Identificación experimental de la fricción en las transmisiones accionadas por cable
ilustraciones, gráficos, tablas.
- Autores:
-
TORRES CHARRY, GIOVANNI
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80984
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Friction (Mechanical)
Tribología -- Tesis y disertaciones académicas.
Fricción (Mecánica)
Modelo de fricción
Transmisión
Polea-cable
Equipo de pruebas
Creep
Friction model
Cable-driven transmission
Test equipment
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_df64dc9e5a8bcd5aa07e7ddf1c1b7455 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80984 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Identificación experimental de la fricción en las transmisiones accionadas por cable |
dc.title.translated.eng.fl_str_mv |
Experimental identification of friction in cable-driven transmissions |
title |
Identificación experimental de la fricción en las transmisiones accionadas por cable |
spellingShingle |
Identificación experimental de la fricción en las transmisiones accionadas por cable 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Friction (Mechanical) Tribología -- Tesis y disertaciones académicas. Fricción (Mecánica) Modelo de fricción Transmisión Polea-cable Equipo de pruebas Creep Friction model Cable-driven transmission Test equipment |
title_short |
Identificación experimental de la fricción en las transmisiones accionadas por cable |
title_full |
Identificación experimental de la fricción en las transmisiones accionadas por cable |
title_fullStr |
Identificación experimental de la fricción en las transmisiones accionadas por cable |
title_full_unstemmed |
Identificación experimental de la fricción en las transmisiones accionadas por cable |
title_sort |
Identificación experimental de la fricción en las transmisiones accionadas por cable |
dc.creator.fl_str_mv |
TORRES CHARRY, GIOVANNI |
dc.contributor.advisor.none.fl_str_mv |
Gómez-Mendoza, Juan Bernardo |
dc.contributor.author.none.fl_str_mv |
TORRES CHARRY, GIOVANNI |
dc.contributor.researchgroup.spa.fl_str_mv |
Computación Aplicada Suave y Dura (Shac) |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Friction (Mechanical) Tribología -- Tesis y disertaciones académicas. Fricción (Mecánica) Modelo de fricción Transmisión Polea-cable Equipo de pruebas Creep Friction model Cable-driven transmission Test equipment |
dc.subject.armarc.eng.fl_str_mv |
Friction (Mechanical) |
dc.subject.armarc.spa.fl_str_mv |
Tribología -- Tesis y disertaciones académicas. |
dc.subject.lemb.spa.fl_str_mv |
Fricción (Mecánica) |
dc.subject.proposal.spa.fl_str_mv |
Modelo de fricción Transmisión Polea-cable Equipo de pruebas Creep |
dc.subject.proposal.eng.fl_str_mv |
Friction model Cable-driven transmission Test equipment |
description |
ilustraciones, gráficos, tablas. |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-02-15T14:06:31Z |
dc.date.available.none.fl_str_mv |
2022-02-15T14:06:31Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Image Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80984 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80984 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
J. Fryman and B. Matthias, “Safety of Industrial Robots : From Conventional to Collaborative Applications.,” in 7th German Conference on Robotics, 2012, pp. 1–5 V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications,” Mechatronics, vol. 55, no. February, pp. 248–266, 2018, doi: 10.1016/j.mechatronics.2018.02.009. W. T. Townsend and J. A. Guertin, “Teleoperator slave - WAM design methodology,” Ind. Robot An Int. J., vol. 26, no. 3, pp. 167–177, 1999, doi: 10.1108/01439919910266820. B. Rooks, “The harmonious robot,” Ind. Robot An Int. J., vol. 33, no. 2, pp. 125–130, Mar. 2006, doi: 10.1108/01439910610651446. A. Pervez and J. Ryu, “Safe physical human robot interaction-past, present and future,” J. Mech. Sci. Technol., vol. 22, no. 3, pp. 469–483, Mar. 2008, doi: 10.1007/s12206-007-1109-3. H. Xiong and X. Diao, “A review of cable-driven rehabilitation devices,” Disabil. Rehabil. Assist. Technol., vol. 15, no. 8, pp. 885–897, 2020, doi: 10.1080/17483107.2019.1629110. M. A. Gull, S. Bai, and T. Bak, “A review on design of upper limb exoskeletons,” Robotics, vol. 9, no. 1, pp. 1–35, 2020, doi: 10.3390/robotics9010016. M. Shoaib, E. Asadi, J. Cheong, and A. Bab-Hadiashar, “Cable Driven Rehabilitation Robots: Comparison of Applications and Control Strategies,” IEEE Access, vol. 9, pp. 110396–110420, Aug. 2021, [Online]. Available: http://arxiv.org/abs/2108.02379. B. Armstrong-Hélouvry, P. Dupont, and C. C. De Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, vol. 30, no. 7, pp. 1083–1138, 1994, doi: 10.1016/0005-1098(94)90209-7 A. Bonsignore, G. Ferretti, and G. Magnani, “Analytical Formulation of the Classical Friction Model for Motion Analysis and Simulation,” Math. Comput. Model. Dyn. Syst., vol. 5, no. 1, pp. 43–55, 1999 P. Dupont, C. Street, V. Hayward, and B. Armstrong, “Single State Elasto-Plastic Models for Friction Compensation ∗,” IEEE Trans. Automat. Contr., vol. 47, no. 5, pp. 787–792, 1999. J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 675–686, Apr. 2000, doi: 10.1109/9.847103. R. H. a. Hensen, M. J. G. J. G. van de Molengraft, and M. Steinbuch, “Frequency domain identification of dynamic friction model parameters,” IEEE Trans. Control Syst. Technol., vol. 10, no. 2, pp. 191–196, 2002, doi: 10.1109/87.987064 P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter, “Single state elastoplastic friction models,” IEEE Trans. Automat. Contr., vol. 47, no. 5, pp. 787–792, 2002, doi: 10.1109/TAC.2002.1000274 V. Lampaert, J. Swevers, and F. Al-bender, “Experimental Comparison of Different Low-Velocity Tracking,” 10th Mediterr. Conf. Control Autom., 2002 V. Lampaert et al., “Measurement and identification of pre-sliding friction dynamics,” Nonlinear Dyn., pp. 0–20, 2003. F. Al-Bender, V. Lampaert, and J. Swevers, “Modeling of dry sliding friction dynamics: From heuristic models to physically motivated models and back,” Chaos, vol. 14, no. 2, pp. 446–460, 2004, doi: 10.1063/1.1741752. D. Kostić, B. de Jager, M. Steinbuch, and R. Hensen, “Modeling and identification for high-performance robot control: An RRR-robotic arm case study,” IEEE Transactions on Control Systems Technology, vol. 12, no. 6. pp. 904–919, 2004, doi: 10.1109/TCST.2004.833641. E. R. D. P. and E. B. C. Francisco J. T. Vargas, “Identification and friction compensation for an industrial robot using two degrees of freedom controllers,” ICARCV 2004 8th Control. Autom. Robot. Vis. Conf. 2004., vol. 2, no. December, pp. 6–9, 2004, doi: 10.1109/ICARCV.2004.1469006. M. R. Kermani, R. V. Patel, and M. Moallem, “Friction identification in robotic manipulators: case studies,” Proc. 2005 IEEE Conf. Control Appl. 2005. CCA 2005., pp. 1170–1175, 2005, doi: 10.1109/CCA.2005.1507289 D. D. Rizos and S. D. Fassois, “Friction identification based upon the LuGre and Maxwell slip models,” IFAC Proc. Vol., vol. 16, no. 1, pp. 548–553, 2005, doi: 10.1109/TCST.2008.921809 I. Nilkhamhang and A. Sano, “Adaptive friction compensation using the GMS model with polynomial stribeck function,” Proc. IEEE Int. Conf. Control Appl., pp. 1085–1090, 2006, doi: 10.1109/CACSD-CCA-ISIC.2006.4776795 J. Swevers, W. Verdonck, J. De Schutter, and J. De Schutter, “Dynamic Model Identification for Industrial Robots,” IEEE Control Syst. Mag., vol. 27, no. 5, pp. 51–68, 2007, doi: 10.1109/MCS.2007.904659 M. R. Kermani, R. V. Patel, and M. Moallem, “Friction identification and compensation in robotic manipulators,” IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2346–2353, 2007, doi: 10.1109/TIM.2007.907957 W. Susanto, R. Babuška, F. Liefhebber, and T. van der Weiden, “Adaptive Friction Compensation: Application to a Robotic Manipulator,” IFAC Proc. Vol., vol. 41, no. 2, pp. 2020–2024, 2008, doi: 10.3182/20080706-5-KR-1001.00343. V. Van Geffen, “A study of friction models and friction Compensation,” A study Frict. Model. Frict. Compens., pp. 1–24, 2009, [Online]. Available: http://www.mate.tue.nl/mate/pdfs/11194.pdf M. Indri, I. Lazzero, A. Antoniazza, and A. M. Bottero, “Friction modeling and identification for industrial manipulators,” in 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Sep. 2013, pp. 1–8, doi: 10.1109/ETFA.2013.6647958. X. Song, H. Liu, K. Althoefer, T. Nanayakkara, and L. D. Seneviratne, “Efficient break-away friction ratio and slip prediction based on haptic surface exploration,” IEEE Trans. Robot., vol. 30, no. 1, pp. 203–219, 2014, doi: 10.1109/TRO.2013.2279630. M. Boegli, T. De Laet, J. De Schutter, and J. Swevers, “A smoothed GMS friction model suited for gradient-based friction state and parameter estimation,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 5, pp. 1593–1602, 2014, doi: 10.1109/TMECH.2013.2288944. A. C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, and T. Brogårdh, “An extended friction model to capture load and temperature effects in robot joints,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2010, pp. 6161–6167, doi: 10.1109/IROS.2010.5650358. P. Hamon, M. Gautier, P. Garrec, and a. Janot, “Dynamic identification of robot with a load-dependent joint friction model,” 2010 IEEE Conf. Robot. Autom. Mechatronics, RAM 2010, pp. 129–135, 2010, doi: 10.1109/RAMECH.2010.5513201. A. C. Bittencourt and S. Gunnarsson, “Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects,” J. Dyn. Syst. Meas. Control, vol. 134, no. 5, p. 051013, 2012, doi: 10.1115/1.4006589 A. C. Bittencourt and P. Axelsson, “Modeling and experiment design for identification of wear in a robot joint under load and temperature uncertainties based on friction data,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 5, pp. 1694–1706, 2014, doi: 10.1109/TMECH.2013.2293001 Z. P. Rico, A. Lecchini-Visintini, and R. Q. Quiroga, “Dynamic model of a 7-DOF whole arm manipulator and validation from experimental data,” in ICINCO 2012 - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics, 2012, vol. 2, pp. 217–222, doi: 10.5220/0004013002170222 H. Olsson, K. K. J. J. Åström, C. Canudas de Wit, M. Gäfvert, and P. Lischinsky, “Friction Models and Friction Compensation,” Eur. J. Control, vol. 4, no. 3, pp. 176–195, 1998, doi: 10.1016/S0947-3580(98)70113-X E. Berger, “Friction modeling for dynamic system simulation,” Appl. Mech. Rev., vol. 55, no. 6, p. 535, 2002, doi: 10.1115/1.1501080 F. Al-Bender and J. Swevers, “Characterization of friction force dynamics,” IEEE Control Syst. Mag., vol. 28, no. 6, pp. 64–81, 2008, doi: 10.1109/MCS.2008.929279 S. Buechner, S. Zschaeck, A. Amthor, C. Ament, and M. Eichhorn, “Dynamic friction modeling and identification for high precision mechatronic systems,” IECON 2012 - 38th Annu. Conf. IEEE Ind. Electron. Soc., pp. 2263–2268, 2012, doi: 10.1109/IECON.2012.6388884. L. Márton and B. Lantos, “Modeling, identification, and compensation of stick-slip friction,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 511–521, 2007, doi: 10.1109/TIE.2006.888804. C. Canudas de Wit, P. Noel, a. Aubin, and B. Brogliato, “Adaptive Friction Compensation in Robot Manipulators: Low Velocities,” Int. J. Rob. Res., vol. 10, no. 3, pp. 189–199, 1991, doi: 10.1177/027836499101000301. B. Bona and M. Indri, “Friction compensation in robotics: An overview,” Proc. 44th IEEE Conf. Decis. Control. Eur. Control Conf. CDC-ECC ’05, vol. 2005, pp. 4360–4367, 2005, doi: 10.1109/CDC.2005.1582848. A. C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, and T. Brogårdh, “An extended friction model to capture load and temperature effects in robot joints,” IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS 2010 - Conf. Proc., pp. 6161–6167, 2010, doi: 10.1109/IROS.2010.5650358. P. Hamon, a Janot, and S. a Haption, “Dynamic Identification of Robot with a Load- Dependent Joint Friction Model,” Int. Conf. Robot. Autom. Mechatronics, pp. 129–135, 2010 P. Hamon, M. Gautier, and P. Garrec, “New dry friction model with load- and velocity-dependence and dynamic identification of multi-dof robots,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 1077–1084, 2011, doi: 10.1109/ICRA.2011.5980126. F. Al-Bender, V. Lampaert, and J. Swevers, “Modeling of dry sliding friction dynamics: From heuristic models to physically motivated models and back,” Chaos, vol. 14, no. 2, pp. 446–460, 2004, doi: 10.1063/1.1741752. P. Dahl, “A solid friction model,” Aerosp. Corp. El Segundo, CA, vol. 158, p. Tech. Rep. TOR-01 58(3 107-1 8)-1, 1968, doi: TOR-0158(3107-18)-1 R. Kikuuwe, N. Takesue, A. Sano, H. Mochiyama, and H. Fujimoto, “Fixed-step friction simulation: From classical coulomb model to modern continuous models,” 2005 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, no. 1, pp. 3910–3917, 2005, doi: 10.1109/IROS.2005.1545579. K. J. Åström and C. Canudas-de-wit, “Revisting the LuGre Friction Model,” IEEE Control Syst. Mag., no. December, pp. 101–114, 2008, doi: 10.1109/MCS.2008.929425. C. C. De Wit et al., “A new model for control of systems with friction,” IEEE Trans. Automat. Contr., vol. 40, no. 3, pp. 419–425, 1995, doi: 10.1109/9.376053. B. Armstrong, “Friction: experimental determination, modeling and compensation,” Proceedings. 1988 IEEE Int. Conf. Robot. Autom., pp. 1422–1427, 1988, doi: 10.1109/ROBOT.1988.12266. X. Zhang, Q. Jia, H. Sun, and M. Chu, “Adaptive control of manipulator flexible-joint with friction compensation using LuGre model,” 2008 3rd IEEE Conf. Ind. Electron. Appl. ICIEA 2008, pp. 1234–1239, 2008, doi: 10.1109/ICIEA.2008.4582716. B. Zhong, L. Sun, L. Chen, and Z. Wang, “The dynamics study of the stick-slip driving system based on LuGre dynamic friction model,” 2011 IEEE Int. Conf. Mechatronics Autom. ICMA 2011, pp. 584–589, 2011, doi: 10.1109/ICMA.2011.5985726. A. C. Bittencourt and S. Gunnarsson, “Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects,” J. Dyn. Syst. Meas. Control, vol. 134, no. 5, p. 51013, 2012, doi: 10.1115/1.4006589 M. S. Madi, K. Khayati, and P. Bigras, “Parameter estimation for the LuGre friction model using interval analysis and set inversion,” Syst. Man Cybern. 2004 IEEE Int. Conf., vol. 1, pp. 428–433 vol.1, 2004, doi: 10.1109/ICSMC.2004.1398335 S. Sobczyk and a Eduardo, “A continuous approximation of the lugre friction model,” ABCM Symp. Ser. Mechatronics, vol. 4, pp. 218–228, 2010. N. Barabanov and R. Ortega, “Necessary and sufficient conditions for passivity of the LuGre friction model,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 830–832, 2000, doi: 10.1109/9.847131. Z. Wenjing, “Parameter Identification of LuGre Friction Model in Servo Sys- tem Based on Improved Particle Swarm Optimization Algorithm,” Proc. 26th Chinese Control Conf., pp. 135–139, 2007, doi: 10.1109/CHICC.2006.4346908 D. Liu, “Parameter identification for LuGre friction model using genetic algorithms,” Proc. Fifth Int. Conf. Mach. Learn. Cybern., no. August, pp. 13–16, 2006, doi: 10.1109/ICMLC.2006.258506. X. Wang, S. Lin, and S. Wang, “Dynamic Friction Parameter Identification Method with LuGre Model for Direct-Drive Rotary Torque Motor,” Math. Probl. Eng., vol. 2016, 2016, doi: 10.1155/2016/6929457 X. Hongbiao, Q. Zurong, and L. Xingfei, “Simulation and experimental research of non-linear friction compensation for high-precision ball screw drive system,” ICEMI 2009 - Proc. 9th Int. Conf. Electron. Meas. Instruments, pp. 3604–3609, 2009, doi: 10.1109/ICEMI.2009.5274257. R. Dhaouadi, F. H. Ghorbel, and P. S. Gandhi, “A New Dynamic Model of Hysteresis in Harmonic Drives,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1165–1171, 2003, doi: 10.1109/TIE.2003.819661 L. Freidovich, a. Robertsson, a. Shiriaev, and R. Johansson, “Friction compensation based on LuGre model,” Proc. 45th IEEE Conf. Decis. Control, no. 6, pp. 9–12, 2006, doi: 10.1109/CDC.2006.376780. G. Palli and C. Melchiorri, “Modelling and control of robotic joints based on sliding pairs,” 2013 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics Mechatronics Hum. Wellbeing, AIM 2013, pp. 1743–1748, 2013, doi: 10.1109/AIM.2013.6584349. X. Song, H. Liu, K. Althoefer, T. Nanayakkara, and L. D. Seneviratne, “Efficient break-away friction ratio and slip prediction based on haptic surface exploration,” IEEE Trans. Robot., vol. 30, no. 1, pp. 203–219, 2014, doi: 10.1109/TRO.2013.2279630. J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 675–686, Apr. 2000, doi: 10.1109/9.847103. G. Ferretti, G. Magnani, and P. Rocco, “Single and multistate integral friction models,” IEEE Trans. Automat. Contr., vol. 49, no. 12, pp. 2292–2297, 2004, doi: 10.1109/TAC.2004.839234. S. Bograd, P. Reuss, a. Schmidt, L. Gaul, and M. Mayer, “Modeling the dynamics of mechanical joints,” Mech. Syst. Signal Process., vol. 25, no. 8, pp. 2801–2826, 2011, doi: 10.1016/j.ymssp.2011.01.010 P. Dupont, B. Armstrong, and V. Hayward, “Elasto-plastic friction model: contact compliance and stiction,” Proc. 2000 Am. Control Conf. ACC (IEEE Cat. No.00CH36334), vol. 2, no. June, pp. 1072–1077, 2000, doi: 10.1109/ACC.2000.876665. F. Al-Bender, V. Lampaert, and J. Swevers, “The generalized Maxwell-slip model: A novel model for friction simulation and compensation,” IEEE Trans. Automat. Contr., vol. 50, no. 11, pp. 1883–1887, 2005, doi: 10.1109/TAC.2005.858676. M. W. van der Kooij, “Model based friction compensation for an electromechanical Stewart platform actuator,” Delft University of Technology, 2011. R. Isermann and M. Münchhof, Identification of Dynamic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011 C. CHEN, “Friction modeling and experimental identification of a mitsubishi PA10-6CE robot manipulator,” University of Florida, 2013. M. Ruderman, “Discrete-time series identification of sliding dynamic friction in industrial robotic joints,” IEEE Int. Conf. Intell. Robot. Syst., pp. 5809–5814, 2013, doi: 10.1109/IROS.2013.6697197. M. N. Nevmerzhitskiy, A. V Vara, and K. V Zmeu, “Technique for Friction Model Identification in an Industrial Robot Joint Using KUKA KR10,” 2018 Int. Multi-Conference Ind. Eng. Mod. Technol., no. 02, pp. 1–5, 2018. P. Hamon, M. Gautier, and P. Garrec, “New Dry Friction Model with Load- and Velocity-Dependence and Dynamic Identification of Multi-DOF Robots,” pp. 1077–1084, 2015. J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 675–686, Apr. 2000, doi: 10.1109/9.847103. L. Simoni et al., “On the use of a temperature based friction model for a virtual force sensor in industrial robot manipulators,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, pp. 1–6, 2018, doi: 10.1109/ETFA.2017.8247655. M. Iwatani and R. Kikuuwe, “An identification procedure for rate-dependency of friction in robotic joints with limited motion ranges,” Mechatronics, vol. 36, pp. 36–44, 2016, doi: 10.1016/j.mechatronics.2016.04.002. T. D. Tuttle and W. P. Seering, “A nonlinear model of a harmonic drive gear transmission,” IEEE Trans. Robot. Autom., vol. 12, no. 3, pp. 368–374, 1996, doi: 10.1109/70.499819. H. D. Taghirad and P. R. Bélanger, “Modelling and Parameter Identification of Harmonic Drive Systems,” J. Dyn. Syst. Meas. Control, vol. 120, pp. 439–444, 1998, doi: 10.1115/1.2801484 P. S. S. Gandhi, F. H. H. Ghorbel, and J. Dabney, “Modeling, identification, and compensation of friction in harmonic drives,” Proc. 41st IEEE Conf. Decis. Control. 2002., vol. 1, no. December, 2002, doi: 10.1109/CDC.2002.1184485. Wenjie Chen, Kyoungchul Kong, and M. Tomizuka, “Dual-Stage Adaptive Friction Compensation for Precise Load Side Position Tracking of Indirect Drive Mechanisms,” IEEE Trans. Control Syst. Technol., vol. 23, no. 1, pp. 164–175, Jan. 2015, doi: 10.1109/TCST.2014.2317776. J. Baur, S. Dendorfer, J. Pfaff, C. Schutz, T. Buschmann, and H. Ulbrich, “Experimental friction identification in robot drives,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), May 2014, pp. 6006–6011, doi: 10.1109/ICRA.2014.6907744. Y. Lu and D. Fan, “Transmission backlash of precise cable drive system,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 227, no. 10, pp. 2256–2267, Oct. 2013, doi: 10.1177/0954406212473887. O. Baser and E. Ilhan Konukseven, “Theoretical and experimental determination of capstan drive slip error,” Mech. Mach. Theory, vol. 45, no. 6, pp. 815–827, 2010, doi: 10.1016/j.mechmachtheory.2009.10.013. J. Werkmeister and A. Slocum, “Theoretical and experimental determination of capstan drive stiffness,” Precis. Eng., vol. 31, no. 1, pp. 55–67, 2007, doi: 10.1016/j.precisioneng.2006.03.001 X. Xie, C. Qi, L. Zhang, and D. Fan, “Analytical and experimental research on transmission backlash in precise cable drive for an electro-optical targeting system,” Adv. Mech. Eng., vol. 11, no. 7, p. 168781401986605, Jul. 2019, doi: 10.1177/1687814019866059. J. Hwangbo, V. Tsounis, H. Kolvenbach, and M. Hutter, “Cable-Driven Actuation for Highly Dynamic Robotic Systems,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2018, pp. 8543–8550, doi: 10.1109/IROS.2018.8593569 P. Hamon, M. Gautier, and P. Garrec, “New dry friction model with load- and velocity-dependence and dynamic identification of multi-dof robots,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 1077–1084, 2011, doi: 10.1109/ICRA.2011.5980126. L. Ding, H. Wu, Y. Yao, and Y. Yang, “Dynamic model identification for 6-DOF industrial robots,” J. Robot., vol. 2015, no. 5, pp. 51–68, 2015, doi: 10.1155/2015/471478. A. C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, and T. Brogårdh, “An extended friction model to capture load and temperature effects in robot joints,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2010, pp. 6161–6167, doi: 10.1109/IROS.2010.5650358 A. C. Bittencourt and P. Axelsson, “Modeling and Experiment Design for Identification of Wear in a Robot Joint Under Load and Temperature Uncertainties Based on Friction Data,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 5, pp. 1694–1706, Oct. 2014, doi: 10.1109/TMECH.2013.2293001. W. Susanto, R. Babuška, F. Liefhebber, and T. van der Weiden, “Adaptive Friction Compensation: Application to a Robotic Manipulator,” IFAC Proc. Vol., vol. 41, no. 2, pp. 2020–2024, 2008, doi: 10.3182/20080706-5-KR-1001.00343. D. Liu, “Parameter Identification for Lugre Friction Model using Genetic Algorithms,” in 2006 International Conference on Machine Learning and Cybernetics, 2006, vol. 2006, no. August, pp. 3419–3422, doi: 10.1109/ICMLC.2006.258506. X. Wang, S. Lin, and S. Wang, “Dynamic Friction Parameter Identification Method with LuGre Model for Direct-Drive Rotary Torque Motor,” Math. Probl. Eng., vol. 2016, pp. 1–8, 2016, doi: 10.1155/2016/6929457. D. Liu, “Parameter Identification for Lugre Friction Model using Genetic Algorithms,” in 2006 International Conference on Machine Learning and Cybernetics, 2006, no. August, pp. 3419–3422, doi: 10.1109/ICMLC.2006.258506. J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 675–686, Apr. 2000, doi: 10.1109/9.847103. P. Feyel, G. Duc, and G. Sandou, “LuGre Friction Model Identification and Compensator Tuning Using A Differential Evolution Algorithm,” no. 1, pp. 85–91, 2013. D. Liu, “Research on parameter identification of friction model for servo systems based on genetic algorithms,” Mach. Learn., no. August, pp. 18–21, 2005. R. Waiboer, “Dynamic modelling, identification and simulation of industrial robots,” Universiteit Twente, 2007. P. Lischinsky, C. Canudas-de-Wit, and G. Morel, “Friction Compensation for an Industrial Hydraulic Robot,” IEEE Control Syst., vol. 19, no. 1, pp. 25–32, 1999, doi: 10.1109/37.745763. F. J. T. J. T. Vargas, E. R. D. R. De Fieri, and E. B. B. Castelan, “Identification and friction compensation for an industrial robot using two degrees of freedom controllers,” ICARCV 2004 8th Control. Autom. Robot. Vis. Conf. 2004., vol. 2, no. December, pp. 6–9, 2004, doi: 10.1109/ICARCV.2004.1469006. W. T. Townsend, “United States Patent [ 191 Patent Number : Date of Patent :,” 1995. Christiand, J. Yoon, and P. Kumar, “A novel optimal assembly algorithm for haptic interface applications of a virtual maintenance system,” J. Mech. Sci. Technol., vol. 23, no. 1, pp. 183–194, 2009, doi: 10.1007/s12206-008-0902-y. Y. Wang, Y. Shen, D. Liu, S. Wei, and C. Zhu, “Key technique of assembly system in an augmented reality environment,” ICCMS 2010 - 2010 Int. Conf. Comput. Model. Simul., vol. 1, pp. 133–137, 2010, doi: 10.1109/ICCMS.2010.201. M. Karray, F. Chaari, A. F. Del Rincon, F. Viadero, and M. Haddar, “An Experimental Investigation of the Dynamic Behavior of Planetary Gear Set,” no. 2003, M. Haddar, L. Romdhane, J. Louati, and A. Ben Amara, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 199–206. A. Fernández del Rincón, R. Cerdá, M. Iglesias, A. De-Juan, P. García, and F. Viadero, “Test Bench for the Analysis of Dynamic Behavior of Planetary Gear Transmissions,” in Lecture Notes in Mechanical Engineering, vol. 5, 2014, pp. 485–495 S. S. Khodwe, U. S. Cherekar, and S. S. Prabhune, “Design and Analysis of Gear Box Test Bench to Test Shift Performance and Leakage,” Int. J. Adv. Res. Innov. Ideas Educ., vol. 1, no. 2, pp. 270–280, 2015. A. Mazumdar et al., “Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 554–561, Apr. 2017, doi: 10.1109/LRA.2016.2646259 N. Dumitru, E. Dragut, N. Craciunoiu, and I. Geonea, “Experimental Bench for Spur Gears Efficiency Measurement,” in Mechanisms and Machine Science, vol. 57, Springer International Publishing, 2018, pp. 477–485 X. Xie, C. Qi, R. Tan, and D. Fan, “Design and performance analysis of a many-to-one configuration precise cable drive mechanism with high precision and large torque,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 16, pp. 5903–5915, Aug. 2019, doi: 10.1177/0954406219849450. Y. Lu and D. Fan, “Non-intervene cable wrapping method for precise cable drive,” in 2012 International Conference on Optoelectronics and Microelectronics, Aug. 2012, no. 1, pp. 378–383, doi: 10.1109/ICoOM.2012.6316294 R. A. Mitchell and S. M. Baker, “Characterizing the Creep Response of Load Cells.,” VDI Ber, no. 31, pp. 43–48, 1978. M. Spoor, “Improving Creep Performance of the Strain Gage Based Load Cell,” Mech. Probl. Meas. Force Mass, pp. 293–302, 1986, doi: 10.1007/978-94-009-4414-5_34. T. W. Bartel and S. L. Yaniv, “Creep and creep recovery response of load cells tested according to U.S. and international evaluation procedures,” J. Res. Natl. Inst. Stand. Technol., vol. 102, no. 3, pp. 349–362, 1997, doi: 10.6028/jres.102.024. Makoto Makabe and Toru Kohashi, “High accurate Creep compensation method for Load Cell,” in SICE Annual Conference 2007, Sep. 2007, pp. 29–36, doi: 10.1109/SICE.2007.4420945. M. I. Mohamed, E. H. Hasan, and G. Aggag, “Study of creep behavior of load cells,” Meas. J. Int. Meas. Confed., vol. 42, no. 7, pp. 1006–1010, 2009, doi: 10.1016/j.measurement.2009.03.001. A. Ohtsuka, T. Koyama, T. Kohashi, and M. Adachi, “Digital creep compensation method for load cell in various loading patterns,” ICCAS-SICE 2009 - ICROS-SICE Int. Jt. Conf. 2009, Proc., pp. 369–373, 2009 A. Ohtsuka, T. Kohashi, and M. Adachi, “Self-optimization of digital creep compensation parameter for load cell,” Proc. SICE Annu. Conf., pp. 1456–1460, 2012. Carl Stahl Sava Industries (savacable.com), “Design Guide for Cable Solutions TM,” WHITEPAPER - Carl Stahl Sava Ind., 2010. E. R. Snow, “The load/deflection behavior of pretensioned cable/pulley transmission mechanisms,” Massachusetts Institute of Technology, 1993 Y. Lu, D. Fan, H. Liu, and M. Hei, “Transmission capability of precise cable drive including bending rigidity,” Mech. Mach. Theory, vol. 94, pp. 132–140, 2015, doi: 10.1016/j.mechmachtheory.2015.07.004. O. Baser and E. I. Konukseven, “Theoretical and experimental determination of capstan drive slip error,” Mech. Mach. Theory, vol. 45, no. 6, pp. 815–827, 2010, doi: 10.1016/j.mechmachtheory.2009.10.013 S. N. Kosari, S. Ramadurai, H. J. Chizeck, and B. Hannaford, “Control and Tension Estimation of a Cable Driven Mechanism Under Different Tensions,” in Volume 6A: 37th Mechanisms and Robotics Conference, Aug. 2013, pp. 1–9, doi: 10.1115/DETC2013-13548. M. Miyasaka, M. Haghighipanah, Y. Li, J. Matheson, A. Lewis, and B. Hannaford, “Modeling Cable-Driven Robot with Hysteresis and Cable-Pulley Network Friction,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 2, pp. 1095–1104, 2020, doi: 10.1109/TMECH.2020.2973428. R. J. E. Merry, Wavelet Theory and Its Applications - A literature study. Eindhoven University of Technology, 2005. D. Giaouris et al., “Wavelet Denoising for Electric Drives,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 543–550, 2008, doi: 10.1109/TIE.2007.911943 M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, “Wavelet Toolbox TM User ’ s Guide,” p. 700, 2015, [Online]. Available: http://www.mathworks.com/help/pdf_doc/wavelet/wavelet_ug.pdf. F. Al-Bender and J. Swevers, “Characterization of Friction Force Dynamics BEHAVIOR AND MODELING ON MICRO AND MACRO SCALES,” IEEE Control Syst. Mag., no. December, pp. 64–81, 2008. X. Hua, J. C. Puoza, P. Zhang, X. Xie, and B. Yin, “Experimental analysis of grease friction properties on sliding textured surfaces,” Lubricants, vol. 5, no. 4, pp. 1–11, 2017, doi: 10.3390/lubricants5040042. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xx, 123 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80984/1/7914507.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/80984/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/80984/3/7914507.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
701f1d8b5b6b146132965b4d31562d14 8153f7789df02f0a4c9e079953658ab2 beebee6d5b88454911d7058192f4c44c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090199569793024 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez-Mendoza, Juan Bernardo5ff8c3c72eebc58b6a876a98bbabe184600TORRES CHARRY, GIOVANNI396e0831de3c1214161bd27ada106fe1600Computación Aplicada Suave y Dura (Shac)2022-02-15T14:06:31Z2022-02-15T14:06:31Z2022https://repositorio.unal.edu.co/handle/unal/80984Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, gráficos, tablas.En esta tesis se propone un modelo de fricción empírico para transmisiones tipo polea-cable que incluye en su formulación, además de la velocidad, el efecto de la carga externa y la relación de transmisión. Los experimentos para determinar el comportamiento de la fricción se desarrollaron en un banco de pruebas diseñado y construido como parte del proyecto. El banco de pruebas desarrollado permite el cambio de los elementos de la transmisión y la aplicación de carga externa; de esta manera es posible evaluar el comportamiento de la fricción en la transmisión para diferentes valores de velocidad, tipo de enhebre del cable, dimensiones de las poleas y carga externa. Los resultados experimentales obtenidos evidencian la influencia de la carga en el comportamiento de la fricción, se presume que este comportamiento está gobernado principalmente por la fricción en los rodamientos. Como una primera aproximación para la representación de la fricción en la transmisión se utiliza el modelo LuGre, se encuentra que este modelo no representa adecuadamente el comportamiento de la fricción cuando se aplican cargas externas por lo que se propone un nuevo modelo de fricción; este modelo incluye en su formulación el efecto de la carga externa y de la relación de transmisión. Los resultados obtenidos en la validación del modelo propuesto muestran mejores resultados que los obtenidos con el modelo LuGre. Para velocidades inferiores a 30 rad/s y cargas altas, el porcentaje de error de la identificación con el modelo propuesto llega ser hasta cuatro veces inferior al obtenido utilizando el modelo LuGre. Las principales contribuciones de este trabajo son, el desarrollo de un banco de pruebas adaptable, el establecimiento de una linea base para el comportamiento de la fricción en transmisiones tipo polea-cable y la propuesta de un modelo empírico de fricción para este tipo de transmisiones.This thesis proposes an empirical friction model for cable-pulley type transmissions that includes in its formulation, in addition to speed, the effect of external load and transmission ratio. The experiments to determine the friction behavior were carried out on a test bench designed and built as part of the project. The developed test bench allows the change of the transmission elements and the application of external load; in this way, it is possible to evaluate the friction behavior in the transmission for different speed values, types of cable thread, pulley dimensions, and external load. The experimental results obtained show the influence of the load on the friction behavior, it is presumed that this behavior is governed mainly by the friction in the bearings. As a first approximation for the representation of friction in the transmission, the LuGre model is used. It is found that this model does not adequately represent the behavior of friction when external loads are applied, therefore a new friction model is proposed; this model includes in its formulation the effect of the external load and the transmission ratio. The results obtained in the validation of the proposed model show better results than those obtained with the LuGre model. For speeds lower than 30 rad/s and high loads, the percentage of identification error with the proposed model is up to four times lower than that obtained using the LuGre model. The main contributions of this work are the development of an adaptable test bench, the establishment of a baseline for the behavior of friction in cable-pulley type transmissions, and the proposal of an empirical friction model for this type of transmission.DoctoradoDoctor en Ingeniería - Ingeniería AutomáticaDepartamento de Ingeniería Eléctrica, Electrónica y Computaciónxx, 123 páginasapplication/pdfspaUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaFriction (Mechanical)Tribología -- Tesis y disertaciones académicas.Fricción (Mecánica)Modelo de fricciónTransmisiónPolea-cableEquipo de pruebasCreepFriction modelCable-driven transmissionTest equipmentIdentificación experimental de la fricción en las transmisiones accionadas por cableExperimental identification of friction in cable-driven transmissionsTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTextJ. Fryman and B. Matthias, “Safety of Industrial Robots : From Conventional to Collaborative Applications.,” in 7th German Conference on Robotics, 2012, pp. 1–5V. Villani, F. Pini, F. Leali, and C. Secchi, “Survey on human–robot collaboration in industrial settings: Safety, intuitive interfaces and applications,” Mechatronics, vol. 55, no. February, pp. 248–266, 2018, doi: 10.1016/j.mechatronics.2018.02.009.W. T. Townsend and J. A. Guertin, “Teleoperator slave - WAM design methodology,” Ind. Robot An Int. J., vol. 26, no. 3, pp. 167–177, 1999, doi: 10.1108/01439919910266820.B. Rooks, “The harmonious robot,” Ind. Robot An Int. J., vol. 33, no. 2, pp. 125–130, Mar. 2006, doi: 10.1108/01439910610651446.A. Pervez and J. Ryu, “Safe physical human robot interaction-past, present and future,” J. Mech. Sci. Technol., vol. 22, no. 3, pp. 469–483, Mar. 2008, doi: 10.1007/s12206-007-1109-3.H. Xiong and X. Diao, “A review of cable-driven rehabilitation devices,” Disabil. Rehabil. Assist. Technol., vol. 15, no. 8, pp. 885–897, 2020, doi: 10.1080/17483107.2019.1629110.M. A. Gull, S. Bai, and T. Bak, “A review on design of upper limb exoskeletons,” Robotics, vol. 9, no. 1, pp. 1–35, 2020, doi: 10.3390/robotics9010016.M. Shoaib, E. Asadi, J. Cheong, and A. Bab-Hadiashar, “Cable Driven Rehabilitation Robots: Comparison of Applications and Control Strategies,” IEEE Access, vol. 9, pp. 110396–110420, Aug. 2021, [Online]. Available: http://arxiv.org/abs/2108.02379.B. Armstrong-Hélouvry, P. Dupont, and C. C. De Wit, “A survey of models, analysis tools and compensation methods for the control of machines with friction,” Automatica, vol. 30, no. 7, pp. 1083–1138, 1994, doi: 10.1016/0005-1098(94)90209-7A. Bonsignore, G. Ferretti, and G. Magnani, “Analytical Formulation of the Classical Friction Model for Motion Analysis and Simulation,” Math. Comput. Model. Dyn. Syst., vol. 5, no. 1, pp. 43–55, 1999P. Dupont, C. Street, V. Hayward, and B. Armstrong, “Single State Elasto-Plastic Models for Friction Compensation ∗,” IEEE Trans. Automat. Contr., vol. 47, no. 5, pp. 787–792, 1999.J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 675–686, Apr. 2000, doi: 10.1109/9.847103.R. H. a. Hensen, M. J. G. J. G. van de Molengraft, and M. Steinbuch, “Frequency domain identification of dynamic friction model parameters,” IEEE Trans. Control Syst. Technol., vol. 10, no. 2, pp. 191–196, 2002, doi: 10.1109/87.987064P. Dupont, V. Hayward, B. Armstrong, and F. Altpeter, “Single state elastoplastic friction models,” IEEE Trans. Automat. Contr., vol. 47, no. 5, pp. 787–792, 2002, doi: 10.1109/TAC.2002.1000274V. Lampaert, J. Swevers, and F. Al-bender, “Experimental Comparison of Different Low-Velocity Tracking,” 10th Mediterr. Conf. Control Autom., 2002V. Lampaert et al., “Measurement and identification of pre-sliding friction dynamics,” Nonlinear Dyn., pp. 0–20, 2003.F. Al-Bender, V. Lampaert, and J. Swevers, “Modeling of dry sliding friction dynamics: From heuristic models to physically motivated models and back,” Chaos, vol. 14, no. 2, pp. 446–460, 2004, doi: 10.1063/1.1741752.D. Kostić, B. de Jager, M. Steinbuch, and R. Hensen, “Modeling and identification for high-performance robot control: An RRR-robotic arm case study,” IEEE Transactions on Control Systems Technology, vol. 12, no. 6. pp. 904–919, 2004, doi: 10.1109/TCST.2004.833641.E. R. D. P. and E. B. C. Francisco J. T. Vargas, “Identification and friction compensation for an industrial robot using two degrees of freedom controllers,” ICARCV 2004 8th Control. Autom. Robot. Vis. Conf. 2004., vol. 2, no. December, pp. 6–9, 2004, doi: 10.1109/ICARCV.2004.1469006.M. R. Kermani, R. V. Patel, and M. Moallem, “Friction identification in robotic manipulators: case studies,” Proc. 2005 IEEE Conf. Control Appl. 2005. CCA 2005., pp. 1170–1175, 2005, doi: 10.1109/CCA.2005.1507289D. D. Rizos and S. D. Fassois, “Friction identification based upon the LuGre and Maxwell slip models,” IFAC Proc. Vol., vol. 16, no. 1, pp. 548–553, 2005, doi: 10.1109/TCST.2008.921809I. Nilkhamhang and A. Sano, “Adaptive friction compensation using the GMS model with polynomial stribeck function,” Proc. IEEE Int. Conf. Control Appl., pp. 1085–1090, 2006, doi: 10.1109/CACSD-CCA-ISIC.2006.4776795J. Swevers, W. Verdonck, J. De Schutter, and J. De Schutter, “Dynamic Model Identification for Industrial Robots,” IEEE Control Syst. Mag., vol. 27, no. 5, pp. 51–68, 2007, doi: 10.1109/MCS.2007.904659M. R. Kermani, R. V. Patel, and M. Moallem, “Friction identification and compensation in robotic manipulators,” IEEE Trans. Instrum. Meas., vol. 56, no. 6, pp. 2346–2353, 2007, doi: 10.1109/TIM.2007.907957W. Susanto, R. Babuška, F. Liefhebber, and T. van der Weiden, “Adaptive Friction Compensation: Application to a Robotic Manipulator,” IFAC Proc. Vol., vol. 41, no. 2, pp. 2020–2024, 2008, doi: 10.3182/20080706-5-KR-1001.00343.V. Van Geffen, “A study of friction models and friction Compensation,” A study Frict. Model. Frict. Compens., pp. 1–24, 2009, [Online]. Available: http://www.mate.tue.nl/mate/pdfs/11194.pdfM. Indri, I. Lazzero, A. Antoniazza, and A. M. Bottero, “Friction modeling and identification for industrial manipulators,” in 2013 IEEE 18th Conference on Emerging Technologies & Factory Automation (ETFA), Sep. 2013, pp. 1–8, doi: 10.1109/ETFA.2013.6647958.X. Song, H. Liu, K. Althoefer, T. Nanayakkara, and L. D. Seneviratne, “Efficient break-away friction ratio and slip prediction based on haptic surface exploration,” IEEE Trans. Robot., vol. 30, no. 1, pp. 203–219, 2014, doi: 10.1109/TRO.2013.2279630.M. Boegli, T. De Laet, J. De Schutter, and J. Swevers, “A smoothed GMS friction model suited for gradient-based friction state and parameter estimation,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 5, pp. 1593–1602, 2014, doi: 10.1109/TMECH.2013.2288944.A. C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, and T. Brogårdh, “An extended friction model to capture load and temperature effects in robot joints,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2010, pp. 6161–6167, doi: 10.1109/IROS.2010.5650358.P. Hamon, M. Gautier, P. Garrec, and a. Janot, “Dynamic identification of robot with a load-dependent joint friction model,” 2010 IEEE Conf. Robot. Autom. Mechatronics, RAM 2010, pp. 129–135, 2010, doi: 10.1109/RAMECH.2010.5513201.A. C. Bittencourt and S. Gunnarsson, “Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects,” J. Dyn. Syst. Meas. Control, vol. 134, no. 5, p. 051013, 2012, doi: 10.1115/1.4006589A. C. Bittencourt and P. Axelsson, “Modeling and experiment design for identification of wear in a robot joint under load and temperature uncertainties based on friction data,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 5, pp. 1694–1706, 2014, doi: 10.1109/TMECH.2013.2293001Z. P. Rico, A. Lecchini-Visintini, and R. Q. Quiroga, “Dynamic model of a 7-DOF whole arm manipulator and validation from experimental data,” in ICINCO 2012 - Proceedings of the 9th International Conference on Informatics in Control, Automation and Robotics, 2012, vol. 2, pp. 217–222, doi: 10.5220/0004013002170222H. Olsson, K. K. J. J. Åström, C. Canudas de Wit, M. Gäfvert, and P. Lischinsky, “Friction Models and Friction Compensation,” Eur. J. Control, vol. 4, no. 3, pp. 176–195, 1998, doi: 10.1016/S0947-3580(98)70113-XE. Berger, “Friction modeling for dynamic system simulation,” Appl. Mech. Rev., vol. 55, no. 6, p. 535, 2002, doi: 10.1115/1.1501080F. Al-Bender and J. Swevers, “Characterization of friction force dynamics,” IEEE Control Syst. Mag., vol. 28, no. 6, pp. 64–81, 2008, doi: 10.1109/MCS.2008.929279S. Buechner, S. Zschaeck, A. Amthor, C. Ament, and M. Eichhorn, “Dynamic friction modeling and identification for high precision mechatronic systems,” IECON 2012 - 38th Annu. Conf. IEEE Ind. Electron. Soc., pp. 2263–2268, 2012, doi: 10.1109/IECON.2012.6388884.L. Márton and B. Lantos, “Modeling, identification, and compensation of stick-slip friction,” IEEE Trans. Ind. Electron., vol. 54, no. 1, pp. 511–521, 2007, doi: 10.1109/TIE.2006.888804.C. Canudas de Wit, P. Noel, a. Aubin, and B. Brogliato, “Adaptive Friction Compensation in Robot Manipulators: Low Velocities,” Int. J. Rob. Res., vol. 10, no. 3, pp. 189–199, 1991, doi: 10.1177/027836499101000301.B. Bona and M. Indri, “Friction compensation in robotics: An overview,” Proc. 44th IEEE Conf. Decis. Control. Eur. Control Conf. CDC-ECC ’05, vol. 2005, pp. 4360–4367, 2005, doi: 10.1109/CDC.2005.1582848.A. C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, and T. Brogårdh, “An extended friction model to capture load and temperature effects in robot joints,” IEEE/RSJ 2010 Int. Conf. Intell. Robot. Syst. IROS 2010 - Conf. Proc., pp. 6161–6167, 2010, doi: 10.1109/IROS.2010.5650358.P. Hamon, a Janot, and S. a Haption, “Dynamic Identification of Robot with a Load- Dependent Joint Friction Model,” Int. Conf. Robot. Autom. Mechatronics, pp. 129–135, 2010P. Hamon, M. Gautier, and P. Garrec, “New dry friction model with load- and velocity-dependence and dynamic identification of multi-dof robots,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 1077–1084, 2011, doi: 10.1109/ICRA.2011.5980126.F. Al-Bender, V. Lampaert, and J. Swevers, “Modeling of dry sliding friction dynamics: From heuristic models to physically motivated models and back,” Chaos, vol. 14, no. 2, pp. 446–460, 2004, doi: 10.1063/1.1741752.P. Dahl, “A solid friction model,” Aerosp. Corp. El Segundo, CA, vol. 158, p. Tech. Rep. TOR-01 58(3 107-1 8)-1, 1968, doi: TOR-0158(3107-18)-1R. Kikuuwe, N. Takesue, A. Sano, H. Mochiyama, and H. Fujimoto, “Fixed-step friction simulation: From classical coulomb model to modern continuous models,” 2005 IEEE/RSJ Int. Conf. Intell. Robot. Syst. IROS, no. 1, pp. 3910–3917, 2005, doi: 10.1109/IROS.2005.1545579.K. J. Åström and C. Canudas-de-wit, “Revisting the LuGre Friction Model,” IEEE Control Syst. Mag., no. December, pp. 101–114, 2008, doi: 10.1109/MCS.2008.929425.C. C. De Wit et al., “A new model for control of systems with friction,” IEEE Trans. Automat. Contr., vol. 40, no. 3, pp. 419–425, 1995, doi: 10.1109/9.376053.B. Armstrong, “Friction: experimental determination, modeling and compensation,” Proceedings. 1988 IEEE Int. Conf. Robot. Autom., pp. 1422–1427, 1988, doi: 10.1109/ROBOT.1988.12266.X. Zhang, Q. Jia, H. Sun, and M. Chu, “Adaptive control of manipulator flexible-joint with friction compensation using LuGre model,” 2008 3rd IEEE Conf. Ind. Electron. Appl. ICIEA 2008, pp. 1234–1239, 2008, doi: 10.1109/ICIEA.2008.4582716.B. Zhong, L. Sun, L. Chen, and Z. Wang, “The dynamics study of the stick-slip driving system based on LuGre dynamic friction model,” 2011 IEEE Int. Conf. Mechatronics Autom. ICMA 2011, pp. 584–589, 2011, doi: 10.1109/ICMA.2011.5985726.A. C. Bittencourt and S. Gunnarsson, “Static Friction in a Robot Joint—Modeling and Identification of Load and Temperature Effects,” J. Dyn. Syst. Meas. Control, vol. 134, no. 5, p. 51013, 2012, doi: 10.1115/1.4006589M. S. Madi, K. Khayati, and P. Bigras, “Parameter estimation for the LuGre friction model using interval analysis and set inversion,” Syst. Man Cybern. 2004 IEEE Int. Conf., vol. 1, pp. 428–433 vol.1, 2004, doi: 10.1109/ICSMC.2004.1398335S. Sobczyk and a Eduardo, “A continuous approximation of the lugre friction model,” ABCM Symp. Ser. Mechatronics, vol. 4, pp. 218–228, 2010.N. Barabanov and R. Ortega, “Necessary and sufficient conditions for passivity of the LuGre friction model,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 830–832, 2000, doi: 10.1109/9.847131.Z. Wenjing, “Parameter Identification of LuGre Friction Model in Servo Sys- tem Based on Improved Particle Swarm Optimization Algorithm,” Proc. 26th Chinese Control Conf., pp. 135–139, 2007, doi: 10.1109/CHICC.2006.4346908D. Liu, “Parameter identification for LuGre friction model using genetic algorithms,” Proc. Fifth Int. Conf. Mach. Learn. Cybern., no. August, pp. 13–16, 2006, doi: 10.1109/ICMLC.2006.258506.X. Wang, S. Lin, and S. Wang, “Dynamic Friction Parameter Identification Method with LuGre Model for Direct-Drive Rotary Torque Motor,” Math. Probl. Eng., vol. 2016, 2016, doi: 10.1155/2016/6929457X. Hongbiao, Q. Zurong, and L. Xingfei, “Simulation and experimental research of non-linear friction compensation for high-precision ball screw drive system,” ICEMI 2009 - Proc. 9th Int. Conf. Electron. Meas. Instruments, pp. 3604–3609, 2009, doi: 10.1109/ICEMI.2009.5274257.R. Dhaouadi, F. H. Ghorbel, and P. S. Gandhi, “A New Dynamic Model of Hysteresis in Harmonic Drives,” IEEE Trans. Ind. Electron., vol. 50, no. 6, pp. 1165–1171, 2003, doi: 10.1109/TIE.2003.819661L. Freidovich, a. Robertsson, a. Shiriaev, and R. Johansson, “Friction compensation based on LuGre model,” Proc. 45th IEEE Conf. Decis. Control, no. 6, pp. 9–12, 2006, doi: 10.1109/CDC.2006.376780.G. Palli and C. Melchiorri, “Modelling and control of robotic joints based on sliding pairs,” 2013 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics Mechatronics Hum. Wellbeing, AIM 2013, pp. 1743–1748, 2013, doi: 10.1109/AIM.2013.6584349.X. Song, H. Liu, K. Althoefer, T. Nanayakkara, and L. D. Seneviratne, “Efficient break-away friction ratio and slip prediction based on haptic surface exploration,” IEEE Trans. Robot., vol. 30, no. 1, pp. 203–219, 2014, doi: 10.1109/TRO.2013.2279630.J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 675–686, Apr. 2000, doi: 10.1109/9.847103.G. Ferretti, G. Magnani, and P. Rocco, “Single and multistate integral friction models,” IEEE Trans. Automat. Contr., vol. 49, no. 12, pp. 2292–2297, 2004, doi: 10.1109/TAC.2004.839234.S. Bograd, P. Reuss, a. Schmidt, L. Gaul, and M. Mayer, “Modeling the dynamics of mechanical joints,” Mech. Syst. Signal Process., vol. 25, no. 8, pp. 2801–2826, 2011, doi: 10.1016/j.ymssp.2011.01.010P. Dupont, B. Armstrong, and V. Hayward, “Elasto-plastic friction model: contact compliance and stiction,” Proc. 2000 Am. Control Conf. ACC (IEEE Cat. No.00CH36334), vol. 2, no. June, pp. 1072–1077, 2000, doi: 10.1109/ACC.2000.876665.F. Al-Bender, V. Lampaert, and J. Swevers, “The generalized Maxwell-slip model: A novel model for friction simulation and compensation,” IEEE Trans. Automat. Contr., vol. 50, no. 11, pp. 1883–1887, 2005, doi: 10.1109/TAC.2005.858676.M. W. van der Kooij, “Model based friction compensation for an electromechanical Stewart platform actuator,” Delft University of Technology, 2011.R. Isermann and M. Münchhof, Identification of Dynamic Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011C. CHEN, “Friction modeling and experimental identification of a mitsubishi PA10-6CE robot manipulator,” University of Florida, 2013.M. Ruderman, “Discrete-time series identification of sliding dynamic friction in industrial robotic joints,” IEEE Int. Conf. Intell. Robot. Syst., pp. 5809–5814, 2013, doi: 10.1109/IROS.2013.6697197.M. N. Nevmerzhitskiy, A. V Vara, and K. V Zmeu, “Technique for Friction Model Identification in an Industrial Robot Joint Using KUKA KR10,” 2018 Int. Multi-Conference Ind. Eng. Mod. Technol., no. 02, pp. 1–5, 2018.P. Hamon, M. Gautier, and P. Garrec, “New Dry Friction Model with Load- and Velocity-Dependence and Dynamic Identification of Multi-DOF Robots,” pp. 1077–1084, 2015.J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 675–686, Apr. 2000, doi: 10.1109/9.847103.L. Simoni et al., “On the use of a temperature based friction model for a virtual force sensor in industrial robot manipulators,” IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, pp. 1–6, 2018, doi: 10.1109/ETFA.2017.8247655.M. Iwatani and R. Kikuuwe, “An identification procedure for rate-dependency of friction in robotic joints with limited motion ranges,” Mechatronics, vol. 36, pp. 36–44, 2016, doi: 10.1016/j.mechatronics.2016.04.002.T. D. Tuttle and W. P. Seering, “A nonlinear model of a harmonic drive gear transmission,” IEEE Trans. Robot. Autom., vol. 12, no. 3, pp. 368–374, 1996, doi: 10.1109/70.499819.H. D. Taghirad and P. R. Bélanger, “Modelling and Parameter Identification of Harmonic Drive Systems,” J. Dyn. Syst. Meas. Control, vol. 120, pp. 439–444, 1998, doi: 10.1115/1.2801484P. S. S. Gandhi, F. H. H. Ghorbel, and J. Dabney, “Modeling, identification, and compensation of friction in harmonic drives,” Proc. 41st IEEE Conf. Decis. Control. 2002., vol. 1, no. December, 2002, doi: 10.1109/CDC.2002.1184485.Wenjie Chen, Kyoungchul Kong, and M. Tomizuka, “Dual-Stage Adaptive Friction Compensation for Precise Load Side Position Tracking of Indirect Drive Mechanisms,” IEEE Trans. Control Syst. Technol., vol. 23, no. 1, pp. 164–175, Jan. 2015, doi: 10.1109/TCST.2014.2317776.J. Baur, S. Dendorfer, J. Pfaff, C. Schutz, T. Buschmann, and H. Ulbrich, “Experimental friction identification in robot drives,” in 2014 IEEE International Conference on Robotics and Automation (ICRA), May 2014, pp. 6006–6011, doi: 10.1109/ICRA.2014.6907744.Y. Lu and D. Fan, “Transmission backlash of precise cable drive system,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 227, no. 10, pp. 2256–2267, Oct. 2013, doi: 10.1177/0954406212473887.O. Baser and E. Ilhan Konukseven, “Theoretical and experimental determination of capstan drive slip error,” Mech. Mach. Theory, vol. 45, no. 6, pp. 815–827, 2010, doi: 10.1016/j.mechmachtheory.2009.10.013.J. Werkmeister and A. Slocum, “Theoretical and experimental determination of capstan drive stiffness,” Precis. Eng., vol. 31, no. 1, pp. 55–67, 2007, doi: 10.1016/j.precisioneng.2006.03.001X. Xie, C. Qi, L. Zhang, and D. Fan, “Analytical and experimental research on transmission backlash in precise cable drive for an electro-optical targeting system,” Adv. Mech. Eng., vol. 11, no. 7, p. 168781401986605, Jul. 2019, doi: 10.1177/1687814019866059.J. Hwangbo, V. Tsounis, H. Kolvenbach, and M. Hutter, “Cable-Driven Actuation for Highly Dynamic Robotic Systems,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2018, pp. 8543–8550, doi: 10.1109/IROS.2018.8593569P. Hamon, M. Gautier, and P. Garrec, “New dry friction model with load- and velocity-dependence and dynamic identification of multi-dof robots,” Proc. - IEEE Int. Conf. Robot. Autom., pp. 1077–1084, 2011, doi: 10.1109/ICRA.2011.5980126.L. Ding, H. Wu, Y. Yao, and Y. Yang, “Dynamic model identification for 6-DOF industrial robots,” J. Robot., vol. 2015, no. 5, pp. 51–68, 2015, doi: 10.1155/2015/471478.A. C. Bittencourt, E. Wernholt, S. Sander-Tavallaey, and T. Brogårdh, “An extended friction model to capture load and temperature effects in robot joints,” in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2010, pp. 6161–6167, doi: 10.1109/IROS.2010.5650358A. C. Bittencourt and P. Axelsson, “Modeling and Experiment Design for Identification of Wear in a Robot Joint Under Load and Temperature Uncertainties Based on Friction Data,” IEEE/ASME Trans. Mechatronics, vol. 19, no. 5, pp. 1694–1706, Oct. 2014, doi: 10.1109/TMECH.2013.2293001.W. Susanto, R. Babuška, F. Liefhebber, and T. van der Weiden, “Adaptive Friction Compensation: Application to a Robotic Manipulator,” IFAC Proc. Vol., vol. 41, no. 2, pp. 2020–2024, 2008, doi: 10.3182/20080706-5-KR-1001.00343.D. Liu, “Parameter Identification for Lugre Friction Model using Genetic Algorithms,” in 2006 International Conference on Machine Learning and Cybernetics, 2006, vol. 2006, no. August, pp. 3419–3422, doi: 10.1109/ICMLC.2006.258506.X. Wang, S. Lin, and S. Wang, “Dynamic Friction Parameter Identification Method with LuGre Model for Direct-Drive Rotary Torque Motor,” Math. Probl. Eng., vol. 2016, pp. 1–8, 2016, doi: 10.1155/2016/6929457.D. Liu, “Parameter Identification for Lugre Friction Model using Genetic Algorithms,” in 2006 International Conference on Machine Learning and Cybernetics, 2006, no. August, pp. 3419–3422, doi: 10.1109/ICMLC.2006.258506.J. Swevers, F. Al-Bender, C. G. Ganseman, and T. Projogo, “An integrated friction model structure with improved presliding behavior for accurate friction compensation,” IEEE Trans. Automat. Contr., vol. 45, no. 4, pp. 675–686, Apr. 2000, doi: 10.1109/9.847103.P. Feyel, G. Duc, and G. Sandou, “LuGre Friction Model Identification and Compensator Tuning Using A Differential Evolution Algorithm,” no. 1, pp. 85–91, 2013.D. Liu, “Research on parameter identification of friction model for servo systems based on genetic algorithms,” Mach. Learn., no. August, pp. 18–21, 2005.R. Waiboer, “Dynamic modelling, identification and simulation of industrial robots,” Universiteit Twente, 2007.P. Lischinsky, C. Canudas-de-Wit, and G. Morel, “Friction Compensation for an Industrial Hydraulic Robot,” IEEE Control Syst., vol. 19, no. 1, pp. 25–32, 1999, doi: 10.1109/37.745763.F. J. T. J. T. Vargas, E. R. D. R. De Fieri, and E. B. B. Castelan, “Identification and friction compensation for an industrial robot using two degrees of freedom controllers,” ICARCV 2004 8th Control. Autom. Robot. Vis. Conf. 2004., vol. 2, no. December, pp. 6–9, 2004, doi: 10.1109/ICARCV.2004.1469006.W. T. Townsend, “United States Patent [ 191 Patent Number : Date of Patent :,” 1995.Christiand, J. Yoon, and P. Kumar, “A novel optimal assembly algorithm for haptic interface applications of a virtual maintenance system,” J. Mech. Sci. Technol., vol. 23, no. 1, pp. 183–194, 2009, doi: 10.1007/s12206-008-0902-y.Y. Wang, Y. Shen, D. Liu, S. Wei, and C. Zhu, “Key technique of assembly system in an augmented reality environment,” ICCMS 2010 - 2010 Int. Conf. Comput. Model. Simul., vol. 1, pp. 133–137, 2010, doi: 10.1109/ICCMS.2010.201.M. Karray, F. Chaari, A. F. Del Rincon, F. Viadero, and M. Haddar, “An Experimental Investigation of the Dynamic Behavior of Planetary Gear Set,” no. 2003, M. Haddar, L. Romdhane, J. Louati, and A. Ben Amara, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 199–206.A. Fernández del Rincón, R. Cerdá, M. Iglesias, A. De-Juan, P. García, and F. Viadero, “Test Bench for the Analysis of Dynamic Behavior of Planetary Gear Transmissions,” in Lecture Notes in Mechanical Engineering, vol. 5, 2014, pp. 485–495S. S. Khodwe, U. S. Cherekar, and S. S. Prabhune, “Design and Analysis of Gear Box Test Bench to Test Shift Performance and Leakage,” Int. J. Adv. Res. Innov. Ideas Educ., vol. 1, no. 2, pp. 270–280, 2015.A. Mazumdar et al., “Synthetic Fiber Capstan Drives for Highly Efficient, Torque Controlled, Robotic Applications,” IEEE Robot. Autom. Lett., vol. 2, no. 2, pp. 554–561, Apr. 2017, doi: 10.1109/LRA.2016.2646259N. Dumitru, E. Dragut, N. Craciunoiu, and I. Geonea, “Experimental Bench for Spur Gears Efficiency Measurement,” in Mechanisms and Machine Science, vol. 57, Springer International Publishing, 2018, pp. 477–485X. Xie, C. Qi, R. Tan, and D. Fan, “Design and performance analysis of a many-to-one configuration precise cable drive mechanism with high precision and large torque,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 16, pp. 5903–5915, Aug. 2019, doi: 10.1177/0954406219849450.Y. Lu and D. Fan, “Non-intervene cable wrapping method for precise cable drive,” in 2012 International Conference on Optoelectronics and Microelectronics, Aug. 2012, no. 1, pp. 378–383, doi: 10.1109/ICoOM.2012.6316294R. A. Mitchell and S. M. Baker, “Characterizing the Creep Response of Load Cells.,” VDI Ber, no. 31, pp. 43–48, 1978.M. Spoor, “Improving Creep Performance of the Strain Gage Based Load Cell,” Mech. Probl. Meas. Force Mass, pp. 293–302, 1986, doi: 10.1007/978-94-009-4414-5_34.T. W. Bartel and S. L. Yaniv, “Creep and creep recovery response of load cells tested according to U.S. and international evaluation procedures,” J. Res. Natl. Inst. Stand. Technol., vol. 102, no. 3, pp. 349–362, 1997, doi: 10.6028/jres.102.024.Makoto Makabe and Toru Kohashi, “High accurate Creep compensation method for Load Cell,” in SICE Annual Conference 2007, Sep. 2007, pp. 29–36, doi: 10.1109/SICE.2007.4420945.M. I. Mohamed, E. H. Hasan, and G. Aggag, “Study of creep behavior of load cells,” Meas. J. Int. Meas. Confed., vol. 42, no. 7, pp. 1006–1010, 2009, doi: 10.1016/j.measurement.2009.03.001.A. Ohtsuka, T. Koyama, T. Kohashi, and M. Adachi, “Digital creep compensation method for load cell in various loading patterns,” ICCAS-SICE 2009 - ICROS-SICE Int. Jt. Conf. 2009, Proc., pp. 369–373, 2009A. Ohtsuka, T. Kohashi, and M. Adachi, “Self-optimization of digital creep compensation parameter for load cell,” Proc. SICE Annu. Conf., pp. 1456–1460, 2012.Carl Stahl Sava Industries (savacable.com), “Design Guide for Cable Solutions TM,” WHITEPAPER - Carl Stahl Sava Ind., 2010.E. R. Snow, “The load/deflection behavior of pretensioned cable/pulley transmission mechanisms,” Massachusetts Institute of Technology, 1993Y. Lu, D. Fan, H. Liu, and M. Hei, “Transmission capability of precise cable drive including bending rigidity,” Mech. Mach. Theory, vol. 94, pp. 132–140, 2015, doi: 10.1016/j.mechmachtheory.2015.07.004.O. Baser and E. I. Konukseven, “Theoretical and experimental determination of capstan drive slip error,” Mech. Mach. Theory, vol. 45, no. 6, pp. 815–827, 2010, doi: 10.1016/j.mechmachtheory.2009.10.013S. N. Kosari, S. Ramadurai, H. J. Chizeck, and B. Hannaford, “Control and Tension Estimation of a Cable Driven Mechanism Under Different Tensions,” in Volume 6A: 37th Mechanisms and Robotics Conference, Aug. 2013, pp. 1–9, doi: 10.1115/DETC2013-13548.M. Miyasaka, M. Haghighipanah, Y. Li, J. Matheson, A. Lewis, and B. Hannaford, “Modeling Cable-Driven Robot with Hysteresis and Cable-Pulley Network Friction,” IEEE/ASME Trans. Mechatronics, vol. 25, no. 2, pp. 1095–1104, 2020, doi: 10.1109/TMECH.2020.2973428.R. J. E. Merry, Wavelet Theory and Its Applications - A literature study. Eindhoven University of Technology, 2005.D. Giaouris et al., “Wavelet Denoising for Electric Drives,” IEEE Trans. Ind. Electron., vol. 55, no. 2, pp. 543–550, 2008, doi: 10.1109/TIE.2007.911943M. Misiti, Y. Misiti, G. Oppenheim, and J.-M. Poggi, “Wavelet Toolbox TM User ’ s Guide,” p. 700, 2015, [Online]. Available: http://www.mathworks.com/help/pdf_doc/wavelet/wavelet_ug.pdf.F. Al-Bender and J. Swevers, “Characterization of Friction Force Dynamics BEHAVIOR AND MODELING ON MICRO AND MACRO SCALES,” IEEE Control Syst. Mag., no. December, pp. 64–81, 2008.X. Hua, J. C. Puoza, P. Zhang, X. Xie, and B. Yin, “Experimental analysis of grease friction properties on sliding textured surfaces,” Lubricants, vol. 5, no. 4, pp. 1–11, 2017, doi: 10.3390/lubricants5040042.EstudiantesInvestigadoresPúblico generalORIGINAL7914507.2022.pdf7914507.2022.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf6546434https://repositorio.unal.edu.co/bitstream/unal/80984/1/7914507.2022.pdf701f1d8b5b6b146132965b4d31562d14MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/80984/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL7914507.2022.pdf.jpg7914507.2022.pdf.jpgGenerated Thumbnailimage/jpeg4619https://repositorio.unal.edu.co/bitstream/unal/80984/3/7914507.2022.pdf.jpgbeebee6d5b88454911d7058192f4c44cMD53unal/80984oai:repositorio.unal.edu.co:unal/809842023-08-01 23:03:58.183Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |