. Physics in Medicine and Biology, 58(15):R131–R160, jul 2013.Benzion Kozlovsky, Ronald Murphy, and and Ramaty. Nuclear deexcitation gamma- ray lines from accelerated particle interactions. The Astrophysical Journal Supplement Series, 141:523, 12 2008.Benzion Kozlovsky, Ronald J. Murphy, and Reuven Ramaty. Nuclear deexcitation gamma-ray lines from accelerated particle interactions. The Astrophysical Journal Supplement Series, 141(2):523–541, Aug 2002.Aafke Christine Kraan. Range verification methods in particle therapy: Underlying physics and monte carlo modeling. Frontiers in Oncology, 5:150, 2015.J. Krimmer, G. Angellier, L. Balleyguier, D. Dauvergne, N. Freud, J. H ́erault, J. M. Letang, H. Mathez, M. Pinto, E. Testa, and et al. A cost-effective monitoring technique in particle therapy via uncollimated prompt gamma peak integration. Applied Physics Letters, 110(15):154102, Apr 2017.J. Krimmer, J.-L. Ley, C. Abellan, J.-P. Cachemiche, L. Caponetto, X. Chen, M. Dahoumane, D. Dauvergne, N. Freud, B. Joly, D. Lambert, L. Lestand, J.M. Letang, M. Magne, H. Mathez, V. Maxim, G. Montarou, C. Morel, M. Pinto, C. Ray, V. Reithinger, E. Testa, and Y. Zoccarato. Development of a compton camera for medical applications based on silicon strip and scintillation detectors. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 787:98 – 101, 2015. New Developments in Photodetection NDIP14.F. L. Lang, C. W. Werntz, C. J. Crannell, J. I. Trombka, and C. C. Chang. Cross sections for production of the 15.10-mev and other astrophysically significant gamma- ray lines through excitation and spallation of 12C and 16O with protons. Phys. Rev. C, 35:1214–1227, Apr 1987.William R Leo. Techniques for nuclear and particle physics experiments: a how-to approach; 2nd ed. Springer, Berlin, 1994.K. T. Lesko, E. B. Norman, R.-M. Larimer, S. Kuhn, D. M. Meekhof, S. G. Crane, and H. G. Bussell. Measurements of cross sections relevant to γ-ray line astronomy. Phys. Rev. C, 37:1808–1817, May 1988.H. W. Lewis. Multiple scattering in an infinite medium. Phys. Rev., 78:526–529, Jun 1950.Gabriela Llosa, Marco Trovato, John Barrio, Ane Etxebeste, Enrique Mu ̃noz, Carlos Lacasta, Josep F. Oliver, Magdalena Rafecas, Carles Solaz, and Paola Solevi. First images of a three-layer compton telescope prototype for treatment monitoring in hadron therapy. Frontiers in Oncology, 6:14, 2016.Paulo Magalhaes Martins, Riccardo Dal Bello, Michael Seimetz, German Hermann, Thomas Kihm, and Joao Seco. A single-particle trigger for time-of-flight measurements in prompt-gamma imaging. Frontiers in Physics, 8:169, 2020.Paulo Magalhaes Martins, Riccardo Dal Bello, Andreas Rinscheid, Katja Roemer, Theresa Werner, Wolfgang Enghardt, Guntram Pausch, and Joao Seco. Prompt gamma spectroscopy for range control with cebr3. Current Directions in Biomedical Engineering, 3(2):113 – 117, 01 Sep. 2017.MATLAB. version 9.8.01 (R2020a). The MathWorks Inc., Natick, Massachusetts, 2020.M. McCleskey, W. Kaye, D.S. Mackin, S. Beddar, Z. He, and J.C. Polf. Evaluation of a multistage cdznte compton camera for prompt γ imaging for proton therapy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 785:163 – 169, 2015.C.H. Min, J.W. Kim, M.Y. Youn, and C.H. Kim. Determination of distal dose edge location by measuring right-angled prompt-gamma rays from a 38mev proton beam. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 580(1):562 – 565, 2007. Proceedings of the 10 th International Symposium on Radiation Physics.Chul Hee Min, Chan Hyeong Kim, Minyoung Youn, and Jong-Won Kim. Prompt gamma measurements for locating the dose falloff region in the proton therapy. Applied Physics Letters, 89:183517–183517, 11 2006.G. Moliere. Theorie der Streuung schneller geladener Teilchen II. Mehrfach- und Vielfachstreuung. Zeitschrift Naturforschung Teil A, 3(2):78–97, February 1948.S. N. Mukherjee. Nuclear reactions. New Age International Limited, New Delhi, 1996.K.A. Olive. Review of particle physics. Chinese Physics C, 38(9):090001, Aug 2014.Harald Paganetti. Range uncertainties in proton therapy and the role of monte carlo simulations. Physics in Medicine and Biology, 57(11):R99–R117, May 2012.R P Parker, P A Hobday, and K J Cassell. The direct use of CT numbers in radiotherapy dosage calculations for inhomogeneous media. Physics in Medicine and Biology, 24(4):802–809, jul 1979.Katia Parodi. Vision 20/20: Positron emission tomography in radiation therapy planning, delivery, and monitoring. Medical Physics, 42(12):7153–7168, 2015.Francesco Pennazio, Giuseppe Battistoni, Maria Giuseppina Bisogni, Niccolo Camarlinghi, Alfredo Ferrari, Veronica Ferrero, Elisa Fiorina, Matteo Morrocchi, Paola Sala, Giancarlo Sportelli, Richard Wheadon, and Piergiorgio Cerello. Carbon ions beam therapy monitoring with the INSIDE in-beam PET. Physics in Medicine & Biology, 63(14):145018, jul 2018.J. Perl, J. Shin, J. Schumann, B. Faddegon, and H. Paganetti. Topas: An innovative proton monte carlo platform for research and clinical applications. Medical Physics, 39(11):6818–6837, Oct 2012.Andreas Peters. Medical applications – instrumentation and diagnostics, 2020.J Petzoldt, K E Roemer, W Enghardt, F Fiedler, C Golnik, F Hueso-Gonz ́alez, S Helmbrecht, T Kormoll, H Rohling, J Smeets, T Werner, and G Pausch. Characterization of the microbunch time structure of proton pencil beams at a clinical treatment facility. Physics in Medicine and Biology, 61(6):2432–2456, mar 2016.Csaba Pinter, Andras Lasso, An Wang, David Jaffray, and Gabor Fichtinger. Slicerrt: Radiation therapy research toolkit for 3d slicer. Medical Physics, 39(10):6332–6338, 2012.M Pinto, D Dauvergne, N Freud, J Krimmer, J M Letang, C Ray, F Roellinghoff, and E Testa. Design optimisation of a TOF-based collimated camera prototype for online hadrontherapy monitoring. Physics in Medicine and Biology, 59(24):7653–7674, nov 2014.Lisa Polster, Jan Schuemann, Ilaria Rinaldi, Lucas Burigo, Aimee L McNamara, Robert D Stewart, Andrea Attili, David J Carlson, Tatsuhiko Sato, Jos ́e Ramos M ́endez, Bruce Faddegon, Joseph Perl, and Harald Paganetti. Extension of TOPAS for the simulation of proton radiation effects considering molecular and cellular endpoints. Physics in Medicine and Biology, 60(13):5053–5070, jun 2015.R. Ramaty, B. Kozlovsky, and R. E. Lingenfelter. Nuclear gamma-rays from energetic particle interactions. The Astrophysical Journal Supplement Series, 40:487, Jul 1979.R. Ramaty, B. Kozlovsky, and R. E. Lingenfelter. Nuclear gamma-rays from energetic particle interactions. apjs, 40:487–526, July 1979.J Ramos-M ́endez, J Perl, J Schumann, J Shin, H Paganetti, and B Faddegon. A framework for implementation of organ effect models in TOPAS with benchmarks extended to proton therapy. Physics in Medicine and Biology, 60(13):5037–5052, jun 2015.H Rohling, M Priegnitz, S Schoene, A Schumann, W Enghardt, F Hueso-Gonz ́alez, G Pausch, and F Fiedler. Requirements for a compton camera for in vivo range verification of proton therapy. Physics in Medicine and Biology, 62(7):2795–2811, mar 2017.D Sanchez-Parcerisa, M Kondrla, A Shaindlin, and A Carabe. FoCa: a modular treatment planning system for proton radiotherapy with research and educational purposes. Physics in Medicine and Biology, 59(23):7341–7360, nov 2014. [82] Uwe Schneider, Eros Pedroni, and Antony Lomax. The calibration of CT hounsfield units for radiotherapy treatment planning. Physics in Medicine and Biology, 41(1):111– 124, jan 1996.Wilfried Schneider, Thomas Bortfeld, and Wolfgang Schlegel. Correlation between CT numbers and tissue parameters needed for monte carlo simulations of clinical dose distributions. Physics in Medicine and Biology, 45(2):459–478, jan 2000.A Schumann, J Petzoldt, P Dendooven, W Enghardt, C Golnik, F Hueso-Gonz ́alez, T Kormoll, G Pausch, K Roemer, and F Fiedler. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation. Physics in Medicine and Biology, 60(10):4197–4207, may 2015.Stephen Seltzer. Stopping-powers and range tables for electrons, protons, and helium ions, nist standard reference database 124, 1993.Kyu Seok Seo, Chan Hyeong Kim, and Jong Won Kim. Comparison of titanium hydride (tih 2) and paraffin as neutron moderator material in a prompt gamma scanning system. Journal of the Korean Physical Society, 48(4 I):855–858, April 2006.R. Serber. Nuclear reactions at high energies. Phys. Rev., 72:1114–1115, Dec 1947.J Smeets, F Roellinghoff, D Prieels, F Stichelbaut, A Benilov, P Busca, C Fiorini, R Peloso, M Basilavecchia, T Frizzi, J C Dehaes, and A Dubus. Prompt gamma imaging with a slit camera for real-time range control in proton therapy. Physics in Medicine and Biology, 57(11):3371–3405, may 2012. [89] Marshall A. Tewell and Robert Adams. The plunc 3d treatment planning system: a dynamic alternative to commercially available systems. Medical Dosimetry, 29(2):134 – 138, 2004.P.G. Thirolf, S. Aldawood, M. Bohmer, J. Bortfeldt, I. Castelhano, G. Dedes, F. Fiedler, R. Gernhauser, C. Golnik, S. Helmbrecht, and et al. A compton camera prototype for prompt gamma medical imaging. EPJ Web of Conferences, 117:05005, 2016.RK Tripathi, FA Cucinotta, and JW Wilson. Accurate universal parameterization of absorption cross sections iii–light systems. Nuclear instruments and methods in physics research. Section B, Beam interactions with materials and atoms, 155(4):349—356, September 1999.Jan Unkelbach, Timothy C Y Chan, and Thomas Bortfeld. Accounting for range uncertainties in the optimization of intensity modulated proton therapy. Physics in Medicine and Biology, 52(10):2755–2773, apr 2007.Joost M Verburg and Joao Seco. Proton range verification through prompt gamma-ray spectroscopy. Physics in Medicine and Biology, 59(23):7089–7106, nov 2014.Joost M Verburg, Helen A Shih, and Joao Seco. Simulation of prompt gamma-ray emission during proton radiotherapy. Physics in Medicine and Biology, 57(17):5459–5472, aug 2012.V. Weisskopf. Statistics and nuclear reactions. Phys. Rev., 52:295–303, Aug 1937.H. P. Wellisch and D. Axen. Total reaction cross section calculations in proton-nucleus scattering. Phys. Rev. C, 54:1329–1332, Sep 1996.Hans-Peter Wieser, Eduardo Cisternas, Niklas Wahl, Silke Ulrich, Alexander Stadler, Henning Mescher, Lucas-Raphael Muller, Thomas Klinge, Hubert Gabrys, Lucas Burigo, Andrea Mairani, Swantje Ecker, Benjamin Ackermann, Malte Ellerbrock, Katia Parodi, Oliver Jakel, and Mark Bangert. Development of the open-source dose calculation and optimization toolkit matrad. Medical Physics, 44(6):2556–2568, 2017.Harald Paganetti. Range uncertainties in proton therapy and the role of monte carlo simulations. Physics in Medicine and Biology, 57(11):R99–R117, May 2012.Andreas Peters. Medical applications – instrumentation and diagnostics, 2020.J. Kiener, M. Berheide, N. L. Achouri, A. Boughrara, A. Coc, A. Lefebvre, F. de Oliveira Santos, and Ch. Vieu. γ-ray production by inelastic proton scattering on 16O and 12C. Phys. Rev. C, 58:2174–2179, Oct 1998.Benzion Kozlovsky, Ronald Murphy, and and Ramaty. Nuclear deexcitation gamma- ray lines from accelerated particle interactions. The Astrophysical Journal Supplement Series, 141:523, 12 2008.R. Ramaty, B. Kozlovsky, and R. E. Lingenfelter. Nuclear gamma-rays from energetic particle interactions. apjs, 40:487–526, July 1979.Hans-Peter Wieser, Eduardo Cisternas, Niklas Wahl, Silke Ulrich, Alexander Stadler, Henning Mescher, Lucas-Raphael Muller, Thomas Klinge, Hubert Gabrys, Lucas Burigo, Andrea Mairani, Swantje Ecker, Benjamin Ackermann, Malte Ellerbrock, Katia Parodi, Oliver Jakel, and Mark Bangert. Development of the open-source dose calculation and optimization toolkit matrad. Medical Physics, 44(6):2556–2568, 2017J. F. Ziegler. Stopping of energetic light ions in elemental matter. Journal of Applied Physics, 85(3):1249–1272, Feb 1999.EstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80195/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1018424940.2021.pdf1018424940.2021.pdfTesis de Maestría en Física Médicaapplication/pdf7044956https://repositorio.unal.edu.co/bitstream/unal/80195/2/1018424940.2021.pdf7226af2acbc2870024225592644a5475MD52THUMBNAIL1018424940.2021.pdf.jpg1018424940.2021.pdf.jpgGenerated Thumbnailimage/jpeg4561https://repositorio.unal.edu.co/bitstream/unal/80195/3/1018424940.2021.pdf.jpg52bf17776a0e2a6b44abfc9398f80ed3MD53unal/80195oai:repositorio.unal.edu.co:unal/801952024-07-29 23:12:26.321Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |