A bayesian approach to parameter estimation in simplex regression model: a comparison with beta regression

Some variables are restricted to the open interval (0; 1) and several methodshave been developed to work with them under the scheme of the regressionanalysis. Most of research consider maximum likelihood methods andthe use of Beta or Simplex distributions.This paper presents the use of Bayesian tech...

Full description

Autores:
López, Freddy Omar
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73203
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73203
http://bdigital.unal.edu.co/37678/
Palabra clave:
Beta distribution
Gibbs sampler
Heterogeneous
Proportions
Simplex distribution
Variances
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Some variables are restricted to the open interval (0; 1) and several methodshave been developed to work with them under the scheme of the regressionanalysis. Most of research consider maximum likelihood methods andthe use of Beta or Simplex distributions.This paper presents the use of Bayesian techniques to estimate the parametersof the simplex regression supported on the implementation of somesimulations and a comparison with Beta regression. We consider both modelswith constant variance and models with