Ecuaciones semilineales con espectro discreto
Este libro está diseñado como un primer curso sobre ecuaciones diferenciales semilineales para estudiantes con conocimientos básicos de álgebra lineal, análisis matemático y ecuaciones diferenciales. El estudio del primer capítulo solamente requiere de conocimientos básicos de ecuaciones diferencial...
- Autores:
-
Caicedo Contreras, José Francisco
Castro, Alfonso
- Tipo de recurso:
- Book
- Fecha de publicación:
- 2012
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/79984
- Palabra clave:
- 510 - Matemáticas::515 - Análisis
Ecuaciones diferenciales parciales
Ecuaciones diferenciales semilineales
Teoría espectral
Análisis funcional
Funciones de Green
Ecuaciones
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_ded1d954b36f344a1acf611e9f647877 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/79984 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Ecuaciones semilineales con espectro discreto |
title |
Ecuaciones semilineales con espectro discreto |
spellingShingle |
Ecuaciones semilineales con espectro discreto 510 - Matemáticas::515 - Análisis Ecuaciones diferenciales parciales Ecuaciones diferenciales semilineales Teoría espectral Análisis funcional Funciones de Green Ecuaciones |
title_short |
Ecuaciones semilineales con espectro discreto |
title_full |
Ecuaciones semilineales con espectro discreto |
title_fullStr |
Ecuaciones semilineales con espectro discreto |
title_full_unstemmed |
Ecuaciones semilineales con espectro discreto |
title_sort |
Ecuaciones semilineales con espectro discreto |
dc.creator.fl_str_mv |
Caicedo Contreras, José Francisco Castro, Alfonso |
dc.contributor.author.none.fl_str_mv |
Caicedo Contreras, José Francisco Castro, Alfonso |
dc.contributor.illustrator.none.fl_str_mv |
Rubiano, Gustavo |
dc.subject.ddc.spa.fl_str_mv |
510 - Matemáticas::515 - Análisis |
topic |
510 - Matemáticas::515 - Análisis Ecuaciones diferenciales parciales Ecuaciones diferenciales semilineales Teoría espectral Análisis funcional Funciones de Green Ecuaciones |
dc.subject.lemb.spa.fl_str_mv |
Ecuaciones diferenciales parciales Ecuaciones diferenciales semilineales Teoría espectral |
dc.subject.proposal.spa.fl_str_mv |
Análisis funcional Funciones de Green Ecuaciones |
description |
Este libro está diseñado como un primer curso sobre ecuaciones diferenciales semilineales para estudiantes con conocimientos básicos de álgebra lineal, análisis matemático y ecuaciones diferenciales. El estudio del primer capítulo solamente requiere de conocimientos básicos de ecuaciones diferenciales elementales. Para el segundo capítulo se necesita manejo de las coordenadas polares y el teorema del valor intermedio. Lo anterior, más conocimiento de ecuaciones diferenciales ordinarias singulares facilitan el estudio del capítulo 3. En el capítulo métodos de orden, se usa a menudo el papel de las segundas derivadas parciales por su importancia para determinar mínimos o máximos locales. El estudio de los capítulos 5 a 8 requiere de cierta familiaridad con conceptos básicos del análisis funcional tales como la integral de Lebesgue, espacios de Hilbert y espacios Lp. (Texto tomado de la fuente). |
publishDate |
2012 |
dc.date.issued.none.fl_str_mv |
2012 |
dc.date.accessioned.none.fl_str_mv |
2021-08-20T17:38:01Z |
dc.date.available.none.fl_str_mv |
2021-08-20T17:38:01Z |
dc.type.spa.fl_str_mv |
Libro |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/book |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_2f33 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/LIB |
format |
http://purl.org/coar/resource_type/c_2f33 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/79984 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/79984 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartofseries.none.fl_str_mv |
Colección textos; |
dc.relation.citationedition.spa.fl_str_mv |
Primera edición |
dc.relation.references.spa.fl_str_mv |
R. Adams, Sobolev spaces, Academic Press, New York, 1975. I. Ali and A. Castro, Positive solutions for a semilinear elliptic problem with critical exponent, Nonlinear Analysis 27 (1996), no. 3, 327– 338. J. Ali, R. Shivaji, and M. Ramaswamy, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Integral Equations 19 (2006), no. 6, 669–680. H. Amann, Fixed point problems and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976), 620–709. Saddle points and multiple solutions of differential equations, Math. Z. (1979), 127–166. H. Amann and S. A. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39–54. P. Bates and A. Castro, Existence and uniqueness for a variational hyperbolic systems, Nonlinear Analysis. 4 (1980), no. 6, 1151–1156. Necessary and sufficient conditions for existence of solutions to equations with noninvertible linear part, Rev. Colombiana.Mat. 15 (1981), no. 1, 7–23. V. Benci and D. Fortunato, Towards a unified field theory for classical electrodynamics, Arch. Ration. Mech. Anal. 173 (2004), no. 3, 379–414. V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Inventions math. 52 (1979), 241–273. A.G. Bratsos, the solution of the two dimensional sine-gordon equation using the method of lines, Journal of Computational and Applied Mathematics 206 (2007), 251–277. H. Brezis, Analyse Fonctionelle, Masson, 1983. H. Brezis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Annali della Scuola Norm. Sup. di Pisa (1978), 225–236. R. Brooks and K. Schmitt, The contraction mapping principle and some applications, Electronic Journal of Differential Equations, Monograph (2009), 225–236. J. Caicedo and A. Castro, A semilinear wave equation with derivative of nonlinearity containing multiple eigenvalues of infinite multiplicity, Contemp. Math. 208 (1997), 111–132. J.F. Caicedo and A. Castro, A semilinear wave equation with smooth data and no resonance having no continuous solution, Discrete and Continuous Dynamical Systems 24 (2009), 653–658. J.F. Caicedo, A. Castro, and R. Duque, Existence of solutions for a wave equation with nonmonotone nonlinearity and a small parameter, preprint (2010). R. Cantrell, C. Cosner, and S. Martínez, Global bifurcation of solutions to diffusive logistic equations on bounded domains subject to nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 1, 45. A. Castro, Sufficient conditions for the existence of weak solutions of the boundary value problem Lu=g(u(x ),x ) (x ∈ Ω), u(x )=0 (x ∈ ∂Ω), Rev. Colombiana Mat. (1975), no. 3, 173–187. Hammerstein integral equations with indefinite kernel, Internet. J. Math. Sci. 1 (1978), no. 8, 187–201. Periodic solutions of the forced pendulum equation, Academic Press (1980), 149–160. A. Castro, J. Cossio, and J.M. Neuberger, A sign changing for a superlinear Dirichlet problem, Rocky Mountain J.Math. A minimax principle, index of the critical point, and existence of sign changing solutions to elliptic boundary value problem, Electron. J. Differential Equations 02 (1998), 18. A. Castro, J. Cossio, and C.A. Velez, Existence of seven solutions for an asymptotically linear Dirichlet problem, preprint (2010). A. Castro and A. Kurepa, Energy analysis of a nonlinear singular diferencial equation and applications, Rev. Colombiana Mat. 21 (1987), 155–166. A. Castro and A. Lazer, Applications of a maximun principle, Rev.Col. de Mat. (1976). Critical point theory and the numbers of solutions of a nonlinear dirichlet problem, Ann. Mat. Pura Appl. 4 (1979), no. 120. On periodic solutions of weakly coupled systems of differential equations, Boll. Un. Mat. Ital. B 5 (1981), no. 18, 733–742. A. Castro and B. Preskill, Existence of solutions for a semilinear wave equation with non-monotone nonlinearity, Discrete Contin. Dyn. Syst. 28 (2010), no. 2, 649. A. Castro and R. Shivaji, Non-negative solutions for a class of nonpositone problems, Proc. Royal Soc. Endinburg Sect. A 108 (1988), no. 8, 291–302. Non-negative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Comm. in Partial Differential Equations 14 (1989), no. 8, 1091–1100. A. Castro and S. Unsurangsie, A semilinear wave equation with non-monotone nonlinearity, Pacific J. Math 132 (1988), no. 2, 215–225. S. Cingolani and M. Clapp, intertwining semiclassical bound states to a nonlinear magnetic schrodinger equation, Nonlinearity 22 (2009), no. 9, 2309–2331. Symmetric semiclassical states to a magnetic nonlinear schrodinger equation via equivariant morse theory, Commun. Pure Appl. Anal. 9 (2010), no. 5, 1263–1281. D. Clark, A variant of the Lusternik-Schnierelmann theory, Indiana Univ. Math. J. 22 (1972), 579–584. D. de Figueiredo, P. Lions, and R. Nusbaum, A priori and existence of positive solutions of semilinear elliptic equations, J. Math. Pures. Appl. 61 (1982), 41–63. P. Drabek, A. Kufner, and F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, Walter de Gruyter, Berlin, New York, 1997. S. Fucik, J. Necas, J. Soucek, and V. Soucek, Spectral analysis of nonlinear operators, vol. 343, Springer Verlag, 1973. B. Gidas, W. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243. B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations. 6 (1981), 883–901. D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1998. V. Guillemin and A. Pollack, Differential Topology, Prentice Hall, Inc, 1974. H. Hofer, On the range of a wave operator with non-monotone nonlinearity, Math. Nachr. 106 (1982), 327–340. J. Jacobsen and K. Schmitt, Radial solutions of quasilinear elliptic differential equations, Elsevier/North-Holland. J. Jia and J. Huang, Krylov deferred correction accelerated method of lines transpose for parabolic problems, Journal of computational Physics 227 (2008), 1739–1753. D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973), 241–269. A. Khamayseh and R. Shivaji, Evolution of bifurcation curves for semipositone problems when nonlinearities develop multiple zeroes, Appl. Math. Comput. 52 (1992), no. 2, 173–188. M. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, London, New York, 1964. E. Landesman and A. Lazer, Nonlinear perturbations of elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970). S. Lang, Real Analysis, Addisson-Wesley Publishing Company, 1983. A. Lazer, E. Landesman, and D. Meyers, On saddle point problems in the calculus of variations, the ritz algorithm, and monotone convergence, J. Math. Appl. 52 (1975), no. 3. N.G. Lloyd, Degree theory, Cambridge University Press., 1978. J. Mawhin, Periodic solutions of some semilinear wave equations and systems: a survey, Chaos, Solitons, and Fractals 5 (1995), 1651– 1669. P. J. McKenna, On solutions of a nonlinear wave equation when the ratio of the period to the length of the interval is irrational, Proc. Amer. Math. Soc. 93 (1985), no. 1, 59–64. A. Miciano and R. Shivaji, Multiple positive solutions for a class of semipositone Newmann two boundary value problems, J. Math. Anal. Appl. 178 (1993), no. 1, 102–115. J. Milnor, Topology from a differentiable viewpoint, Princeton University Press. L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute Lecture Notes, New York, 1974. F. Pacella and T. Weth, Symmetry of solutions to semilinear elliptic equations via morse index, Proc. Amer. Math. Soc. 135, no. 6, 1753– 1762. R. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115–132. M. Protter and H. Weinberger, Maximun principles in differential equations, Prentice Hall, Englewood, Cliffs, N.J., 1967. P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681–703. P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513. Periodic solutions of Hamiltonian systems, Com. Pure Appl. Math. 31 (1978), 157–184. Some minimax theorems and applications to nonlinear partial differential equations, Nonlinear Analysis, Ac.Press 65 (1978), 161–177. Minimax methods in critical point theory with applications to differential equations, CBMS 65 (1985). M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press., Inc., 1980. H. Royden, Real Analysis, McMillan Publishing Co., Inc., 1968. W. Rudin, Principles of mathematical analysis, McGraw-Hill, New York, 1976. Real and complex analysis, McGraw-Hill, New York, 1987. J. Schwartz, Nonlinear functional analysis, Gordon Breach, New York, 1962. M. Willem, Density of the range of potential operators, Proc. Amer. Math. Soc. 83 (1981), no. 2, 341–344. P. Zhao, C. Zhong, and J. Zhu, Positive solutions for a nonhomogeneous semilinear elliptic problem with supercritical exponent, J. Math. Anal. Appl. 254 (2001), no. 2, 335–347. |
dc.rights.spa.fl_str_mv |
Derechos Reservados al Autor, 2012 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional Derechos Reservados al Autor, 2012 http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiii, 175 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.department.spa.fl_str_mv |
Sede Bogotá |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/79984/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/79984/2/%c2%adEcuaciones%20Semilineales%20con%20Espectro%20Discreto%209789587612424.pdf https://repositorio.unal.edu.co/bitstream/unal/79984/3/%c2%adEcuaciones%20Semilineales%20con%20Espectro%20Discreto%209789587612424.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 b22b389d506563d4dbc168d5bb5b608a 844d791aa556e37747fdc4b413bcfafc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089465747996672 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 InternacionalDerechos Reservados al Autor, 2012http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Caicedo Contreras, José Francisco4131f0c3687f4a4a988d11938f9a1a46Castro, Alfonsoa25d5bc00937596a1d1f831ecebc03bbRubiano, Gustavo2021-08-20T17:38:01Z2021-08-20T17:38:01Z2012https://repositorio.unal.edu.co/handle/unal/79984Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Este libro está diseñado como un primer curso sobre ecuaciones diferenciales semilineales para estudiantes con conocimientos básicos de álgebra lineal, análisis matemático y ecuaciones diferenciales. El estudio del primer capítulo solamente requiere de conocimientos básicos de ecuaciones diferenciales elementales. Para el segundo capítulo se necesita manejo de las coordenadas polares y el teorema del valor intermedio. Lo anterior, más conocimiento de ecuaciones diferenciales ordinarias singulares facilitan el estudio del capítulo 3. En el capítulo métodos de orden, se usa a menudo el papel de las segundas derivadas parciales por su importancia para determinar mínimos o máximos locales. El estudio de los capítulos 5 a 8 requiere de cierta familiaridad con conceptos básicos del análisis funcional tales como la integral de Lebesgue, espacios de Hilbert y espacios Lp. (Texto tomado de la fuente).Incluye índice analítico.ISBN de la versión impresa 9789587612424Primera ediciónxiii, 175 páginasapplication/pdfspaUniversidad Nacional de ColombiaSede BogotáBogotá, ColombiaColección textos;Primera ediciónR. Adams, Sobolev spaces, Academic Press, New York, 1975.I. Ali and A. Castro, Positive solutions for a semilinear elliptic problem with critical exponent, Nonlinear Analysis 27 (1996), no. 3, 327– 338.J. Ali, R. Shivaji, and M. Ramaswamy, Multiple positive solutions for classes of elliptic systems with combined nonlinear effects, Differential Integral Equations 19 (2006), no. 6, 669–680.H. Amann, Fixed point problems and nonlinear eigenvalue problems in ordered Banach spaces, SIAM Review 18 (1976), 620–709.Saddle points and multiple solutions of differential equations, Math. Z. (1979), 127–166.H. Amann and S. A. Weiss, On the uniqueness of the topological degree, Math. Z. 130 (1973), 39–54.P. Bates and A. Castro, Existence and uniqueness for a variational hyperbolic systems, Nonlinear Analysis. 4 (1980), no. 6, 1151–1156.Necessary and sufficient conditions for existence of solutions to equations with noninvertible linear part, Rev. Colombiana.Mat. 15 (1981), no. 1, 7–23.V. Benci and D. Fortunato, Towards a unified field theory for classical electrodynamics, Arch. Ration. Mech. Anal. 173 (2004), no. 3, 379–414.V. Benci and P. Rabinowitz, Critical point theorems for indefinite functionals, Inventions math. 52 (1979), 241–273.A.G. Bratsos, the solution of the two dimensional sine-gordon equation using the method of lines, Journal of Computational and Applied Mathematics 206 (2007), 251–277.H. Brezis, Analyse Fonctionelle, Masson, 1983.H. Brezis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Annali della Scuola Norm. Sup. di Pisa (1978), 225–236.R. Brooks and K. Schmitt, The contraction mapping principle and some applications, Electronic Journal of Differential Equations, Monograph (2009), 225–236.J. Caicedo and A. Castro, A semilinear wave equation with derivative of nonlinearity containing multiple eigenvalues of infinite multiplicity, Contemp. Math. 208 (1997), 111–132.J.F. Caicedo and A. Castro, A semilinear wave equation with smooth data and no resonance having no continuous solution, Discrete and Continuous Dynamical Systems 24 (2009), 653–658.J.F. Caicedo, A. Castro, and R. Duque, Existence of solutions for a wave equation with nonmonotone nonlinearity and a small parameter, preprint (2010).R. Cantrell, C. Cosner, and S. Martínez, Global bifurcation of solutions to diffusive logistic equations on bounded domains subject to nonlinear boundary conditions, Proc. Roy. Soc. Edinburgh Sect. A 139 (2009), no. 1, 45.A. Castro, Sufficient conditions for the existence of weak solutions of the boundary value problem Lu=g(u(x ),x ) (x ∈ Ω), u(x )=0 (x ∈ ∂Ω), Rev. Colombiana Mat. (1975), no. 3, 173–187.Hammerstein integral equations with indefinite kernel, Internet. J. Math. Sci. 1 (1978), no. 8, 187–201.Periodic solutions of the forced pendulum equation, Academic Press (1980), 149–160.A. Castro, J. Cossio, and J.M. Neuberger, A sign changing for a superlinear Dirichlet problem, Rocky Mountain J.Math.A minimax principle, index of the critical point, and existence of sign changing solutions to elliptic boundary value problem, Electron. J. Differential Equations 02 (1998), 18.A. Castro, J. Cossio, and C.A. Velez, Existence of seven solutions for an asymptotically linear Dirichlet problem, preprint (2010).A. Castro and A. Kurepa, Energy analysis of a nonlinear singular diferencial equation and applications, Rev. Colombiana Mat. 21 (1987), 155–166.A. Castro and A. Lazer, Applications of a maximun principle, Rev.Col. de Mat. (1976).Critical point theory and the numbers of solutions of a nonlinear dirichlet problem, Ann. Mat. Pura Appl. 4 (1979), no. 120.On periodic solutions of weakly coupled systems of differential equations, Boll. Un. Mat. Ital. B 5 (1981), no. 18, 733–742.A. Castro and B. Preskill, Existence of solutions for a semilinear wave equation with non-monotone nonlinearity, Discrete Contin. Dyn. Syst. 28 (2010), no. 2, 649.A. Castro and R. Shivaji, Non-negative solutions for a class of nonpositone problems, Proc. Royal Soc. Endinburg Sect. A 108 (1988), no. 8, 291–302.Non-negative solutions to a semilinear Dirichlet problem in a ball are positive and radially symmetric, Comm. in Partial Differential Equations 14 (1989), no. 8, 1091–1100.A. Castro and S. Unsurangsie, A semilinear wave equation with non-monotone nonlinearity, Pacific J. Math 132 (1988), no. 2, 215–225.S. Cingolani and M. Clapp, intertwining semiclassical bound states to a nonlinear magnetic schrodinger equation, Nonlinearity 22 (2009), no. 9, 2309–2331.Symmetric semiclassical states to a magnetic nonlinear schrodinger equation via equivariant morse theory, Commun. Pure Appl. Anal. 9 (2010), no. 5, 1263–1281.D. Clark, A variant of the Lusternik-Schnierelmann theory, Indiana Univ. Math. J. 22 (1972), 579–584.D. de Figueiredo, P. Lions, and R. Nusbaum, A priori and existence of positive solutions of semilinear elliptic equations, J. Math. Pures. Appl. 61 (1982), 41–63.P. Drabek, A. Kufner, and F. Nicolosi, Quasilinear elliptic equations with degenerations and singularities, Walter de Gruyter, Berlin, New York, 1997.S. Fucik, J. Necas, J. Soucek, and V. Soucek, Spectral analysis of nonlinear operators, vol. 343, Springer Verlag, 1973.B. Gidas, W. Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), 209–243.B. Gidas and J. Spruck, A priori bounds for positive solutions of nonlinear elliptic equations, Comm. Partial Differential Equations. 6 (1981), 883–901.D. Gilbarg and N.S. Trudinger, Elliptic partial differential equations of second order, Springer-Verlag, 1998.V. Guillemin and A. Pollack, Differential Topology, Prentice Hall, Inc, 1974.H. Hofer, On the range of a wave operator with non-monotone nonlinearity, Math. Nachr. 106 (1982), 327–340.J. Jacobsen and K. Schmitt, Radial solutions of quasilinear elliptic differential equations, Elsevier/North-Holland.J. Jia and J. Huang, Krylov deferred correction accelerated method of lines transpose for parabolic problems, Journal of computational Physics 227 (2008), 1739–1753.D. Joseph and T. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49 (1973), 241–269.A. Khamayseh and R. Shivaji, Evolution of bifurcation curves for semipositone problems when nonlinearities develop multiple zeroes, Appl. Math. Comput. 52 (1992), no. 2, 173–188.M. Krasnoselskii, Topological methods in the theory of nonlinear integral equations, Pergamon Press, London, New York, 1964.E. Landesman and A. Lazer, Nonlinear perturbations of elliptic boundary value problems at resonance, J. Math. Mech. 19 (1970).S. Lang, Real Analysis, Addisson-Wesley Publishing Company, 1983.A. Lazer, E. Landesman, and D. Meyers, On saddle point problems in the calculus of variations, the ritz algorithm, and monotone convergence, J. Math. Appl. 52 (1975), no. 3.N.G. Lloyd, Degree theory, Cambridge University Press., 1978.J. Mawhin, Periodic solutions of some semilinear wave equations and systems: a survey, Chaos, Solitons, and Fractals 5 (1995), 1651– 1669.P. J. McKenna, On solutions of a nonlinear wave equation when the ratio of the period to the length of the interval is irrational, Proc. Amer. Math. Soc. 93 (1985), no. 1, 59–64.A. Miciano and R. Shivaji, Multiple positive solutions for a class of semipositone Newmann two boundary value problems, J. Math. Anal. Appl. 178 (1993), no. 1, 102–115.J. Milnor, Topology from a differentiable viewpoint, Princeton University Press.L. Nirenberg, Topics in nonlinear functional analysis, Courant Institute Lecture Notes, New York, 1974.F. Pacella and T. Weth, Symmetry of solutions to semilinear elliptic equations via morse index, Proc. Amer. Math. Soc. 135, no. 6, 1753– 1762.R. Palais, Lusternik-Schnirelmann theory on Banach manifolds, Topology 5 (1966), 115–132.M. Protter and H. Weinberger, Maximun principles in differential equations, Prentice Hall, Englewood, Cliffs, N.J., 1967.P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), 681–703.P.H. Rabinowitz, Some global results for nonlinear eigenvalue problems, J. Funct. Anal. 7 (1971), 487–513.Periodic solutions of Hamiltonian systems, Com. Pure Appl. Math. 31 (1978), 157–184.Some minimax theorems and applications to nonlinear partial differential equations, Nonlinear Analysis, Ac.Press 65 (1978), 161–177.Minimax methods in critical point theory with applications to differential equations, CBMS 65 (1985).M. Reed and B. Simon, Methods of modern mathematical physics, Academic Press., Inc., 1980.H. Royden, Real Analysis, McMillan Publishing Co., Inc., 1968.W. Rudin, Principles of mathematical analysis, McGraw-Hill, New York, 1976.Real and complex analysis, McGraw-Hill, New York, 1987.J. Schwartz, Nonlinear functional analysis, Gordon Breach, New York, 1962.M. Willem, Density of the range of potential operators, Proc. Amer. Math. Soc. 83 (1981), no. 2, 341–344.P. Zhao, C. Zhong, and J. Zhu, Positive solutions for a nonhomogeneous semilinear elliptic problem with supercritical exponent, J. Math. Anal. Appl. 254 (2001), no. 2, 335–347.510 - Matemáticas::515 - AnálisisEcuaciones diferenciales parcialesEcuaciones diferenciales semilinealesTeoría espectralAnálisis funcionalFunciones de GreenEcuacionesEcuaciones semilineales con espectro discretoLibroinfo:eu-repo/semantics/bookinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_2f33Texthttp://purl.org/redcol/resource_type/LIBGeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/79984/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINALEcuaciones Semilineales con Espectro Discreto 9789587612424.pdfEcuaciones Semilineales con Espectro Discreto 9789587612424.pdfLibro del Departamento de Matemáticasapplication/pdf1490771https://repositorio.unal.edu.co/bitstream/unal/79984/2/%c2%adEcuaciones%20Semilineales%20con%20Espectro%20Discreto%209789587612424.pdfb22b389d506563d4dbc168d5bb5b608aMD52THUMBNAILEcuaciones Semilineales con Espectro Discreto 9789587612424.pdf.jpgEcuaciones Semilineales con Espectro Discreto 9789587612424.pdf.jpgGenerated Thumbnailimage/jpeg6910https://repositorio.unal.edu.co/bitstream/unal/79984/3/%c2%adEcuaciones%20Semilineales%20con%20Espectro%20Discreto%209789587612424.pdf.jpg844d791aa556e37747fdc4b413bcfafcMD53unal/79984oai:repositorio.unal.edu.co:unal/799842023-11-13 17:25:38.907Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |