Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro
ilustraciones, diagramas, fotografías, tablas
- Autores:
-
Ramírez Rodríguez, Carlos Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86970
- Palabra clave:
- 610 - Medicina y salud::611 - Anatomía humana, citología, histología
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
670 - Manufactura::679 -Otros productos de materiales específicos
Propiedades de Superficie
Ingeniería de Tejidos
Surface Properties
Tissue Engineering
TEJIDO OSEO
Bone
TPMS
Offset
Unit cell size
Exposure time
Surface roughness
Tamaño de celda unitaria
Tiempo de exposición
Rugosidad superficia
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_deba28851a748183e6f1a06913ed919a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86970 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro |
dc.title.translated.eng.fl_str_mv |
Effect of the geometric parameters of the TPMS unit cell and the photopolymerization printing parameters on the surface roughness of scaffolds for in vitro bone tissue culture |
title |
Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro |
spellingShingle |
Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro 610 - Medicina y salud::611 - Anatomía humana, citología, histología 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 670 - Manufactura::679 -Otros productos de materiales específicos Propiedades de Superficie Ingeniería de Tejidos Surface Properties Tissue Engineering TEJIDO OSEO Bone TPMS Offset Unit cell size Exposure time Surface roughness Tamaño de celda unitaria Tiempo de exposición Rugosidad superficia |
title_short |
Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro |
title_full |
Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro |
title_fullStr |
Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro |
title_full_unstemmed |
Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro |
title_sort |
Efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitro |
dc.creator.fl_str_mv |
Ramírez Rodríguez, Carlos Andrés |
dc.contributor.advisor.spa.fl_str_mv |
Narváez Tovar, Carlos Alberto Garzón Alvarado, Diego Alexander |
dc.contributor.author.spa.fl_str_mv |
Ramírez Rodríguez, Carlos Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Innovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim) laboratorio de Biomiméticos: Grupo de Mecanobiología de Órganos y Tejidos |
dc.contributor.orcid.spa.fl_str_mv |
Ramirez Rodriguez, Carlos Andres [0000-0001-6592-9804] |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::611 - Anatomía humana, citología, histología 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 670 - Manufactura::679 -Otros productos de materiales específicos |
topic |
610 - Medicina y salud::611 - Anatomía humana, citología, histología 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería 670 - Manufactura::679 -Otros productos de materiales específicos Propiedades de Superficie Ingeniería de Tejidos Surface Properties Tissue Engineering TEJIDO OSEO Bone TPMS Offset Unit cell size Exposure time Surface roughness Tamaño de celda unitaria Tiempo de exposición Rugosidad superficia |
dc.subject.decs.spa.fl_str_mv |
Propiedades de Superficie Ingeniería de Tejidos |
dc.subject.decs.eng.fl_str_mv |
Surface Properties Tissue Engineering |
dc.subject.lemb.spa.fl_str_mv |
TEJIDO OSEO |
dc.subject.lemb.eng.fl_str_mv |
Bone |
dc.subject.proposal.eng.fl_str_mv |
TPMS Offset Unit cell size Exposure time Surface roughness |
dc.subject.proposal.spa.fl_str_mv |
Tamaño de celda unitaria Tiempo de exposición Rugosidad superficia |
description |
ilustraciones, diagramas, fotografías, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-16T13:03:35Z |
dc.date.available.none.fl_str_mv |
2024-10-16T13:03:35Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86970 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86970 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
A. A. El-Rashidy, J. A. Roether, L. Harhaus, U. Kneser, and A. R. Boccaccini, “Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models,” Acta Biomater, vol. 62, pp. 1–28, Oct. 2017, doi: 10.1016/J.ACTBIO.2017.08.030. H. Qu, “Additive manufacturing for bone tissue engineering scaffolds,” Mater Today Commun, vol. 24, p. 101024, Sep. 2020, doi: 10.1016/J.MTCOMM.2020.101024. M. M. Stevens, “Biomaterials for bone tissue engineering,” Materials Today, vol. 11, no. 5, pp. 18–25, May 2008, doi: 10.1016/S1369-7021(08)70086-5. J. C. Reichert et al., “Custom-made composite scaffolds for segmental defect repair in long bones,” Int Orthop, vol. 35, no. 8, pp. 1229–1236, Aug. 2011, doi: 10.1007/S00264-010-1146-X. R. Calvo, D. Figueroa, C. Díaz-Ledezma, A. Vaisman, and F. Figueroa, “Aloinjertos óseos y la función del banco de huesos,” Rev Med Chil, vol. 139, no. 5, pp. 660–666, May 2011, doi: 10.4067/S0034-98872011000500015. J. Henkel et al., “Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective,” Bone Res, vol. 1, no. 3, pp. 216–248, Sep. 2013, doi: 10.4248/BR201303002. G. M. Crane, S. L. Ishaug, and A. G. Mikos, “Bone tissue engineering,” Nat Med, vol. 1, no. 12, pp. 1322–1324, 1995, doi: 10.1038/NM1295-1322. C. R. M. Black, V. Goriainov, D. Gibbs, J. Kanczler, R. S. Tare, and R. O. C. Oreffo, “Bone Tissue Engineering,” Curr Mol Biol Rep, vol. 1, no. 3, p. 132, Sep. 2015, doi: 10.1007/S40610-015-0022-2. R. C. de Azevedo Gonçalves Mota, E. O. da Silva, F. F. de Lima, L. R. de Menezes, and A. C. S. Thiele, “3D Printed Scaffolds as a New Perspective for Bone Tissue Regeneration: Literature Review,” Materials Sciences and Applications, vol. 07, no. 08, pp. 430–452, 2016, doi: 10.4236/MSA.2016.78039. D. Barba, E. Alabort, and R. C. Reed, “Synthetic bone: Design by additive manufacturing,” Acta Biomater, vol. 97, pp. 637–656, Oct. 2019, doi: 10.1016/J.ACTBIO.2019.07.049. K. Dave and V. G. Gomes, “Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity,” Materials Science and Engineering: C, vol. 105, p. 110078, Dec. 2019, doi: 10.1016/J.MSEC.2019.110078. R. E. McClelland, R. Dennis, L. M. Reid, J. P. Stegemann, B. Palsson, and J. M. Macdonald, “Tissue Engineering,” Introduction to Biomedical Engineering, pp. 273–357, Jan. 2012, doi: 10.1016/B978-0-12-374979-6.00006-X. F. Berthiaume and M. L. Yarmush, “Tissue Engineering,” Encyclopedia of Physical Science and Technology, pp. 817–842, Jan. 2003, doi: 10.1016/B0-12-227410-5/00783-3. L. Di Silvio, “Bone tissue engineering and biomineralization,” Tissue Engineering Using Ceramics and Polymers, pp. 319–331, Jan. 2007, doi: 10.1533/9781845693817.2.319. A. A. El-Rashidy, J. A. Roether, L. Harhaus, U. Kneser, and A. R. Boccaccini, “Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models,” Acta Biomater, vol. 62, pp. 1–28, Oct. 2017, doi: 10.1016/J.ACTBIO.2017.08.030. S. Tajvar, A. Hadjizadeh, and S. S. Samandari, “Scaffold degradation in bone tissue engineering: An overview,” Int Biodeterior Biodegradation, vol. 180, p. 105599, May 2023, doi: 10.1016/J.IBIOD.2023.105599. J. Feng, J. Fu, X. Yao, and Y. He, “Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications,” International Journal of Extreme Manufacturing, vol. 4, no. 2, p. 022001, Mar. 2022, doi: 10.1088/2631-7990/AC5BE6. “Old and New Blocks: Walled TPMS (deprecated) | Community.” Accessed: Jul. 29, 2023. [Online]. Available: https://community.ntop.com/discussion/old-and-new-blocks-walled-tpms-deprecated F. Rupp, L. Liang, J. Geis-Gerstorfer, L. Scheideler, and F. Hüttig, “Surface characteristics of dental implants: A review,” Dental Materials, vol. 34, no. 1, pp. 40–57, Jan. 2018, doi: 10.1016/J.DENTAL.2017.09.007. A. Wennerberg and T. Albrektsson, “Effects of titanium surface topography on bone integration: a systematic review,” Clin Oral Implants Res, vol. 20, no. SUPPL. 4, pp. 172–184, Sep. 2009, doi: 10.1111/J.1600-0501.2009.01775.X. N. I. Jaramillo Gómez, “Desarrollo de un scaffold para regeneración ósea mediante impresión 3D de una pasta cerámica compuesta de una mezcla de fosfatos de calcio y biovidrio.” M. E. Furth and A. Atala, “Tissue Engineering: Future Perspectives,” Principles of Tissue Engineering: Fourth Edition, pp. 83–123, Jan. 2014, doi: 10.1016/B978-0-12-398358-9.00006-9. M. Filippi, G. Born, M. Chaaban, and A. Scherberich, “Natural Polymeric Scaffolds in Bone Regeneration,” Front Bioeng Biotechnol, vol. 8, p. 532791, May 2020, doi: 10.3389/FBIOE.2020.00474/BIBTEX. C. M. Moysidou, C. Barberio, and R. M. Owens, “Advances in Engineering Human Tissue Models,” Front Bioeng Biotechnol, vol. 8, p. 620962, Jan. 2021, doi: 10.3389/FBIOE.2020.620962/BIBTEX. G. Battafarano et al., “Strategies for Bone Regeneration: From Graft to Tissue Engineering,” International Journal of Molecular Sciences 2021, Vol. 22, Page 1128, vol. 22, no. 3, p. 1128, Jan. 2021, doi: 10.3390/IJMS22031128. N. Kladovasilakis et al., “Development of biodegradable customized tibial scaffold with advanced architected materials utilizing additive manufacturing,” J Mech Behav Biomed Mater, vol. 141, p. 105796, May 2023, doi: 10.1016/J.JMBBM.2023.105796. G. L. Koons, M. Diba, and A. G. Mikos, “Materials design for bone-tissue engineering,” Nature Reviews Materials 2020 5:8, vol. 5, no. 8, pp. 584–603, Jun. 2020, doi: 10.1038/s41578-020-0204-2. R. Florencio-Silva, G. R. D. S. Sasso, E. Sasso-Cerri, M. J. Simões, and P. S. Cerri, “Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells,” Biomed Res Int, vol. 2015, 2015, doi: 10.1155/2015/421746. R. Fattahi, F. M. Chamkhorami, N. Taghipour, and S. H. Keshel, “The effect of extracellular matrix remodeling on material-based strategies for bone regeneration: Review article,” Tissue Cell, vol. 76, Jun. 2022, doi: 10.1016/J.TICE.2022.101748. A. I. Alford, K. M. Kozloff, and K. D. Hankenson, “Extracellular matrix networks in bone remodeling,” Int J Biochem Cell Biol, vol. 65, pp. 20–31, May 2015, doi: 10.1016/J.BIOCEL.2015.05.008. C. Gentili/snm, >, and R. Cancedda, “Cartilage and bone extracellular matrix,” Curr Pharm Des, vol. 15, no. 12, pp. 1334–1348, Mar. 2009, doi: 10.2174/138161209787846739. “Histología: texto y atlas color con biología celular y molecular - Michael H. Ross, Wojciech Pawlina - Google Libros.” Accessed: Jul. 26, 2023. [Online]. Available: https://books.google.es/books?id=NxYmIRZQi2oC&printsec=frontcover&hl=es#v=onepage&q&f=false E. Hardy and C. Fernandez-Patron, “Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases,” Front Physiol, vol. 11, p. 500305, Feb. 2020, doi: 10.3389/FPHYS.2020.00047/BIBTEX. M. Ansari, “Bone tissue regeneration: biology, strategies and interface studies,” Prog Biomater, vol. 8, no. 4, pp. 223–237, Dec. 2019, doi: 10.1007/S40204-019-00125-Z/FIGURES/5. M. S. Carvalho, J. M. S. Cabral, C. L. da Silva, and D. Vashishth, “Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix,” Polymers 2021, Vol. 13, Page 1095, vol. 13, no. 7, p. 1095, Mar. 2021, doi: 10.3390/POLYM13071095. J. R. Caeiro, P. González, and D. Guede, “Biomecánica y hueso (y II): ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea,” Revista de Osteoporosis y Metabolismo Mineral, vol. 5, no. 2, pp. 99–108, Jun. 2013, doi: 10.4321/S1889-836X2013000200007. Y. Liu, D. Luo, and T. Wang, “Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering,” Small, vol. 12, no. 34, pp. 4611–4632, Sep. 2016, doi: 10.1002/SMLL.201600626. J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Med Eng Phys, vol. 20, no. 2, pp. 92–102, Mar. 1998, doi: 10.1016/S1350-4533(98)00007-1. X. Wang et al., “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review,” Biomaterials, vol. 83, pp. 127–141, Mar. 2016, doi: 10.1016/J.BIOMATERIALS.2016.01.012. C. Frantz, K. M. Stewart, and V. M. Weaver, “The extracellular matrix at a glance,” J Cell Sci, vol. 123, no. 24, pp. 4195–4200, Dec. 2010, doi: 10.1242/JCS.023820. L. Di Silvio and P. Jayakumar, “Cellular response to osteoinductive materials in orthopaedic surgery,” Cellular Response to Biomaterials, pp. 313–343, Jan. 2009, doi: 10.1533/9781845695477.2.313. L. Hughes, C. P. Charalambous, and A. Aljawadi, “Engineering advances in promoting bone union,” Advances in Medical and Surgical Engineering, pp. 5–18, Jan. 2020, doi: 10.1016/B978-0-12-819712-7.00002-4. B. Buranawat, P. Kalia, and L. Di Silvio, “Vascularisation of tissue-engineered constructs,” Standardisation in Cell and Tissue Engineering: Methods and Protocols, pp. 77–103a, Jan. 2013, doi: 10.1533/9780857098726.1.77. L. T. Chau, J. E. Frith, R. J. Mills, D. J. Menzies, D. M. Titmarsh, and J. J. Cooper-White, “Microfluidic devices for developing tissue scaffolds,” Microfluidic Devices for Biomedical Applications, pp. 363–387, Jan. 2013, doi: 10.1533/9780857097040.3.363. R. Lemos, F. R. Maia, R. L. Reis, and J. M. Oliveira, “Engineering of Extracellular Matrix-Like Biomaterials at Nano- and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering,” Adv Nanobiomed Res, vol. 2, no. 2, p. 2100116, Feb. 2022, doi: 10.1002/ANBR.202100116. R. Lemos, F. R. Maia, R. L. Reis, and J. M. Oliveira, “Engineering of Extracellular Matrix-Like Biomaterials at Nano- and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering,” Adv Nanobiomed Res, vol. 2, no. 2, p. 2100116, Feb. 2022, doi: 10.1002/ANBR.202100116. M. Rahman et al., “3D bioactive cell-free-scaffolds for in-vitro/in-vivo capture and directed osteoinduction of stem cells for bone tissue regeneration,” Bioact Mater, vol. 6, no. 11, pp. 4083–4095, Nov. 2021, doi: 10.1016/J.BIOACTMAT.2021.01.013. A. Przekora, “The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications,” Mater Sci Eng C Mater Biol Appl, vol. 97, pp. 1036–1051, Apr. 2019, doi: 10.1016/J.MSEC.2019.01.061. S. J. Gutiérrez-Prieto, S. J. Perdomo-Lara, J. M. Diaz-Peraza, and L. G. Sequeda-Castañeda, “Analysis of In Vitro Osteoblast Culture on Scaffolds for Future Bone Regeneration Purposes in Dentistry,” Adv Pharmacol Sci, vol. 2019, 2019, doi: 10.1155/2019/5420752. M. N. Collins, G. Ren, K. Young, S. Pina, R. L. Reis, and J. M. Oliveira, “Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering,” Adv Funct Mater, vol. 31, no. 21, p. 2010609, May 2021, doi: 10.1002/ADFM.202010609. H. P. Felgueiras, J. C. Antunes, M. C. L. Martins, and M. A. Barbosa, “Fundamentals of protein and cell interactions in biomaterials,” Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair, pp. 1–27, Jan. 2018, doi: 10.1016/B978-0-08-100803-4.00001-2. D. R. Schmidt, H. Waldeck, and W. J. Kao, “Protein Adsorption to Biomaterials,” Biological Interactions on Materials Surfaces, pp. 1–18, 2009, doi: 10.1007/978-0-387-98161-1_1. Q. Wei et al., “Protein interactions with polymer coatings and biomaterials,” Angew Chem Int Ed Engl, vol. 53, no. 31, pp. 8004–8031, Jul. 2014, doi: 10.1002/ANIE.201400546. F. Poncin-Epaillard et al., “Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules,” J Funct Biomater, vol. 3, no. 3, p. 528, Aug. 2012, doi: 10.3390/JFB3030528. P. Thevenot, W. Hu, and L. Tang, “SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY,” Curr Top Med Chem, vol. 8, no. 4, p. 270, Mar. 2008, doi: 10.2174/156802608783790901. M. Tagaya, “In situ QCM-D study of nano-bio interfaces with enhanced biocompatibility,” Polymer Journal 2015 47:9, vol. 47, no. 9, pp. 599–608, Jul. 2015, doi: 10.1038/pj.2015.43. K. Metavarayuth, P. Sitasuwan, X. Zhao, Y. Lin, and Q. Wang, “Influence of Surface Topographical Cues on the Differentiation of Mesenchymal Stem Cells in Vitro,” ACS Biomater Sci Eng, vol. 2, no. 2, pp. 142–151, Feb. 2016, doi: 10.1021/ACSBIOMATERIALS.5B00377. E. Ruoslahti and M. D. Pierschbacher, “New perspectives in cell adhesion: RGD and integrins,” Science, vol. 238, no. 4826, pp. 491–497, 1987, doi: 10.1126/SCIENCE.2821619. N. O. Carragher and M. C. Frame, “Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion,” Trends Cell Biol, vol. 14, no. 5, pp. 241–249, May 2004, doi: 10.1016/J.TCB.2004.03.011. V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions,” Nature Reviews Molecular Cell Biology 2006 7:4, vol. 7, no. 4, pp. 265–275, Feb. 2006, doi: 10.1038/nrm1890. J. Han et al., “Surface Roughness and Biocompatibility of Polycaprolactone Bone Scaffolds: An Energy-Density-Guided Parameter Optimization for Selective Laser Sintering,” Front Bioeng Biotechnol, vol. 10, p. 1, Jul. 2022, doi: 10.3389/FBIOE.2022.888267/FULL. A. Barfeie, J. Wilson, and J. Rees, “Implant surface characteristics and their effect on osseointegration,” British Dental Journal 2015 218:5, vol. 218, no. 5, pp. E9–E9, Mar. 2015, doi: 10.1038/sj.bdj.2015.171. “Medición de rugosidad superficial: Parámetros | Olympus.” Accessed: Jan. 25, 2024. [Online]. Available: https://www.olympus-ims.com/es/metrology/surface-roughness-measurement-portal/parameters/ “Medición de la rugosidad superficial: Evaluación de parámetros | Olympus.” Accessed: Nov. 05, 2023. [Online]. Available: https://www.olympus-ims.com/es/metrology/surface-roughness-measurement-portal/evaluating-parameters/#!cms[focus]=01 G. B. Valverde, R. Jimbo, H. S. Teixeira, E. A. Bonfante, M. N. Janal, and P. G. Coelho, “Evaluation of surface roughness as a function of multiple blasting processing variables,” Clin Oral Implants Res, vol. 24, no. 2, pp. 238–242, 2013, doi: 10.1111/J.1600-0501.2011.02392.X. “Rugosidad Superficial”. W. Yang et al., “Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells,” Materials Science and Engineering: C, vol. 60, pp. 45–53, Mar. 2016, doi: 10.1016/J.MSEC.2015.11.012. A. B. Faia-Torres et al., “Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study,” Acta Biomater, vol. 28, pp. 64–75, Dec. 2015, doi: 10.1016/J.ACTBIO.2015.09.028. C. Yang, U. Tartaglino, and B. N. J. Persson, “Influence of surface roughness on superhydrophobicity,” Phys Rev Lett, vol. 97, no. 11, p. 116103, Sep. 2006, doi: 10.1103/PHYSREVLETT.97.116103/FIGURES/6/MEDIUM. S. Vermeulen et al., “Expanding Biomaterial Surface Topographical Design Space through Natural Surface Reproduction,” Advanced Materials, vol. 33, no. 31, p. 2102084, Aug. 2021, doi: 10.1002/ADMA.202102084. P. Han, G. A. Gomez, G. N. Duda, S. Ivanovski, and P. S. P. Poh, “Scaffold geometry modulation of mechanotransduction and its influence on epigenetics,” Acta Biomater, vol. 163, pp. 259–274, Jun. 2023, doi: 10.1016/J.ACTBIO.2022.01.020. S. J. P. Callens, R. J. C. Uyttendaele, L. E. Fratila-Apachitei, and A. A. Zadpoor, “Substrate curvature as a cue to guide spatiotemporal cell and tissue organization,” Biomaterials, vol. 232, Feb. 2020, doi: 10.1016/J.BIOMATERIALS.2019.119739. M. Werner, N. A. Kurniawan, and C. V. C. Bouten, “Cellular Geometry Sensing at Different Length Scales and its Implications for Scaffold Design,” Materials (Basel), vol. 13, no. 4, Feb. 2020, doi: 10.3390/MA13040963. L. Iturriaga, K. D. Van Gordon, G. Larrañaga-Jaurrieta, and S. Camarero-Espinosa, “Strategies to Introduce Topographical and Structural Cues in 3D-Printed Scaffolds and Implications in Tissue Regeneration,” Adv Nanobiomed Res, vol. 1, no. 12, p. 2100068, Dec. 2021, doi: 10.1002/ANBR.202100068. M. A. Velasco, C. A. Narváez-Tovar, and D. A. Garzón-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering,” Biomed Res Int, vol. 2015, 2015, doi: 10.1155/2015/729076. “4 formas de calcular la porosidad - wikiHow.” Accessed: Jan. 20, 2024. [Online]. Available: https://es.wikihow.com/calcular-la-porosidad S. J. P. Callens, D. C. Tourolle né Betts, R. Müller, and A. A. Zadpoor, “The local and global geometry of trabecular bone,” Acta Biomater, vol. 130, pp. 343–361, Aug. 2021, doi: 10.1016/J.ACTBIO.2021.06.013. A. Graziano et al., “Scaffold’s surface geometry significantly affects human stem cell bone tissue engineering,” J Cell Physiol, vol. 214, no. 1, pp. 166–172, Jan. 2008, doi: 10.1002/JCP.21175. A. A. Zadpoor, “Bone tissue regeneration: the role of scaffold geometry,” Biomater Sci, vol. 3, no. 2, pp. 231–245, Feb. 2015, doi: 10.1039/C4BM00291A. S. Ma et al., “Manufacturability, Mechanical Properties, Mass-Transport Properties and Biocompatibility of Triply Periodic Minimal Surface (TPMS) Porous Scaffolds Fabricated by Selective Laser Melting,” Mater Des, vol. 195, p. 109034, Oct. 2020, doi: 10.1016/J.MATDES.2020.109034. P. De, G. Juan, E. Arjona, R. Profesor, A. Juan, and P. Casas Rodríguez, “Caracterización de estructuras celulares TPMS manufacturadas aditivamente para aplicaciones de absorción de energía”. “Implicit modeling for engineering design | nTop.” Accessed: Aug. 07, 2023. [Online]. Available: https://www.ntop.com/resources/blog/implicit-modeling-for-mechanical-design/ S. Truscello, G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck, “Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study,” Acta Biomater, vol. 8, no. 4, pp. 1648–1658, Apr. 2012, doi: 10.1016/J.ACTBIO.2011.12.021. J. Santos, T. Pires, B. P. Gouveia, A. P. G. Castro, and P. R. Fernandes, “On the permeability of TPMS scaffolds,” J Mech Behav Biomed Mater, vol. 110, p. 103932, Oct. 2020, doi: 10.1016/J.JMBBM.2020.103932. A. P. G. Castro, T. Pires, J. E. Santos, B. P. Gouveia, and P. R. Fernandes, “Permeability versus Design in TPMS Scaffolds,” Materials, vol. 12, no. 8, 2019, doi: 10.3390/MA12081313. F. J. O’Brien, B. A. Harley, M. A. Waller, I. V. Yannas, L. J. Gibson, and P. J. Prendergast, “The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering,” Technology and Health Care, vol. 15, no. 1, pp. 3–17, 2007, doi: 10.3233/THC-2007-15102. X. P. Tan, Y. J. Tan, C. S. L. Chow, S. B. Tor, and W. Y. Yeong, “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility,” Materials Science and Engineering: C, vol. 76, pp. 1328–1343, Jul. 2017, doi: 10.1016/J.MSEC.2017.02.094. S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat Mater, vol. 4, no. 7, pp. 518–524, 2005, doi: 10.1038/NMAT1421. Y. Lu, L. L. Cheng, Z. Yang, J. Li, and H. Zhu, “Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure,” PLoS One, vol. 15, no. 9, p. e0238471, Sep. 2020, doi: 10.1371/JOURNAL.PONE.0238471. M. Lipowiecki, M. Ryvolova, A. Tottosi, S. Naher, and D. Brabazon, “Permeability of Rapid Prototyped Artificial Bone Scaffold Structures,” Adv Mat Res, vol. 445, pp. 607–612, Jan. 2012, doi: 10.4028/SCIENTIFIC5/AMR.445.607. S. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends Biotechnol, vol. 30, no. 10, pp. 546–554, Oct. 2012, doi: 10.1016/J.TIBTECH.2012.07.005. X. Y. Zhang, G. Fang, and J. Zhou, “Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review,” Materials 2017, Vol. 10, Page 50, vol. 10, no. 1, p. 50, Jan. 2017, doi: 10.3390/MA10010050. K. Gupta and K. Meena, “Artificial bone scaffolds and bone joints by additive manufacturing: A review,” Bioprinting, vol. 31, p. e00268, Jun. 2023, doi: 10.1016/J.BPRINT.2023.E00268. A. Becerro, “Regeneración ósea mediante injertos personalizados: Una revisión bibliográfica de los métodos y materiales,” Labor dental clínica: Avances clínicos en odontoestomatología, ISSN 1888-4040, Vol. 21, No. 3, 2020, págs. 20-49, vol. 21, no. 3, pp. 20–49, 2020, Accessed: Jul. 31, 2023. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=8037640&info=resumen&idioma=ENG “(2) (PDF) Techniques for manufacturing polymer scaffolds with potential applications in tissue engineering.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.researchgate.net/publication/317003912_Techniques_for_manufacturing_polymer_scaffolds_with_potential_applications_in_tissue_engineering A. Salerno and P. A. Netti, “Introduction to biomedical foams,” Biomedical Foams for Tissue Engineering Applications, pp. 3–39, Jan. 2014, doi: 10.1533/9780857097033.1.3. L. Suamte, A. Tirkey, J. Barman, and P. Jayasekhar Babu, “Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications,” Smart Materials in Manufacturing, vol. 1, p. 100011, Jan. 2023, doi: 10.1016/J.SMMF.2022.100011. P. Navarrete-Segado, M. Tourbin, C. Frances, and D. Grossin, “Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties,” Open Ceramics, vol. 9, p. 100235, Mar. 2022, doi: 10.1016/J.OCERAM.2022.100235. D. Mondal and T. L. Willett, “Enhanced mechanical performance of mSLA-printed biopolymer nanocomposites due to phase functionalization,” J Mech Behav Biomed Mater, vol. 135, p. 105450, Nov. 2022, doi: 10.1016/J.JMBBM.2022.105450. S. R. Gaikwad, N. H. Pawar, and S. U. Sapkal, “Comparative evaluation of 3D printed components for deviations in dimensional and geometrical features,” Mater Today Proc, vol. 59, pp. 297–304, Jan. 2022, doi: 10.1016/J.MATPR.2021.11.157. “Impresión 3D SLA y MSLA: ¿en qué se diferencian? - 3Dnatives.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.3dnatives.com/es/diferencias-impresion-3d-sla-msla-280720222/ “Resin 3D Printing – The Ultimate Guide | All3DP Pro.” Accessed: Jul. 31, 2023. [Online]. Available: https://all3dp.com/1/sla-resin-3d-printing-guide/ “Laser SLA vs DLP vs Masked SLA 3D Printing Technology - The Ortho Cosmos.” Accessed: Jul. 31, 2023. [Online]. Available: https://theorthocosmos.com/laser-sla-vs-dlp-vs-masked-sla-3d-printing-technology-compared/ P. Navarrete-Segado, M. Tourbin, C. Frances, and D. Grossin, “Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties,” Open Ceramics, vol. 9, p. 100235, Mar. 2022, doi: 10.1016/J.OCERAM.2022.100235. P. J. Bártolo, Ed., “Stereolithography,” 2011, doi: 10.1007/978-0-387-92904-0. “ANYCUBIC Photon Mono 4K”. P. Ożóg et al., “Engineering of silicone-based blends for the masked stereolithography of biosilicate/carbon composite scaffolds,” J Eur Ceram Soc, vol. 42, no. 13, pp. 6192–6198, Oct. 2022, doi: 10.1016/J.JEURCERAMSOC.2022.06.057. B. Nowacki, P. Kowol, M. Kozioł, P. Olesik, J. Wieczorek, and K. Wacławiak, “Effect of Post-Process Curing and Washing Time on Mechanical Properties of mSLA Printouts,” Materials, vol. 14, no. 17, Sep. 2021, doi: 10.3390/MA14174856. “Explicación de nFEP y la diferencia con FEP regular para impresión 3D.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.liqcreate.com/es/supportarticles/what-is-nfep-and-what-is-the-difference-with-regular-fep-in-resin-3d-printing/ R. Brighenti, L. Marsavina, M. P. Marghitas, M. Montanari, A. Spagnoli, and F. Tatar, “The effect of process parameters on mechanical characteristics of specimens obtained via DLP additive manufacturing technology,” Mater Today Proc, vol. 78, pp. 331–336, Jan. 2023, doi: 10.1016/J.MATPR.2023.01.092. B. Zhang et al., “DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration,” Biomaterials Advances, vol. 145, p. 213261, Feb. 2023, doi: 10.1016/J.BIOADV.2022.213261. W. Z. Tan, C. H. Koo, W. J. Lau, W. C. Chong, and J. Y. Tey, “Recent advances in 3D printed membranes for water applications,” 60 Years of the Loeb-Sourirajan Membrane: Principles, New Materials, Modelling, Characterization, and Applications, pp. 71–96, Jan. 2022, doi: 10.1016/B978-0-323-89977-2.00012-9. E. Andrzejewska, “Free Radical Photopolymerization of Multifunctional Monomers,” Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications, pp. 62–81, Jan. 2016, doi: 10.1016/B978-0-323-35321-2.00004-2. K. Mostafa, A. J. Qureshi, and C. Montemagno, “Tolerance control using subvoxel gray-scale DLP 3D printing,” ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 2, 2017, doi: 10.1115/IMECE2017-72232. “Optimal Layer Exposure Time for Perfect Resin Prints - Tutorial Australia.” Accessed: Aug. 01, 2023. [Online]. Available: https://core-electronics.com.au/guides/perfect-resin-print-exposure-setting/ “Prefacio - Física universitaria volumen 3 | OpenStax.” Accessed: Aug. 01, 2023. [Online]. Available: https://openstax.org/books/f%C3%ADsica-universitaria-volumen-3/pages/prefacio “2 reasons to reduce the %UV power for resin 3D-printing explained.” Accessed: Aug. 01, 2023. [Online]. Available: https://www.liqcreate.com/supportarticles/reduce-uv-power-resin/ I. L. Tsiklin, A. V. Shabunin, A. V. Kolsanov, and L. T. Volova, “In Vivo Bone Tissue Engineering Strategies: Advances and Prospects,” Polymers (Basel), vol. 14, no. 15, Aug. 2022, doi: 10.3390/POLYM14153222. L. Vidal, C. Kampleitner, M. Brennan, A. Hoornaert, and P. Layrolle, “Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing,” Front Bioeng Biotechnol, vol. 8, Feb. 2020, doi: 10.3389/FBIOE.2020.00061. N. Andalib, M. Kehtari, E. Seyedjafari, N. Motamed, and M. M. Matin, “In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells,” Cell Tissue Bank, vol. 22, no. 3, pp. 467–477, Sep. 2021, doi: 10.1007/S10561-020-09894-5. P. K. Chandra, S. Soker, and A. Atala, “Tissue engineering: current status and future perspectives,” Principles of Tissue Engineering, pp. 1–35, Jan. 2020, doi: 10.1016/B978-0-12-818422-6.00004-6. A. G. Abdelaziz et al., “A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges,” Bioengineering, vol. 10, no. 2, Feb. 2023, doi: 10.3390/BIOENGINEERING10020204. “Next-Gen Engineering Design Software: nTop (formerly nTopology) | nTop.” Accessed: Jan. 20, 2024. [Online]. Available: https://www.ntop.com/ “Anycubic Tienda oficial | Impresora 3D | Resina | Filamento – ANYCUBIC-ES.” Accessed: Jan. 21, 2024. [Online]. Available: https://www.anycubic.es/ “Anycbic High Clear Resin - 1KG – ANYCUBIC-US.” Accessed: Jan. 22, 2024. [Online]. Available: https://www.anycubic.com/collections/high-clear-resin/products/high-clear-resin D. Dean et al., “Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual Phys Prototyp, vol. 7, no. 1, pp. 13–24, Mar. 2012, doi: 10.1080/17452759.2012.673152. “Diseño y analisis de experimentos montgomery ocr | PDF.” Accessed: Sep. 30, 2023. [Online]. Available: https://es.slideshare.net/jairjosemunozsuarez/diseo-y-analisis-de-experimentos-montgomery-ocr H. Gutiérrez Pulido and R. de la Vara Salazar, “Análisis y diseño de experimentos.” [Online]. Available: www.FreeLibros.org A. P. Moreno Madrid, S. M. Vrech, M. A. Sanchez, and A. P. Rodriguez, “Advances in additive manufacturing for bone tissue engineering scaffolds,” Materials Science and Engineering: C, vol. 100, pp. 631–644, Jul. 2019, doi: 10.1016/J.MSEC.2019.03.037. A. Dasan et al., “Up-Cycling of LCD Glass by Additive Manufacturing of Porous Translucent Glass Scaffolds,” Materials 2021, Vol. 14, Page 5083, vol. 14, no. 17, p. 5083, Sep. 2021, doi: 10.3390/MA14175083. D. Mondal et al., “mSLA-based 3D printing of acrylated epoxidized soybean oil - nano-hydroxyapatite composites for bone repair,” Materials Science and Engineering: C, vol. 130, p. 112456, Nov. 2021, doi: 10.1016/J.MSEC.2021.112456. M. G. Kim, “A cautionary note on the use of Cook’s distance,” Commun Stat Appl Methods, vol. 24, no. 3, pp. 317–324, May 2017, doi: 10.5351/CSAM.2017.24.3.317. S. Türkan, M. Candan, and T. Toktamı¸s, “OUTLIER DETECTION BY REGRESSION DIAGNOSTICS BASED ON ROBUST PARAMETER ESTIMATES,” Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, pp. 147–155, 2012. “Download the latest version of Lychee Slicer for SLA/Resin 3D Printers.” Accessed: Jan. 23, 2024. [Online]. Available: https://mango3d.io/downloads/ “Herramientas estadísticas, de análisis de datos y de mejora de procesos | Minitab.” Accessed: Jan. 23, 2024. [Online]. Available: https://www.minitab.com/es-mx/ J. DURBIN and G. S. WATSON, “Comprobar si existe autocorrelación usando el estadístico de Durbin-Watson,” Biometrika, vol. 38, no. 1–2, pp. 159–178, 1951, doi: 10.1093/BIOMET/38.1-2.159. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xvi, 144 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86970/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86970/2/Tesis%20de%20Maestria%20Carlos%20Andres%20Ramirez.pdf https://repositorio.unal.edu.co/bitstream/unal/86970/3/Tesis%20de%20Maestria%20Carlos%20Andres%20Ramirez.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 10b7ecc4f81c1f80358be78576fe6e63 d91bb77e027bfa2d4fbef3553e9a1b48 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089620155006976 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Narváez Tovar, Carlos Alberto0682c1cb706afbfff1c2b72f1e3d48c5Garzón Alvarado, Diego Alexandera780fc0a2dd14ac611c37bca9998c94bRamírez Rodríguez, Carlos Andrés3cb7c43140bd2a709166e1b796b326c8Innovación en Procesos de Manufactura E Ingeniería de Materiales (Ipmim)laboratorio de Biomiméticos: Grupo de Mecanobiología de Órganos y TejidosRamirez Rodriguez, Carlos Andres [0000-0001-6592-9804]2024-10-16T13:03:35Z2024-10-16T13:03:35Z2024https://repositorio.unal.edu.co/handle/unal/86970Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, tablasEl objetivo principal de esta investigación es determinar el efecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por procesos de fotopolimerización en la rugosidad superficial de scaffolds que puedan ser utilizados en cultivo de tejido óseo in vitro. La metodología seguida abarcó la definición de los requerimientos fundamentales para los scaffolds empleados en cultivo de tejido óseo in vitro, la determinación de los parámetros geométricos y dimensionales de las celdas unitarias estudiadas; esto por medio de mapas de manufacturabildiad calculados, considerando las dos formas de construir las celdas TPMS (Walled y Offset), el tamaño de poro adecuado, la porosidad y las condiciones de manufacturabilidad dadas por la permeabilidad y la construcción de espesores delgados mediante el proceso de fotopolimerización MSLA. Posteriormente se realizó la fabricación y medición de la rugosidad superficial de acuerdo con el diseño experimental de Taguchi definido con un arreglo L9; y por último, se desarrolló el análisis estadístico para identificar el efecto que tienen los factores estudiados sobre la rugosidad superficial medida en Sa y Ra. Los resultados indicaron que el Giroide, especialmente el Giroide Walled, tiene el mayor espacio de diseño. Sin embargo, se destacó que el Giroide Offset demostró ser más eficiente en la construcción de espesores delgados y presentó una mayor permeabilidad en comparación con las demás TPMS estudiadas. Luego de un estudio exploratorio y su posterior análisis, se definieron los factores específicos para la investigación que corresponden a: el tamaño de celda unitaria, con niveles de 1,5 mm, 1,75 mm y 2,0 mm, el Offset con niveles de -0,2 mm, -0,1 mm y 0,0 mm, por último, el espesor de capa con niveles de 0,03 mm, 0,05 mm y 0,1 mm. Los valores de la rugosidad superficial Sa obtenidos oscilan, en promedio, entre 10,2 y 29,5 µm. Los valores de Ra en dirección longitudinal (RaL) oscilan, en promedio, entre 7,45 y 24,35 µm, mientras que los de Ra en dirección transversal (RaT) la hacen, entre 2,71 y 5,95 µm. Del análisis de estos resultados se evidenció que existe un cambio en el valor de la rugosidad superficial entre tratamientos; es decir, existe influencia de alguno de los factores. Además, los tratamientos se pueden agrupar según el espesor de capa, es decir, aquellos que comparten el mismo espesor de capa muestran resultados muy cercanos. De forma general, se observó que la variabilidad de los datos aumenta con el espesor de capa. Las pruebas estadísticas aplicadas mostraron que el espesor de capa es el único factor que afecta significativamente las variables Sa y RaL. Sin embargo, para RaT, tanto el tamaño de celda unitaria como el espesor de capa son significativos. En conclusión, se establece que el espesor de capa es el factor más influyente en la rugosidad superficial, independientemente de la dirección de medición (Texto tomado de la fuente).The main objective of this research is to determine the effect of the geometric parameters of the TPMS unit cell and the printing parameters by photopolymerization processes on the surface roughness of scaffolds that can be used in in vitro bone tissue cultivation. The methodology followed encompassed the definition of the fundamental requirements for scaffolds used in in vitro bone tissue cultivation, the determination of the geometric and dimensional parameters of the studied unit cells; this was done through calculated manufacturability maps, considering the two ways of constructing TPMS cells (Walled and Offset), the appropriate pore size, porosity, and manufacturability conditions given by permeability and the construction of thin thicknesses. Subsequently, the manufacturing and measurement of surface roughness were carried out according to the Taguchi experimental design defined with an L9 array, and finally, statistical analysis was developed to identify the effect of the studied factors on surface roughness measured in Sa and Ra. The results indicated that the Gyroid, especially the Walled Gyroid, has the largest design space. However, it was highlighted that the Offset Gyroid proved to be more efficient in constructing thin thicknesses and showed higher permeability compared to the other TPMS studied. After an exploratory study and subsequent analysis, specific factors for the research were defined, corresponding to the unit cell size with levels of 1.5 mm, 1.75 mm, and 2.0 mm, the Offset with levels of -0.2 mm, -0.1 mm, and 0.0 mm, and finally, the layer thickness with levels of 0,03 mm, 0,05 mm, and 0,1 mm. The values of the Sa surface roughness obtained range, on average, between 10.2 and 29.5 µm. The values of Ra in the longitudinal direction (RaL) range, on average, between 7.45 and 24.35 µm, while those of Ra in the transverse direction (RaT) range between 2.71 and 5.95 µm. From the analysis of these results, it was evident that there is a change in the value of surface roughness between treatments; that is, there is an influence of some factors. Additionally, the treatments can be grouped according to the layer thickness; in other words, those sharing the same layer thickness show very close results. In general, it was observed that the variability of the data increases with the layer thickness. The applied statistical tests showed that layer thickness is the only factor that significantly affects the variables Sa and RaL. However, for RaT, both the unit cell size and layer thickness are significant. In conclusion, it is established that layer thickness is the most influential factor in surface roughness, regardless of the measurement direction.MaestríaMagister en Ingeniería - Materiales y ProcesosProcesos de manufactura y metalurgiaxvi, 144 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Materiales y ProcesosFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::611 - Anatomía humana, citología, histología620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería670 - Manufactura::679 -Otros productos de materiales específicosPropiedades de SuperficieIngeniería de TejidosSurface PropertiesTissue EngineeringTEJIDO OSEOBoneTPMSOffsetUnit cell sizeExposure timeSurface roughnessTamaño de celda unitariaTiempo de exposiciónRugosidad superficiaEfecto de los parámetros geométricos de la celda unitaria TPMS y los parámetros de impresión por fotopolimerización en la rugosidad superficial de scaffolds para cultivo de tejido óseo in vitroEffect of the geometric parameters of the TPMS unit cell and the photopolymerization printing parameters on the surface roughness of scaffolds for in vitro bone tissue cultureTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMA. A. El-Rashidy, J. A. Roether, L. Harhaus, U. Kneser, and A. R. Boccaccini, “Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models,” Acta Biomater, vol. 62, pp. 1–28, Oct. 2017, doi: 10.1016/J.ACTBIO.2017.08.030.H. Qu, “Additive manufacturing for bone tissue engineering scaffolds,” Mater Today Commun, vol. 24, p. 101024, Sep. 2020, doi: 10.1016/J.MTCOMM.2020.101024.M. M. Stevens, “Biomaterials for bone tissue engineering,” Materials Today, vol. 11, no. 5, pp. 18–25, May 2008, doi: 10.1016/S1369-7021(08)70086-5.J. C. Reichert et al., “Custom-made composite scaffolds for segmental defect repair in long bones,” Int Orthop, vol. 35, no. 8, pp. 1229–1236, Aug. 2011, doi: 10.1007/S00264-010-1146-X.R. Calvo, D. Figueroa, C. Díaz-Ledezma, A. Vaisman, and F. Figueroa, “Aloinjertos óseos y la función del banco de huesos,” Rev Med Chil, vol. 139, no. 5, pp. 660–666, May 2011, doi: 10.4067/S0034-98872011000500015.J. Henkel et al., “Bone Regeneration Based on Tissue Engineering Conceptions - A 21st Century Perspective,” Bone Res, vol. 1, no. 3, pp. 216–248, Sep. 2013, doi: 10.4248/BR201303002.G. M. Crane, S. L. Ishaug, and A. G. Mikos, “Bone tissue engineering,” Nat Med, vol. 1, no. 12, pp. 1322–1324, 1995, doi: 10.1038/NM1295-1322.C. R. M. Black, V. Goriainov, D. Gibbs, J. Kanczler, R. S. Tare, and R. O. C. Oreffo, “Bone Tissue Engineering,” Curr Mol Biol Rep, vol. 1, no. 3, p. 132, Sep. 2015, doi: 10.1007/S40610-015-0022-2.R. C. de Azevedo Gonçalves Mota, E. O. da Silva, F. F. de Lima, L. R. de Menezes, and A. C. S. Thiele, “3D Printed Scaffolds as a New Perspective for Bone Tissue Regeneration: Literature Review,” Materials Sciences and Applications, vol. 07, no. 08, pp. 430–452, 2016, doi: 10.4236/MSA.2016.78039.D. Barba, E. Alabort, and R. C. Reed, “Synthetic bone: Design by additive manufacturing,” Acta Biomater, vol. 97, pp. 637–656, Oct. 2019, doi: 10.1016/J.ACTBIO.2019.07.049.K. Dave and V. G. Gomes, “Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity,” Materials Science and Engineering: C, vol. 105, p. 110078, Dec. 2019, doi: 10.1016/J.MSEC.2019.110078.R. E. McClelland, R. Dennis, L. M. Reid, J. P. Stegemann, B. Palsson, and J. M. Macdonald, “Tissue Engineering,” Introduction to Biomedical Engineering, pp. 273–357, Jan. 2012, doi: 10.1016/B978-0-12-374979-6.00006-X.F. Berthiaume and M. L. Yarmush, “Tissue Engineering,” Encyclopedia of Physical Science and Technology, pp. 817–842, Jan. 2003, doi: 10.1016/B0-12-227410-5/00783-3.L. Di Silvio, “Bone tissue engineering and biomineralization,” Tissue Engineering Using Ceramics and Polymers, pp. 319–331, Jan. 2007, doi: 10.1533/9781845693817.2.319.A. A. El-Rashidy, J. A. Roether, L. Harhaus, U. Kneser, and A. R. Boccaccini, “Regenerating bone with bioactive glass scaffolds: A review of in vivo studies in bone defect models,” Acta Biomater, vol. 62, pp. 1–28, Oct. 2017, doi: 10.1016/J.ACTBIO.2017.08.030.S. Tajvar, A. Hadjizadeh, and S. S. Samandari, “Scaffold degradation in bone tissue engineering: An overview,” Int Biodeterior Biodegradation, vol. 180, p. 105599, May 2023, doi: 10.1016/J.IBIOD.2023.105599.J. Feng, J. Fu, X. Yao, and Y. He, “Triply periodic minimal surface (TPMS) porous structures: from multi-scale design, precise additive manufacturing to multidisciplinary applications,” International Journal of Extreme Manufacturing, vol. 4, no. 2, p. 022001, Mar. 2022, doi: 10.1088/2631-7990/AC5BE6.“Old and New Blocks: Walled TPMS (deprecated) | Community.” Accessed: Jul. 29, 2023. [Online]. Available: https://community.ntop.com/discussion/old-and-new-blocks-walled-tpms-deprecatedF. Rupp, L. Liang, J. Geis-Gerstorfer, L. Scheideler, and F. Hüttig, “Surface characteristics of dental implants: A review,” Dental Materials, vol. 34, no. 1, pp. 40–57, Jan. 2018, doi: 10.1016/J.DENTAL.2017.09.007.A. Wennerberg and T. Albrektsson, “Effects of titanium surface topography on bone integration: a systematic review,” Clin Oral Implants Res, vol. 20, no. SUPPL. 4, pp. 172–184, Sep. 2009, doi: 10.1111/J.1600-0501.2009.01775.X.N. I. Jaramillo Gómez, “Desarrollo de un scaffold para regeneración ósea mediante impresión 3D de una pasta cerámica compuesta de una mezcla de fosfatos de calcio y biovidrio.”M. E. Furth and A. Atala, “Tissue Engineering: Future Perspectives,” Principles of Tissue Engineering: Fourth Edition, pp. 83–123, Jan. 2014, doi: 10.1016/B978-0-12-398358-9.00006-9.M. Filippi, G. Born, M. Chaaban, and A. Scherberich, “Natural Polymeric Scaffolds in Bone Regeneration,” Front Bioeng Biotechnol, vol. 8, p. 532791, May 2020, doi: 10.3389/FBIOE.2020.00474/BIBTEX.C. M. Moysidou, C. Barberio, and R. M. Owens, “Advances in Engineering Human Tissue Models,” Front Bioeng Biotechnol, vol. 8, p. 620962, Jan. 2021, doi: 10.3389/FBIOE.2020.620962/BIBTEX.G. Battafarano et al., “Strategies for Bone Regeneration: From Graft to Tissue Engineering,” International Journal of Molecular Sciences 2021, Vol. 22, Page 1128, vol. 22, no. 3, p. 1128, Jan. 2021, doi: 10.3390/IJMS22031128.N. Kladovasilakis et al., “Development of biodegradable customized tibial scaffold with advanced architected materials utilizing additive manufacturing,” J Mech Behav Biomed Mater, vol. 141, p. 105796, May 2023, doi: 10.1016/J.JMBBM.2023.105796.G. L. Koons, M. Diba, and A. G. Mikos, “Materials design for bone-tissue engineering,” Nature Reviews Materials 2020 5:8, vol. 5, no. 8, pp. 584–603, Jun. 2020, doi: 10.1038/s41578-020-0204-2.R. Florencio-Silva, G. R. D. S. Sasso, E. Sasso-Cerri, M. J. Simões, and P. S. Cerri, “Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells,” Biomed Res Int, vol. 2015, 2015, doi: 10.1155/2015/421746.R. Fattahi, F. M. Chamkhorami, N. Taghipour, and S. H. Keshel, “The effect of extracellular matrix remodeling on material-based strategies for bone regeneration: Review article,” Tissue Cell, vol. 76, Jun. 2022, doi: 10.1016/J.TICE.2022.101748.A. I. Alford, K. M. Kozloff, and K. D. Hankenson, “Extracellular matrix networks in bone remodeling,” Int J Biochem Cell Biol, vol. 65, pp. 20–31, May 2015, doi: 10.1016/J.BIOCEL.2015.05.008.C. Gentili/snm, >, and R. Cancedda, “Cartilage and bone extracellular matrix,” Curr Pharm Des, vol. 15, no. 12, pp. 1334–1348, Mar. 2009, doi: 10.2174/138161209787846739.“Histología: texto y atlas color con biología celular y molecular - Michael H. Ross, Wojciech Pawlina - Google Libros.” Accessed: Jul. 26, 2023. [Online]. Available: https://books.google.es/books?id=NxYmIRZQi2oC&printsec=frontcover&hl=es#v=onepage&q&f=falseE. Hardy and C. Fernandez-Patron, “Destroy to Rebuild: The Connection Between Bone Tissue Remodeling and Matrix Metalloproteinases,” Front Physiol, vol. 11, p. 500305, Feb. 2020, doi: 10.3389/FPHYS.2020.00047/BIBTEX.M. Ansari, “Bone tissue regeneration: biology, strategies and interface studies,” Prog Biomater, vol. 8, no. 4, pp. 223–237, Dec. 2019, doi: 10.1007/S40204-019-00125-Z/FIGURES/5.M. S. Carvalho, J. M. S. Cabral, C. L. da Silva, and D. Vashishth, “Bone Matrix Non-Collagenous Proteins in Tissue Engineering: Creating New Bone by Mimicking the Extracellular Matrix,” Polymers 2021, Vol. 13, Page 1095, vol. 13, no. 7, p. 1095, Mar. 2021, doi: 10.3390/POLYM13071095.J. R. Caeiro, P. González, and D. Guede, “Biomecánica y hueso (y II): ensayos en los distintos niveles jerárquicos del hueso y técnicas alternativas para la determinación de la resistencia ósea,” Revista de Osteoporosis y Metabolismo Mineral, vol. 5, no. 2, pp. 99–108, Jun. 2013, doi: 10.4321/S1889-836X2013000200007.Y. Liu, D. Luo, and T. Wang, “Hierarchical Structures of Bone and Bioinspired Bone Tissue Engineering,” Small, vol. 12, no. 34, pp. 4611–4632, Sep. 2016, doi: 10.1002/SMLL.201600626.J. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Med Eng Phys, vol. 20, no. 2, pp. 92–102, Mar. 1998, doi: 10.1016/S1350-4533(98)00007-1.X. Wang et al., “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: A review,” Biomaterials, vol. 83, pp. 127–141, Mar. 2016, doi: 10.1016/J.BIOMATERIALS.2016.01.012.C. Frantz, K. M. Stewart, and V. M. Weaver, “The extracellular matrix at a glance,” J Cell Sci, vol. 123, no. 24, pp. 4195–4200, Dec. 2010, doi: 10.1242/JCS.023820.L. Di Silvio and P. Jayakumar, “Cellular response to osteoinductive materials in orthopaedic surgery,” Cellular Response to Biomaterials, pp. 313–343, Jan. 2009, doi: 10.1533/9781845695477.2.313.L. Hughes, C. P. Charalambous, and A. Aljawadi, “Engineering advances in promoting bone union,” Advances in Medical and Surgical Engineering, pp. 5–18, Jan. 2020, doi: 10.1016/B978-0-12-819712-7.00002-4.B. Buranawat, P. Kalia, and L. Di Silvio, “Vascularisation of tissue-engineered constructs,” Standardisation in Cell and Tissue Engineering: Methods and Protocols, pp. 77–103a, Jan. 2013, doi: 10.1533/9780857098726.1.77.L. T. Chau, J. E. Frith, R. J. Mills, D. J. Menzies, D. M. Titmarsh, and J. J. Cooper-White, “Microfluidic devices for developing tissue scaffolds,” Microfluidic Devices for Biomedical Applications, pp. 363–387, Jan. 2013, doi: 10.1533/9780857097040.3.363.R. Lemos, F. R. Maia, R. L. Reis, and J. M. Oliveira, “Engineering of Extracellular Matrix-Like Biomaterials at Nano- and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering,” Adv Nanobiomed Res, vol. 2, no. 2, p. 2100116, Feb. 2022, doi: 10.1002/ANBR.202100116.R. Lemos, F. R. Maia, R. L. Reis, and J. M. Oliveira, “Engineering of Extracellular Matrix-Like Biomaterials at Nano- and Macroscale toward Fabrication of Hierarchical Scaffolds for Bone Tissue Engineering,” Adv Nanobiomed Res, vol. 2, no. 2, p. 2100116, Feb. 2022, doi: 10.1002/ANBR.202100116.M. Rahman et al., “3D bioactive cell-free-scaffolds for in-vitro/in-vivo capture and directed osteoinduction of stem cells for bone tissue regeneration,” Bioact Mater, vol. 6, no. 11, pp. 4083–4095, Nov. 2021, doi: 10.1016/J.BIOACTMAT.2021.01.013.A. Przekora, “The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications,” Mater Sci Eng C Mater Biol Appl, vol. 97, pp. 1036–1051, Apr. 2019, doi: 10.1016/J.MSEC.2019.01.061.S. J. Gutiérrez-Prieto, S. J. Perdomo-Lara, J. M. Diaz-Peraza, and L. G. Sequeda-Castañeda, “Analysis of In Vitro Osteoblast Culture on Scaffolds for Future Bone Regeneration Purposes in Dentistry,” Adv Pharmacol Sci, vol. 2019, 2019, doi: 10.1155/2019/5420752.M. N. Collins, G. Ren, K. Young, S. Pina, R. L. Reis, and J. M. Oliveira, “Scaffold Fabrication Technologies and Structure/Function Properties in Bone Tissue Engineering,” Adv Funct Mater, vol. 31, no. 21, p. 2010609, May 2021, doi: 10.1002/ADFM.202010609.H. P. Felgueiras, J. C. Antunes, M. C. L. Martins, and M. A. Barbosa, “Fundamentals of protein and cell interactions in biomaterials,” Peptides and Proteins as Biomaterials for Tissue Regeneration and Repair, pp. 1–27, Jan. 2018, doi: 10.1016/B978-0-08-100803-4.00001-2.D. R. Schmidt, H. Waldeck, and W. J. Kao, “Protein Adsorption to Biomaterials,” Biological Interactions on Materials Surfaces, pp. 1–18, 2009, doi: 10.1007/978-0-387-98161-1_1.Q. Wei et al., “Protein interactions with polymer coatings and biomaterials,” Angew Chem Int Ed Engl, vol. 53, no. 31, pp. 8004–8031, Jul. 2014, doi: 10.1002/ANIE.201400546.F. Poncin-Epaillard et al., “Surface Treatment of Polymeric Materials Controlling the Adhesion of Biomolecules,” J Funct Biomater, vol. 3, no. 3, p. 528, Aug. 2012, doi: 10.3390/JFB3030528.P. Thevenot, W. Hu, and L. Tang, “SURFACE CHEMISTRY INFLUENCE IMPLANT BIOCOMPATIBILITY,” Curr Top Med Chem, vol. 8, no. 4, p. 270, Mar. 2008, doi: 10.2174/156802608783790901.M. Tagaya, “In situ QCM-D study of nano-bio interfaces with enhanced biocompatibility,” Polymer Journal 2015 47:9, vol. 47, no. 9, pp. 599–608, Jul. 2015, doi: 10.1038/pj.2015.43.K. Metavarayuth, P. Sitasuwan, X. Zhao, Y. Lin, and Q. Wang, “Influence of Surface Topographical Cues on the Differentiation of Mesenchymal Stem Cells in Vitro,” ACS Biomater Sci Eng, vol. 2, no. 2, pp. 142–151, Feb. 2016, doi: 10.1021/ACSBIOMATERIALS.5B00377.E. Ruoslahti and M. D. Pierschbacher, “New perspectives in cell adhesion: RGD and integrins,” Science, vol. 238, no. 4826, pp. 491–497, 1987, doi: 10.1126/SCIENCE.2821619.N. O. Carragher and M. C. Frame, “Focal adhesion and actin dynamics: a place where kinases and proteases meet to promote invasion,” Trends Cell Biol, vol. 14, no. 5, pp. 241–249, May 2004, doi: 10.1016/J.TCB.2004.03.011.V. Vogel and M. Sheetz, “Local force and geometry sensing regulate cell functions,” Nature Reviews Molecular Cell Biology 2006 7:4, vol. 7, no. 4, pp. 265–275, Feb. 2006, doi: 10.1038/nrm1890.J. Han et al., “Surface Roughness and Biocompatibility of Polycaprolactone Bone Scaffolds: An Energy-Density-Guided Parameter Optimization for Selective Laser Sintering,” Front Bioeng Biotechnol, vol. 10, p. 1, Jul. 2022, doi: 10.3389/FBIOE.2022.888267/FULL.A. Barfeie, J. Wilson, and J. Rees, “Implant surface characteristics and their effect on osseointegration,” British Dental Journal 2015 218:5, vol. 218, no. 5, pp. E9–E9, Mar. 2015, doi: 10.1038/sj.bdj.2015.171.“Medición de rugosidad superficial: Parámetros | Olympus.” Accessed: Jan. 25, 2024. [Online]. Available: https://www.olympus-ims.com/es/metrology/surface-roughness-measurement-portal/parameters/“Medición de la rugosidad superficial: Evaluación de parámetros | Olympus.” Accessed: Nov. 05, 2023. [Online]. Available: https://www.olympus-ims.com/es/metrology/surface-roughness-measurement-portal/evaluating-parameters/#!cms[focus]=01G. B. Valverde, R. Jimbo, H. S. Teixeira, E. A. Bonfante, M. N. Janal, and P. G. Coelho, “Evaluation of surface roughness as a function of multiple blasting processing variables,” Clin Oral Implants Res, vol. 24, no. 2, pp. 238–242, 2013, doi: 10.1111/J.1600-0501.2011.02392.X.“Rugosidad Superficial”.W. Yang et al., “Surface topography of hydroxyapatite promotes osteogenic differentiation of human bone marrow mesenchymal stem cells,” Materials Science and Engineering: C, vol. 60, pp. 45–53, Mar. 2016, doi: 10.1016/J.MSEC.2015.11.012.A. B. Faia-Torres et al., “Osteogenic differentiation of human mesenchymal stem cells in the absence of osteogenic supplements: A surface-roughness gradient study,” Acta Biomater, vol. 28, pp. 64–75, Dec. 2015, doi: 10.1016/J.ACTBIO.2015.09.028.C. Yang, U. Tartaglino, and B. N. J. Persson, “Influence of surface roughness on superhydrophobicity,” Phys Rev Lett, vol. 97, no. 11, p. 116103, Sep. 2006, doi: 10.1103/PHYSREVLETT.97.116103/FIGURES/6/MEDIUM.S. Vermeulen et al., “Expanding Biomaterial Surface Topographical Design Space through Natural Surface Reproduction,” Advanced Materials, vol. 33, no. 31, p. 2102084, Aug. 2021, doi: 10.1002/ADMA.202102084.P. Han, G. A. Gomez, G. N. Duda, S. Ivanovski, and P. S. P. Poh, “Scaffold geometry modulation of mechanotransduction and its influence on epigenetics,” Acta Biomater, vol. 163, pp. 259–274, Jun. 2023, doi: 10.1016/J.ACTBIO.2022.01.020.S. J. P. Callens, R. J. C. Uyttendaele, L. E. Fratila-Apachitei, and A. A. Zadpoor, “Substrate curvature as a cue to guide spatiotemporal cell and tissue organization,” Biomaterials, vol. 232, Feb. 2020, doi: 10.1016/J.BIOMATERIALS.2019.119739.M. Werner, N. A. Kurniawan, and C. V. C. Bouten, “Cellular Geometry Sensing at Different Length Scales and its Implications for Scaffold Design,” Materials (Basel), vol. 13, no. 4, Feb. 2020, doi: 10.3390/MA13040963.L. Iturriaga, K. D. Van Gordon, G. Larrañaga-Jaurrieta, and S. Camarero-Espinosa, “Strategies to Introduce Topographical and Structural Cues in 3D-Printed Scaffolds and Implications in Tissue Regeneration,” Adv Nanobiomed Res, vol. 1, no. 12, p. 2100068, Dec. 2021, doi: 10.1002/ANBR.202100068.M. A. Velasco, C. A. Narváez-Tovar, and D. A. Garzón-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering,” Biomed Res Int, vol. 2015, 2015, doi: 10.1155/2015/729076.“4 formas de calcular la porosidad - wikiHow.” Accessed: Jan. 20, 2024. [Online]. Available: https://es.wikihow.com/calcular-la-porosidadS. J. P. Callens, D. C. Tourolle né Betts, R. Müller, and A. A. Zadpoor, “The local and global geometry of trabecular bone,” Acta Biomater, vol. 130, pp. 343–361, Aug. 2021, doi: 10.1016/J.ACTBIO.2021.06.013.A. Graziano et al., “Scaffold’s surface geometry significantly affects human stem cell bone tissue engineering,” J Cell Physiol, vol. 214, no. 1, pp. 166–172, Jan. 2008, doi: 10.1002/JCP.21175.A. A. Zadpoor, “Bone tissue regeneration: the role of scaffold geometry,” Biomater Sci, vol. 3, no. 2, pp. 231–245, Feb. 2015, doi: 10.1039/C4BM00291A.S. Ma et al., “Manufacturability, Mechanical Properties, Mass-Transport Properties and Biocompatibility of Triply Periodic Minimal Surface (TPMS) Porous Scaffolds Fabricated by Selective Laser Melting,” Mater Des, vol. 195, p. 109034, Oct. 2020, doi: 10.1016/J.MATDES.2020.109034.P. De, G. Juan, E. Arjona, R. Profesor, A. Juan, and P. Casas Rodríguez, “Caracterización de estructuras celulares TPMS manufacturadas aditivamente para aplicaciones de absorción de energía”.“Implicit modeling for engineering design | nTop.” Accessed: Aug. 07, 2023. [Online]. Available: https://www.ntop.com/resources/blog/implicit-modeling-for-mechanical-design/S. Truscello, G. Kerckhofs, S. Van Bael, G. Pyka, J. Schrooten, and H. Van Oosterwyck, “Prediction of permeability of regular scaffolds for skeletal tissue engineering: A combined computational and experimental study,” Acta Biomater, vol. 8, no. 4, pp. 1648–1658, Apr. 2012, doi: 10.1016/J.ACTBIO.2011.12.021.J. Santos, T. Pires, B. P. Gouveia, A. P. G. Castro, and P. R. Fernandes, “On the permeability of TPMS scaffolds,” J Mech Behav Biomed Mater, vol. 110, p. 103932, Oct. 2020, doi: 10.1016/J.JMBBM.2020.103932.A. P. G. Castro, T. Pires, J. E. Santos, B. P. Gouveia, and P. R. Fernandes, “Permeability versus Design in TPMS Scaffolds,” Materials, vol. 12, no. 8, 2019, doi: 10.3390/MA12081313.F. J. O’Brien, B. A. Harley, M. A. Waller, I. V. Yannas, L. J. Gibson, and P. J. Prendergast, “The effect of pore size on permeability and cell attachment in collagen scaffolds for tissue engineering,” Technology and Health Care, vol. 15, no. 1, pp. 3–17, 2007, doi: 10.3233/THC-2007-15102.X. P. Tan, Y. J. Tan, C. S. L. Chow, S. B. Tor, and W. Y. Yeong, “Metallic powder-bed based 3D printing of cellular scaffolds for orthopaedic implants: A state-of-the-art review on manufacturing, topological design, mechanical properties and biocompatibility,” Materials Science and Engineering: C, vol. 76, pp. 1328–1343, Jul. 2017, doi: 10.1016/J.MSEC.2017.02.094.S. J. Hollister, “Porous scaffold design for tissue engineering,” Nat Mater, vol. 4, no. 7, pp. 518–524, 2005, doi: 10.1038/NMAT1421.Y. Lu, L. L. Cheng, Z. Yang, J. Li, and H. Zhu, “Relationship between the morphological, mechanical and permeability properties of porous bone scaffolds and the underlying microstructure,” PLoS One, vol. 15, no. 9, p. e0238471, Sep. 2020, doi: 10.1371/JOURNAL.PONE.0238471.M. Lipowiecki, M. Ryvolova, A. Tottosi, S. Naher, and D. Brabazon, “Permeability of Rapid Prototyped Artificial Bone Scaffold Structures,” Adv Mat Res, vol. 445, pp. 607–612, Jan. 2012, doi: 10.4028/SCIENTIFIC5/AMR.445.607.S. Bose, M. Roy, and A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds,” Trends Biotechnol, vol. 30, no. 10, pp. 546–554, Oct. 2012, doi: 10.1016/J.TIBTECH.2012.07.005.X. Y. Zhang, G. Fang, and J. Zhou, “Additively Manufactured Scaffolds for Bone Tissue Engineering and the Prediction of their Mechanical Behavior: A Review,” Materials 2017, Vol. 10, Page 50, vol. 10, no. 1, p. 50, Jan. 2017, doi: 10.3390/MA10010050.K. Gupta and K. Meena, “Artificial bone scaffolds and bone joints by additive manufacturing: A review,” Bioprinting, vol. 31, p. e00268, Jun. 2023, doi: 10.1016/J.BPRINT.2023.E00268.A. Becerro, “Regeneración ósea mediante injertos personalizados: Una revisión bibliográfica de los métodos y materiales,” Labor dental clínica: Avances clínicos en odontoestomatología, ISSN 1888-4040, Vol. 21, No. 3, 2020, págs. 20-49, vol. 21, no. 3, pp. 20–49, 2020, Accessed: Jul. 31, 2023. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=8037640&info=resumen&idioma=ENG“(2) (PDF) Techniques for manufacturing polymer scaffolds with potential applications in tissue engineering.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.researchgate.net/publication/317003912_Techniques_for_manufacturing_polymer_scaffolds_with_potential_applications_in_tissue_engineeringA. Salerno and P. A. Netti, “Introduction to biomedical foams,” Biomedical Foams for Tissue Engineering Applications, pp. 3–39, Jan. 2014, doi: 10.1533/9780857097033.1.3.L. Suamte, A. Tirkey, J. Barman, and P. Jayasekhar Babu, “Various manufacturing methods and ideal properties of scaffolds for tissue engineering applications,” Smart Materials in Manufacturing, vol. 1, p. 100011, Jan. 2023, doi: 10.1016/J.SMMF.2022.100011.P. Navarrete-Segado, M. Tourbin, C. Frances, and D. Grossin, “Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties,” Open Ceramics, vol. 9, p. 100235, Mar. 2022, doi: 10.1016/J.OCERAM.2022.100235.D. Mondal and T. L. Willett, “Enhanced mechanical performance of mSLA-printed biopolymer nanocomposites due to phase functionalization,” J Mech Behav Biomed Mater, vol. 135, p. 105450, Nov. 2022, doi: 10.1016/J.JMBBM.2022.105450.S. R. Gaikwad, N. H. Pawar, and S. U. Sapkal, “Comparative evaluation of 3D printed components for deviations in dimensional and geometrical features,” Mater Today Proc, vol. 59, pp. 297–304, Jan. 2022, doi: 10.1016/J.MATPR.2021.11.157.“Impresión 3D SLA y MSLA: ¿en qué se diferencian? - 3Dnatives.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.3dnatives.com/es/diferencias-impresion-3d-sla-msla-280720222/“Resin 3D Printing – The Ultimate Guide | All3DP Pro.” Accessed: Jul. 31, 2023. [Online]. Available: https://all3dp.com/1/sla-resin-3d-printing-guide/“Laser SLA vs DLP vs Masked SLA 3D Printing Technology - The Ortho Cosmos.” Accessed: Jul. 31, 2023. [Online]. Available: https://theorthocosmos.com/laser-sla-vs-dlp-vs-masked-sla-3d-printing-technology-compared/P. Navarrete-Segado, M. Tourbin, C. Frances, and D. Grossin, “Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties,” Open Ceramics, vol. 9, p. 100235, Mar. 2022, doi: 10.1016/J.OCERAM.2022.100235.P. J. Bártolo, Ed., “Stereolithography,” 2011, doi: 10.1007/978-0-387-92904-0.“ANYCUBIC Photon Mono 4K”.P. Ożóg et al., “Engineering of silicone-based blends for the masked stereolithography of biosilicate/carbon composite scaffolds,” J Eur Ceram Soc, vol. 42, no. 13, pp. 6192–6198, Oct. 2022, doi: 10.1016/J.JEURCERAMSOC.2022.06.057.B. Nowacki, P. Kowol, M. Kozioł, P. Olesik, J. Wieczorek, and K. Wacławiak, “Effect of Post-Process Curing and Washing Time on Mechanical Properties of mSLA Printouts,” Materials, vol. 14, no. 17, Sep. 2021, doi: 10.3390/MA14174856.“Explicación de nFEP y la diferencia con FEP regular para impresión 3D.” Accessed: Jul. 31, 2023. [Online]. Available: https://www.liqcreate.com/es/supportarticles/what-is-nfep-and-what-is-the-difference-with-regular-fep-in-resin-3d-printing/R. Brighenti, L. Marsavina, M. P. Marghitas, M. Montanari, A. Spagnoli, and F. Tatar, “The effect of process parameters on mechanical characteristics of specimens obtained via DLP additive manufacturing technology,” Mater Today Proc, vol. 78, pp. 331–336, Jan. 2023, doi: 10.1016/J.MATPR.2023.01.092.B. Zhang et al., “DLP fabrication of customized porous bioceramics with osteoinduction ability for remote isolation bone regeneration,” Biomaterials Advances, vol. 145, p. 213261, Feb. 2023, doi: 10.1016/J.BIOADV.2022.213261.W. Z. Tan, C. H. Koo, W. J. Lau, W. C. Chong, and J. Y. Tey, “Recent advances in 3D printed membranes for water applications,” 60 Years of the Loeb-Sourirajan Membrane: Principles, New Materials, Modelling, Characterization, and Applications, pp. 71–96, Jan. 2022, doi: 10.1016/B978-0-323-89977-2.00012-9.E. Andrzejewska, “Free Radical Photopolymerization of Multifunctional Monomers,” Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications, pp. 62–81, Jan. 2016, doi: 10.1016/B978-0-323-35321-2.00004-2.K. Mostafa, A. J. Qureshi, and C. Montemagno, “Tolerance control using subvoxel gray-scale DLP 3D printing,” ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), vol. 2, 2017, doi: 10.1115/IMECE2017-72232.“Optimal Layer Exposure Time for Perfect Resin Prints - Tutorial Australia.” Accessed: Aug. 01, 2023. [Online]. Available: https://core-electronics.com.au/guides/perfect-resin-print-exposure-setting/“Prefacio - Física universitaria volumen 3 | OpenStax.” Accessed: Aug. 01, 2023. [Online]. Available: https://openstax.org/books/f%C3%ADsica-universitaria-volumen-3/pages/prefacio“2 reasons to reduce the %UV power for resin 3D-printing explained.” Accessed: Aug. 01, 2023. [Online]. Available: https://www.liqcreate.com/supportarticles/reduce-uv-power-resin/I. L. Tsiklin, A. V. Shabunin, A. V. Kolsanov, and L. T. Volova, “In Vivo Bone Tissue Engineering Strategies: Advances and Prospects,” Polymers (Basel), vol. 14, no. 15, Aug. 2022, doi: 10.3390/POLYM14153222.L. Vidal, C. Kampleitner, M. Brennan, A. Hoornaert, and P. Layrolle, “Reconstruction of Large Skeletal Defects: Current Clinical Therapeutic Strategies and Future Directions Using 3D Printing,” Front Bioeng Biotechnol, vol. 8, Feb. 2020, doi: 10.3389/FBIOE.2020.00061.N. Andalib, M. Kehtari, E. Seyedjafari, N. Motamed, and M. M. Matin, “In vivo bone regeneration using a bioactive nanocomposite scaffold and human mesenchymal stem cells,” Cell Tissue Bank, vol. 22, no. 3, pp. 467–477, Sep. 2021, doi: 10.1007/S10561-020-09894-5.P. K. Chandra, S. Soker, and A. Atala, “Tissue engineering: current status and future perspectives,” Principles of Tissue Engineering, pp. 1–35, Jan. 2020, doi: 10.1016/B978-0-12-818422-6.00004-6.A. G. Abdelaziz et al., “A Review of 3D Polymeric Scaffolds for Bone Tissue Engineering: Principles, Fabrication Techniques, Immunomodulatory Roles, and Challenges,” Bioengineering, vol. 10, no. 2, Feb. 2023, doi: 10.3390/BIOENGINEERING10020204.“Next-Gen Engineering Design Software: nTop (formerly nTopology) | nTop.” Accessed: Jan. 20, 2024. [Online]. Available: https://www.ntop.com/“Anycubic Tienda oficial | Impresora 3D | Resina | Filamento – ANYCUBIC-ES.” Accessed: Jan. 21, 2024. [Online]. Available: https://www.anycubic.es/“Anycbic High Clear Resin - 1KG – ANYCUBIC-US.” Accessed: Jan. 22, 2024. [Online]. Available: https://www.anycubic.com/collections/high-clear-resin/products/high-clear-resinD. Dean et al., “Continuous digital light processing (cDLP): Highly accurate additive manufacturing of tissue engineered bone scaffolds,” Virtual Phys Prototyp, vol. 7, no. 1, pp. 13–24, Mar. 2012, doi: 10.1080/17452759.2012.673152.“Diseño y analisis de experimentos montgomery ocr | PDF.” Accessed: Sep. 30, 2023. [Online]. Available: https://es.slideshare.net/jairjosemunozsuarez/diseo-y-analisis-de-experimentos-montgomery-ocrH. Gutiérrez Pulido and R. de la Vara Salazar, “Análisis y diseño de experimentos.” [Online]. Available: www.FreeLibros.orgA. P. Moreno Madrid, S. M. Vrech, M. A. Sanchez, and A. P. Rodriguez, “Advances in additive manufacturing for bone tissue engineering scaffolds,” Materials Science and Engineering: C, vol. 100, pp. 631–644, Jul. 2019, doi: 10.1016/J.MSEC.2019.03.037.A. Dasan et al., “Up-Cycling of LCD Glass by Additive Manufacturing of Porous Translucent Glass Scaffolds,” Materials 2021, Vol. 14, Page 5083, vol. 14, no. 17, p. 5083, Sep. 2021, doi: 10.3390/MA14175083.D. Mondal et al., “mSLA-based 3D printing of acrylated epoxidized soybean oil - nano-hydroxyapatite composites for bone repair,” Materials Science and Engineering: C, vol. 130, p. 112456, Nov. 2021, doi: 10.1016/J.MSEC.2021.112456.M. G. Kim, “A cautionary note on the use of Cook’s distance,” Commun Stat Appl Methods, vol. 24, no. 3, pp. 317–324, May 2017, doi: 10.5351/CSAM.2017.24.3.317.S. Türkan, M. Candan, and T. Toktamı¸s, “OUTLIER DETECTION BY REGRESSION DIAGNOSTICS BASED ON ROBUST PARAMETER ESTIMATES,” Hacettepe Journal of Mathematics and Statistics, vol. 41, no. 1, pp. 147–155, 2012.“Download the latest version of Lychee Slicer for SLA/Resin 3D Printers.” Accessed: Jan. 23, 2024. [Online]. Available: https://mango3d.io/downloads/“Herramientas estadísticas, de análisis de datos y de mejora de procesos | Minitab.” Accessed: Jan. 23, 2024. [Online]. Available: https://www.minitab.com/es-mx/J. DURBIN and G. S. WATSON, “Comprobar si existe autocorrelación usando el estadístico de Durbin-Watson,” Biometrika, vol. 38, no. 1–2, pp. 159–178, 1951, doi: 10.1093/BIOMET/38.1-2.159.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86970/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis de Maestria Carlos Andres Ramirez.pdfTesis de Maestria Carlos Andres Ramirez.pdfTesis de Maestría en Ingeniería - Materiales y Procesosapplication/pdf5759484https://repositorio.unal.edu.co/bitstream/unal/86970/2/Tesis%20de%20Maestria%20Carlos%20Andres%20Ramirez.pdf10b7ecc4f81c1f80358be78576fe6e63MD52THUMBNAILTesis de Maestria Carlos Andres Ramirez.pdf.jpgTesis de Maestria Carlos Andres Ramirez.pdf.jpgGenerated Thumbnailimage/jpeg5425https://repositorio.unal.edu.co/bitstream/unal/86970/3/Tesis%20de%20Maestria%20Carlos%20Andres%20Ramirez.pdf.jpgd91bb77e027bfa2d4fbef3553e9a1b48MD53unal/86970oai:repositorio.unal.edu.co:unal/869702024-10-16 23:51:23.289Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |