Ground state of fermions in quasi-1D honeycomb optical lattices

ilustraciones, gráficas

Autores:
Padilla González, Daniel Camilo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82564
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82564
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física
Honeycomb lattice
Ionic Hubbard model
DMRG algorithm
Phase transitions
Red tipo panal
modelo Iónico de Hubbard
algoritmo DMRG
Transición de fase
Información y comunicación
Modelo de simulación
Information and communication
Simulation techniques
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_dfdbccc94137da39d83696f412bbc256
oai_identifier_str oai:repositorio.unal.edu.co:unal/82564
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Ground state of fermions in quasi-1D honeycomb optical lattices
dc.title.translated.eng.fl_str_mv Estado base de fermiones en redes ópticas cuasi-1D tipo panal
title Ground state of fermions in quasi-1D honeycomb optical lattices
spellingShingle Ground state of fermions in quasi-1D honeycomb optical lattices
530 - Física
Honeycomb lattice
Ionic Hubbard model
DMRG algorithm
Phase transitions
Red tipo panal
modelo Iónico de Hubbard
algoritmo DMRG
Transición de fase
Información y comunicación
Modelo de simulación
Information and communication
Simulation techniques
title_short Ground state of fermions in quasi-1D honeycomb optical lattices
title_full Ground state of fermions in quasi-1D honeycomb optical lattices
title_fullStr Ground state of fermions in quasi-1D honeycomb optical lattices
title_full_unstemmed Ground state of fermions in quasi-1D honeycomb optical lattices
title_sort Ground state of fermions in quasi-1D honeycomb optical lattices
dc.creator.fl_str_mv Padilla González, Daniel Camilo
dc.contributor.advisor.none.fl_str_mv Silva Valencia, Jereson
dc.contributor.author.none.fl_str_mv Padilla González, Daniel Camilo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Sistemas Correlacionados SISCO
dc.subject.ddc.spa.fl_str_mv 530 - Física
topic 530 - Física
Honeycomb lattice
Ionic Hubbard model
DMRG algorithm
Phase transitions
Red tipo panal
modelo Iónico de Hubbard
algoritmo DMRG
Transición de fase
Información y comunicación
Modelo de simulación
Information and communication
Simulation techniques
dc.subject.proposal.eng.fl_str_mv Honeycomb lattice
Ionic Hubbard model
DMRG algorithm
Phase transitions
dc.subject.proposal.spa.fl_str_mv Red tipo panal
modelo Iónico de Hubbard
algoritmo DMRG
Transición de fase
dc.subject.unesco.spa.fl_str_mv Información y comunicación
Modelo de simulación
dc.subject.unesco.eng.fl_str_mv Information and communication
Simulation techniques
description ilustraciones, gráficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-31T15:36:22Z
dc.date.available.none.fl_str_mv 2022-10-31T15:36:22Z
dc.date.issued.none.fl_str_mv 2022
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82564
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82564
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269(5221):198–201, 1995.
Tsuneya Ando, Yukio Matsumoto, and Yasutada Uemura. Theory of hall effect in a two-dimensional electron system. Journal of the Physical Society of Japan, 39(2):279–288, 1975.
M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne. Precise determination of 6 Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett., 94:103201, Mar 2005.
L. Barbiero, M. Casadei, M. Dalmonte, C. Degli Esposti Boschi, E. Erco- lessi, and F. Ortolani. Phase separation and pairing regimes in the one- dimensional asymmetric hubbard model. Phys. Rev. B, 81:224512, Jun 2010.
Vincent Barbé, Alessio Ciamei, Benjamin Pasquiou, Lukas Reichsöllner, Florian Schreck, Piotr S. Zuchowski, and Jeremy M. Hutson. Observation of feshbach resonances between alkali and closed-shell atoms. Nature Physics, 14(9):881–884, Sep 2018.
Soumen Bag, Arti Garg, and H. R. Krishnamurthy. Phase diagram of the half-filled ionic hubbard model. Phys. Rev. B, 91:235108, Jun 2015.
K. Buchta, Ö. Legeza, E. Szirmai, and J. Sólyom. Mott transition and dimerization in the one-dimensional SU(n) hubbard model. Phys. Rev. B, 75:155108, Apr 2007.
J. G. Bednorz and K. A. Muller. Possible high-tc superconductivity in the ba-la-cu-o system. Zeitschrift ur Physik B Condensed Matter, 64(2):189– 193, Jun 1986.
K. Bouadim, N. Paris, F. Hébert, G. G. Batrouni, and R. T. Scalettar. Metallic phase in the two-dimensional ionic hubbard model. Phys. Rev. B, 76:085112, Aug 2007.
Peter Broecker and Simon Trebst. Entanglement and the fermion sign problem in auxiliary field quantum monte carlo simulations. Phys. Rev. B, 94:075144, Aug 2016.
Anwesha Chattopadhyay, Soumen Bag, H. R. Krishnamurthy, and Arti Garg. Phase diagram of the half-filled ionic hubbard model in the limit of strong correlations. Phys. Rev. B, 99:155127, Apr 2019.
Wen-Ling Chan and Shi-Jian Gu. Entanglement and quantum phase tran- sition in the asymmetric hubbard chain: density-matrix renormalization group calculations. Journal of Physics: Condensed Matter, 20(34):345217, aug 2008.
Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010.
Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55:48–51, Jul 1985.
Y. Castin, K. Mϕlmer, J. Dalibard, and C. Cohen-Tannoudji. New physical mechanisms in laser cooling. pages 2 – 7, 1989.
Agnieszka Cichy and Andrzej Ptok. Reentrant fulde-ferrell-larkin-ovchinnikov superfluidity in the honeycomb lattice. Phys. Rev. A, 97:053619, May 2018.
J. Ignacio Cirac, David Pérez-Garcı́a, Norbert Schuch, and Frank Verstraete. Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod. Phys., 93:045003, Dec 2021.
Shu Chen, Li Wang, Yajiang Hao, and Yupeng Wang. Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition. Phys. Rev. A, 77:032111, Mar 2008.
Hui-Min Chen, Hui Zhao, Hai-Qing Lin, and Chang-Qin Wu. Bond-located spin density wave phase in the two-dimensional (2d) ionic hubbard model. New Journal of Physics, 12(9):093021, sep 2010.
Jacques Des Cloizeaux and Michel Gaudin. Anisotropic linear magnetic chain. Journal of Mathematical Physics, 7(8):1384–1400, 1966.
H.G. Dehmelt. Radiofrequency spectroscopy of stored ions i: Storage**part ii: Spectroscopy is now scheduled to appear in volume v of this series. 3:53 – 72, 1968.
H.G. Dehmelt. Radiofrequency spectroscopy of stored ions ii: Spec- troscopy**part i, sections 1 and 2 of this article appear in volume 3 of this series. 5:109 – 154, 1969.
David P. DiVincenzo. The physical implementation of quantum computa- tion. Fortschritte der Physik, 48(9-11):771–783, 2000.
B. DeMarco and D. S. Jin. Onset of fermi degeneracy in a trapped atomic gas. Science, 285(5434):1703–1706, 1999.
Tilman Esslinger. Fermi-hubbard physics with atoms in an optical lattice. Annual Review of Condensed Matter Physics, 1(1):129–152, 2010.
P. Farkašovský. Ferromagnetism in the asymmetric hubbard model. The European Physical Journal B, 85(8):253, Jul 2012.
Gianluca Fiori, Francesco Bonaccorso, Giuseppe Iannaccone, Tomás Pala- cios, Daniel Neumaier, Alan Seabaugh, Sanjay K. Banerjee, and Luigi Colombo. Electronics based on two-dimensional materials. Nature Nan- otechnology, 9(10):768–779, Oct 2014.
Pavol Farkašovský. Phase diagram of the asymmetric hubbard model. Phys. Rev. B, 77:085110, Feb 2008.
Gábor Fáth, Zbigniew Domański, and Romuald Lemański. Asymmetric hubbard chain at half-filling. Phys. Rev. B, 52:13910–13915, Nov 1995.
Peter Fulde and Richard A. Ferrell. Superconductivity in a strong spin- exchange field. Phys. Rev., 135:A550–A563, Aug 1964.
Serge Florens and Antoine Georges. Slave-rotor mean-field theories of strongly correlated systems and the mott transition in finite dimensions. Phys. Rev. B, 70:035114, Jul 2004.
J. N. Fuchs, D. M. Gangardt, T. Keilmann, and G. V. Shlyapnikov. Spin waves in a one-dimensional spinor bose gas. Phys. Rev. Lett., 95:150402, Oct 2005.
Michele Fabrizio, Alexander O. Gogolin, and Alexander A. Nersesyan. From band insulator to mott insulator in one dimension. Phys. Rev. Lett., 83:2014–2017, Sep 1999.
L. M. Falicov and J. C. Kimball. Simple model for semiconductor-metal transitions: Smb 6 and transition-metal oxides. Phys. Rev. Lett., 22:997– 999, May 1969.
Hélène Feldner, Zi Yang Meng, Andreas Honecker, Daniel Cabra, Stefan Wessel, and Fakher F. Assaad. Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum monte carlo simulations. Phys. Rev. B, 81:115416, Mar 2010.
J. Fernández-Rossier. Prediction of hidden multiferroic order in graphene zigzag ribbons. Phys. Rev. B, 77:075430, Feb 2008.
Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein, and Daniel S. Fisher. Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40:546–570, Jul 1989.
Mitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada, and Koichi Kusakabe. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65(7):1920–1923, 1996.
Mitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada, and Koichi Kusakabe. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65(7):1920–1923, 1996.
Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. the ITensor software library for tensor network calculations, 2020.
Fabrice Gerbier, Simon Fölling, Artur Widera, Olaf Mandel, and Immanuel Bloch. Probing number squeezing of ultracold atoms across the superfluid- mott insulator transition. Phys. Rev. Lett., 96:090401, Mar 2006.
C. Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger. Ground states of the spinless falicov-kimball model. Phys. Rev. B, 41:2198–2209, Feb 1990.
Arti Garg, H. R. Krishnamurthy, and Mohit Randeria. Can correlations drive a band insulator metallic? Phys. Rev. Lett., 97:046403, Jul 2006.
Arti Garg, H. R. Krishnamurthy, and Mohit Randeria. Doping a correlated band insulator: A new route to half-metallic behavior. Phys. Rev. Lett., 112:106406, Mar 2014.
Alaina Green, Hui Li, Jun Hui See Toh, Xinxin Tang, Katherine C. Mc- Cormick, Ming Li, Eite Tiesinga, Svetlana Kotochigova, and Subhadeep Gupta. Feshbach resonances in p-wave three-body recombination within fermi-fermi mixtures of open-shell 6 Li and closed-shell 173 Yb atoms. Phys. Rev. X, 10:031037, Aug 2020.
I. Grusha, M. Menteshashvili, and G. I. Japaridze. Effective hamiltonian for a half-filled asymmetric ionic hubbard chain with alternating on-site interaction. International Journal of Modern Physics B, 30(03):1550260, 2016.
Mandel O. Esslinger T. et al. Greiner, M. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature., 415:39– 44, Jan 2002.
SHI-JIAN GU. Fidelity approach to quantum phase transitions. Interna- tional Journal of Modern Physics B, 24(23):4371–4458, 2010.
Daniel Greif, Thomas Uehlinger, Gregor Jotzu, Leticia Tarruell, and Tilman Esslinger. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science, 340(6138):1307–1310, 2013.
Rudolf Grimm, Matthias Weidemuller, and Yurii B. Ovchinnikov. Optical dipole traps for neutral atoms. volume 42 of Advances In Atomic, Molecular, and Optical Physics, pages 95 – 170. Academic Press, 2000.
J. Hubbard and Brian Hilton Flowers. Electron correlations in narrow en- ergy bands. ii. the degenerate band case. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 277(1369):237–259, 1964.
J. Hubbard and Brian Hilton Flowers. Electron correlations in narrow en- ergy bands iii. an improved solution. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 281(1386):401–419, 1964.
Toshiya Hikihara, Xiao Hu, Hsiu-Hau Lin, and Chung-Yu Mou. Ground- state properties of nanographite systems with zigzag edges. Phys. Rev. B, 68:035432, Jul 2003.
Kazuo Hida. Crossover between the haldane-gap phase and the dimer phase in the spin-1/2 alternating heisenberg chain. Phys. Rev. B, 45:2207–2212, Feb 1992.
Wei Han, Roland K. Kawakami, Martin Gmitra, and Jaroslav Fabian. Graphene spintronics. Nature Nanotechnology, 9(10):794–807, Oct 2014.
W. Heitler and F. London. Wechselwirkung neutraler atome und homöopo- lare bindung nach der quantenmechanik. Zeitschrift für Physik, 44(6):455– 472, Jun 1927.
I. Hagymási and Ö. Legeza. Entanglement, excitations, and correlation effects in narrow zigzag graphene nanoribbons. Phys. Rev. B, 94:165147, Oct 2016.
A T Hoang. Metal-insulator transitions in the half-filled ionic hubbard model. Journal of Physics: Condensed Matter, 22(9):095602, 2010.
T. W. Hänsch, I. S. Shahin, and A. L. Schawlow. High-resolution saturation spectroscopy of the sodium d lines with a pulsed tunable dye laser. Phys. Rev. Lett., 27:707–710, Sep 1971.
J. Hubbard and J. B. Torrance. Model of the neutral-ionic phase transfor- mation. Phys. Rev. Lett., 47:1750–1754, Dec 1981.
Electron correlations in narrow energy bands. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 276(1365):238–257, 1963.
Kerson Huang and C. N. Yang. Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev., 105:767–775, Feb 1957.
Masatoshi Imada, Atsushi Fujimori, and Yoshinori Tokura. Metal-insulator transitions. Rev. Mod. Phys., 70:1039–1263, Oct 1998.
S. Inouye, J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and D. S. Jin. Observation of heteronuclear feshbach resonances in a mixture of bosons and fermions. Phys. Rev. Lett., 93:183201, Oct 2004.
D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81:3108–3111, Oct 1998.
D. Jaksch, H.J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller. Entangle- ment of atoms via cold controlled collisions. Phys. Rev. Lett., 82:1975–1978, Mar 1999.
Y. Jompol, C. J. B. Ford, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. Ander- son, D. A. Ritchie, T. W. Silk, and A. J. Schofield. Probing spin-charge sep- aration in a tomonaga-luttinger liquid. Science, 325(5940):597–601, 2009.
Robert Jö rdens, Niels Strohmaier, Kenneth Gü nter, Henning Moritz, and Tilman Esslinger. A mott insulator of fermionic atoms in an optical lattice. Nature, 455(7210):204–207, Sep 2008.
Michael Jag, Matteo Zaccanti, Marko Cetina, Rianne S. Lous, Florian Schreck, Rudolf Grimm, Dmitry S. Petrov, and Jesper Levinsen. Obser- vation of a strong atom-dimer attraction in a mass-imbalanced fermi-fermi mixture. Phys. Rev. Lett., 112:075302, Feb 2014.
Naoum Karchev. Quantum critical behavior in three-dimensional one-band hubbard model at half-filling. Annals of Physics, 333:206–220, 2013.
S. S. Kancharla and E. Dagotto. Correlated insulated phase suggests bond order between band and mott insulators in two dimensions. Phys. Rev. Lett., 98:016402, Jan 2007.
M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky. Intermediate-spin state and properties of lacoo 3 . Phys. Rev. B, 54:5309–5316, Aug 1996.
Akihisa Koga, Takuji Higashiyama, Kensuke Inaba, Seiichiro Suga, and Norio Kawakami. Supersolid state in fermionic optical lattice systems. Phys. Rev. A, 79:013607, Jan 2009.
Nobuyuki Katoh and Masatoshi Imada. Phase diagram of s=1/2 antifer- romagnetic heisenberg model on a dimerized square lattice. Journal of the Physical Society of Japan, 62(10):3728–3740, 1993.
Nobuyuki Katoh and Masatoshi Imada. Phase diagram of s=1/2 quasi-one- dimensional heisenberg model with dimerized antiferromagnetic exchange. Journal of the Physical Society of Japan, 63(12):4529–4541, 1994.
Tom Kennedy and Elliott H. Lieb. An itinerant electron model with crys- talline or magnetic long range order. Physica A: Statistical Mechanics and its Applications, 138(1):320–358, 1986.
J. I. Krugler, C. G. Montgomery, and H. M. McConnell. Collective electronic states in molecular crystals. The Journal of Chemical Physics, 41(8):2421– 2428, 1964.
Masatsune Kato, Kazunori Shiota, and Yoji Koike. Metal-insulator tran- sition and spin gap in the spin-1/2 ladder system sr 14−x a x cu 24 o 41 (a: Ba and ca). Physica C: Superconductivity, 258(3):284–292, 1996.
Atsushi Kawamoto, Hiromi Taniguchi, and Kazushi Kanoda. Superconductor-insulator transition controlled by partial deuteration in bedt-ttf salt. Journal of the American Chemical Society, 120(42):10984– 10985, Oct 1998.
A. J. Leggett. On the superfluid fraction of an arbitrary many-body system at t=0. Journal of Statistical Physics, 93(3):927–941, Nov 1998.
V. Leo. Elastic electron tunneling study of the metal-insulator transition in ttf-tcnq. Solid State Communications, 40(4):509–511, 1981.
Tianhe Li, Huaiming Guo, Shu Chen, and Shun-Qing Shen. Complete phase diagram and topological properties of interacting bosons in one-dimensional superlattices. Phys. Rev. B, 91:134101, Apr 2015.
Elliott H. Lieb. Two theorems on the hubbard model. Phys. Rev. Lett., 62:1201–1204, Mar 1989.
L. D. Landau and E. M. Lifshitz. Chapter xvii - the theory of elastic collisions. In Course of Theoretical Physics Vol 3: Quantum Mechanics, pages 469 – 535. Pergamon Press, Oxford, 1959.
Heng-Fu Lin, Hai-Di Liu, Hong-Shuai Tao, and Wu-Ming Liu. Phase tran- sitions of the ionic hubbard model on the honeycomb lattice. Scientific Reports, 5(1):9810, May 2015.
Elliott Lieb and Daniel Mattis. Theory of ferromagnetism and the ordering of electronic energy levels. Phys. Rev., 125:164–172, Jan 1962.
A. I. Larkin and Y. N. Ovchinnikov. Nonuniform state of superconductors. Zh. Eksp. Teor. Fiz., 47:1136–1146, 1964.
T. Loftus, C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin. Resonant control of elastic collisions in an optically trapped fermi gas of atoms. Phys. Rev. Lett., 88:173201, Apr 2002.
Elliott H. Lieb and F. Y. Wu. Absence of mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett., 20:1445–1448, Jun 1968.
Ye-Hua Liu and Lei Wang. Quantum monte carlo study of mass-imbalanced hubbard models. Phys. Rev. B, 92:235129, Dec 2015.
J. J. Mendoza-Arenas, R. Franco, and J. Silva-Valencia. Block entropy and quantum phase transition in the anisotropic kondo necklace model. Phys. Rev. A, 81:062310, Jun 2010.
L. Mathey. Commensurate mixtures of ultracold atoms in one dimension. Phys. Rev. B, 75:144510, Apr 2007.
A. Menth, E. Buehler, and T. H. Geballe. Magnetic and semiconducting properties of smb 6 . Phys. Rev. Lett., 22:295–297, Feb 1969.
L S Murcia-Correa, R Franco, and J Silva-Valencia. Quantum phases of ab 2 fermionic chains. Journal of Physics: Conference Series, 687(1):012066, 2016.
J. D. Miller, R. A. Cline, and D. J. Heinzen. Far-off-resonance optical trapping of atoms. Phys. Rev. A, 47:R4567–R4570, Jun 1993.
Michael Messer, Rémi Desbuquois, Thomas Uehlinger, Gregor Jotzu, Se- bastian Huber, Daniel Greif, and Tilman Esslinger. Exploring competing density order in the ionic hubbard model with ultracold fermions. Phys. Rev. Lett., 115:115303, Sep 2015.
J. W. Mintmire, B. I. Dunlap, and C. T. White. Are fullerene tubules metallic? Phys. Rev. Lett., 68:631–634, Feb 1992.
S. Moukouri and E. Eidelstein. Universality class of the mott transition in two dimensions. Phys. Rev. B, 86:155112, Oct 2012.
Prasanta K. Misra. Chapter 13 - magnetic ordering. In Prasanta K. Misra, editor, Physics of Condensed Matter, pages 409 – 449. Academic Press, Boston, 2012.
Gábor Zsolt Magda, Xiaozhan Jin, Imre Hagymási, Péter Vancsó, Zoltán Osváth, Péter Nemes-Incze, Chanyong Hwang, László P. Biró, and Levente Tapasztó. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature, 514(7524):608–611, Oct 2014.
David Mele, Sarah Mehdhbi, Dalal Fadil, Wei Wei, Abdelkarim Ouerghi, Sylvie Lepilliet, Henri Happy, and Emiliano Pallecchi. Graphene fets based on high resolution nanoribbons for hf low power applications. Electronic Materials Letters, 14(2):133–138, Mar 2018.
S. R. Manmana, V. Meden, R. M. Noack, and K. Schönhammer. Quantum critical behavior of the one-dimensional ionic hubbard model. Phys. Rev. B, 70:155115, Oct 2004.
N F Mott. The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society. Section A, 62(7):416–422, jul 1949.
N. F. Mott. On the transition to metallic conduction in semiconductors. Canadian Journal of Physics, 34(12A):1356–1368, 1956.
N. F. Mott. The transition to the metallic state. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 6(62):287–309, 1961.
N F Mott. Metal-insulator transitions. CRC Press, London, 1990.
N F Mott and R Peierls. Discussion of the paper by de boer and verwey. Proceedings of the Physical Society, 49(4S):72–73, aug 1937.
Alberto Medina-Rull, Francisco Pasadas, Enrique G. Marin, Alejandro Toral-Lopez, Juan Cuesta, Andres Godoy, David Jimélnez, and Fran- cisco G. Ruiz. A graphene field-effect transistor based analogue phase shifter for high-frequency applications. IEEE Access, 8:209055–209063, 2020.
D. B. McWhan, J. P. Remeika, T. M. Rice, W. F. Brinkman, J. P. Maita, and A. Menth. Electronic specific heat of metallic ti-doped v 2 o 3 . Phys. Rev. Lett., 27:941–943, Oct 1971.
Shigeki Miyasaka, Hidenori Takagi, Yoshiaki Sekine, Hiroki Takahashi, Nobuo Mouri, and Robert J. Cava. Metal-insulator transition and itinerant antiferromagnetism in nis 2−x se x pyrite. Journal of the Physical Society of Japan, 69(10):3166–3169, 2000.
R. S. Mulliken. Intermolecular charge-transfer forces. Rendiconti del Sem- inario Matematico e Fisico di Milano, 24(1):183–189, Dec 1954.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomi- cally thin carbon films. Science, 306(5696):666–669, 2004.
Naoto Nagaosa and Jun ichi Takimoto. Theory of neutral-ionic transition in organic crystals. i. monte carlo simulation of modified hubbard model. Journal of the Physical Society of Japan, 55(8):2735–2744, 1986.
P L Nordio, Z G Soos, and H M McConnell. Spin excitations in ionic molecular crystals. Annual Review of Physical Chemistry, 17(1):237–260, 1966.
Takashi Nishikawa, Yukio Yasui, Yoshiaki Kobayashi, and Masatoshi Sato. Thermal properties of two dimensional mott system la 1.17−x sr x vs 3.17 . Jour- nal of the Physical Society of Japan, 65(8):2543–2547, 1996.
D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee. New magnetic phenomena in liquid He 3 below 3 mk. Phys. Rev. Lett., 29:920–923, Oct 1972.
Tobias J. Osborne and Michael A. Nielsen. Entanglement in a simple quan- tum phase transition. Phys. Rev. A, 66:032110, Sep 2002.
G. Orso, L. P. Pitaevskii, and S. Stringari. Equilibrium and dynamics of a trapped superfluid fermi gas with unequal masses. Phys. Rev. A, 77:033611, Mar 2008.
D. D. Osheroff, R. C. Richardson, and D. M. Lee. Evidence for a new phase of solid He 3 . Phys. Rev. Lett., 28:885–888, Apr 1972.
N. Paris, K. Bouadim, F. Hebert, G. G. Batrouni, and R. T. Scalettar. Quantum monte carlo study of an interaction-driven band-insulator–to– metal transition. Phys. Rev. Lett., 98:046403, Jan 2007.
D. C. Padilla-González, R. Franco, and J. Silva-Valencia. Mass imbalance in the ionic hubbard model: a drmg study, 2021.
Diana Prychynenko and Sebastian D. Huber. Z2 slave-spin theory of a strongly correlated chern insulator. Physica B: Condensed Matter, 481:53 – 58, 2016.
Diana Prychynenko and Sebastian D. Huber. Z2 slave-spin theory of a strongly correlated chern insulator. Physica B: Condensed Matter, 481:53 – 58, 2016.
David Pines. A collective description of electron interactions: Iv. electron interaction in metals. Phys. Rev., 92:626–636, Nov 1953.
Francesco Parisen Toldin, Martin Hohenadler, Fakher F. Assaad, and Igor F. Herbut. Fermionic quantum criticality in honeycomb and π-flux hubbard models: Finite-size scaling of renormalization-group-invariant ob- servables from quantum monte carlo. Phys. Rev. B, 91:165108, Apr 2015.
Wang Qing-Bo, Xu Xiang-Fan, Tao Qian, Wang Hong-Tao, and Xu Zhu- An. Metal—insulator transition in ca-doped sr 14-x ca x cu 24 o 41 systems probed by thermopower measurements. Chinese Physics Letters, 25(5):1857–1860, may 2008.
E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59:2631–2634, Dec 1987.
Rinaldo Raccichini, Alberto Varzi, Stefano Passerini, and Bruno Scrosati. The role of graphene for electrochemical energy storage. Nature Materials, 14(3):271–279, Mar 2015.
K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout. Correlation energy of an electron gas at high density: Plasma oscillations. Phys. Rev., 108:507– 514, Nov 1957.
Michael Sekania, Dionys Baeriswyl, Luka Jibuti, and George I. Japaridze. Mass-imbalanced ionic hubbard chain. Phys. Rev. B, 96:035116, Jul 2017.
White S.R. Scalapino, D.J. Numerical results for the hubbard model: Impli- cations for the high tc pairing mechanism. Foundations of Physics., 31:27, Jan 2001.
Andrii Sotnikov, Daniel Cocks, and Walter Hofstetter. Advantages of mass- imbalanced ultracold fermionic mixtures for approaching quantum mag- netism in optical lattices. Phys. Rev. Lett., 109:065301, Aug 2012.
Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett., 97:216803, Nov 2006.
Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett., 97:216803, Nov 2006.
Ahmad Shahbazy and Morad Ebrahimkhas. Quantum phase transitions in the two dimensional ionic-hubbard model. Chinese Journal of Physics, 58:273 – 279, 2019.
Ahmad Shahbazy and Morad Ebrahimkhas. Quantum phase transitions in the two dimensional ionic-hubbard model. Chinese Journal of Physics, 58:273–279, 2019.
T. Senthil. Theory of a continuous mott transition in two dimensions. Phys. Rev. B, 78:045109, Jul 2008.
Z G Soos. Theory of π-molecular charge-transfer crystals. Annual Review of Physical Chemistry, 25(1):121–153, 1974.
C. G. Shull and J. Samuel Smart. Detection of antiferromagnetism by neutron diffraction. Phys. Rev., 76:1256–1257, Oct 1949.
Paul J. Strebel and Zoltán G. Soos. Theory of charge transfer in aromatic donor-acceptor crystals. The Journal of Chemical Physics, 53(10):4077– 4090, 1970.
W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42:1698–1701, Jun 1979.
F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Hendl, F. Schreck, and R. Grimm. Collisional stability of 40 K immersed in a strongly interacting fermi gas of 6 Li. Phys. Rev. Lett., 103:223203, Nov 2009.
J. Silva-Valencia, R. Franco, and M.S. Figueira. The one-dimensional asym- metric hubbard model at partial band filling. Physica B: Condensed Matter, 398(2):427–429, 2007.
E.M. Stoudenmire and Steven R. White. Studying two-dimensional sys- tems with the density matrix renormalization group. Annual Review of Condensed Matter Physics, 3(1):111–128, 2012.
C G Shull, E O Wollan, and M C Marney. Neutron diffraction studies.
M. E. Torio, A. A. Aligia, G. I. Japaridze, and B. Normand. Quantum phase diagram of the generalized ionic hubbard model for abn chains. Phys. Rev. B, 73:115109, Mar 2006.
Levente Tapasztó, Gergely Dobrik, Philippe Lambin, and László P. Biró. Tailoring the atomic structure of graphene nanoribbons by scanning tun- nelling microscope lithography. Nature Nanotechnology, 3(7):397–401, Jul 2008.
T. G. Tiecke, M. R. Goosen, A. Ludewig, S. D. Gensemer, S. Kraft, S. J. J. M. F. Kokkelmans, and J. T. M. Walraven. Broad feshbach resonance in the 6 Li− 40 K mixture. Phys. Rev. Lett., 104:053202, Feb 2010.
Leticia Tarruell, Daniel Greif, Thomas Uehlinger, Gregor Jotzu, and Tilman Esslinger. Creating, moving and merging dirac points with a fermi gas in a tunable honeycomb lattice. Nature, 483(7389):302–305, Mar 2012.
J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Nie- dermayer. Systematic study of insulator-metal transitions in perovskites rnio 3 (r=pr,nd,sm,eu) due to closing of charge-transfer gap. Phys. Rev. B, 45:8209–8212, Apr 1992.
Masaki Tezuka and Masahito Ueda. Density-matrix renormalization group study of trapped imbalanced fermi condensates. Phys. Rev. Lett., 100:110403, Mar 2008.
M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann. Quantum degenerate two-species fermi-fermi mixture coexisting with a bose-einstein condensate. Phys. Rev. Lett., 100:010401, Jan 2008.
J. B. Torrance, J. E. Vazquez, J. J. Mayerle, and V. Y. Lee. Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett., 46:253–257, Jan 1981.
G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum critical phenomena. Phys. Rev. Lett., 90:227902, Jun 2003.
Steven R. White and Ian Affleck. Dimerization and incommensurate spiral spin correlations in the zigzag spin chain: Analogies to the kondo lattice. Phys. Rev. B, 54:9862–9869, Oct 1996.
H. Walther. Phase transitions of stored laser-cooled ions. volume 31 of Advances In Atomic, Molecular, and Optical Physics, pages 137–182. Aca- demic Press, 1993.
Steven R. White and A. L. Chernyshev. Neél order in square and triangular lattice heisenberg models. Phys. Rev. Lett., 99:127004, Sep 2007.
Alan Herries Wilson and Paul Adrien Maurice Dirac. The theory of electronic semi-conductors. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 133(822):458–491, 1931.
Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863–2866, Nov 1992.
Steven R. White. Spin gaps in a frustrated heisenberg model for cav 4 O 9 . Phys. Rev. Lett., 77:3633–3636, Oct 1996.
Tsutomu Watanabe and Sumio Ishihara. Band and mott insulators and superconductivity in honeycomb-lattice ionic-hubbard model. Journal of the Physical Society of Japan, 82(3):034704, 2013.
Venema L. Rinzler A. et al. Wilder, J. Electronic structure of atomically resolved carbon nanotubes. Nature., 391:52–62, Jan 1992.
Patrick Windpassinger and Klaus Sengstock. Engineering novel optical lat- tices. Reports on Progress in Physics, 76(8):086401, jul 2013.
Fengnian Xia, Han Wang, Di Xiao, Madan Dubey, and Ashwin Ramasub- ramaniam. Two-dimensional material nanophotonics. Nature Photonics, 8(12):899–907, Dec 2014.
Li Yang, Cheol-Hwan Park, Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Quasiparticle energies and band gaps in graphene nanorib- bons. Phys. Rev. Lett., 99:186801, Nov 2007.
Paolo Zanardi and Nikola Paunković. Ground state overlap and quantum phase transitions. Phys. Rev. E, 74:031123, Sep 2006.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xi, 66 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82564/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82564/3/1032459405.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82564/4/1032459405.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
d190e028c4405ec9513ed651b22a5678
464153de7d79220ca50fd2b827155854
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089312446185472
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Silva Valencia, Jereson50676d1fb7b889372d55af19c8b68790Padilla González, Daniel Camilo1199c6c7211b6bc87412280294363f3dGrupo de Sistemas Correlacionados SISCO2022-10-31T15:36:22Z2022-10-31T15:36:22Z2022https://repositorio.unal.edu.co/handle/unal/82564Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficasLattice models (tight-binding) for many-body systems give a good theoretical and experimental framework to study quantum phase transitions presented in several strongly correlated materials at low temperature. In general, those phase transitions are driven by a fine-tuning of non-thermal parameters such that each phase is determined by a fixed energy scale. In particular, the Ionic Hubbard model allows to study crystalline bipartite lattices where the possible phase transitions are induced by a competition between the on-site interaction U and the geometry of the lattice itself given by the staggered potential ∆. Furthermore, recent experimental and theoretical works on honeycomb lattice connect the model with phenomenon like unconventional superconductivity [Journal of the Physical Society of Japan 82 (2013) 034704] and topological correlated systems [PhysicaB 481 (2016) 53-58]. Motivated by this, we study the ground-state properties of the Ionic Hubbard model in two scenarios: a narrow honeycomb lattice regarding it as a quasi 1D lattice and a mass-imbalanced chain. To explore those systems, we use a density renormalization group (DMRG) finite algorithm with a matrix product state (MPS) method. (Texto tomado de la fuente)Los modelos de redes (tight-binding) para sistemas de muchos cuerpos dan un buen marco teórico y experimental para estudiar transiciones de fases cuánticas presentes en diversos materiales fuertemente correlacionados a bajas temperaturas. En general, estas transiciones de fases pueden ocurrir debido a un ajuste fino de parámetros no térmicos tal que cada fase se determina por una escala fija de energı́a. En particular, el modelo Iónico de Hubbard permite estudiar una red cristalina bipartita donde dos fases son inducidas debido a la competencia entre la interacción local U y la geometrı́a de la red misma dada por el potencial escalonado ∆. Además, trabajos experimentales y teóricos recientes sobre redes de tipo panal relacionan el modelo con fenómenos como superconductividad no convencional [Journal of the Physical Society of Japan 82 (2013) 034704] y sistemas topológicos correlacionados [PhysicaB 481 (2016) 53-58]. Motivados por esto, nosotros estudiamos las propiedades del estado base del modelo Iónico de Hubbard en dos escenarios: una red delgada tipo panal, estudiada a través de un mapeo cuasi 1D, y una cadena con imbalance de masas. Para explorar estos sistemas, usamos un algoritmo finito del grupo de renormalización de la matriz densidad (DMRG) y un método de producto de estados de matrices (MPS).MaestríaMagíster en Ciencias - FísicaCondensed Matterxi, 66 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - FísicaHoneycomb latticeIonic Hubbard modelDMRG algorithmPhase transitionsRed tipo panalmodelo Iónico de Hubbardalgoritmo DMRGTransición de faseInformación y comunicaciónModelo de simulaciónInformation and communicationSimulation techniquesGround state of fermions in quasi-1D honeycomb optical latticesEstado base de fermiones en redes ópticas cuasi-1D tipo panalTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaM. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and E. A. Cornell. Observation of bose-einstein condensation in a dilute atomic vapor. Science, 269(5221):198–201, 1995.Tsuneya Ando, Yukio Matsumoto, and Yasutada Uemura. Theory of hall effect in a two-dimensional electron system. Journal of the Physical Society of Japan, 39(2):279–288, 1975.M. Bartenstein, A. Altmeyer, S. Riedl, R. Geursen, S. Jochim, C. Chin, J. Hecker Denschlag, R. Grimm, A. Simoni, E. Tiesinga, C. J. Williams, and P. S. Julienne. Precise determination of 6 Li cold collision parameters by radio-frequency spectroscopy on weakly bound molecules. Phys. Rev. Lett., 94:103201, Mar 2005.L. Barbiero, M. Casadei, M. Dalmonte, C. Degli Esposti Boschi, E. Erco- lessi, and F. Ortolani. Phase separation and pairing regimes in the one- dimensional asymmetric hubbard model. Phys. Rev. B, 81:224512, Jun 2010.Vincent Barbé, Alessio Ciamei, Benjamin Pasquiou, Lukas Reichsöllner, Florian Schreck, Piotr S. Zuchowski, and Jeremy M. Hutson. Observation of feshbach resonances between alkali and closed-shell atoms. Nature Physics, 14(9):881–884, Sep 2018.Soumen Bag, Arti Garg, and H. R. Krishnamurthy. Phase diagram of the half-filled ionic hubbard model. Phys. Rev. B, 91:235108, Jun 2015.K. Buchta, Ö. Legeza, E. Szirmai, and J. Sólyom. Mott transition and dimerization in the one-dimensional SU(n) hubbard model. Phys. Rev. B, 75:155108, Apr 2007.J. G. Bednorz and K. A. Muller. Possible high-tc superconductivity in the ba-la-cu-o system. Zeitschrift ur Physik B Condensed Matter, 64(2):189– 193, Jun 1986.K. Bouadim, N. Paris, F. Hébert, G. G. Batrouni, and R. T. Scalettar. Metallic phase in the two-dimensional ionic hubbard model. Phys. Rev. B, 76:085112, Aug 2007.Peter Broecker and Simon Trebst. Entanglement and the fermion sign problem in auxiliary field quantum monte carlo simulations. Phys. Rev. B, 94:075144, Aug 2016.Anwesha Chattopadhyay, Soumen Bag, H. R. Krishnamurthy, and Arti Garg. Phase diagram of the half-filled ionic hubbard model in the limit of strong correlations. Phys. Rev. B, 99:155127, Apr 2019.Wen-Ling Chan and Shi-Jian Gu. Entanglement and quantum phase tran- sition in the asymmetric hubbard chain: density-matrix renormalization group calculations. Journal of Physics: Condensed Matter, 20(34):345217, aug 2008.Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010.Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55:48–51, Jul 1985.Y. Castin, K. Mϕlmer, J. Dalibard, and C. Cohen-Tannoudji. New physical mechanisms in laser cooling. pages 2 – 7, 1989.Agnieszka Cichy and Andrzej Ptok. Reentrant fulde-ferrell-larkin-ovchinnikov superfluidity in the honeycomb lattice. Phys. Rev. A, 97:053619, May 2018.J. Ignacio Cirac, David Pérez-Garcı́a, Norbert Schuch, and Frank Verstraete. Matrix product states and projected entangled pair states: Concepts, symmetries, theorems. Rev. Mod. Phys., 93:045003, Dec 2021.Shu Chen, Li Wang, Yajiang Hao, and Yupeng Wang. Intrinsic relation between ground-state fidelity and the characterization of a quantum phase transition. Phys. Rev. A, 77:032111, Mar 2008.Hui-Min Chen, Hui Zhao, Hai-Qing Lin, and Chang-Qin Wu. Bond-located spin density wave phase in the two-dimensional (2d) ionic hubbard model. New Journal of Physics, 12(9):093021, sep 2010.Jacques Des Cloizeaux and Michel Gaudin. Anisotropic linear magnetic chain. Journal of Mathematical Physics, 7(8):1384–1400, 1966.H.G. Dehmelt. Radiofrequency spectroscopy of stored ions i: Storage**part ii: Spectroscopy is now scheduled to appear in volume v of this series. 3:53 – 72, 1968.H.G. Dehmelt. Radiofrequency spectroscopy of stored ions ii: Spec- troscopy**part i, sections 1 and 2 of this article appear in volume 3 of this series. 5:109 – 154, 1969.David P. DiVincenzo. The physical implementation of quantum computa- tion. Fortschritte der Physik, 48(9-11):771–783, 2000.B. DeMarco and D. S. Jin. Onset of fermi degeneracy in a trapped atomic gas. Science, 285(5434):1703–1706, 1999.Tilman Esslinger. Fermi-hubbard physics with atoms in an optical lattice. Annual Review of Condensed Matter Physics, 1(1):129–152, 2010.P. Farkašovský. Ferromagnetism in the asymmetric hubbard model. The European Physical Journal B, 85(8):253, Jul 2012.Gianluca Fiori, Francesco Bonaccorso, Giuseppe Iannaccone, Tomás Pala- cios, Daniel Neumaier, Alan Seabaugh, Sanjay K. Banerjee, and Luigi Colombo. Electronics based on two-dimensional materials. Nature Nan- otechnology, 9(10):768–779, Oct 2014.Pavol Farkašovský. Phase diagram of the asymmetric hubbard model. Phys. Rev. B, 77:085110, Feb 2008.Gábor Fáth, Zbigniew Domański, and Romuald Lemański. Asymmetric hubbard chain at half-filling. Phys. Rev. B, 52:13910–13915, Nov 1995.Peter Fulde and Richard A. Ferrell. Superconductivity in a strong spin- exchange field. Phys. Rev., 135:A550–A563, Aug 1964.Serge Florens and Antoine Georges. Slave-rotor mean-field theories of strongly correlated systems and the mott transition in finite dimensions. Phys. Rev. B, 70:035114, Jul 2004.J. N. Fuchs, D. M. Gangardt, T. Keilmann, and G. V. Shlyapnikov. Spin waves in a one-dimensional spinor bose gas. Phys. Rev. Lett., 95:150402, Oct 2005.Michele Fabrizio, Alexander O. Gogolin, and Alexander A. Nersesyan. From band insulator to mott insulator in one dimension. Phys. Rev. Lett., 83:2014–2017, Sep 1999.L. M. Falicov and J. C. Kimball. Simple model for semiconductor-metal transitions: Smb 6 and transition-metal oxides. Phys. Rev. Lett., 22:997– 999, May 1969.Hélène Feldner, Zi Yang Meng, Andreas Honecker, Daniel Cabra, Stefan Wessel, and Fakher F. Assaad. Magnetism of finite graphene samples: Mean-field theory compared with exact diagonalization and quantum monte carlo simulations. Phys. Rev. B, 81:115416, Mar 2010.J. Fernández-Rossier. Prediction of hidden multiferroic order in graphene zigzag ribbons. Phys. Rev. B, 77:075430, Feb 2008.Matthew P. A. Fisher, Peter B. Weichman, G. Grinstein, and Daniel S. Fisher. Boson localization and the superfluid-insulator transition. Phys. Rev. B, 40:546–570, Jul 1989.Mitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada, and Koichi Kusakabe. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65(7):1920–1923, 1996.Mitsutaka Fujita, Katsunori Wakabayashi, Kyoko Nakada, and Koichi Kusakabe. Peculiar localized state at zigzag graphite edge. Journal of the Physical Society of Japan, 65(7):1920–1923, 1996.Matthew Fishman, Steven R. White, and E. Miles Stoudenmire. the ITensor software library for tensor network calculations, 2020.Fabrice Gerbier, Simon Fölling, Artur Widera, Olaf Mandel, and Immanuel Bloch. Probing number squeezing of ultracold atoms across the superfluid- mott insulator transition. Phys. Rev. Lett., 96:090401, Mar 2006.C. Gruber, J. Iwanski, J. Jedrzejewski, and P. Lemberger. Ground states of the spinless falicov-kimball model. Phys. Rev. B, 41:2198–2209, Feb 1990.Arti Garg, H. R. Krishnamurthy, and Mohit Randeria. Can correlations drive a band insulator metallic? Phys. Rev. Lett., 97:046403, Jul 2006.Arti Garg, H. R. Krishnamurthy, and Mohit Randeria. Doping a correlated band insulator: A new route to half-metallic behavior. Phys. Rev. Lett., 112:106406, Mar 2014.Alaina Green, Hui Li, Jun Hui See Toh, Xinxin Tang, Katherine C. Mc- Cormick, Ming Li, Eite Tiesinga, Svetlana Kotochigova, and Subhadeep Gupta. Feshbach resonances in p-wave three-body recombination within fermi-fermi mixtures of open-shell 6 Li and closed-shell 173 Yb atoms. Phys. Rev. X, 10:031037, Aug 2020.I. Grusha, M. Menteshashvili, and G. I. Japaridze. Effective hamiltonian for a half-filled asymmetric ionic hubbard chain with alternating on-site interaction. International Journal of Modern Physics B, 30(03):1550260, 2016.Mandel O. Esslinger T. et al. Greiner, M. Quantum phase transition from a superfluid to a mott insulator in a gas of ultracold atoms. Nature., 415:39– 44, Jan 2002.SHI-JIAN GU. Fidelity approach to quantum phase transitions. Interna- tional Journal of Modern Physics B, 24(23):4371–4458, 2010.Daniel Greif, Thomas Uehlinger, Gregor Jotzu, Leticia Tarruell, and Tilman Esslinger. Short-range quantum magnetism of ultracold fermions in an optical lattice. Science, 340(6138):1307–1310, 2013.Rudolf Grimm, Matthias Weidemuller, and Yurii B. Ovchinnikov. Optical dipole traps for neutral atoms. volume 42 of Advances In Atomic, Molecular, and Optical Physics, pages 95 – 170. Academic Press, 2000.J. Hubbard and Brian Hilton Flowers. Electron correlations in narrow en- ergy bands. ii. the degenerate band case. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 277(1369):237–259, 1964.J. Hubbard and Brian Hilton Flowers. Electron correlations in narrow en- ergy bands iii. an improved solution. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 281(1386):401–419, 1964.Toshiya Hikihara, Xiao Hu, Hsiu-Hau Lin, and Chung-Yu Mou. Ground- state properties of nanographite systems with zigzag edges. Phys. Rev. B, 68:035432, Jul 2003.Kazuo Hida. Crossover between the haldane-gap phase and the dimer phase in the spin-1/2 alternating heisenberg chain. Phys. Rev. B, 45:2207–2212, Feb 1992.Wei Han, Roland K. Kawakami, Martin Gmitra, and Jaroslav Fabian. Graphene spintronics. Nature Nanotechnology, 9(10):794–807, Oct 2014.W. Heitler and F. London. Wechselwirkung neutraler atome und homöopo- lare bindung nach der quantenmechanik. Zeitschrift für Physik, 44(6):455– 472, Jun 1927.I. Hagymási and Ö. Legeza. Entanglement, excitations, and correlation effects in narrow zigzag graphene nanoribbons. Phys. Rev. B, 94:165147, Oct 2016.A T Hoang. Metal-insulator transitions in the half-filled ionic hubbard model. Journal of Physics: Condensed Matter, 22(9):095602, 2010.T. W. Hänsch, I. S. Shahin, and A. L. Schawlow. High-resolution saturation spectroscopy of the sodium d lines with a pulsed tunable dye laser. Phys. Rev. Lett., 27:707–710, Sep 1971.J. Hubbard and J. B. Torrance. Model of the neutral-ionic phase transfor- mation. Phys. Rev. Lett., 47:1750–1754, Dec 1981.Electron correlations in narrow energy bands. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 276(1365):238–257, 1963.Kerson Huang and C. N. Yang. Quantum-mechanical many-body problem with hard-sphere interaction. Phys. Rev., 105:767–775, Feb 1957.Masatoshi Imada, Atsushi Fujimori, and Yoshinori Tokura. Metal-insulator transitions. Rev. Mod. Phys., 70:1039–1263, Oct 1998.S. Inouye, J. Goldwin, M. L. Olsen, C. Ticknor, J. L. Bohn, and D. S. Jin. Observation of heteronuclear feshbach resonances in a mixture of bosons and fermions. Phys. Rev. Lett., 93:183201, Oct 2004.D. Jaksch, C. Bruder, J. I. Cirac, C. W. Gardiner, and P. Zoller. Cold bosonic atoms in optical lattices. Phys. Rev. Lett., 81:3108–3111, Oct 1998.D. Jaksch, H.J. Briegel, J. I. Cirac, C. W. Gardiner, and P. Zoller. Entangle- ment of atoms via cold controlled collisions. Phys. Rev. Lett., 82:1975–1978, Mar 1999.Y. Jompol, C. J. B. Ford, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. Ander- son, D. A. Ritchie, T. W. Silk, and A. J. Schofield. Probing spin-charge sep- aration in a tomonaga-luttinger liquid. Science, 325(5940):597–601, 2009.Robert Jö rdens, Niels Strohmaier, Kenneth Gü nter, Henning Moritz, and Tilman Esslinger. A mott insulator of fermionic atoms in an optical lattice. Nature, 455(7210):204–207, Sep 2008.Michael Jag, Matteo Zaccanti, Marko Cetina, Rianne S. Lous, Florian Schreck, Rudolf Grimm, Dmitry S. Petrov, and Jesper Levinsen. Obser- vation of a strong atom-dimer attraction in a mass-imbalanced fermi-fermi mixture. Phys. Rev. Lett., 112:075302, Feb 2014.Naoum Karchev. Quantum critical behavior in three-dimensional one-band hubbard model at half-filling. Annals of Physics, 333:206–220, 2013.S. S. Kancharla and E. Dagotto. Correlated insulated phase suggests bond order between band and mott insulators in two dimensions. Phys. Rev. Lett., 98:016402, Jan 2007.M. A. Korotin, S. Yu. Ezhov, I. V. Solovyev, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky. Intermediate-spin state and properties of lacoo 3 . Phys. Rev. B, 54:5309–5316, Aug 1996.Akihisa Koga, Takuji Higashiyama, Kensuke Inaba, Seiichiro Suga, and Norio Kawakami. Supersolid state in fermionic optical lattice systems. Phys. Rev. A, 79:013607, Jan 2009.Nobuyuki Katoh and Masatoshi Imada. Phase diagram of s=1/2 antifer- romagnetic heisenberg model on a dimerized square lattice. Journal of the Physical Society of Japan, 62(10):3728–3740, 1993.Nobuyuki Katoh and Masatoshi Imada. Phase diagram of s=1/2 quasi-one- dimensional heisenberg model with dimerized antiferromagnetic exchange. Journal of the Physical Society of Japan, 63(12):4529–4541, 1994.Tom Kennedy and Elliott H. Lieb. An itinerant electron model with crys- talline or magnetic long range order. Physica A: Statistical Mechanics and its Applications, 138(1):320–358, 1986.J. I. Krugler, C. G. Montgomery, and H. M. McConnell. Collective electronic states in molecular crystals. The Journal of Chemical Physics, 41(8):2421– 2428, 1964.Masatsune Kato, Kazunori Shiota, and Yoji Koike. Metal-insulator tran- sition and spin gap in the spin-1/2 ladder system sr 14−x a x cu 24 o 41 (a: Ba and ca). Physica C: Superconductivity, 258(3):284–292, 1996.Atsushi Kawamoto, Hiromi Taniguchi, and Kazushi Kanoda. Superconductor-insulator transition controlled by partial deuteration in bedt-ttf salt. Journal of the American Chemical Society, 120(42):10984– 10985, Oct 1998.A. J. Leggett. On the superfluid fraction of an arbitrary many-body system at t=0. Journal of Statistical Physics, 93(3):927–941, Nov 1998.V. Leo. Elastic electron tunneling study of the metal-insulator transition in ttf-tcnq. Solid State Communications, 40(4):509–511, 1981.Tianhe Li, Huaiming Guo, Shu Chen, and Shun-Qing Shen. Complete phase diagram and topological properties of interacting bosons in one-dimensional superlattices. Phys. Rev. B, 91:134101, Apr 2015.Elliott H. Lieb. Two theorems on the hubbard model. Phys. Rev. Lett., 62:1201–1204, Mar 1989.L. D. Landau and E. M. Lifshitz. Chapter xvii - the theory of elastic collisions. In Course of Theoretical Physics Vol 3: Quantum Mechanics, pages 469 – 535. Pergamon Press, Oxford, 1959.Heng-Fu Lin, Hai-Di Liu, Hong-Shuai Tao, and Wu-Ming Liu. Phase tran- sitions of the ionic hubbard model on the honeycomb lattice. Scientific Reports, 5(1):9810, May 2015.Elliott Lieb and Daniel Mattis. Theory of ferromagnetism and the ordering of electronic energy levels. Phys. Rev., 125:164–172, Jan 1962.A. I. Larkin and Y. N. Ovchinnikov. Nonuniform state of superconductors. Zh. Eksp. Teor. Fiz., 47:1136–1146, 1964.T. Loftus, C. A. Regal, C. Ticknor, J. L. Bohn, and D. S. Jin. Resonant control of elastic collisions in an optically trapped fermi gas of atoms. Phys. Rev. Lett., 88:173201, Apr 2002.Elliott H. Lieb and F. Y. Wu. Absence of mott transition in an exact solution of the short-range, one-band model in one dimension. Phys. Rev. Lett., 20:1445–1448, Jun 1968.Ye-Hua Liu and Lei Wang. Quantum monte carlo study of mass-imbalanced hubbard models. Phys. Rev. B, 92:235129, Dec 2015.J. J. Mendoza-Arenas, R. Franco, and J. Silva-Valencia. Block entropy and quantum phase transition in the anisotropic kondo necklace model. Phys. Rev. A, 81:062310, Jun 2010.L. Mathey. Commensurate mixtures of ultracold atoms in one dimension. Phys. Rev. B, 75:144510, Apr 2007.A. Menth, E. Buehler, and T. H. Geballe. Magnetic and semiconducting properties of smb 6 . Phys. Rev. Lett., 22:295–297, Feb 1969.L S Murcia-Correa, R Franco, and J Silva-Valencia. Quantum phases of ab 2 fermionic chains. Journal of Physics: Conference Series, 687(1):012066, 2016.J. D. Miller, R. A. Cline, and D. J. Heinzen. Far-off-resonance optical trapping of atoms. Phys. Rev. A, 47:R4567–R4570, Jun 1993.Michael Messer, Rémi Desbuquois, Thomas Uehlinger, Gregor Jotzu, Se- bastian Huber, Daniel Greif, and Tilman Esslinger. Exploring competing density order in the ionic hubbard model with ultracold fermions. Phys. Rev. Lett., 115:115303, Sep 2015.J. W. Mintmire, B. I. Dunlap, and C. T. White. Are fullerene tubules metallic? Phys. Rev. Lett., 68:631–634, Feb 1992.S. Moukouri and E. Eidelstein. Universality class of the mott transition in two dimensions. Phys. Rev. B, 86:155112, Oct 2012.Prasanta K. Misra. Chapter 13 - magnetic ordering. In Prasanta K. Misra, editor, Physics of Condensed Matter, pages 409 – 449. Academic Press, Boston, 2012.Gábor Zsolt Magda, Xiaozhan Jin, Imre Hagymási, Péter Vancsó, Zoltán Osváth, Péter Nemes-Incze, Chanyong Hwang, László P. Biró, and Levente Tapasztó. Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons. Nature, 514(7524):608–611, Oct 2014.David Mele, Sarah Mehdhbi, Dalal Fadil, Wei Wei, Abdelkarim Ouerghi, Sylvie Lepilliet, Henri Happy, and Emiliano Pallecchi. Graphene fets based on high resolution nanoribbons for hf low power applications. Electronic Materials Letters, 14(2):133–138, Mar 2018.S. R. Manmana, V. Meden, R. M. Noack, and K. Schönhammer. Quantum critical behavior of the one-dimensional ionic hubbard model. Phys. Rev. B, 70:155115, Oct 2004.N F Mott. The basis of the electron theory of metals, with special reference to the transition metals. Proceedings of the Physical Society. Section A, 62(7):416–422, jul 1949.N. F. Mott. On the transition to metallic conduction in semiconductors. Canadian Journal of Physics, 34(12A):1356–1368, 1956.N. F. Mott. The transition to the metallic state. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 6(62):287–309, 1961.N F Mott. Metal-insulator transitions. CRC Press, London, 1990.N F Mott and R Peierls. Discussion of the paper by de boer and verwey. Proceedings of the Physical Society, 49(4S):72–73, aug 1937.Alberto Medina-Rull, Francisco Pasadas, Enrique G. Marin, Alejandro Toral-Lopez, Juan Cuesta, Andres Godoy, David Jimélnez, and Fran- cisco G. Ruiz. A graphene field-effect transistor based analogue phase shifter for high-frequency applications. IEEE Access, 8:209055–209063, 2020.D. B. McWhan, J. P. Remeika, T. M. Rice, W. F. Brinkman, J. P. Maita, and A. Menth. Electronic specific heat of metallic ti-doped v 2 o 3 . Phys. Rev. Lett., 27:941–943, Oct 1971.Shigeki Miyasaka, Hidenori Takagi, Yoshiaki Sekine, Hiroki Takahashi, Nobuo Mouri, and Robert J. Cava. Metal-insulator transition and itinerant antiferromagnetism in nis 2−x se x pyrite. Journal of the Physical Society of Japan, 69(10):3166–3169, 2000.R. S. Mulliken. Intermolecular charge-transfer forces. Rendiconti del Sem- inario Matematico e Fisico di Milano, 24(1):183–189, Dec 1954.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field effect in atomi- cally thin carbon films. Science, 306(5696):666–669, 2004.Naoto Nagaosa and Jun ichi Takimoto. Theory of neutral-ionic transition in organic crystals. i. monte carlo simulation of modified hubbard model. Journal of the Physical Society of Japan, 55(8):2735–2744, 1986.P L Nordio, Z G Soos, and H M McConnell. Spin excitations in ionic molecular crystals. Annual Review of Physical Chemistry, 17(1):237–260, 1966.Takashi Nishikawa, Yukio Yasui, Yoshiaki Kobayashi, and Masatoshi Sato. Thermal properties of two dimensional mott system la 1.17−x sr x vs 3.17 . Jour- nal of the Physical Society of Japan, 65(8):2543–2547, 1996.D. D. Osheroff, W. J. Gully, R. C. Richardson, and D. M. Lee. New magnetic phenomena in liquid He 3 below 3 mk. Phys. Rev. Lett., 29:920–923, Oct 1972.Tobias J. Osborne and Michael A. Nielsen. Entanglement in a simple quan- tum phase transition. Phys. Rev. A, 66:032110, Sep 2002.G. Orso, L. P. Pitaevskii, and S. Stringari. Equilibrium and dynamics of a trapped superfluid fermi gas with unequal masses. Phys. Rev. A, 77:033611, Mar 2008.D. D. Osheroff, R. C. Richardson, and D. M. Lee. Evidence for a new phase of solid He 3 . Phys. Rev. Lett., 28:885–888, Apr 1972.N. Paris, K. Bouadim, F. Hebert, G. G. Batrouni, and R. T. Scalettar. Quantum monte carlo study of an interaction-driven band-insulator–to– metal transition. Phys. Rev. Lett., 98:046403, Jan 2007.D. C. Padilla-González, R. Franco, and J. Silva-Valencia. Mass imbalance in the ionic hubbard model: a drmg study, 2021.Diana Prychynenko and Sebastian D. Huber. Z2 slave-spin theory of a strongly correlated chern insulator. Physica B: Condensed Matter, 481:53 – 58, 2016.Diana Prychynenko and Sebastian D. Huber. Z2 slave-spin theory of a strongly correlated chern insulator. Physica B: Condensed Matter, 481:53 – 58, 2016.David Pines. A collective description of electron interactions: Iv. electron interaction in metals. Phys. Rev., 92:626–636, Nov 1953.Francesco Parisen Toldin, Martin Hohenadler, Fakher F. Assaad, and Igor F. Herbut. Fermionic quantum criticality in honeycomb and π-flux hubbard models: Finite-size scaling of renormalization-group-invariant ob- servables from quantum monte carlo. Phys. Rev. B, 91:165108, Apr 2015.Wang Qing-Bo, Xu Xiang-Fan, Tao Qian, Wang Hong-Tao, and Xu Zhu- An. Metal—insulator transition in ca-doped sr 14-x ca x cu 24 o 41 systems probed by thermopower measurements. Chinese Physics Letters, 25(5):1857–1860, may 2008.E. L. Raab, M. Prentiss, Alex Cable, Steven Chu, and D. E. Pritchard. Trapping of neutral sodium atoms with radiation pressure. Phys. Rev. Lett., 59:2631–2634, Dec 1987.Rinaldo Raccichini, Alberto Varzi, Stefano Passerini, and Bruno Scrosati. The role of graphene for electrochemical energy storage. Nature Materials, 14(3):271–279, Mar 2015.K. Sawada, K. A. Brueckner, N. Fukuda, and R. Brout. Correlation energy of an electron gas at high density: Plasma oscillations. Phys. Rev., 108:507– 514, Nov 1957.Michael Sekania, Dionys Baeriswyl, Luka Jibuti, and George I. Japaridze. Mass-imbalanced ionic hubbard chain. Phys. Rev. B, 96:035116, Jul 2017.White S.R. Scalapino, D.J. Numerical results for the hubbard model: Impli- cations for the high tc pairing mechanism. Foundations of Physics., 31:27, Jan 2001.Andrii Sotnikov, Daniel Cocks, and Walter Hofstetter. Advantages of mass- imbalanced ultracold fermionic mixtures for approaching quantum mag- netism in optical lattices. Phys. Rev. Lett., 109:065301, Aug 2012.Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett., 97:216803, Nov 2006.Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev. Lett., 97:216803, Nov 2006.Ahmad Shahbazy and Morad Ebrahimkhas. Quantum phase transitions in the two dimensional ionic-hubbard model. Chinese Journal of Physics, 58:273 – 279, 2019.Ahmad Shahbazy and Morad Ebrahimkhas. Quantum phase transitions in the two dimensional ionic-hubbard model. Chinese Journal of Physics, 58:273–279, 2019.T. Senthil. Theory of a continuous mott transition in two dimensions. Phys. Rev. B, 78:045109, Jul 2008.Z G Soos. Theory of π-molecular charge-transfer crystals. Annual Review of Physical Chemistry, 25(1):121–153, 1974.C. G. Shull and J. Samuel Smart. Detection of antiferromagnetism by neutron diffraction. Phys. Rev., 76:1256–1257, Oct 1949.Paul J. Strebel and Zoltán G. Soos. Theory of charge transfer in aromatic donor-acceptor crystals. The Journal of Chemical Physics, 53(10):4077– 4090, 1970.W. P. Su, J. R. Schrieffer, and A. J. Heeger. Solitons in polyacetylene. Phys. Rev. Lett., 42:1698–1701, Jun 1979.F. M. Spiegelhalder, A. Trenkwalder, D. Naik, G. Hendl, F. Schreck, and R. Grimm. Collisional stability of 40 K immersed in a strongly interacting fermi gas of 6 Li. Phys. Rev. Lett., 103:223203, Nov 2009.J. Silva-Valencia, R. Franco, and M.S. Figueira. The one-dimensional asym- metric hubbard model at partial band filling. Physica B: Condensed Matter, 398(2):427–429, 2007.E.M. Stoudenmire and Steven R. White. Studying two-dimensional sys- tems with the density matrix renormalization group. Annual Review of Condensed Matter Physics, 3(1):111–128, 2012.C G Shull, E O Wollan, and M C Marney. Neutron diffraction studies.M. E. Torio, A. A. Aligia, G. I. Japaridze, and B. Normand. Quantum phase diagram of the generalized ionic hubbard model for abn chains. Phys. Rev. B, 73:115109, Mar 2006.Levente Tapasztó, Gergely Dobrik, Philippe Lambin, and László P. Biró. Tailoring the atomic structure of graphene nanoribbons by scanning tun- nelling microscope lithography. Nature Nanotechnology, 3(7):397–401, Jul 2008.T. G. Tiecke, M. R. Goosen, A. Ludewig, S. D. Gensemer, S. Kraft, S. J. J. M. F. Kokkelmans, and J. T. M. Walraven. Broad feshbach resonance in the 6 Li− 40 K mixture. Phys. Rev. Lett., 104:053202, Feb 2010.Leticia Tarruell, Daniel Greif, Thomas Uehlinger, Gregor Jotzu, and Tilman Esslinger. Creating, moving and merging dirac points with a fermi gas in a tunable honeycomb lattice. Nature, 483(7389):302–305, Mar 2012.J. B. Torrance, P. Lacorre, A. I. Nazzal, E. J. Ansaldo, and Ch. Nie- dermayer. Systematic study of insulator-metal transitions in perovskites rnio 3 (r=pr,nd,sm,eu) due to closing of charge-transfer gap. Phys. Rev. B, 45:8209–8212, Apr 1992.Masaki Tezuka and Masahito Ueda. Density-matrix renormalization group study of trapped imbalanced fermi condensates. Phys. Rev. Lett., 100:110403, Mar 2008.M. Taglieber, A.-C. Voigt, T. Aoki, T. W. Hänsch, and K. Dieckmann. Quantum degenerate two-species fermi-fermi mixture coexisting with a bose-einstein condensate. Phys. Rev. Lett., 100:010401, Jan 2008.J. B. Torrance, J. E. Vazquez, J. J. Mayerle, and V. Y. Lee. Discovery of a neutral-to-ionic phase transition in organic materials. Phys. Rev. Lett., 46:253–257, Jan 1981.G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev. Entanglement in quantum critical phenomena. Phys. Rev. Lett., 90:227902, Jun 2003.Steven R. White and Ian Affleck. Dimerization and incommensurate spiral spin correlations in the zigzag spin chain: Analogies to the kondo lattice. Phys. Rev. B, 54:9862–9869, Oct 1996.H. Walther. Phase transitions of stored laser-cooled ions. volume 31 of Advances In Atomic, Molecular, and Optical Physics, pages 137–182. Aca- demic Press, 1993.Steven R. White and A. L. Chernyshev. Neél order in square and triangular lattice heisenberg models. Phys. Rev. Lett., 99:127004, Sep 2007.Alan Herries Wilson and Paul Adrien Maurice Dirac. The theory of electronic semi-conductors. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 133(822):458–491, 1931.Steven R. White. Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett., 69:2863–2866, Nov 1992.Steven R. White. Spin gaps in a frustrated heisenberg model for cav 4 O 9 . Phys. Rev. Lett., 77:3633–3636, Oct 1996.Tsutomu Watanabe and Sumio Ishihara. Band and mott insulators and superconductivity in honeycomb-lattice ionic-hubbard model. Journal of the Physical Society of Japan, 82(3):034704, 2013.Venema L. Rinzler A. et al. Wilder, J. Electronic structure of atomically resolved carbon nanotubes. Nature., 391:52–62, Jan 1992.Patrick Windpassinger and Klaus Sengstock. Engineering novel optical lat- tices. Reports on Progress in Physics, 76(8):086401, jul 2013.Fengnian Xia, Han Wang, Di Xiao, Madan Dubey, and Ashwin Ramasub- ramaniam. Two-dimensional material nanophotonics. Nature Photonics, 8(12):899–907, Dec 2014.Li Yang, Cheol-Hwan Park, Young-Woo Son, Marvin L. Cohen, and Steven G. Louie. Quasiparticle energies and band gaps in graphene nanorib- bons. Phys. Rev. Lett., 99:186801, Nov 2007.Paolo Zanardi and Nikola Paunković. Ground state overlap and quantum phase transitions. Phys. Rev. E, 74:031123, Sep 2006.LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82564/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032459405.2022.pdf1032459405.2022.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf7461285https://repositorio.unal.edu.co/bitstream/unal/82564/3/1032459405.2022.pdfd190e028c4405ec9513ed651b22a5678MD53THUMBNAIL1032459405.2022.pdf.jpg1032459405.2022.pdf.jpgGenerated Thumbnailimage/jpeg3835https://repositorio.unal.edu.co/bitstream/unal/82564/4/1032459405.2022.pdf.jpg464153de7d79220ca50fd2b827155854MD54unal/82564oai:repositorio.unal.edu.co:unal/825642024-08-12 02:00:48.917Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=