Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+

ilustraciones, diagramas, fotografías

Autores:
Gómez Piñeros, Brayan Stiven
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86194
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86194
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Bactris gasipaes
Iones
Bactris gasipaes
ions
Chontaduro
Fluorescencia
Quenching estático
Puntos cuánticos de carbono
Peach palm
Static quenching
Fluorescence
Carbon quantum dots
punto cuántico
quantum dot
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_def0227382c001bf78b6163457c7c46b
oai_identifier_str oai:repositorio.unal.edu.co:unal/86194
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+
dc.title.translated.eng.fl_str_mv Synthesis of carbon quantum dots from peach palm peels: functionalization with biomolecules and application in Hg2+, Pb2+ and As3+ ions detection
title Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+
spellingShingle Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Bactris gasipaes
Iones
Bactris gasipaes
ions
Chontaduro
Fluorescencia
Quenching estático
Puntos cuánticos de carbono
Peach palm
Static quenching
Fluorescence
Carbon quantum dots
punto cuántico
quantum dot
title_short Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+
title_full Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+
title_fullStr Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+
title_full_unstemmed Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+
title_sort Síntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+
dc.creator.fl_str_mv Gómez Piñeros, Brayan Stiven
dc.contributor.advisor.spa.fl_str_mv Granados Oliveros, Gilma
dc.contributor.author.spa.fl_str_mv Gómez Piñeros, Brayan Stiven
dc.contributor.researchgroup.spa.fl_str_mv Nano-Inorgánica
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
Bactris gasipaes
Iones
Bactris gasipaes
ions
Chontaduro
Fluorescencia
Quenching estático
Puntos cuánticos de carbono
Peach palm
Static quenching
Fluorescence
Carbon quantum dots
punto cuántico
quantum dot
dc.subject.agrovoc.spa.fl_str_mv Bactris gasipaes
Iones
dc.subject.agrovoc.eng.fl_str_mv Bactris gasipaes
ions
dc.subject.proposal.spa.fl_str_mv Chontaduro
Fluorescencia
Quenching estático
Puntos cuánticos de carbono
dc.subject.proposal.eng.fl_str_mv Peach palm
Static quenching
Fluorescence
Carbon quantum dots
dc.subject.wikidata.spa.fl_str_mv punto cuántico
dc.subject.wikidata.eng.fl_str_mv quantum dot
description ilustraciones, diagramas, fotografías
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-31T18:50:30Z
dc.date.available.none.fl_str_mv 2024-05-31T18:50:30Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86194
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86194
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] Duffus JH. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 2002;74:793–807. https://doi.org/10.1351/pac200274050793.
[2] Pandey SK, Singh P, Singh J, Sachan S, Srivastava S, Singh SK. Nanocarbon-based Electrochemical Detection of Heavy Metals. Electroanalysis 2016;28:2472–88. https://doi.org/10.1002/elan.201600173.
[3] Londoño Franco LF, Londoño Muñoz PT, Muñoz Garcia FG. Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal. Biotecnoloía En El Sect Agropecu y Agroindustrial 2016;14:145. https://doi.org/10.18684/bsaa(14)145-153.
[4] Gupta A, Chaudhary A, Mehta P, Dwivedi C, Khan S, Verma NC, et al. Nitrogen-doped, thiol-functionalized carbon dots for ultrasensitive Hg(ii) detection. Chem Commun 2015;51:10750–3. https://doi.org/10.1039/c5cc03019f.
[5] Gupta A, Verma NC, Khan S, Tiwari S, Chaudhary A, Nandi CK. Paper strip based and live cell ultrasensitive lead sensor using carbon dots synthesized from biological media. Sensors Actuators, B Chem 2016;232:107–14. https://doi.org/10.1016/j.snb.2016.03.110.
[6] Radhakrishnan K, Panneerselvam P. Green synthesis of surface-passivated carbon dots from the prickly pear cactus as a fluorescent probe for the dual detection of arsenic(iii) and hypochlorite ions from drinking water. RSC Adv 2018;8:30455–67. https://doi.org/10.1039/c8ra05861j.
[7] Jhonson O. El lado gris de la mineria. 2002:123.
[8] Services H. Toxicological Profile for Mercury. ATSDR’s Toxicol. Profiles, CRC Press; 2002. https://doi.org/10.1201/9781420061888_ch109.
[9] Clifton JC. Mercury Exposure and Public Health. Pediatr Clin North Am 2007;54:237.e1-237.e45. https://doi.org/10.1016/j.pcl.2007.02.005.
[10] Liu Y, Zhou Q, Li J, Lei M, Yan X. Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method. Sensors Actuators, B Chem 2016;237:597–604. https://doi.org/10.1016/j.snb.2016.06.092.
[11] Saikia A, Karak N. Polyaniline nanofiber/carbon dot nanohybrid as an efficient fluorimetric sensor for As (III) in water and effective antioxidant. Mater Today Commun 2018;14:82–9. https://doi.org/10.1016/j.mtcomm.2017.12.020.
[12] Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sensors Actuators, B Chem 2017;242:679–86. https://doi.org/10.1016/j.snb.2016.11.109.
[13] Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 2012;84:5351–7. https://doi.org/10.1021/ac3007939.
[14] John F. Callan FMR. Quantum dot sensors, CRC Press; 2013, p. 230.
[15] Lin YW, Huang CC, Chang HT. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 2011;136:863–71. https://doi.org/10.1039/c0an00652a.
[16] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008;5:763–75. https://doi.org/10.1038/nmeth.1248.
[17] Valizadeh A, Mikaeili H, Samiei M, Farkhani S, Zarghami N, Kouhi M, et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 2012;7:480. https://doi.org/10.1186/1556-276X-7-480.
[18] Gómez Piñeros BS, Granados Oliveros G. CUANTIFICACIÓN DE MERCURIO (II) MEDIANTE PUNTOS CUÁNTICOS DE SELENURO DE CADMIO /SULFURO DE ZINC QUE COMPRENDE ÁCIDO OLÉICO O GLUTATIÓN Y EL MÉTODO DE PREPARACIÓN DE ESTOS. NC2020/0006440, 2020.
[19] Raz J. Carbon quantum dots Synthesis, Properties and Aplications. Springer Nature; 2004. https://doi.org/10.1007/978-3-319-43911-2.
[20] Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: A review. Mater Today Chem 2018;8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003.
[21] Liu W, Li C, Ren Y, Sun X, Pan W, Li Y, et al. Carbon dots: Surface engineering and applications. J Mater Chem B 2016;4:5772–88. https://doi.org/10.1039/c6tb00976j.
[22] Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 2007;129:744–5. https://doi.org/10.1021/ja0669070.
[23] Simões EFC, Leitão JMM, da Silva JCGE. Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 2016;183:1769–77. https://doi.org/10.1007/s00604-016-1807-6.
[24] Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 2009;21:5563–5. https://doi.org/10.1021/cm901593y.
[25] Wee SS, Ng YH, Ng SM. Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta 2013;116:71–6. https://doi.org/10.1016/j.talanta.2013.04.081.
[26] Gu D, Shang S, Yu Q, Shen J. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci 2016;390:38–42. https://doi.org/10.1016/j.apsusc.2016.08.012.
[27] Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron 2016;85:68–75. https://doi.org/10.1016/j.bios.2016.04.089.
[28] Martínez-Girón J, Rodríguez-Rodríguez X, Pinzón-Zárate LX, Ordóñez-Santos LE. Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes Kunth, Arecaceae) obtenida por secado convectivo. Corpoica Cienc y Tecnol Agropecu 2017;18:599–613. https://doi.org/10.21930/rcta.vol18_num3_art:747.
[29] Díaz‐Ortiz Á, Prieto P, de la Hoz A. A Critical Overview on the Effect of Microwave Irradiation in Organic Synthesis. Chem Rec 2019;19:85–97. https://doi.org/10.1002/tcr.201800059.
[30] Chandra S, Das P, Bag S, Laha D, Pramanik P. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 2011;3:1533–40. https://doi.org/10.1039/c0nr00735h.
[31] Ramezani Z, Qorbanpour M, Rahbar N. Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: Application in cell imaging and As3+ determination. Colloids Surfaces A Physicochem Eng Asp 2018;549:58–66. https://doi.org/10.1016/j.colsurfa.2018.04.006.
[32] Li X, Zhang S, Kulinich SA, Liu Y, Zeng H. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 2014;4:1–8. https://doi.org/10.1038/srep04976.
[33] Yan F, Jiang Y, Sun X, Bai Z, Zhang Y, Zhou X. Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta 2018;185. https://doi.org/10.1007/s00604-018-2953-9.
[34] Hu H, He H, Zhang J, Hou X, Wu P. Optical sensing at the nanobiointerface of metal ion-optically-active nanocrystals. Nanoscale 2018;10:5035–46. https://doi.org/10.1039/c8nr00350e.
[35] Parr RG, Pearson RG. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J Am Chem Soc 1983;105:7512–6. https://doi.org/10.1021/ja00364a005.
[36] Pearson RG. Hard and soft acids and bases, HSAB, part I: Fundamental principles. J Chem Educ 1968;45:581–7. https://doi.org/10.1021/ed045p581.
[37] Gao X, Du C, Zhuang Z, Chen W. Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 2016;4:6927–45. https://doi.org/10.1039/c6tc02055k.
[38] Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots - Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014;9:590–603. https://doi.org/10.1016/j.nantod.2014.09.004.
[39] Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J AM CHEM SOC 2004;126:12736–7. https://doi.org/10.1021/ja040082h.
[40] Wang Y, Hu A. Copyright ( C ) by Foxit Software Company , 2005-2008 Carbon quantum dots : synthesis , properties and applications. J Mater Chem C Mater Opt Electron Devices 2014;2:6921–39. https://doi.org/10.1039/C4TC00988F.
[41] Kim JK, Park MJ, Kim SJ, Wang DH, Cho SP, Bae S, et al. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano 2013;7:7207–12. https://doi.org/10.1021/nn402606v.
[42] Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, et al. Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 2017;184:343–68. https://doi.org/10.1007/s00604-016-2043-9.
[43] Guo Y, Wang Z, Shao H, Jiang X. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon N Y 2013;52:583–9. https://doi.org/10.1016/j.carbon.2012.10.028.
[44] Wang Y, Zhuang Q, Ni Y. Facile Microwave-Assisted Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Sulfur-Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chem - A Eur J 2015;21:13004–11. https://doi.org/10.1002/chem.201501723.
[45] Shangguan J, Huang J, He D, He X, Wang K, Ye R, et al. Highly Fe 3+ -Selective Fluorescent Nanoprobe Based on Ultrabright N/P Codoped Carbon Dots and Its Application in Biological Samples. Anal Chem 2017;89:7477–84. https://doi.org/10.1021/acs.analchem.7b01053.
[46] Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem Commun 2012;48:8835–7. https://doi.org/10.1039/c2cc33796g.
[47] Dong W, Zhou S, Dong Y, Wang J, Ge X, Sui L. The preparation of ethylenediamine-modified fluorescent carbon dots and their use in imaging of cells. Luminescence 2015;30:867–71. https://doi.org/10.1002/bio.2834.
[48] Algarra M, Campos BB, Radotić K, Mutavdžić D, Bandosz T, Jiménez-Jiménez J, et al. Luminescent carbon nanoparticles: Effects of chemical functionalization, and evaluation of Ag+ sensing properties. J Mater Chem A 2014;2:8342–51. https://doi.org/10.1039/c4ta00264d.
[49] Liu X, Zhang N, Bing T, Shangguan D. Carbon Dots Based Dual-Emission Silica Nanoparticles as a Ratiometric Nanosensor for Cu 2+. Anal Chem 2014;86:2289–96. https://doi.org/10.1021/ac404236y.
[50] Wang X, Wang D, Guo Y, Yang C, Iqbal A, Liu W, et al. Imidazole derivative-functionalized carbon dots: Using as a fluorescent probe for detecting water and imaging of live cells. Dalt Trans 2015;44:5547–54. https://doi.org/10.1039/c5dt00128e.
[51] Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J Am Chem Soc 2006;128:7756–7. https://doi.org/10.1021/ja062677d.
[52] Jiang H, Chen F, Lagally MG, Denes FS. New Strategy for Synthesis and Functionalization of Carbon Nanoparticles. Langmuir 2010;26:1991–5. https://doi.org/10.1021/la9022163.
[53] Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, et al. Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 2013;138:6551–7. https://doi.org/10.1039/c3an01003a.
[54] Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 2012;66:222–4. https://doi.org/10.1016/j.matlet.2011.08.081.
[55] Zheng Y, Yang D, Wu X, Yan H, Zhao Y, Feng B, et al. A facile approach for the synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC Adv 2015;5:90245–54. https://doi.org/10.1039/c5ra14720d.
[56] Wang ZX, Yu XH, Li F, Kong FY, Lv WX, Fan DH, et al. Preparation of boron-doped carbon dots for fluorometric determination of Pb(II), Cu(II) and pyrophosphate ions. Microchim Acta 2017;184:4775–83. https://doi.org/10.1007/s00604-017-2526-3.
[57] Dou Q, Fang X, Jiang S, Chee PL, Lee TC, Loh XJ. Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Adv 2015;5:46817–22. https://doi.org/10.1039/c5ra07968c.
[58] Ray Chowdhuri A, Tripathy S, Haldar C, Roy S, Sahu SK. Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J Mater Chem B 2015;3:9122–31. https://doi.org/10.1039/c5tb01831e.
[59] Jaiswal A, Ghosh SS, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 2012;48:407–9. https://doi.org/10.1039/c1cc15988g.
[60] Qiao ZA, Wang Y, Gao Y, Li H, Dai T, Liu Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 2010;46:8812–4. https://doi.org/10.1039/c0cc02724c.
[61] Mohapatra S, Sahu S, Sinha N, Bhutia SK. Synthesis of a carbon-dot-based photoluminescent probe for selective and ultrasensitive detection of Hg2+in water and living cells. Analyst 2015;140:1221–8. https://doi.org/10.1039/c4an01386g.
[62] Bandi R, Dadigala R, Gangapuram BR, Guttena V. Green synthesis of highly fluorescent nitrogen – Doped carbon dots from Lantana camara berries for effective detection of lead(II) and bioimaging. J Photochem Photobiol B Biol 2018;178:330–8. https://doi.org/10.1016/j.jphotobiol.2017.11.010.
[63] Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 2013;52:15673–8. https://doi.org/10.1021/ie402421s.
[64] Vargas-Avila G, Jorge A-C. Clasificación y Caracterización de 20 razas de palma de chontaduro (Bactris gasipaes H.B.K) de acuerdo con las propiedades fisico-químicas y bromatológicas del fruto 2000:19.
[65] Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J. Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon N Y 2016;104:169–78. https://doi.org/10.1016/j.carbon.2016.04.003.
[66] Qiao ZA, Wang Y, Gao Y, Li H, Dai T, Liu Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 2010;46:8812–4. https://doi.org/10.1039/c0cc02724c.
[67] Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, et al. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim Acta 2017;184:1899–914. https://doi.org/10.1007/s00604-017-2318-9.
[68] Huang S, Wang L, Zhu F, Su W, Sheng J, Huang C, et al. A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv 2015;5:44587–97. https://doi.org/10.1039/c5ra05519a.
[69] Zhu X, Zhao Z, Chi X, Gao J. Facile, sensitive, and ratiometric detection of mercuric ions using GSH-capped semiconductor quantum dots. Analyst 2013;138:3230. https://doi.org/10.1039/c3an00011g.
[70] Lakowicz JR. Principles of Fluorescence Spectroscopy. Boston, MA: Springer US; 2006. https://doi.org/10.1007/978-0-387-46312-4.
[71] Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2011;2:21. https://doi.org/10.4103/2229-5186.79345.
[72] Liu Y, Liao M, He X, Liu X, Kou X, Xiao D. One-step synthesis of highly luminescent nitrogen-doped carbon dots for selective and sensitive detection of mercury(ii) ions and cellular imaging. Anal Sci 2015;31:971–7. https://doi.org/10.2116/analsci.31.971.
[73] Huang H, Lv JJ, Zhou DL, Bao N, Xu Y, Wang AJ, et al. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv 2013;3:21691–6. https://doi.org/10.1039/c3ra43452d.
[74] Qian ZS, Shan XY, Chai LJ, Chen JR, Feng H. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens Bioelectron 2015;68:225–31. https://doi.org/10.1016/j.bios.2014.12.057.
[75] Zhang Z, Li J, Wang X, Liang A, Jiang Z. Aptamer-mediated N/Ce-doped carbon dots as a fluorescent and resonance Rayleigh scattering dual mode probe for arsenic(III). Microchim Acta 2019;186:3–11. https://doi.org/10.1007/s00604-019-3764-3.
[76] Pooja D, Saini S, Thakur A, Kumar B, Tyagi S, Nayak MK. A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. J Hazard Mater 2017;328:117–26. https://doi.org/10.1016/j.jhazmat.2017.01.015.
[77] Ho TL. The Hard Soft Acids Bases (HSAB) Principle and Organic Chemistry. Chem Rev 1975;75:1–20. https://doi.org/10.1021/cr60293a001.
[78] Liu Y, Jiang L, Li B, Fan X, Wang W, Liu P, et al. Nitrogen doped carbon dots: Mechanism investigation and their application for label free CA125 analysis. J Mater Chem B 2019;7:3053–8. https://doi.org/10.1039/c9tb00021f.
[79] Valeur B, Berberan-Santos MN. Molecular Fluorescence: Principles and Applications, Second Edition. Wiley; 2012. https://doi.org/10.1002/9783527650002.
[80] Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, et al. Photoinduced electron transfers with carbon dots. Chem Commun 2009:3774. https://doi.org/10.1039/b906252a.
[81] Sydorchuk V, Poddubnaya OI, Tsyba MM, Zakutevskyy O, Khyzhun O, Khalameida S, et al. Photocatalytic degradation of dyes using phosphorus-containing activated carbons. Appl Surf Sci 2021;535:147667. https://doi.org/10.1016/j.apsusc.2020.147667.
[82] Leung K, Whaley KB. Surface relaxation in CdSe nanocrystals. J Chem Phys 1999;110:11012. https://doi.org/10.1063/1.479037.
[83] Gao Y, Peng X. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J Am Chem Soc 2015;137:4230–5. https://doi.org/10.1021/JACS.5B01314/ASSET/IMAGES/MEDIUM/JA-2015-013142_0003.GIF.
[84] Barman MK, Patra A. Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. J Photochem Photobiol C Photochem Rev 2018;37:1–22. https://doi.org/10.1016/j.jphotochemrev.2018.08.001.
[85] Kang C, Huang Y, Yang H, Yan XF, Chen ZP. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020;10:2316. https://doi.org/10.3390/nano10112316.
[86] Huang S, Wang L, Huang C, Xie J, Su W, Sheng J, et al. A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensors Actuators, B Chem 2015;221:1215–22. https://doi.org/10.1016/j.snb.2015.07.099.
[87] Qu S, Wang X, Lu Q, Liu X, Wang L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chemie - Int Ed 2012;51:12215–8. https://doi.org/10.1002/anie.201206791.
[88] Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 2017;5:8904–24. https://doi.org/10.1039/C7TB02484C.
[89] Zulfajri M, Dayalan S, Li WY, Chang CJ, Chang YP, Huang GG. Nitrogen-doped carbon dots from averrhoa carambola fruit extract as a fluorescent probe for methyl orange. Sensors (Switzerland) 2019;19:5008. https://doi.org/10.3390/s19225008.
[90] Fiuza T, Gomide G, Campos AFC, Messina F, Depeyrot J. On the Colloidal Stability of Nitrogen-Rich Carbon Nanodots Aqueous Dispersions. C — J Carbon Res 2019;5:74. https://doi.org/10.3390/c5040074.
[91] Granados-Oliveros G, Pineros BSG, Calderon FGO. CdSe/ZnS quantum dots capped with oleic acid and L-glutathione: Structural properties and application in detection of Hg2+. J Mol Struct 2022;1254:132293. https://doi.org/10.1016/J.MOLSTRUC.2021.132293.
[92] Milenković M, Mišović A, Jovanović D, Bijelić AP, Ciasca G, Romanò S, et al. Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. Nanomaterials 2021;11:1879. https://doi.org/10.3390/nano11081879.
[93] Salahinejad M, Sadjadi S, Abdouss M. Investigating fluorescence quenching of cysteine-functionalized carbon quantum dots by heavy metal ions: Experimental and QSPR studies. J Mol Liq 2021;334:116067. https://doi.org/10.1016/j.molliq.2021.116067.
[94] Guerra-López J, González R, Gómez A, Pomés R, Punte G, Della Védova CO. Effects of Nickel on Calcium Phosphate Formation. J Solid State Chem 2000;151:163–9. https://doi.org/10.1006/jssc.1999.8615.
[95] Nguyen KG, Baragau I-A, Gromicova R, Nicolaev A, Thomson SAJ, Rennie A, et al. Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening. Sci Rep 2022;12:13806. https://doi.org/10.1038/s41598-022-16893-x.
[96] Arcudi F, Đorđević L, Prato M. Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogen-Doped Carbon NanoDots. Angew Chemie Int Ed 2016;55:2107–12. https://doi.org/10.1002/anie.201510158.
[97] Dsouza SD, Buerkle M, Brunet P, Maddi C, Padmanaban DB, Morelli A, et al. The importance of surface states in N-doped carbon quantum dots. Carbon N Y 2021;183:1–11. https://doi.org/10.1016/j.carbon.2021.06.088.
[98] Chen X, Jin Q, Wu L, Tung C, Tang X. Synthesis and Unique Photoluminescence Properties of Nitrogen‐Rich Quantum Dots and Their Applications. Angew Chemie Int Ed 2014;53:12542–7. https://doi.org/10.1002/anie.201408422.
[99] Kiciński W, Dyjak S. Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules 2021;26:668. https://doi.org/10.3390/molecules26030668.
[100] Khan WU, Wang D, Zhang W, Tang Z, Ma X, Ding X, et al. High quantum yield green-emitting carbon dots for Fe(III) detection, biocompatible fluorescent ink and cellular imaging. Sci Rep 2017;7:14866. https://doi.org/10.1038/s41598-017-15054-9.
[101] Tang L, Zhu C, Yang Y, Luo J, Song J, Chen H, et al. Amide-decorated carbon dots as sensitive and selective probes for fluorescence enhancement detection of cadmium ion. Spectrochim Acta Part A Mol Biomol Spectrosc 2023;303:123219. https://doi.org/10.1016/j.saa.2023.123219.
[102] Cui X, Wang J, Liu B, Ling S, Long R, Xiong Y. Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands. J Am Chem Soc 2018;140:16514–20. https://doi.org/10.1021/jacs.8b06723.
[103] Ravi S, Zhang S, Lee YR, Kang KK, Kim JM, Ahn JW, et al. EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. J Ind Eng Chem 2018;67:210–8. https://doi.org/10.1016/j.jiec.2018.06.031.
[104] Yoshinaga T, Akiu M, Iso Y, Isobe T. Photoluminescence properties of l-cysteine-derived carbon dots prepared in non-aqueous and aqueous solvents. J Lumin 2020;224:117260. https://doi.org/10.1016/J.JLUMIN.2020.117260.
[105] Dong Y, Pang H, Yang H Bin, Guo C, Shao J, Chi Y, et al. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission. Angew Chemie Int Ed 2013;52:7800–4. https://doi.org/10.1002/anie.201301114.
[106] Kiciński W, Dyjak S. Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules 2021;26:668. https://doi.org/10.3390/molecules26030668.
[107] Wang X, Yan P, Kerns P, Suib S, Loew LM, Zhao J. Voltage-Dependent Photoluminescence of Carbon Dots. J Electrochem Soc 2020;167:147515. https://doi.org/10.1149/1945-7111/abc7e5.
[108] Liu H, Lian P, Zhang Q, Yang Y, Mei Y. The preparation of holey phosphorene by electrochemical assistance. Electrochem Commun 2019;98:124–8. https://doi.org/10.1016/j.elecom.2018.12.007.
[109] Sydorchuk V, Poddubnaya OI, Tsyba MM, Zakutevskyy O, Khyzhun O, Khalameida S, et al. Photocatalytic degradation of dyes using phosphorus-containing activated carbons. Appl Surf Sci 2021;535:147667. https://doi.org/10.1016/j.apsusc.2020.147667.
[110] Liu H, Lian P, Zhang Q, Yang Y, Mei Y. The preparation of holey phosphorene by electrochemical assistance. Electrochem Commun 2019;98:124–8. https://doi.org/10.1016/j.elecom.2018.12.007.
[111] Cade‐Menun BJ, Carter MR, James DC, Liu CW. Phosphorus Forms and Chemistry in the Soil Profile under Long‐Term Conservation Tillage: A Phosphorus‐31 Nuclear Magnetic Resonance Study. J Environ Qual 2010;39:1647–56. https://doi.org/10.2134/jeq2009.0491.
[112] Keizer J. Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots. J Am Chem Soc 1983;105:1494–8. https://doi.org/10.1021/ja00344a013.
[113] Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2011;2:21. https://doi.org/10.4103/2229-5186.79345.
[114] Lou Y, Hao X, Liao L, Zhang K, Chen S, Li Z, et al. Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. Nano Sel 2021;2:1117–45. https://doi.org/10.1002/nano.202000232.
[115] Pearson RG. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 1988;27:734–40. https://doi.org/10.1021/ic00277a030.
[116] Makov G. Chemical hardness in density functional theory. J Phys Chem 1995;99:9337–9. https://doi.org/10.1021/j100023a006.
[117] Zhang D, Zhang F, Liao Y, Wang F, Liu H. Carbon Quantum Dots from Pomelo Peel as Fluorescence Probes for “Turn-Off–On” High-Sensitivity Detection of Fe3+ and L-Cysteine. Molecules 2022;27:4099. https://doi.org/10.3390/molecules27134099.
[118] Yu J, Song N, Zhang Y-K, Zhong S-X, Wang A-J, Chen J. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors Actuators B Chem 2015;214:29–35. https://doi.org/10.1016/j.snb.2015.03.006.
[119] Lu S, Li Z, Fu X, Xie Z, Zheng M. Carbon dots-based fluorescence and UV–vis absorption dual-modal sensors for Ag+ and l-cysteine detection. Dye Pigment 2021;187:109126. https://doi.org/10.1016/j.dyepig.2020.109126.
[120] Kim Y, Kim J. Bioinspired thiol functionalized carbon dots for rapid detection of lead (II) ions in human serum. Opt Mater (Amst) 2020;99:109514. https://doi.org/10.1016/j.optmat.2019.109514.
[121] Orte A, Alvarez-Pez JM, Ruedas-Rama MJ. Fluorescence Lifetime Imaging Microscopy for the Detection of Intracellular pH with Quantum Dot Nanosensors. ACS Nano 2013;7:6387–95. https://doi.org/10.1021/nn402581q.
[122] Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. Wiley; 2005. https://doi.org/10.1002/0470011149.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiv, 93 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86194/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86194/2/1013650360.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86194/3/1013650360.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
a9186e1719125a68330a8677b1c0474f
1767dc2cd18ee02f13dbc840a524b18a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089337625640960
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Granados Oliveros, Gilma81b43a9ceb44c33a7ac592ffe2168af9600Gómez Piñeros, Brayan Stiven7d36fc22201646e3aceed431765ff5b0Nano-Inorgánica2024-05-31T18:50:30Z2024-05-31T18:50:30Z2024https://repositorio.unal.edu.co/handle/unal/86194Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasEn diversos países a nivel mundial donde se practican actividades industriales, los iones mercurio (Hg2+), plomo (Pb2+) y arsénico (As3+) altamente tóxicos se liberan incontrolablemente al medio ambiente. Detectar los iones Hg2+, Pb2+ y As3+ con buena sensibilidad y selectividad es de gran importancia. En este trabajo, se reporta por primera vez la obtención de manera fácil y de bajo costo de puntos cuánticos de carbono dopados con nitrógeno (N-CQDs) a partir de cáscaras de chontaduro (Bactris gasipaes), mediante la síntesis en un solo paso asistida por microondas. Estos materiales mostraron alta solubilidad en agua y un rendimiento cuántico de fluorescencia en el visible del 20,5%. Se realizó la modificación de la superficie de los N-CQDs con L-cisteína (N-CQDs/CYS), L-histidina (N-CQDs/HIS) y L-fosfoserina (N-CQDs/FOS), mediante una reacción química (conocida como acoplamiento de amida) entre los grupos amino de los aminoácidos y los grupos carboxilo de los N-CQDs, este acoplamiento fue caracterizado mediante FT-IR y XPS. Las nanopartículas de N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS también exhibieron alta solubilidad en agua, y se caracterizaron mediante UV-VIS y fluorescencia, obteniendo un rendimiento cuántico de fotoluminiscencia (ΦFL) del 25,4 %, 23,0%, 19,9% y una superficie con grupos tiol (de la L-cisteína), grupos imidazol (de la L-histidina) y grupos fosfato (de la L-fosfoserina) correspondientemente. Los N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS detectaron eficientemente los iones Hg2+, Pb2+ y As3+ respectivamente (en medio acuoso) lo cual se comprobó por medio de la disminución de su fluorescencia, reportando para los N-CQDs/CYS una sensibilidad de 4,1x104 M-1 con un límite de detección (LD) de 0.20µM, para los N-CQDs/HIS una sensibilidad de 1,2x104 M-1 con un LD de 0.070µM y para los N-CQDs/FOS una sensibilidad de 3,0x104 M-1 con un LD de 0.34µM. Los N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS evidenciaron una mayor selectividad a los iones Hg2+, Pb2+ y As3+ correspondientemente sin interferentes significativos que los afecten, excepto para los N-CQDs/HIS que tuvieron como interferentes el Cu2+ y el Cd2+. La funcionalización estratégica en la superficie de los N-CQDs con aminoácidos L-cisteína, L-histidina y L-fosfoserina, les brindó una eficiente detección, elevada sensibilidad y selectividad a los N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS. Se realizaron mediciones de fluorescencia resuelta en el tiempo para estudiar la forma en que ocurría el apagado de la fluorescencia, cuando estaban los iones Hg2+ presentes en los N-CQDs/CYS se evidenció un mecanismo de quenching de fluorescencia estático, debido a la formación de un complejo de coordinación no fluorescente en el estado basal entre los iones Hg2+ y el grupo tiolato de los N-CQDs/CYS. Asimismo, la presencia de los iones Pb2+ en los N-CQDs/HIS genera un quenching de fluorescencia estático debido a la formación de un complejo de coordinación entre los iones Pb2+ y el grupo imidazol de los N-CQDs/HIS. Finalmente, la presencia de los iones As3+ en los N-CQDs/FOS generó también un quenching de fluorescencia estático debido a la coordinación de los iones As3+ al grupo fosfato de los N-CQDs/FOS. Los resultados indican que los nuevos materiales N-CQDs/CYS, N-CQDs/HIS y N-CQDs/FOS, al ser modificados superficialmente dirigieron la selectividad a los iones Hg2+, Pb2+ y As3+ correspondientemente, dotándolos de gran potencial para ser usados en la detección fluorescente de manera selectiva, sensible, de estos iones en medio acuoso de una forma fácil y económica. (Texto tomado de la fuente).In many countries around the world where industrial activities are practiced, highly toxic mercury (Hg2+), lead (Pb2+) and arsenic (As3+) ions are released uncontrollably into the environment. Establishing an effective strategy for the determination of Hg2+, Pb2+ and As3+ with good sensitivity and selectivity is of great importance. In this work, the easy and low-cost preparation of nitrogen-doped carbon quantum dots (N-CQDs) from peach palm peels (Bactris gasipaes) is reported for the first time by using a one-step microwave-assisted synthesis. These materials showed high water solubility and a visible fluorescence quantum yield of 20.5%. The surface of the N-CQDs was modified with L-cysteine (N-CQDs/CYS), L-histidine (N-CQDs/HIS) and L-phosphoserine (N-CQDs/FOS), using a chemical reaction (known as amide coupling) between the amino groups of the amino acids and the carboxyl groups of the N-CQDs. This coupling was characterized by FT-IR and XPS. The N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS nanoparticles also exhibited high water solubility and were characterized by UV-VIS and fluorescence, showing a photoluminescence quantum yield (ΦFL) of 25.4%, 23.0%, 19.9% and a surface with thiol groups (from L-cysteine), imidazole groups (from L-histidine) and phosphate groups (from L-phosphoserine) respectively. The N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS efficiently detected Hg2+, Pb2+ and As3+ ions respectively (in aqueous medium) through the decrease in their fluorescence, reporting for the N-CQDs/CYS a sensitivity of 4.1x104 M-1 with a detection limit (LD) of 0.20µM, for the N-CQDs/HIS a sensitivity of 1.2x104 M-1 with a LD of 0.070µM and for the N-CQDs/FOS a sensitivity of 3.0x104 M-1 with a LD of 0.34µM. The N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS were correspondingly selective for Hg2+, Pb2+ and As3+ ions with no significant interfering agents, except for the N-CQDs/HIS which had Cu2+ and Cd2+ as interfering agents. The strategic functionalization of the N-CQDs surface with L-cysteine, L-histidine and L-phosphoserine amino acids provided N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS with efficient detection, high sensitivity and selectivity. Time-resolved fluorescence measurements were performed to study the way in which fluorescence quenching occurred. When Hg2+ ions were present in the N-CQDs/CYS, a static fluorescence quenching mechanism was evidenced, due to the formation of a non-fluorescent coordination complex in the ground state between the Hg2+ ions and the thiolate group of the N-CQDs/CYS. Likewise, the presence of Pb2+ ions in the N-CQDs/HIS generates a static fluorescence quenching due to the formation of a coordination complex between the Pb2+ ions and the imidazole group of the N-CQDs/HIS. Finally, the presence of As3+ ions in the N-CQDs/FOS also generated a static fluorescence quenching due to the coordination of the As3+ ions to the phosphate group of the N-CQDs/FOS. These results indicate that the new N-CQDs/CYS, N-CQDs/HIS and N-CQDs/FOS materials which were surface modified, guided the selectivity to the Hg2+, Pb2+ and As3+ ions respectively, providing them great potential to be used in the selective and sensitive fluorescent detection of these ions in aqueous medium in an easy and economical way.DoctoradoDoctor en Ciencias - QuímicaNanomateriales con aplicación ambientalxxiv, 93 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesBactris gasipaesIonesBactris gasipaesionsChontaduroFluorescenciaQuenching estáticoPuntos cuánticos de carbonoPeach palmStatic quenchingFluorescenceCarbon quantum dotspunto cuánticoquantum dotSíntesis de puntos cuánticos de carbono obtenidos a partir de cáscara de chontaduro: funcionalización con biomoléculas y aplicación en la detección de iones Hg2+, Pb2+ y As3+Synthesis of carbon quantum dots from peach palm peels: functionalization with biomolecules and application in Hg2+, Pb2+ and As3+ ions detectionTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TD[1] Duffus JH. “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 2002;74:793–807. https://doi.org/10.1351/pac200274050793.[2] Pandey SK, Singh P, Singh J, Sachan S, Srivastava S, Singh SK. Nanocarbon-based Electrochemical Detection of Heavy Metals. Electroanalysis 2016;28:2472–88. https://doi.org/10.1002/elan.201600173.[3] Londoño Franco LF, Londoño Muñoz PT, Muñoz Garcia FG. Los Riesgos De Los Metales Pesados En La Salud Humana Y Animal. Biotecnoloía En El Sect Agropecu y Agroindustrial 2016;14:145. https://doi.org/10.18684/bsaa(14)145-153.[4] Gupta A, Chaudhary A, Mehta P, Dwivedi C, Khan S, Verma NC, et al. Nitrogen-doped, thiol-functionalized carbon dots for ultrasensitive Hg(ii) detection. Chem Commun 2015;51:10750–3. https://doi.org/10.1039/c5cc03019f.[5] Gupta A, Verma NC, Khan S, Tiwari S, Chaudhary A, Nandi CK. Paper strip based and live cell ultrasensitive lead sensor using carbon dots synthesized from biological media. Sensors Actuators, B Chem 2016;232:107–14. https://doi.org/10.1016/j.snb.2016.03.110.[6] Radhakrishnan K, Panneerselvam P. Green synthesis of surface-passivated carbon dots from the prickly pear cactus as a fluorescent probe for the dual detection of arsenic(iii) and hypochlorite ions from drinking water. RSC Adv 2018;8:30455–67. https://doi.org/10.1039/c8ra05861j.[7] Jhonson O. El lado gris de la mineria. 2002:123.[8] Services H. Toxicological Profile for Mercury. ATSDR’s Toxicol. Profiles, CRC Press; 2002. https://doi.org/10.1201/9781420061888_ch109.[9] Clifton JC. Mercury Exposure and Public Health. Pediatr Clin North Am 2007;54:237.e1-237.e45. https://doi.org/10.1016/j.pcl.2007.02.005.[10] Liu Y, Zhou Q, Li J, Lei M, Yan X. Selective and sensitive chemosensor for lead ions using fluorescent carbon dots prepared from chocolate by one-step hydrothermal method. Sensors Actuators, B Chem 2016;237:597–604. https://doi.org/10.1016/j.snb.2016.06.092.[11] Saikia A, Karak N. Polyaniline nanofiber/carbon dot nanohybrid as an efficient fluorimetric sensor for As (III) in water and effective antioxidant. Mater Today Commun 2018;14:82–9. https://doi.org/10.1016/j.mtcomm.2017.12.020.[12] Kumar A, Chowdhuri AR, Laha D, Mahto TK, Karmakar P, Sahu SK. Green synthesis of carbon dots from Ocimum sanctum for effective fluorescent sensing of Pb2+ ions and live cell imaging. Sensors Actuators, B Chem 2017;242:679–86. https://doi.org/10.1016/j.snb.2016.11.109.[13] Lu W, Qin X, Liu S, Chang G, Zhang Y, Luo Y, et al. Economical, green synthesis of fluorescent carbon nanoparticles and their use as probes for sensitive and selective detection of mercury(II) ions. Anal Chem 2012;84:5351–7. https://doi.org/10.1021/ac3007939.[14] John F. Callan FMR. Quantum dot sensors, CRC Press; 2013, p. 230.[15] Lin YW, Huang CC, Chang HT. Gold nanoparticle probes for the detection of mercury, lead and copper ions. Analyst 2011;136:863–71. https://doi.org/10.1039/c0an00652a.[16] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, Nitschke R, Nann T. Quantum dots versus organic dyes as fluorescent labels. Nat Methods 2008;5:763–75. https://doi.org/10.1038/nmeth.1248.[17] Valizadeh A, Mikaeili H, Samiei M, Farkhani S, Zarghami N, Kouhi M, et al. Quantum dots: synthesis, bioapplications, and toxicity. Nanoscale Res Lett 2012;7:480. https://doi.org/10.1186/1556-276X-7-480.[18] Gómez Piñeros BS, Granados Oliveros G. CUANTIFICACIÓN DE MERCURIO (II) MEDIANTE PUNTOS CUÁNTICOS DE SELENURO DE CADMIO /SULFURO DE ZINC QUE COMPRENDE ÁCIDO OLÉICO O GLUTATIÓN Y EL MÉTODO DE PREPARACIÓN DE ESTOS. NC2020/0006440, 2020.[19] Raz J. Carbon quantum dots Synthesis, Properties and Aplications. Springer Nature; 2004. https://doi.org/10.1007/978-3-319-43911-2.[20] Das R, Bandyopadhyay R, Pramanik P. Carbon quantum dots from natural resource: A review. Mater Today Chem 2018;8:96–109. https://doi.org/10.1016/j.mtchem.2018.03.003.[21] Liu W, Li C, Ren Y, Sun X, Pan W, Li Y, et al. Carbon dots: Surface engineering and applications. J Mater Chem B 2016;4:5772–88. https://doi.org/10.1039/c6tb00976j.[22] Zhou J, Booker C, Li R, Zhou X, Sham TK, Sun X, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc 2007;129:744–5. https://doi.org/10.1021/ja0669070.[23] Simões EFC, Leitão JMM, da Silva JCGE. Carbon dots prepared from citric acid and urea as fluorescent probes for hypochlorite and peroxynitrite. Microchim Acta 2016;183:1769–77. https://doi.org/10.1007/s00604-016-1807-6.[24] Peng H, Travas-Sejdic J. Simple aqueous solution route to luminescent carbogenic dots from carbohydrates. Chem Mater 2009;21:5563–5. https://doi.org/10.1021/cm901593y.[25] Wee SS, Ng YH, Ng SM. Synthesis of fluorescent carbon dots via simple acid hydrolysis of bovine serum albumin and its potential as sensitive sensing probe for lead (II) ions. Talanta 2013;116:71–6. https://doi.org/10.1016/j.talanta.2013.04.081.[26] Gu D, Shang S, Yu Q, Shen J. Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging. Appl Surf Sci 2016;390:38–42. https://doi.org/10.1016/j.apsusc.2016.08.012.[27] Wang N, Wang Y, Guo T, Yang T, Chen M, Wang J. Green preparation of carbon dots with papaya as carbon source for effective fluorescent sensing of Iron (III) and Escherichia coli. Biosens Bioelectron 2016;85:68–75. https://doi.org/10.1016/j.bios.2016.04.089.[28] Martínez-Girón J, Rodríguez-Rodríguez X, Pinzón-Zárate LX, Ordóñez-Santos LE. Caracterización fisicoquímica de harina de residuos del fruto de chontaduro (Bactris gasipaes Kunth, Arecaceae) obtenida por secado convectivo. Corpoica Cienc y Tecnol Agropecu 2017;18:599–613. https://doi.org/10.21930/rcta.vol18_num3_art:747.[29] Díaz‐Ortiz Á, Prieto P, de la Hoz A. A Critical Overview on the Effect of Microwave Irradiation in Organic Synthesis. Chem Rec 2019;19:85–97. https://doi.org/10.1002/tcr.201800059.[30] Chandra S, Das P, Bag S, Laha D, Pramanik P. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale 2011;3:1533–40. https://doi.org/10.1039/c0nr00735h.[31] Ramezani Z, Qorbanpour M, Rahbar N. Green synthesis of carbon quantum dots using quince fruit (Cydonia oblonga) powder as carbon precursor: Application in cell imaging and As3+ determination. Colloids Surfaces A Physicochem Eng Asp 2018;549:58–66. https://doi.org/10.1016/j.colsurfa.2018.04.006.[32] Li X, Zhang S, Kulinich SA, Liu Y, Zeng H. Engineering surface states of carbon dots to achieve controllable luminescence for solid-luminescent composites and sensitive Be2+ detection. Sci Rep 2014;4:1–8. https://doi.org/10.1038/srep04976.[33] Yan F, Jiang Y, Sun X, Bai Z, Zhang Y, Zhou X. Surface modification and chemical functionalization of carbon dots: a review. Microchim Acta 2018;185. https://doi.org/10.1007/s00604-018-2953-9.[34] Hu H, He H, Zhang J, Hou X, Wu P. Optical sensing at the nanobiointerface of metal ion-optically-active nanocrystals. Nanoscale 2018;10:5035–46. https://doi.org/10.1039/c8nr00350e.[35] Parr RG, Pearson RG. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J Am Chem Soc 1983;105:7512–6. https://doi.org/10.1021/ja00364a005.[36] Pearson RG. Hard and soft acids and bases, HSAB, part I: Fundamental principles. J Chem Educ 1968;45:581–7. https://doi.org/10.1021/ed045p581.[37] Gao X, Du C, Zhuang Z, Chen W. Carbon quantum dot-based nanoprobes for metal ion detection. J Mater Chem C 2016;4:6927–45. https://doi.org/10.1039/c6tc02055k.[38] Hola K, Zhang Y, Wang Y, Giannelis EP, Zboril R, Rogach AL. Carbon dots - Emerging light emitters for bioimaging, cancer therapy and optoelectronics. Nano Today 2014;9:590–603. https://doi.org/10.1016/j.nantod.2014.09.004.[39] Xu X, Ray R, Gu Y, Ploehn HJ, Gearheart L, Raker K, et al. Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. J AM CHEM SOC 2004;126:12736–7. https://doi.org/10.1021/ja040082h.[40] Wang Y, Hu A. Copyright ( C ) by Foxit Software Company , 2005-2008 Carbon quantum dots : synthesis , properties and applications. J Mater Chem C Mater Opt Electron Devices 2014;2:6921–39. https://doi.org/10.1039/C4TC00988F.[41] Kim JK, Park MJ, Kim SJ, Wang DH, Cho SP, Bae S, et al. Balancing light absorptivity and carrier conductivity of graphene quantum dots for high-efficiency bulk heterojunction solar cells. ACS Nano 2013;7:7207–12. https://doi.org/10.1021/nn402606v.[42] Zhou J, Zhou H, Tang J, Deng S, Yan F, Li W, et al. Carbon dots doped with heteroatoms for fluorescent bioimaging: a review. Microchim Acta 2017;184:343–68. https://doi.org/10.1007/s00604-016-2043-9.[43] Guo Y, Wang Z, Shao H, Jiang X. Hydrothermal synthesis of highly fluorescent carbon nanoparticles from sodium citrate and their use for the detection of mercury ions. Carbon N Y 2013;52:583–9. https://doi.org/10.1016/j.carbon.2012.10.028.[44] Wang Y, Zhuang Q, Ni Y. Facile Microwave-Assisted Solid-Phase Synthesis of Highly Fluorescent Nitrogen-Sulfur-Codoped Carbon Quantum Dots for Cellular Imaging Applications. Chem - A Eur J 2015;21:13004–11. https://doi.org/10.1002/chem.201501723.[45] Shangguan J, Huang J, He D, He X, Wang K, Ye R, et al. Highly Fe 3+ -Selective Fluorescent Nanoprobe Based on Ultrabright N/P Codoped Carbon Dots and Its Application in Biological Samples. Anal Chem 2017;89:7477–84. https://doi.org/10.1021/acs.analchem.7b01053.[46] Sahu S, Behera B, Maiti TK, Mohapatra S. Simple one-step synthesis of highly luminescent carbon dots from orange juice: Application as excellent bio-imaging agents. Chem Commun 2012;48:8835–7. https://doi.org/10.1039/c2cc33796g.[47] Dong W, Zhou S, Dong Y, Wang J, Ge X, Sui L. The preparation of ethylenediamine-modified fluorescent carbon dots and their use in imaging of cells. Luminescence 2015;30:867–71. https://doi.org/10.1002/bio.2834.[48] Algarra M, Campos BB, Radotić K, Mutavdžić D, Bandosz T, Jiménez-Jiménez J, et al. Luminescent carbon nanoparticles: Effects of chemical functionalization, and evaluation of Ag+ sensing properties. J Mater Chem A 2014;2:8342–51. https://doi.org/10.1039/c4ta00264d.[49] Liu X, Zhang N, Bing T, Shangguan D. Carbon Dots Based Dual-Emission Silica Nanoparticles as a Ratiometric Nanosensor for Cu 2+. Anal Chem 2014;86:2289–96. https://doi.org/10.1021/ac404236y.[50] Wang X, Wang D, Guo Y, Yang C, Iqbal A, Liu W, et al. Imidazole derivative-functionalized carbon dots: Using as a fluorescent probe for detecting water and imaging of live cells. Dalt Trans 2015;44:5547–54. https://doi.org/10.1039/c5dt00128e.[51] Sun Y-P, Zhou B, Lin Y, Wang W, Fernando KAS, Pathak P, et al. Quantum-Sized Carbon Dots for Bright and Colorful Photoluminescence. J Am Chem Soc 2006;128:7756–7. https://doi.org/10.1021/ja062677d.[52] Jiang H, Chen F, Lagally MG, Denes FS. New Strategy for Synthesis and Functionalization of Carbon Nanoparticles. Langmuir 2010;26:1991–5. https://doi.org/10.1021/la9022163.[53] Yin B, Deng J, Peng X, Long Q, Zhao J, Lu Q, et al. Green synthesis of carbon dots with down- and up-conversion fluorescent properties for sensitive detection of hypochlorite with a dual-readout assay. Analyst 2013;138:6551–7. https://doi.org/10.1039/c3an01003a.[54] Zhou J, Sheng Z, Han H, Zou M, Li C. Facile synthesis of fluorescent carbon dots using watermelon peel as a carbon source. Mater Lett 2012;66:222–4. https://doi.org/10.1016/j.matlet.2011.08.081.[55] Zheng Y, Yang D, Wu X, Yan H, Zhao Y, Feng B, et al. A facile approach for the synthesis of highly luminescent carbon dots using vitamin-based small organic molecules with benzene ring structure as precursors. RSC Adv 2015;5:90245–54. https://doi.org/10.1039/c5ra14720d.[56] Wang ZX, Yu XH, Li F, Kong FY, Lv WX, Fan DH, et al. Preparation of boron-doped carbon dots for fluorometric determination of Pb(II), Cu(II) and pyrophosphate ions. Microchim Acta 2017;184:4775–83. https://doi.org/10.1007/s00604-017-2526-3.[57] Dou Q, Fang X, Jiang S, Chee PL, Lee TC, Loh XJ. Multi-functional fluorescent carbon dots with antibacterial and gene delivery properties. RSC Adv 2015;5:46817–22. https://doi.org/10.1039/c5ra07968c.[58] Ray Chowdhuri A, Tripathy S, Haldar C, Roy S, Sahu SK. Single step synthesis of carbon dot embedded chitosan nanoparticles for cell imaging and hydrophobic drug delivery. J Mater Chem B 2015;3:9122–31. https://doi.org/10.1039/c5tb01831e.[59] Jaiswal A, Ghosh SS, Chattopadhyay A. One step synthesis of C-dots by microwave mediated caramelization of poly(ethylene glycol). Chem Commun 2012;48:407–9. https://doi.org/10.1039/c1cc15988g.[60] Qiao ZA, Wang Y, Gao Y, Li H, Dai T, Liu Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 2010;46:8812–4. https://doi.org/10.1039/c0cc02724c.[61] Mohapatra S, Sahu S, Sinha N, Bhutia SK. Synthesis of a carbon-dot-based photoluminescent probe for selective and ultrasensitive detection of Hg2+in water and living cells. Analyst 2015;140:1221–8. https://doi.org/10.1039/c4an01386g.[62] Bandi R, Dadigala R, Gangapuram BR, Guttena V. Green synthesis of highly fluorescent nitrogen – Doped carbon dots from Lantana camara berries for effective detection of lead(II) and bioimaging. J Photochem Photobiol B Biol 2018;178:330–8. https://doi.org/10.1016/j.jphotobiol.2017.11.010.[63] Prasannan A, Imae T. One-pot synthesis of fluorescent carbon dots from orange waste peels. Ind Eng Chem Res 2013;52:15673–8. https://doi.org/10.1021/ie402421s.[64] Vargas-Avila G, Jorge A-C. Clasificación y Caracterización de 20 razas de palma de chontaduro (Bactris gasipaes H.B.K) de acuerdo con las propiedades fisico-químicas y bromatológicas del fruto 2000:19.[65] Song Z, Quan F, Xu Y, Liu M, Cui L, Liu J. Multifunctional N,S co-doped carbon quantum dots with pH- and thermo-dependent switchable fluorescent properties and highly selective detection of glutathione. Carbon N Y 2016;104:169–78. https://doi.org/10.1016/j.carbon.2016.04.003.[66] Qiao ZA, Wang Y, Gao Y, Li H, Dai T, Liu Y, et al. Commercially activated carbon as the source for producing multicolor photoluminescent carbon dots by chemical oxidation. Chem Commun 2010;46:8812–4. https://doi.org/10.1039/c0cc02724c.[67] Zu F, Yan F, Bai Z, Xu J, Wang Y, Huang Y, et al. The quenching of the fluorescence of carbon dots: A review on mechanisms and applications. Microchim Acta 2017;184:1899–914. https://doi.org/10.1007/s00604-017-2318-9.[68] Huang S, Wang L, Zhu F, Su W, Sheng J, Huang C, et al. A ratiometric nanosensor based on fluorescent carbon dots for label-free and highly selective recognition of DNA. RSC Adv 2015;5:44587–97. https://doi.org/10.1039/c5ra05519a.[69] Zhu X, Zhao Z, Chi X, Gao J. Facile, sensitive, and ratiometric detection of mercuric ions using GSH-capped semiconductor quantum dots. Analyst 2013;138:3230. https://doi.org/10.1039/c3an00011g.[70] Lakowicz JR. Principles of Fluorescence Spectroscopy. Boston, MA: Springer US; 2006. https://doi.org/10.1007/978-0-387-46312-4.[71] Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2011;2:21. https://doi.org/10.4103/2229-5186.79345.[72] Liu Y, Liao M, He X, Liu X, Kou X, Xiao D. One-step synthesis of highly luminescent nitrogen-doped carbon dots for selective and sensitive detection of mercury(ii) ions and cellular imaging. Anal Sci 2015;31:971–7. https://doi.org/10.2116/analsci.31.971.[73] Huang H, Lv JJ, Zhou DL, Bao N, Xu Y, Wang AJ, et al. One-pot green synthesis of nitrogen-doped carbon nanoparticles as fluorescent probes for mercury ions. RSC Adv 2013;3:21691–6. https://doi.org/10.1039/c3ra43452d.[74] Qian ZS, Shan XY, Chai LJ, Chen JR, Feng H. A fluorescent nanosensor based on graphene quantum dots-aptamer probe and graphene oxide platform for detection of lead (II) ion. Biosens Bioelectron 2015;68:225–31. https://doi.org/10.1016/j.bios.2014.12.057.[75] Zhang Z, Li J, Wang X, Liang A, Jiang Z. Aptamer-mediated N/Ce-doped carbon dots as a fluorescent and resonance Rayleigh scattering dual mode probe for arsenic(III). Microchim Acta 2019;186:3–11. https://doi.org/10.1007/s00604-019-3764-3.[76] Pooja D, Saini S, Thakur A, Kumar B, Tyagi S, Nayak MK. A “Turn-On” thiol functionalized fluorescent carbon quantum dot based chemosensory system for arsenite detection. J Hazard Mater 2017;328:117–26. https://doi.org/10.1016/j.jhazmat.2017.01.015.[77] Ho TL. The Hard Soft Acids Bases (HSAB) Principle and Organic Chemistry. Chem Rev 1975;75:1–20. https://doi.org/10.1021/cr60293a001.[78] Liu Y, Jiang L, Li B, Fan X, Wang W, Liu P, et al. Nitrogen doped carbon dots: Mechanism investigation and their application for label free CA125 analysis. J Mater Chem B 2019;7:3053–8. https://doi.org/10.1039/c9tb00021f.[79] Valeur B, Berberan-Santos MN. Molecular Fluorescence: Principles and Applications, Second Edition. Wiley; 2012. https://doi.org/10.1002/9783527650002.[80] Wang X, Cao L, Lu F, Meziani MJ, Li H, Qi G, et al. Photoinduced electron transfers with carbon dots. Chem Commun 2009:3774. https://doi.org/10.1039/b906252a.[81] Sydorchuk V, Poddubnaya OI, Tsyba MM, Zakutevskyy O, Khyzhun O, Khalameida S, et al. Photocatalytic degradation of dyes using phosphorus-containing activated carbons. Appl Surf Sci 2021;535:147667. https://doi.org/10.1016/j.apsusc.2020.147667.[82] Leung K, Whaley KB. Surface relaxation in CdSe nanocrystals. J Chem Phys 1999;110:11012. https://doi.org/10.1063/1.479037.[83] Gao Y, Peng X. Photogenerated excitons in plain core CdSe nanocrystals with unity radiative decay in single channel: The effects of surface and ligands. J Am Chem Soc 2015;137:4230–5. https://doi.org/10.1021/JACS.5B01314/ASSET/IMAGES/MEDIUM/JA-2015-013142_0003.GIF.[84] Barman MK, Patra A. Current status and prospects on chemical structure driven photoluminescence behaviour of carbon dots. J Photochem Photobiol C Photochem Rev 2018;37:1–22. https://doi.org/10.1016/j.jphotochemrev.2018.08.001.[85] Kang C, Huang Y, Yang H, Yan XF, Chen ZP. A Review of Carbon Dots Produced from Biomass Wastes. Nanomaterials 2020;10:2316. https://doi.org/10.3390/nano10112316.[86] Huang S, Wang L, Huang C, Xie J, Su W, Sheng J, et al. A carbon dots based fluorescent probe for selective and sensitive detection of hemoglobin. Sensors Actuators, B Chem 2015;221:1215–22. https://doi.org/10.1016/j.snb.2015.07.099.[87] Qu S, Wang X, Lu Q, Liu X, Wang L. A biocompatible fluorescent ink based on water-soluble luminescent carbon nanodots. Angew Chemie - Int Ed 2012;51:12215–8. https://doi.org/10.1002/anie.201206791.[88] Sharma V, Tiwari P, Mobin SM. Sustainable carbon-dots: recent advances in green carbon dots for sensing and bioimaging. J Mater Chem B 2017;5:8904–24. https://doi.org/10.1039/C7TB02484C.[89] Zulfajri M, Dayalan S, Li WY, Chang CJ, Chang YP, Huang GG. Nitrogen-doped carbon dots from averrhoa carambola fruit extract as a fluorescent probe for methyl orange. Sensors (Switzerland) 2019;19:5008. https://doi.org/10.3390/s19225008.[90] Fiuza T, Gomide G, Campos AFC, Messina F, Depeyrot J. On the Colloidal Stability of Nitrogen-Rich Carbon Nanodots Aqueous Dispersions. C — J Carbon Res 2019;5:74. https://doi.org/10.3390/c5040074.[91] Granados-Oliveros G, Pineros BSG, Calderon FGO. CdSe/ZnS quantum dots capped with oleic acid and L-glutathione: Structural properties and application in detection of Hg2+. J Mol Struct 2022;1254:132293. https://doi.org/10.1016/J.MOLSTRUC.2021.132293.[92] Milenković M, Mišović A, Jovanović D, Bijelić AP, Ciasca G, Romanò S, et al. Facile synthesis of L-cysteine functionalized graphene quantum dots as a bioimaging and photosensitive agent. Nanomaterials 2021;11:1879. https://doi.org/10.3390/nano11081879.[93] Salahinejad M, Sadjadi S, Abdouss M. Investigating fluorescence quenching of cysteine-functionalized carbon quantum dots by heavy metal ions: Experimental and QSPR studies. J Mol Liq 2021;334:116067. https://doi.org/10.1016/j.molliq.2021.116067.[94] Guerra-López J, González R, Gómez A, Pomés R, Punte G, Della Védova CO. Effects of Nickel on Calcium Phosphate Formation. J Solid State Chem 2000;151:163–9. https://doi.org/10.1006/jssc.1999.8615.[95] Nguyen KG, Baragau I-A, Gromicova R, Nicolaev A, Thomson SAJ, Rennie A, et al. Investigating the effect of N-doping on carbon quantum dots structure, optical properties and metal ion screening. Sci Rep 2022;12:13806. https://doi.org/10.1038/s41598-022-16893-x.[96] Arcudi F, Đorđević L, Prato M. Synthesis, Separation, and Characterization of Small and Highly Fluorescent Nitrogen-Doped Carbon NanoDots. Angew Chemie Int Ed 2016;55:2107–12. https://doi.org/10.1002/anie.201510158.[97] Dsouza SD, Buerkle M, Brunet P, Maddi C, Padmanaban DB, Morelli A, et al. The importance of surface states in N-doped carbon quantum dots. Carbon N Y 2021;183:1–11. https://doi.org/10.1016/j.carbon.2021.06.088.[98] Chen X, Jin Q, Wu L, Tung C, Tang X. Synthesis and Unique Photoluminescence Properties of Nitrogen‐Rich Quantum Dots and Their Applications. Angew Chemie Int Ed 2014;53:12542–7. https://doi.org/10.1002/anie.201408422.[99] Kiciński W, Dyjak S. Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules 2021;26:668. https://doi.org/10.3390/molecules26030668.[100] Khan WU, Wang D, Zhang W, Tang Z, Ma X, Ding X, et al. High quantum yield green-emitting carbon dots for Fe(III) detection, biocompatible fluorescent ink and cellular imaging. Sci Rep 2017;7:14866. https://doi.org/10.1038/s41598-017-15054-9.[101] Tang L, Zhu C, Yang Y, Luo J, Song J, Chen H, et al. Amide-decorated carbon dots as sensitive and selective probes for fluorescence enhancement detection of cadmium ion. Spectrochim Acta Part A Mol Biomol Spectrosc 2023;303:123219. https://doi.org/10.1016/j.saa.2023.123219.[102] Cui X, Wang J, Liu B, Ling S, Long R, Xiong Y. Turning Au Nanoclusters Catalytically Active for Visible-Light-Driven CO2 Reduction through Bridging Ligands. J Am Chem Soc 2018;140:16514–20. https://doi.org/10.1021/jacs.8b06723.[103] Ravi S, Zhang S, Lee YR, Kang KK, Kim JM, Ahn JW, et al. EDTA-functionalized KCC-1 and KIT-6 mesoporous silicas for Nd3+ ion recovery from aqueous solutions. J Ind Eng Chem 2018;67:210–8. https://doi.org/10.1016/j.jiec.2018.06.031.[104] Yoshinaga T, Akiu M, Iso Y, Isobe T. Photoluminescence properties of l-cysteine-derived carbon dots prepared in non-aqueous and aqueous solvents. J Lumin 2020;224:117260. https://doi.org/10.1016/J.JLUMIN.2020.117260.[105] Dong Y, Pang H, Yang H Bin, Guo C, Shao J, Chi Y, et al. Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission. Angew Chemie Int Ed 2013;52:7800–4. https://doi.org/10.1002/anie.201301114.[106] Kiciński W, Dyjak S. Nitrogen-Doped Carbons Derived from Imidazole-Based Cross-Linked Porous Organic Polymers. Molecules 2021;26:668. https://doi.org/10.3390/molecules26030668.[107] Wang X, Yan P, Kerns P, Suib S, Loew LM, Zhao J. Voltage-Dependent Photoluminescence of Carbon Dots. J Electrochem Soc 2020;167:147515. https://doi.org/10.1149/1945-7111/abc7e5.[108] Liu H, Lian P, Zhang Q, Yang Y, Mei Y. The preparation of holey phosphorene by electrochemical assistance. Electrochem Commun 2019;98:124–8. https://doi.org/10.1016/j.elecom.2018.12.007.[109] Sydorchuk V, Poddubnaya OI, Tsyba MM, Zakutevskyy O, Khyzhun O, Khalameida S, et al. Photocatalytic degradation of dyes using phosphorus-containing activated carbons. Appl Surf Sci 2021;535:147667. https://doi.org/10.1016/j.apsusc.2020.147667.[110] Liu H, Lian P, Zhang Q, Yang Y, Mei Y. The preparation of holey phosphorene by electrochemical assistance. Electrochem Commun 2019;98:124–8. https://doi.org/10.1016/j.elecom.2018.12.007.[111] Cade‐Menun BJ, Carter MR, James DC, Liu CW. Phosphorus Forms and Chemistry in the Soil Profile under Long‐Term Conservation Tillage: A Phosphorus‐31 Nuclear Magnetic Resonance Study. J Environ Qual 2010;39:1647–56. https://doi.org/10.2134/jeq2009.0491.[112] Keizer J. Nonlinear fluorescence quenching and the origin of positive curvature in Stern-Volmer plots. J Am Chem Soc 1983;105:1494–8. https://doi.org/10.1021/ja00344a013.[113] Shrivastava A, Gupta V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2011;2:21. https://doi.org/10.4103/2229-5186.79345.[114] Lou Y, Hao X, Liao L, Zhang K, Chen S, Li Z, et al. Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. Nano Sel 2021;2:1117–45. https://doi.org/10.1002/nano.202000232.[115] Pearson RG. Absolute electronegativity and hardness: application to inorganic chemistry. Inorg Chem 1988;27:734–40. https://doi.org/10.1021/ic00277a030.[116] Makov G. Chemical hardness in density functional theory. J Phys Chem 1995;99:9337–9. https://doi.org/10.1021/j100023a006.[117] Zhang D, Zhang F, Liao Y, Wang F, Liu H. Carbon Quantum Dots from Pomelo Peel as Fluorescence Probes for “Turn-Off–On” High-Sensitivity Detection of Fe3+ and L-Cysteine. Molecules 2022;27:4099. https://doi.org/10.3390/molecules27134099.[118] Yu J, Song N, Zhang Y-K, Zhong S-X, Wang A-J, Chen J. Green preparation of carbon dots by Jinhua bergamot for sensitive and selective fluorescent detection of Hg2+ and Fe3+. Sensors Actuators B Chem 2015;214:29–35. https://doi.org/10.1016/j.snb.2015.03.006.[119] Lu S, Li Z, Fu X, Xie Z, Zheng M. Carbon dots-based fluorescence and UV–vis absorption dual-modal sensors for Ag+ and l-cysteine detection. Dye Pigment 2021;187:109126. https://doi.org/10.1016/j.dyepig.2020.109126.[120] Kim Y, Kim J. Bioinspired thiol functionalized carbon dots for rapid detection of lead (II) ions in human serum. Opt Mater (Amst) 2020;99:109514. https://doi.org/10.1016/j.optmat.2019.109514.[121] Orte A, Alvarez-Pez JM, Ruedas-Rama MJ. Fluorescence Lifetime Imaging Microscopy for the Detection of Intracellular pH with Quantum Dot Nanosensors. ACS Nano 2013;7:6387–95. https://doi.org/10.1021/nn402581q.[122] Stuart BH. Infrared Spectroscopy: Fundamentals and Applications. Wiley; 2005. https://doi.org/10.1002/0470011149.EstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86194/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1013650360.2024.pdf1013650360.2024.pdfTesis de Doctorado en Ciencias - Químicaapplication/pdf3777603https://repositorio.unal.edu.co/bitstream/unal/86194/2/1013650360.2024.pdfa9186e1719125a68330a8677b1c0474fMD52THUMBNAIL1013650360.2024.pdf.jpg1013650360.2024.pdf.jpgGenerated Thumbnailimage/jpeg6714https://repositorio.unal.edu.co/bitstream/unal/86194/3/1013650360.2024.pdf.jpg1767dc2cd18ee02f13dbc840a524b18aMD53unal/86194oai:repositorio.unal.edu.co:unal/861942024-08-25 23:11:14.887Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=