Neural fuzzy digital filtering: multivariate identifier filters involving multiple inputs and multiple outputs (mimo)

Multivariate identifier filters (multiple inputs and multiple outputs - MIMO) are adaptive digital systems having a loop in accordance with an objective function to adjust matrix parameter convergence to observable reference system dynamics. One way of complying with this condition is to use fuzzy l...

Full description

Autores:
García Infante, Juan Carlos
Medel Juárez, José de J.
Sánchez García, Juan Carlos
Tipo de recurso:
Article of journal
Fecha de publicación:
2011
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/33506
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/33506
http://bdigital.unal.edu.co/23586/
http://bdigital.unal.edu.co/23586/2/
http://bdigital.unal.edu.co/23586/3/
Palabra clave:
filtro digital
control difuso
red neuronal
MIMO
adaptivo.
digital filter
fuzzy control
neural network
MIMO
adaptive digital system.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Multivariate identifier filters (multiple inputs and multiple outputs - MIMO) are adaptive digital systems having a loop in accordance with an objective function to adjust matrix parameter convergence to observable reference system dynamics. One way of complying with this condition is to use fuzzy logic inference mechanisms which interpret and select the best matrix parameter from a knowledge base. Such selection mechanisms with neural networks can provide a response from the best operational level for each change in state (Shannon, 1948). This paper considers the MIMO digital filter model using neuro fuzzy digital filtering to find an adaptive  parameter matrix which is integrated into the Kalman filter by the transition matrix. The filter uses the neural network as back-propagation into the fuzzy mechanism to do this, interpreting its variables and its respective levels and selecting the best values for automatically adjusting transition matrix values. The Matlab simulation describes the neural fuzzy digital filter giving an approximation of exponential convergence seen in functional error.