Performance of meshfree methods in approximations with diffuse derivatives

The study and solution of partial differential equations (PDEs) is a central field in the mathematical analysis. In the numerical context the mesh free approximation methods arise as an alternative to the conventional techniques that require some kind of mesh to the realization of the approximations...

Full description

Autores:
Carmona Otálvaro, Jhonatan
Tipo de recurso:
Fecha de publicación:
2016
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/58847
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/58847
http://bdigital.unal.edu.co/55840/
Palabra clave:
51 Matemáticas / Mathematics
Métodos libres de malla
Método de Galerkin libre de elementos
Derivada difusa
Operadores fraccionarios
Geometrías discontinuas
Mesh free approximations methods
Element Free Galerkin method
Diffuse derivative
Fractional operators
Discontinuous geometries
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_dfa47102ab7066367f6923ff8f50c629
oai_identifier_str oai:repositorio.unal.edu.co:unal/58847
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Performance of meshfree methods in approximations with diffuse derivatives
title Performance of meshfree methods in approximations with diffuse derivatives
spellingShingle Performance of meshfree methods in approximations with diffuse derivatives
51 Matemáticas / Mathematics
Métodos libres de malla
Método de Galerkin libre de elementos
Derivada difusa
Operadores fraccionarios
Geometrías discontinuas
Mesh free approximations methods
Element Free Galerkin method
Diffuse derivative
Fractional operators
Discontinuous geometries
title_short Performance of meshfree methods in approximations with diffuse derivatives
title_full Performance of meshfree methods in approximations with diffuse derivatives
title_fullStr Performance of meshfree methods in approximations with diffuse derivatives
title_full_unstemmed Performance of meshfree methods in approximations with diffuse derivatives
title_sort Performance of meshfree methods in approximations with diffuse derivatives
dc.creator.fl_str_mv Carmona Otálvaro, Jhonatan
dc.contributor.author.spa.fl_str_mv Carmona Otálvaro, Jhonatan
dc.contributor.spa.fl_str_mv Osorio Lema, Mauricio Andres
dc.subject.ddc.spa.fl_str_mv 51 Matemáticas / Mathematics
topic 51 Matemáticas / Mathematics
Métodos libres de malla
Método de Galerkin libre de elementos
Derivada difusa
Operadores fraccionarios
Geometrías discontinuas
Mesh free approximations methods
Element Free Galerkin method
Diffuse derivative
Fractional operators
Discontinuous geometries
dc.subject.proposal.spa.fl_str_mv Métodos libres de malla
Método de Galerkin libre de elementos
Derivada difusa
Operadores fraccionarios
Geometrías discontinuas
Mesh free approximations methods
Element Free Galerkin method
Diffuse derivative
Fractional operators
Discontinuous geometries
description The study and solution of partial differential equations (PDEs) is a central field in the mathematical analysis. In the numerical context the mesh free approximation methods arise as an alternative to the conventional techniques that require some kind of mesh to the realization of the approximations. In cases where it has relatively complex eometries (as domains with discontinuities) traditional methods are difficult to implement. Therefore the objective of the mesh free methods is, in part, to remove these difficulties. In this thesis we focus our attention into the study of the Element Free Galerkin method (EFG) coupled with approximations with diffuse derivative, for the solutions of (PDEs) problems. In the first part of this work, we show the known theoretical results (convergence theorems and convergence orders) with original proves based on existing work and corroborate them numerically for classic PDEs problems. The second part of this thesis consists on the numerical solution and convergence analysis of the EFG method for problems that involves fractional operators and discontinuous geometries. The obtained results are compared with theoretical information and the unexpected events are discussed and justified.
publishDate 2016
dc.date.issued.spa.fl_str_mv 2016-12-01
dc.date.accessioned.spa.fl_str_mv 2019-07-02T14:54:29Z
dc.date.available.spa.fl_str_mv 2019-07-02T14:54:29Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/58847
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/55840/
url https://repositorio.unal.edu.co/handle/unal/58847
http://bdigital.unal.edu.co/55840/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de Matemáticas
Escuela de Matemáticas
dc.relation.references.spa.fl_str_mv Carmona Otálvaro, Jhonatan (2016) Performance of meshfree methods in approximations with diffuse derivatives. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/58847/1/msc_thesis_jcarmona.pdf
https://repositorio.unal.edu.co/bitstream/unal/58847/2/msc_thesis_jcarmona.pdf.jpg
bitstream.checksum.fl_str_mv f24c9821bfac0364be86a5441a5f676c
3097be77899edeb25e9a222e4de9d277
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089667517087744
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Osorio Lema, Mauricio AndresCarmona Otálvaro, Jhonatanafa38949-35ad-439a-bf04-3489d3a9733f3002019-07-02T14:54:29Z2019-07-02T14:54:29Z2016-12-01https://repositorio.unal.edu.co/handle/unal/58847http://bdigital.unal.edu.co/55840/The study and solution of partial differential equations (PDEs) is a central field in the mathematical analysis. In the numerical context the mesh free approximation methods arise as an alternative to the conventional techniques that require some kind of mesh to the realization of the approximations. In cases where it has relatively complex eometries (as domains with discontinuities) traditional methods are difficult to implement. Therefore the objective of the mesh free methods is, in part, to remove these difficulties. In this thesis we focus our attention into the study of the Element Free Galerkin method (EFG) coupled with approximations with diffuse derivative, for the solutions of (PDEs) problems. In the first part of this work, we show the known theoretical results (convergence theorems and convergence orders) with original proves based on existing work and corroborate them numerically for classic PDEs problems. The second part of this thesis consists on the numerical solution and convergence analysis of the EFG method for problems that involves fractional operators and discontinuous geometries. The obtained results are compared with theoretical information and the unexpected events are discussed and justified.Resumen: El estudio y la solución de ecuaciones diferenciales parciales (PDEs) es un campo central en el análisis matemático. En el contexto numérico, las aproximaciones libres de malla surgen como una alternativa a las técnicas tradicionales que requieren algún tipo de mallado para la realización de las aproximaciones. En casos donde se tengan geometrías relativamente complejas (como dominios con discontinuidades), los métodos tradicionales son difíciles de implementar. Por tanto, el objetivo de los métodos libres de malla es remover en parte dichas dificultades. En esta tesis, nos enfocamos en el estudio del método de Galerkin libre de elementos (EFG, por sus siglas en inglés) acoplado con aproximaciones con derivada difusa, para la solución de ecuaciones diferenciales parciales. En la primera parte de éste trabajo, mostramos los resultados teóricos (teoremas de convergencia y órdenes de convergencia), con pruebas originales basadas en trabajos conocidos y los corroboramos numéricamente para problemas clásicos. La segunda parte de éste escrito, consiste en la solución numérica y desarrollo de análisis de convergencia del método (EFG) para problemas que involucran operadores fraccionarios y geometrías discontinuas. Los resultados obtenidos se comparan con la información teórica y los eventos inesperados, se analizan y se justifican.Maestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Medellín Facultad de Ciencias Escuela de MatemáticasEscuela de MatemáticasCarmona Otálvaro, Jhonatan (2016) Performance of meshfree methods in approximations with diffuse derivatives. Maestría thesis, Universidad Nacional de Colombia - Sede Medellín.51 Matemáticas / MathematicsMétodos libres de mallaMétodo de Galerkin libre de elementosDerivada difusaOperadores fraccionariosGeometrías discontinuasMesh free approximations methodsElement Free Galerkin methodDiffuse derivativeFractional operatorsDiscontinuous geometriesPerformance of meshfree methods in approximations with diffuse derivativesTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMORIGINALmsc_thesis_jcarmona.pdfTesis de Maestría en Ciencias - Matemáticasapplication/pdf1653257https://repositorio.unal.edu.co/bitstream/unal/58847/1/msc_thesis_jcarmona.pdff24c9821bfac0364be86a5441a5f676cMD51THUMBNAILmsc_thesis_jcarmona.pdf.jpgmsc_thesis_jcarmona.pdf.jpgGenerated Thumbnailimage/jpeg4296https://repositorio.unal.edu.co/bitstream/unal/58847/2/msc_thesis_jcarmona.pdf.jpg3097be77899edeb25e9a222e4de9d277MD52unal/58847oai:repositorio.unal.edu.co:unal/588472024-04-03 23:10:27.439Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co