Neural fuzzy digital filtering: multivariate identifier filters involving multiple inputs and multiple outputs (mimo)
Multivariate identifier filters (multiple inputs and multiple outputs - MIMO) are adaptive digital systems having a loop in accordance with an objective function to adjust matrix parameter convergence to observable reference system dynamics. One way of complying with this condition is to use fuzzy l...
- Autores:
-
García Infante, Juan Carlos
Medel Juárez, José de J.
Sánchez García, Juan Carlos
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2011
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/33506
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/33506
http://bdigital.unal.edu.co/23586/
http://bdigital.unal.edu.co/23586/2/
http://bdigital.unal.edu.co/23586/3/
- Palabra clave:
- filtro digital
control difuso
red neuronal
MIMO
adaptivo.
digital filter
fuzzy control
neural network
MIMO
adaptive digital system.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | Multivariate identifier filters (multiple inputs and multiple outputs - MIMO) are adaptive digital systems having a loop in accordance with an objective function to adjust matrix parameter convergence to observable reference system dynamics. One way of complying with this condition is to use fuzzy logic inference mechanisms which interpret and select the best matrix parameter from a knowledge base. Such selection mechanisms with neural networks can provide a response from the best operational level for each change in state (Shannon, 1948). This paper considers the MIMO digital filter model using neuro fuzzy digital filtering to find an adaptive parameter matrix which is integrated into the Kalman filter by the transition matrix. The filter uses the neural network as back-propagation into the fuzzy mechanism to do this, interpreting its variables and its respective levels and selecting the best values for automatically adjusting transition matrix values. The Matlab simulation describes the neural fuzzy digital filter giving an approximation of exponential convergence seen in functional error. |
---|