Performance of meshfree methods in approximations with diffuse derivatives
The study and solution of partial differential equations (PDEs) is a central field in the mathematical analysis. In the numerical context the mesh free approximation methods arise as an alternative to the conventional techniques that require some kind of mesh to the realization of the approximations...
- Autores:
-
Carmona Otálvaro, Jhonatan
- Tipo de recurso:
- Fecha de publicación:
- 2016
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/58847
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/58847
http://bdigital.unal.edu.co/55840/
- Palabra clave:
- 51 Matemáticas / Mathematics
Métodos libres de malla
Método de Galerkin libre de elementos
Derivada difusa
Operadores fraccionarios
Geometrías discontinuas
Mesh free approximations methods
Element Free Galerkin method
Diffuse derivative
Fractional operators
Discontinuous geometries
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_dfa47102ab7066367f6923ff8f50c629 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/58847 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Performance of meshfree methods in approximations with diffuse derivatives |
title |
Performance of meshfree methods in approximations with diffuse derivatives |
spellingShingle |
Performance of meshfree methods in approximations with diffuse derivatives 51 Matemáticas / Mathematics Métodos libres de malla Método de Galerkin libre de elementos Derivada difusa Operadores fraccionarios Geometrías discontinuas Mesh free approximations methods Element Free Galerkin method Diffuse derivative Fractional operators Discontinuous geometries |
title_short |
Performance of meshfree methods in approximations with diffuse derivatives |
title_full |
Performance of meshfree methods in approximations with diffuse derivatives |
title_fullStr |
Performance of meshfree methods in approximations with diffuse derivatives |
title_full_unstemmed |
Performance of meshfree methods in approximations with diffuse derivatives |
title_sort |
Performance of meshfree methods in approximations with diffuse derivatives |
dc.creator.fl_str_mv |
Carmona Otálvaro, Jhonatan |
dc.contributor.author.spa.fl_str_mv |
Carmona Otálvaro, Jhonatan |
dc.contributor.spa.fl_str_mv |
Osorio Lema, Mauricio Andres |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics |
topic |
51 Matemáticas / Mathematics Métodos libres de malla Método de Galerkin libre de elementos Derivada difusa Operadores fraccionarios Geometrías discontinuas Mesh free approximations methods Element Free Galerkin method Diffuse derivative Fractional operators Discontinuous geometries |
dc.subject.proposal.spa.fl_str_mv |
Métodos libres de malla Método de Galerkin libre de elementos Derivada difusa Operadores fraccionarios Geometrías discontinuas Mesh free approximations methods Element Free Galerkin method Diffuse derivative Fractional operators Discontinuous geometries |
description |
The study and solution of partial differential equations (PDEs) is a central field in the mathematical analysis. In the numerical context the mesh free approximation methods arise as an alternative to the conventional techniques that require some kind of mesh to the realization of the approximations. In cases where it has relatively complex eometries (as domains with discontinuities) traditional methods are difficult to implement. Therefore the objective of the mesh free methods is, in part, to remove these difficulties. In this thesis we focus our attention into the study of the Element Free Galerkin method (EFG) coupled with approximations with diffuse derivative, for the solutions of (PDEs) problems. In the first part of this work, we show the known theoretical results (convergence theorems and convergence orders) with original proves based on existing work and corroborate them numerically for classic PDEs problems. The second part of this thesis consists on the numerical solution and convergence analysis of the EFG method for problems that involves fractional operators and discontinuous geometries. The obtained results are compared with theoretical information and the unexpected events are discussed and justified. |
publishDate |
2016 |
dc.date.issued.spa.fl_str_mv |
2016-12-01 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-02T14:54:29Z |
dc.date.available.spa.fl_str_mv |
2019-07-02T14:54:29Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/58847 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/55840/ |
url |
https://repositorio.unal.edu.co/handle/unal/58847 http://bdigital.unal.edu.co/55840/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Matemáticas Escuela de Matemáticas |
dc.relation.references.spa.fl_str_mv |
Carmona Otálvaro, Jhonatan (2016) Performance of meshfree methods in approximations with diffuse derivatives. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/58847/1/msc_thesis_jcarmona.pdf https://repositorio.unal.edu.co/bitstream/unal/58847/2/msc_thesis_jcarmona.pdf.jpg |
bitstream.checksum.fl_str_mv |
f24c9821bfac0364be86a5441a5f676c 3097be77899edeb25e9a222e4de9d277 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089667517087744 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Lema, Mauricio AndresCarmona Otálvaro, Jhonatanafa38949-35ad-439a-bf04-3489d3a9733f3002019-07-02T14:54:29Z2019-07-02T14:54:29Z2016-12-01https://repositorio.unal.edu.co/handle/unal/58847http://bdigital.unal.edu.co/55840/The study and solution of partial differential equations (PDEs) is a central field in the mathematical analysis. In the numerical context the mesh free approximation methods arise as an alternative to the conventional techniques that require some kind of mesh to the realization of the approximations. In cases where it has relatively complex eometries (as domains with discontinuities) traditional methods are difficult to implement. Therefore the objective of the mesh free methods is, in part, to remove these difficulties. In this thesis we focus our attention into the study of the Element Free Galerkin method (EFG) coupled with approximations with diffuse derivative, for the solutions of (PDEs) problems. In the first part of this work, we show the known theoretical results (convergence theorems and convergence orders) with original proves based on existing work and corroborate them numerically for classic PDEs problems. The second part of this thesis consists on the numerical solution and convergence analysis of the EFG method for problems that involves fractional operators and discontinuous geometries. The obtained results are compared with theoretical information and the unexpected events are discussed and justified.Resumen: El estudio y la solución de ecuaciones diferenciales parciales (PDEs) es un campo central en el análisis matemático. En el contexto numérico, las aproximaciones libres de malla surgen como una alternativa a las técnicas tradicionales que requieren algún tipo de mallado para la realización de las aproximaciones. En casos donde se tengan geometrías relativamente complejas (como dominios con discontinuidades), los métodos tradicionales son difíciles de implementar. Por tanto, el objetivo de los métodos libres de malla es remover en parte dichas dificultades. En esta tesis, nos enfocamos en el estudio del método de Galerkin libre de elementos (EFG, por sus siglas en inglés) acoplado con aproximaciones con derivada difusa, para la solución de ecuaciones diferenciales parciales. En la primera parte de éste trabajo, mostramos los resultados teóricos (teoremas de convergencia y órdenes de convergencia), con pruebas originales basadas en trabajos conocidos y los corroboramos numéricamente para problemas clásicos. La segunda parte de éste escrito, consiste en la solución numérica y desarrollo de análisis de convergencia del método (EFG) para problemas que involucran operadores fraccionarios y geometrías discontinuas. Los resultados obtenidos se comparan con la información teórica y los eventos inesperados, se analizan y se justifican.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de MatemáticasEscuela de MatemáticasCarmona Otálvaro, Jhonatan (2016) Performance of meshfree methods in approximations with diffuse derivatives. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.51 Matemáticas / MathematicsMétodos libres de mallaMétodo de Galerkin libre de elementosDerivada difusaOperadores fraccionariosGeometrías discontinuasMesh free approximations methodsElement Free Galerkin methodDiffuse derivativeFractional operatorsDiscontinuous geometriesPerformance of meshfree methods in approximations with diffuse derivativesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALmsc_thesis_jcarmona.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf1653257https://repositorio.unal.edu.co/bitstream/unal/58847/1/msc_thesis_jcarmona.pdff24c9821bfac0364be86a5441a5f676cMD51THUMBNAILmsc_thesis_jcarmona.pdf.jpgmsc_thesis_jcarmona.pdf.jpgGenerated Thumbnailimage/jpeg4296https://repositorio.unal.edu.co/bitstream/unal/58847/2/msc_thesis_jcarmona.pdf.jpg3097be77899edeb25e9a222e4de9d277MD52unal/58847oai:repositorio.unal.edu.co:unal/588472024-04-03 23:10:27.439Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |