Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina
Ilustraciones y fotografías
- Autores:
-
Ramírez Alberto, Leonardo
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80092
- Palabra clave:
- 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
Frutas de hueso
Stone fruit
Visión por computadora
Monitoreo temprano
Reducción de pérdidas
Caracterización visual
Mango
Antracnosis
Imágenes 3D
Luz UV-A
Computer Vision
Early Monitoring
Loss Reduction
Visual Characterization
Mango
Anthracnose
3D Imaging
UV-A Light
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_de8c03c55f24ee095938a128d9846783 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80092 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina |
dc.title.translated.eng.fl_str_mv |
Development of a system for early detection of anthracnose in mango fruits based on machine vision |
title |
Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina |
spellingShingle |
Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina 620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Frutas de hueso Stone fruit Visión por computadora Monitoreo temprano Reducción de pérdidas Caracterización visual Mango Antracnosis Imágenes 3D Luz UV-A Computer Vision Early Monitoring Loss Reduction Visual Characterization Mango Anthracnose 3D Imaging UV-A Light |
title_short |
Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina |
title_full |
Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina |
title_fullStr |
Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina |
title_full_unstemmed |
Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina |
title_sort |
Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina |
dc.creator.fl_str_mv |
Ramírez Alberto, Leonardo |
dc.contributor.advisor.none.fl_str_mv |
Prieto Ortiz, Flavio Augusto |
dc.contributor.author.none.fl_str_mv |
Ramírez Alberto, Leonardo |
dc.contributor.researchgroup.spa.fl_str_mv |
Grupo de Automática de la Universidad Nacional GAUNAL |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería |
topic |
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería Frutas de hueso Stone fruit Visión por computadora Monitoreo temprano Reducción de pérdidas Caracterización visual Mango Antracnosis Imágenes 3D Luz UV-A Computer Vision Early Monitoring Loss Reduction Visual Characterization Mango Anthracnose 3D Imaging UV-A Light |
dc.subject.lemb.spa.fl_str_mv |
Frutas de hueso |
dc.subject.lemb.eng.fl_str_mv |
Stone fruit |
dc.subject.proposal.spa.fl_str_mv |
Visión por computadora Monitoreo temprano Reducción de pérdidas Caracterización visual Mango Antracnosis Imágenes 3D Luz UV-A |
dc.subject.proposal.eng.fl_str_mv |
Computer Vision Early Monitoring Loss Reduction Visual Characterization Mango Anthracnose 3D Imaging UV-A Light |
description |
Ilustraciones y fotografías |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-09-03T03:37:58Z |
dc.date.available.none.fl_str_mv |
2021-09-03T03:37:58Z |
dc.date.issued.none.fl_str_mv |
2021 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80092 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80092 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
Agrosavia Agrovoc |
dc.relation.references.spa.fl_str_mv |
[1] I. S. Bally, “Mangifera indica (mango),”Species profiles for pacific island agroforestry,pp. 1–25, 2006. [2] I. Rojo-Baez, B. ́Alvarez-Rodrıguez, R. S. Garc ́ıa-Estrada, J. Leon-Felix, A. Sanudo-Barajas, and R. Allende-Molar, “Situacion actual de colletotrichums spp. en m ́exico:Taxonomıa, caracterizacion, patogenesis y control, "Revista mexicana de fitopatologıa,vol. 35, no. 3, pp. 549–570, 2017. [3] P. Gil, F. Torres, and F. G. Ortiz Zamora, “Deteccion de objetos por segmentacion multinivel combinada de espacios de color,” 2004. [4] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition and pose usingthe viewpoint feature histogram,” in2010 IEEE/RSJ International Conference on In-telligent Robots and Systems, 2010, pp. 2155–2162. [5] G. A. Betancourt, “Las maquinas de soporte vectorial (svms), "Scientia et technica,vol. 1, no. 27, 2005. [6] greywhitebalancecolourcard.co.uk,“TheGreyWhiteBalanceCo-lourCarduserguide,”2019.[Online].Available:https://www.greywhitebalancecolourcard.co.uk/assets/userguide.pdf [7] J. R. Cartagena,Fruticultura colombiana: el mango.Produmedios, 2001, no. 634.44R339f Ej. 1 019955. [8] J. C. Requena,Mango International Enciclopedia. Sultanate Of Oman: Royal CourtAffairs Ed., 2014, ch. Mango: Economics and International Trade. [9] G. Corkidi, K. A. Balderas-Ruız, B. Taboada, L. Serrano-Carreon, and E. Galindo,“Assessing mango anthracnose using a new three-dimensional image-analysis techniqueto quantify lesions on fruit,”Plant Pathology, vol. 55, no. 2, pp. 250–257, 2006. [On-line]. Available: https://bsppjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3059.2005.01321.x [10] O. de la naciones unidas para la alimentacion la agricultura. (2018, feb) Plagas y enfermedades de las plantas. [Online]. Available: http://www.fao.org/emergencies/tipos-de-peligros-y-de-emergencias/plagas-y-enfermedades-de-las-plantas/es/ [11] A. Camargo and J. Smith, “Image pattern classification for the identification of disease causing agents in plants,” Computers and Electronics in Agriculture, vol. 66, no. 2, pp. 121 – 125, 2009. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S0168169909000027 [12] M. V. M. Amos P. K. Tai and C. L. Heald, “Threat to future global food security fromclimate change and ozone air pollution,”Nature climate change, vol. 4, pp. 817–821,September 2014. [13] J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, and V. Kumar,“Devices, systems, and methods for automated monitoring enabling precision agricul-ture,” in2015 IEEE International Conference on Automation Science and Engineering(CASE), Aug 2015, pp. 462–469. [14] S. Prasad, S. K. Peddoju, and D. Ghosh, “Energy efficient mobile vision system for plantleaf disease identification,” in2014 IEEE Wireless Communications and NetworkingConference (WCNC), April 2014, pp. 3314–3319. [15] E. Ganan, Lederson; Alvarez and J. Castano Zapata, “Identificacion genetica de aislamientos de colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de ́arbol,”Revista de la Academia Colombiana de Ciencias Exactas, Fısicas y Naturales, vol. 39, pp. 339 – 347, 092015. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sciarttextpid=S0370−39082015000300005nrm=iso [16] A. R. Paez Redondo, “Tecnologıas sostenibles para el manejo de la antracnosis en papaya y mango, "Corporacion Colombiana de Investigacion Agropecuaria, Corpoica, 2002. [17] C. Garcıa, Jairo; Gonzalez and J. Velasco, Modelo productivo para el cultivo de mangoen el valle del Alto Magdalena para el departamento del Tolima, Siembra, Ed., Mosquera-Colombia 2017, 2017. [18] L. Pauly and D. Sankar, “A new method for sorting and grading of mangos based oncomputer vision system,” in2015 IEEE International Advance Computing Conference(IACC), June 2015, pp. 1191–1195. [19] J. P. Bonilla-Gonzalez and F. A. Prieto-Ortiz, “Determinacion del estado de maduracion defrutos de feijoa mediante un sistema de vision por computador utilizando informacion de color, "Revista de Investigacion, Desarrollo e Innovacion, vol. 7, no. 1, pp. 111–126, 2016. [20] R. P. Salunkhe and A. A. Patil, “Image processing for mango ripening stage detection:RGB and HSV method,” in 2015 Third International Conference on Image InformationProcessing (ICIIP), 2015, pp. 362–365. [21] A. Romero-Acero, alejandro mar ́ın cano, and jovani alberto jim ́enez builes, “Sistema declasificaci ́on por visi ́on artificial de mangos tipo Tommy,”Revista UIS Ingenier ́ıas, vol. 14,no. 1, pp. 21–31, 2015. [22] D. Sahu and R. M. Potdar, “Defect identification and maturity detection of mango fruitsusing image analysis,”American Journal of Artificial Intelligence., vol. 1, no. 1, pp. 5–14,2017. [23] K. Swetha, V. Venkataraman, G. D. Sadhana, and R. Priyatharshini, “Hybrid approachfor anthracnose detection using intensity and size features,” in 2016 IEEE TechnologicalInnovations in ICT for Agriculture and Rural Development (TIAR), July 2016, pp. 28–32. [24] W. Zhu, H. Chen, I. Ciechanowska, and D. Spaner, “Application of infrared thermalimaging for the rapid diagnosis of crop disease,”IFAC-PapersOnLine, vol. 51, no. 17, pp.424–430, 2018. [25] C. E. C. Ardila, L. A. Ramirez, and F. A. P. Ortiz, “Spectral analysis for the early detectionof anthracnose in fruits of sugar mango (mangifera indica),”Computers and Electronics inAgriculture, vol. 173, p. 105357, 2020. [26] D. Story, M. Kacira, C. Kubota, A. Akoglu, and L. An, “Lettuce calcium deficiencydetection with machine vision computed plant features in controlled environments,”Computers and electronics in agriculture, vol. 74, no. 2, pp. 238–243, 2010. [27] K. K. Patel, A. Kar, and M. A. Khan, “Potential of reflected UV imaging technique fordetection of defects on the surface area of mango,”Journal of food science and technology,vol. 56, no. 3, pp. 1295–1301, 2019. [28] K. Yabe, Y. Ando, M. Ito, and N. Terakado, “Simple method for screening aflatoxin-producing molds by uv photography.”Appl. Environ. Microbiol., vol. 53, no. 2, pp. 230–234,1987. [29] D. Obenland and P. Neipp, “Chlorophyll fluorescence imaging allows early detection andlocalization of lemon rind injury following hot water treatment,”Hortscience, vol. 40, no. 6,pp. 1821–1823, 2005. [30] D. Slaughter, D. Obenland, J. Thompson, M. Arpaia, and D. Margosan, “Non-destructivefreeze damage detection in oranges using machine vision and ultraviolet fluorescence,”Postharvest Biology and Technology, vol. 48, no. 3, pp. 341 – 346, 2008. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S092552140700289X [31] M. Nagle, I. Kiatkamjon, M. Busarakorn, S. Vicha, and M. Joachim, “Non-destructive man-go quality assessment using image processing: Inexpensive innovation for the fruit handlingindustry,” inConference on International Research on Food Security, Natural Resource Ma-nagement and Rural Development, 2012, pp. 1–4 [32] Agronet. (2021, feb) Encuesta nacional agropecuaria - ena. [Online]. Available:http://www.agronet.gov.co/Lists/Boletin/attachments/1122/presentacionena2016.pdf [33] MADR. (2018, mar) Evaluaciones agropecuarias municipales (mango 2011-2016). [Online].Available: http://www.agronet.gov.co/estadistica/Paginas/default.aspx [34] E.Osorio,Jairo;MartinezandJ.Hio,“Screeningofmicrobialcultu-refiltrates,plantextractsandfungicidesforcontrolofmangoanthrac-nose,”Agronom ̃AaColombiana,vol.30,pp.222–229,082012.[On-line].Available:http://www.scielo.org.co/scielo.php?script=sciarttextpid=S0120−99652012000200009nrm=iso [35] J. Garcia Lozano, A. Sandoval Aldana, M. D. Lozano, and E. Var ́on Devia, “Gu ́ıa tecnicapara el cultivo de mango: modelo productivo dirigido a mejorar la productividad y lacompetitividad,” Tech. Rep., 2013. [36] FAOSTAT. (2018, mar) Organizaci ́on de las naciones unidas para la alimentacion y la agricultura. [Online]. Available: http://www.fao.org/faostat/es/data/QC [37] C. Forero, Nidia; Olivares Mary Luz; Moncayo and S. Cote,Alternativas para la generacionde valor agregado en los cultivos de mango y quinua, N. C. Forero, Ed., Bogot ́a, 2016. [38] T. L. Lucia Dur ́an Pinilla and Y. B. P ́erez,Determinaci ́on de perdidas postcosecha en Mango(Magnifera indica. L.) en la zona de el Espinal y Guamo en el departamento del Tolima,Corpoica, Ed., 1999. [39] “Problematica pre y post-cosecha de frutales y hortalizas en colombia.” 1996. [Online].Available: http://hdl.handle.net/20.500.12324/31646 [40] K. Shah, M. Patel, R. Patel, and P. Parmar, “Mangifera indica (mango),”Pharmacognosy reviews, vol. 4, no. 7, p. 42, 2010. [41] V. Quintero, G. Giraldo, J. Lucas, and J. Vasco, “Caracterizacion fisicoquimica del mangocom ́un (mangifera indica l.) durante su proceso de maduraci ́on,”Biotecnolog ́ıa en el SectorAgropecuario y Agroindustrial, vol. 11, no. 1, pp. 8–18, jul. 2013. [Online]. Available:https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/287 [42] J. A. ́Alvarez-Bermejo, C. Giagnocavo, L. Ming, E. C. Morales, D. P. M. Santos, and Y. Xin-ting, “Image processing methods to evaluate tomato and zucchini damage in post-harveststages,”International Journal of Agricultural and Biological Engineering, vol. 10, no. 5, pp.126–133, 2017. [43] K. K. Patel, A. Kar, S. Jha, and M. Khan, “Machine vision system: a tool for qualityinspection of food and agricultural products,”Journal of food science and technology, vol. 49,no. 2, pp. 123–141, 2012. [44] I. García and V. Caranqui, “La vision artificial y los campos de aplicacion,”Tierra infinita,vol. 1, no. 1, pp. 94–103, 2015.[45] R. Gonzalez,Digital Image Processing 2Nd Ed.Prentice-Hall Of India Pvt. Limited, 2002.[Online]. Available: https://books.google.com.co/books?id=iyJOPgAACAAJ [46] L. Malambo, S. C. Popescu, S. C. Murray, E. Putman, N. A. Pugh, D. W. Horne, G. Richard-son, R. Sheridan, W. L. Rooney, R. Avantet al., “Multitemporal field-based plant height esti-mation using 3d point clouds generated from small unmanned aerial systems high-resolutionimagery,”International Journal of Applied Earth Observation and Geoinformation, vol. 64,pp. 31–42, 2018. [47] C. H. W. De Souza, R. A. C. Lamparelli, J. V. Rocha, and P. S. G. Magalh ̃aes, “Heightestimation of sugarcane using an unmanned aerial system (uas) based on structure frommotion (sfm) point clouds,”International journal of remote sensing, vol. 38, no. 8-10, pp.2218–2230, 2017. [48] F. Yihang, L. Chengda, Z. Ruifang, T. Yao, and W. Xingyu, “A new approach for measu-ring 3d digitalized rape leaf parameters based on images,” in2014 The Third InternationalConference on Agro-Geoinformatics. IEEE, 2014, pp. 1–5. [49] K. Kusumam, T. Krajn ́ık, S. Pearson, G. Cielniak, and T. Duckett, “Can you pick a broccoli?3d-vision based detection and localisation of broccoli heads in the field,” in2016 IEEE/RSJInternational Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 646–651. [50] M. B. Tauger, “Entitlement, shortage and the 1943 bengal famine: another look,”Journalof Peasant Studies, vol. 31, no. 1, pp. 45–72, 2003. [51] S. Prasad, S. K. Peddoju, and D. Ghosh, “Multi-resolution mobile vision system for plantleaf disease diagnosis,”Signal, Image and Video Processing, vol. 10, no. 2, pp. 379–388, 2016. [52] ——, “Energy efficient mobile vision system for plant leaf disease identification,” in2014IEEE Wireless Communications and Networking Conference (WCNC).IEEE, 2014, pp.3314–3319. [53] P. Chaudhary, A. K. Chaudhari, A. Cheeran, and S. Godara, “Color transform based ap-proach for disease spot detection on plant leaf,”International journal of computer scienceand telecommunications, vol. 3, no. 6, pp. 65–70, 2012. [54] S. Jeyalakshmi and R. Radha, “A review on diagnosis of nutrient deficiency symptomsin plant leaf image using digital image processing.”ICTACT Journal on Image & VideoProcessing, vol. 7, no. 4, 2017. [55] G. Xu, F. Zhang, S. G. Shah, Y. Ye, and H. Mao, “Use of leaf color images to identifynitrogen and potassium deficient tomatoes,”Pattern Recognition Letters, vol. 32, no. 11, pp.1584–1590, 2011. [56] D. Sahu and R. M. Potdar, “Defect identification and maturity detection of mango fruitsusing image analysis,”American Journal of Artificial Intelligence, vol. 1, no. 1, pp. 5–14,2017. [57] A. Arista-Jalife, G. Calderon-Auza, A. Fierro-Radilla, and M. Nakano, “Clasificaci ́on deim ́agenes urbanas a ́ereas: Comparaci ́on entre descriptores de bajo nivel y aprendizaje pro-fundo,”Informaci ́on tecnol ́ogica, vol. 28, no. 3, pp. 209–224, 2017. [58] K. Alhamzi, M. Elmogy, and S. Barakat, “3d object recognition based on local and globalfeatures using point cloud library,”International Journal of Advancements in ComputingTechnology, vol. 7, no. 3, p. 43, 2015. [59] H. Gao and J. W. Davis, “Why direct lda is not equivalent to lda,”Pat-ternRecognition,vol.39,no.5,pp.1002–1006,2006.[Online].Available:https://www.sciencedirect.com/science/article/pii/S0031320305004401 [60] A. Goel and S. Mahajan, “Comparison: Knn & svm algorithm,”International Journal forResearch in Applied Science & Engineering Technology (IJRASET), vol. 5, no. 12, 2017. [61] J. F. V. Serrano, A. Dıaz, ́A. S. Calle, and J. L. E. Sanchez-Mar ́ın,Visi ́on por computador.Dykinson, 2004. [62] K. Leon, D. Mery, F. Pedreschi, and J. Leon, “Color measurement in L∗a∗b∗units fromRGB digital images,”Food research international, vol. 39, no. 10, pp. 1084–1091, 2006. [63] S. Wolf,Color correction matrix for digital still and video imaging systems. National Tele-communications and Information Administration Washington, DC, 2003. [64] N. Wu, M. Li, L. Chen, Y. Yuan, and S. Song, “A lda-based segmentation model for classif-ying pixels in crop diseased images,” in2017 36th Chinese Control Conference (CCC), July2017, pp. 11 499–11 505. [65] S. Garc ́ıa Navarroet al., “Clasificaci ́on de 3d point cloud mediante descriptores vfh,” 2018. [66] M. Aboali, N. Manap, A. M. Darsono, and Z. M. Yusof, “Review on three-dimensional (3-d)acquisition and range imaging techniques,”Int. J. Appl. Eng. Res, vol. 12, pp. 2409–2421,2017. [67] R. Tomas-Jover, A. J. R. Guill, M. Gonzalez, A. A. Fern ́andez, and L. Jord ́a, “Structure frommotion (sfm): una tecnica fotogrametrica de bajo coste para la caracterizacion y monitoreode macizos rocosos,” 2016 [68] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3d pointcloud based object maps for household environments,”Robotics and Autonomous Systems,vol. 56, no. 11, pp. 927–941, 2008, semantic Knowledge in Robotics. [Online]. Available:https://www.sciencedirect.com/science/article/pii/S0921889008001140 [69] A. F. C. Salcedo, A. B. Mart ́ınez, and E. A. Q. Salazar, “Procesamiento de nubes de puntospor medio de la librer ́ıa pcl,”Scientia et technica, vol. 2, no. 52, pp. 136–142, 2012. [70] H. Zhu, F. Meng, J. Cai, and S. Lu, “Beyond pixels: A comprehensive survey frombottom-up to semantic image segmentation and cosegmentation,”Journal of VisualCommunication and Image Representation, vol. 34, pp. 12–27, 2016. [Online]. Available:https://www.sciencedirect.com/science/article/pii/S1047320315002035 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
XIX, 82 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80092/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/80092/4/1022397480.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80092/5/1022397480.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 664c8056dc635ec2ef4018e7cc6584ce 32518f2279846d7c3ff00ed302065da3 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090213780094976 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Prieto Ortiz, Flavio Augustoe5e0629d29d9b754bf18e0f0017122da600Ramírez Alberto, Leonardo2261770942379aae4952f42e07e7bc97Grupo de Automática de la Universidad Nacional GAUNAL2021-09-03T03:37:58Z2021-09-03T03:37:58Z2021https://repositorio.unal.edu.co/handle/unal/80092Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones y fotografíasAnthracnose is the main disease that affects mango fruits, generating up to 100% of losses in the most extreme cases, hence the importance of controlling the disease in mango to avoid reaching such extremes. In this sense, the area of computer vision has had developments to generate non-destructive tools in agriculture, however, there are few works that relate mango and anthracnose by means of CVS and much less for early detection of this disease. In the present work, five methods based on machine vision were developed: Threshold-RGB, RGB-LDA, Threshold-UV, LDA-UV and 3D method, with the purpose of early detection of anthracnose in mango fruits. Results on 30 mangoes indicate that the Threshold-UV and LDA-UV methods can detect the disease 2 days before an expert can do so, according to the severity scale used. This is because UV-A illumination reveals areas of disease that cannot be seen in visible light. The Threshold-RGB and RGB-LDA methods have a performance similar to that of the human eye, since they have the same information. On the other hand, the 3D method does not have a good performance in the detection of the disease, for the test performed, the intersection over junction (IoU) is 47%, which indicates that it is not a good method to determine the disease. Finally, a comparison of the 5 proposed methods using the IoU metric on the same handle is performed, the result of the best segmentations are of the RGB Threshold and LDA-UV methods with values of 0.87 and 0.84, respectively. The lowest performance was 3D segmentation with an average IoU of 0.56. The methods were taken to the field, with unfavorable results, due to uncontrolled factors such as illumination and wind, in addition to the fact that the mangoes evaluated did not show any symptoms of the disease.(Texto tomado de la fuente)La antracnosis es la principal enfermedad que afecta los frutos de mango llegando a generar hasta el 100% de perdidas en los casos más extremos, de ahí la importancia de controlar la enfermedad en mango para no llegar a tales extremos. En este sentido, el área de visión por computadora ha tenido desarrollos para generar herramientas no destructivas en agricultura, sin embargo, son pocos los trabajos que relacionan el mango y la antracnosis por medio de CVS y mucho menos para detectar de forma temprana esta enfermedad. En el presente trabajo se desarrollaron cinco métodos basados en visión de máquina: Umbral-RGB, RGB-LDA, Umbral-UV, LDA-UV y método 3D, con el propósito de detectar la antracnosis de forma temprana en frutos de mango. Los resultados sobre 30 mangos indican que los métodos Umbral-UV y LDA-UV pueden detectar la enfermedad 2 días antes que un experto lo pueda realizar, de acuerdo con la escala de severidad empleada. Lo anterior debido a que la iluminación de luz UV-A que se realiza devela zonas de la enfermedad que en la luz visible no se pueden ver. Los métodos Umbral-RGB y RGB-LDA tienen un desempeño similar al realizado por el ojo humano, esto dado que tienen la misma información. Por otro, lado el método 3D no tiene un buen desempeño en la detección de la enfermedad, para la prueba realizada, la intersección sobre unión (IoU), es de 47 %, lo que indica que no es un buen método para determinar la enfermedad. Finalmente se realiza una comparación de los 5 métodos propuestos empleando la métrica IoU sobre un mismo mango, el resultado de las mejores segmentaciones son de los métodos Umbral RGB y LDA-UV con valores de 0.87 y 0.84, respectivamente. El menor desempeño fue la segmentación 3D con un promedio de IoU de 0.56. Los métodos fueron llevados a campo, con resultados poco favorables, por factores no controlados como la iluminación y el viento, además que los mangos evaluados no debelaban ningún síntoma de la enfermedad. (Texto tomado de la fuente).MaestríaMagíster en Ingeniería - Automatización IndustrialVisión de máquina aplicada a la agricultura.XIX, 82 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Automatización IndustrialDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaFrutas de huesoStone fruitVisión por computadoraMonitoreo tempranoReducción de pérdidasCaracterización visualMangoAntracnosisImágenes 3DLuz UV-AComputer VisionEarly MonitoringLoss ReductionVisual CharacterizationMangoAnthracnose3D ImagingUV-A LightDesarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquinaDevelopment of a system for early detection of anthracnose in mango fruits based on machine visionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAgrosaviaAgrovoc[1] I. S. Bally, “Mangifera indica (mango),”Species profiles for pacific island agroforestry,pp. 1–25, 2006.[2] I. Rojo-Baez, B. ́Alvarez-Rodrıguez, R. S. Garc ́ıa-Estrada, J. Leon-Felix, A. Sanudo-Barajas, and R. Allende-Molar, “Situacion actual de colletotrichums spp. en m ́exico:Taxonomıa, caracterizacion, patogenesis y control, "Revista mexicana de fitopatologıa,vol. 35, no. 3, pp. 549–570, 2017.[3] P. Gil, F. Torres, and F. G. Ortiz Zamora, “Deteccion de objetos por segmentacion multinivel combinada de espacios de color,” 2004.[4] R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu, “Fast 3d recognition and pose usingthe viewpoint feature histogram,” in2010 IEEE/RSJ International Conference on In-telligent Robots and Systems, 2010, pp. 2155–2162.[5] G. A. Betancourt, “Las maquinas de soporte vectorial (svms), "Scientia et technica,vol. 1, no. 27, 2005.[6] greywhitebalancecolourcard.co.uk,“TheGreyWhiteBalanceCo-lourCarduserguide,”2019.[Online].Available:https://www.greywhitebalancecolourcard.co.uk/assets/userguide.pdf[7] J. R. Cartagena,Fruticultura colombiana: el mango.Produmedios, 2001, no. 634.44R339f Ej. 1 019955.[8] J. C. Requena,Mango International Enciclopedia. Sultanate Of Oman: Royal CourtAffairs Ed., 2014, ch. Mango: Economics and International Trade.[9] G. Corkidi, K. A. Balderas-Ruız, B. Taboada, L. Serrano-Carreon, and E. Galindo,“Assessing mango anthracnose using a new three-dimensional image-analysis techniqueto quantify lesions on fruit,”Plant Pathology, vol. 55, no. 2, pp. 250–257, 2006. [On-line]. Available: https://bsppjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-3059.2005.01321.x[10] O. de la naciones unidas para la alimentacion la agricultura. (2018, feb) Plagas y enfermedades de las plantas. [Online]. Available: http://www.fao.org/emergencies/tipos-de-peligros-y-de-emergencias/plagas-y-enfermedades-de-las-plantas/es/[11] A. Camargo and J. Smith, “Image pattern classification for the identification of disease causing agents in plants,” Computers and Electronics in Agriculture, vol. 66, no. 2, pp. 121 – 125, 2009. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S0168169909000027[12] M. V. M. Amos P. K. Tai and C. L. Heald, “Threat to future global food security fromclimate change and ozone air pollution,”Nature climate change, vol. 4, pp. 817–821,September 2014.[13] J. Das, G. Cross, C. Qu, A. Makineni, P. Tokekar, Y. Mulgaonkar, and V. Kumar,“Devices, systems, and methods for automated monitoring enabling precision agricul-ture,” in2015 IEEE International Conference on Automation Science and Engineering(CASE), Aug 2015, pp. 462–469.[14] S. Prasad, S. K. Peddoju, and D. Ghosh, “Energy efficient mobile vision system for plantleaf disease identification,” in2014 IEEE Wireless Communications and NetworkingConference (WCNC), April 2014, pp. 3314–3319.[15] E. Ganan, Lederson; Alvarez and J. Castano Zapata, “Identificacion genetica de aislamientos de colletotrichum spp. causantes de antracnosis en frutos de aguacate, banano, mango y tomate de ́arbol,”Revista de la Academia Colombiana de Ciencias Exactas, Fısicas y Naturales, vol. 39, pp. 339 – 347, 092015. [Online]. Available: http://www.scielo.org.co/scielo.php?script=sciarttextpid=S0370−39082015000300005nrm=iso[16] A. R. Paez Redondo, “Tecnologıas sostenibles para el manejo de la antracnosis en papaya y mango, "Corporacion Colombiana de Investigacion Agropecuaria, Corpoica, 2002.[17] C. Garcıa, Jairo; Gonzalez and J. Velasco, Modelo productivo para el cultivo de mangoen el valle del Alto Magdalena para el departamento del Tolima, Siembra, Ed., Mosquera-Colombia 2017, 2017.[18] L. Pauly and D. Sankar, “A new method for sorting and grading of mangos based oncomputer vision system,” in2015 IEEE International Advance Computing Conference(IACC), June 2015, pp. 1191–1195.[19] J. P. Bonilla-Gonzalez and F. A. Prieto-Ortiz, “Determinacion del estado de maduracion defrutos de feijoa mediante un sistema de vision por computador utilizando informacion de color, "Revista de Investigacion, Desarrollo e Innovacion, vol. 7, no. 1, pp. 111–126, 2016.[20] R. P. Salunkhe and A. A. Patil, “Image processing for mango ripening stage detection:RGB and HSV method,” in 2015 Third International Conference on Image InformationProcessing (ICIIP), 2015, pp. 362–365.[21] A. Romero-Acero, alejandro mar ́ın cano, and jovani alberto jim ́enez builes, “Sistema declasificaci ́on por visi ́on artificial de mangos tipo Tommy,”Revista UIS Ingenier ́ıas, vol. 14,no. 1, pp. 21–31, 2015.[22] D. Sahu and R. M. Potdar, “Defect identification and maturity detection of mango fruitsusing image analysis,”American Journal of Artificial Intelligence., vol. 1, no. 1, pp. 5–14,2017.[23] K. Swetha, V. Venkataraman, G. D. Sadhana, and R. Priyatharshini, “Hybrid approachfor anthracnose detection using intensity and size features,” in 2016 IEEE TechnologicalInnovations in ICT for Agriculture and Rural Development (TIAR), July 2016, pp. 28–32.[24] W. Zhu, H. Chen, I. Ciechanowska, and D. Spaner, “Application of infrared thermalimaging for the rapid diagnosis of crop disease,”IFAC-PapersOnLine, vol. 51, no. 17, pp.424–430, 2018.[25] C. E. C. Ardila, L. A. Ramirez, and F. A. P. Ortiz, “Spectral analysis for the early detectionof anthracnose in fruits of sugar mango (mangifera indica),”Computers and Electronics inAgriculture, vol. 173, p. 105357, 2020.[26] D. Story, M. Kacira, C. Kubota, A. Akoglu, and L. An, “Lettuce calcium deficiencydetection with machine vision computed plant features in controlled environments,”Computers and electronics in agriculture, vol. 74, no. 2, pp. 238–243, 2010.[27] K. K. Patel, A. Kar, and M. A. Khan, “Potential of reflected UV imaging technique fordetection of defects on the surface area of mango,”Journal of food science and technology,vol. 56, no. 3, pp. 1295–1301, 2019.[28] K. Yabe, Y. Ando, M. Ito, and N. Terakado, “Simple method for screening aflatoxin-producing molds by uv photography.”Appl. Environ. Microbiol., vol. 53, no. 2, pp. 230–234,1987.[29] D. Obenland and P. Neipp, “Chlorophyll fluorescence imaging allows early detection andlocalization of lemon rind injury following hot water treatment,”Hortscience, vol. 40, no. 6,pp. 1821–1823, 2005.[30] D. Slaughter, D. Obenland, J. Thompson, M. Arpaia, and D. Margosan, “Non-destructivefreeze damage detection in oranges using machine vision and ultraviolet fluorescence,”Postharvest Biology and Technology, vol. 48, no. 3, pp. 341 – 346, 2008. [Online]. Available:http://www.sciencedirect.com/science/article/pii/S092552140700289X[31] M. Nagle, I. Kiatkamjon, M. Busarakorn, S. Vicha, and M. Joachim, “Non-destructive man-go quality assessment using image processing: Inexpensive innovation for the fruit handlingindustry,” inConference on International Research on Food Security, Natural Resource Ma-nagement and Rural Development, 2012, pp. 1–4[32] Agronet. (2021, feb) Encuesta nacional agropecuaria - ena. [Online]. Available:http://www.agronet.gov.co/Lists/Boletin/attachments/1122/presentacionena2016.pdf[33] MADR. (2018, mar) Evaluaciones agropecuarias municipales (mango 2011-2016). [Online].Available: http://www.agronet.gov.co/estadistica/Paginas/default.aspx[34] E.Osorio,Jairo;MartinezandJ.Hio,“Screeningofmicrobialcultu-refiltrates,plantextractsandfungicidesforcontrolofmangoanthrac-nose,”Agronom ̃AaColombiana,vol.30,pp.222–229,082012.[On-line].Available:http://www.scielo.org.co/scielo.php?script=sciarttextpid=S0120−99652012000200009nrm=iso[35] J. Garcia Lozano, A. Sandoval Aldana, M. D. Lozano, and E. Var ́on Devia, “Gu ́ıa tecnicapara el cultivo de mango: modelo productivo dirigido a mejorar la productividad y lacompetitividad,” Tech. Rep., 2013.[36] FAOSTAT. (2018, mar) Organizaci ́on de las naciones unidas para la alimentacion y la agricultura. [Online]. Available: http://www.fao.org/faostat/es/data/QC[37] C. Forero, Nidia; Olivares Mary Luz; Moncayo and S. Cote,Alternativas para la generacionde valor agregado en los cultivos de mango y quinua, N. C. Forero, Ed., Bogot ́a, 2016.[38] T. L. Lucia Dur ́an Pinilla and Y. B. P ́erez,Determinaci ́on de perdidas postcosecha en Mango(Magnifera indica. L.) en la zona de el Espinal y Guamo en el departamento del Tolima,Corpoica, Ed., 1999.[39] “Problematica pre y post-cosecha de frutales y hortalizas en colombia.” 1996. [Online].Available: http://hdl.handle.net/20.500.12324/31646[40] K. Shah, M. Patel, R. Patel, and P. Parmar, “Mangifera indica (mango),”Pharmacognosy reviews, vol. 4, no. 7, p. 42, 2010.[41] V. Quintero, G. Giraldo, J. Lucas, and J. Vasco, “Caracterizacion fisicoquimica del mangocom ́un (mangifera indica l.) durante su proceso de maduraci ́on,”Biotecnolog ́ıa en el SectorAgropecuario y Agroindustrial, vol. 11, no. 1, pp. 8–18, jul. 2013. [Online]. Available:https://revistas.unicauca.edu.co/index.php/biotecnologia/article/view/287[42] J. A. ́Alvarez-Bermejo, C. Giagnocavo, L. Ming, E. C. Morales, D. P. M. Santos, and Y. Xin-ting, “Image processing methods to evaluate tomato and zucchini damage in post-harveststages,”International Journal of Agricultural and Biological Engineering, vol. 10, no. 5, pp.126–133, 2017.[43] K. K. Patel, A. Kar, S. Jha, and M. Khan, “Machine vision system: a tool for qualityinspection of food and agricultural products,”Journal of food science and technology, vol. 49,no. 2, pp. 123–141, 2012.[44] I. García and V. Caranqui, “La vision artificial y los campos de aplicacion,”Tierra infinita,vol. 1, no. 1, pp. 94–103, 2015.[45] R. Gonzalez,Digital Image Processing 2Nd Ed.Prentice-Hall Of India Pvt. Limited, 2002.[Online]. Available: https://books.google.com.co/books?id=iyJOPgAACAAJ[46] L. Malambo, S. C. Popescu, S. C. Murray, E. Putman, N. A. Pugh, D. W. Horne, G. Richard-son, R. Sheridan, W. L. Rooney, R. Avantet al., “Multitemporal field-based plant height esti-mation using 3d point clouds generated from small unmanned aerial systems high-resolutionimagery,”International Journal of Applied Earth Observation and Geoinformation, vol. 64,pp. 31–42, 2018.[47] C. H. W. De Souza, R. A. C. Lamparelli, J. V. Rocha, and P. S. G. Magalh ̃aes, “Heightestimation of sugarcane using an unmanned aerial system (uas) based on structure frommotion (sfm) point clouds,”International journal of remote sensing, vol. 38, no. 8-10, pp.2218–2230, 2017.[48] F. Yihang, L. Chengda, Z. Ruifang, T. Yao, and W. Xingyu, “A new approach for measu-ring 3d digitalized rape leaf parameters based on images,” in2014 The Third InternationalConference on Agro-Geoinformatics. IEEE, 2014, pp. 1–5.[49] K. Kusumam, T. Krajn ́ık, S. Pearson, G. Cielniak, and T. Duckett, “Can you pick a broccoli?3d-vision based detection and localisation of broccoli heads in the field,” in2016 IEEE/RSJInternational Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 646–651.[50] M. B. Tauger, “Entitlement, shortage and the 1943 bengal famine: another look,”Journalof Peasant Studies, vol. 31, no. 1, pp. 45–72, 2003.[51] S. Prasad, S. K. Peddoju, and D. Ghosh, “Multi-resolution mobile vision system for plantleaf disease diagnosis,”Signal, Image and Video Processing, vol. 10, no. 2, pp. 379–388, 2016.[52] ——, “Energy efficient mobile vision system for plant leaf disease identification,” in2014IEEE Wireless Communications and Networking Conference (WCNC).IEEE, 2014, pp.3314–3319.[53] P. Chaudhary, A. K. Chaudhari, A. Cheeran, and S. Godara, “Color transform based ap-proach for disease spot detection on plant leaf,”International journal of computer scienceand telecommunications, vol. 3, no. 6, pp. 65–70, 2012.[54] S. Jeyalakshmi and R. Radha, “A review on diagnosis of nutrient deficiency symptomsin plant leaf image using digital image processing.”ICTACT Journal on Image & VideoProcessing, vol. 7, no. 4, 2017.[55] G. Xu, F. Zhang, S. G. Shah, Y. Ye, and H. Mao, “Use of leaf color images to identifynitrogen and potassium deficient tomatoes,”Pattern Recognition Letters, vol. 32, no. 11, pp.1584–1590, 2011.[56] D. Sahu and R. M. Potdar, “Defect identification and maturity detection of mango fruitsusing image analysis,”American Journal of Artificial Intelligence, vol. 1, no. 1, pp. 5–14,2017.[57] A. Arista-Jalife, G. Calderon-Auza, A. Fierro-Radilla, and M. Nakano, “Clasificaci ́on deim ́agenes urbanas a ́ereas: Comparaci ́on entre descriptores de bajo nivel y aprendizaje pro-fundo,”Informaci ́on tecnol ́ogica, vol. 28, no. 3, pp. 209–224, 2017.[58] K. Alhamzi, M. Elmogy, and S. Barakat, “3d object recognition based on local and globalfeatures using point cloud library,”International Journal of Advancements in ComputingTechnology, vol. 7, no. 3, p. 43, 2015.[59] H. Gao and J. W. Davis, “Why direct lda is not equivalent to lda,”Pat-ternRecognition,vol.39,no.5,pp.1002–1006,2006.[Online].Available:https://www.sciencedirect.com/science/article/pii/S0031320305004401[60] A. Goel and S. Mahajan, “Comparison: Knn & svm algorithm,”International Journal forResearch in Applied Science & Engineering Technology (IJRASET), vol. 5, no. 12, 2017.[61] J. F. V. Serrano, A. Dıaz, ́A. S. Calle, and J. L. E. Sanchez-Mar ́ın,Visi ́on por computador.Dykinson, 2004.[62] K. Leon, D. Mery, F. Pedreschi, and J. Leon, “Color measurement in L∗a∗b∗units fromRGB digital images,”Food research international, vol. 39, no. 10, pp. 1084–1091, 2006.[63] S. Wolf,Color correction matrix for digital still and video imaging systems. National Tele-communications and Information Administration Washington, DC, 2003.[64] N. Wu, M. Li, L. Chen, Y. Yuan, and S. Song, “A lda-based segmentation model for classif-ying pixels in crop diseased images,” in2017 36th Chinese Control Conference (CCC), July2017, pp. 11 499–11 505.[65] S. Garc ́ıa Navarroet al., “Clasificaci ́on de 3d point cloud mediante descriptores vfh,” 2018.[66] M. Aboali, N. Manap, A. M. Darsono, and Z. M. Yusof, “Review on three-dimensional (3-d)acquisition and range imaging techniques,”Int. J. Appl. Eng. Res, vol. 12, pp. 2409–2421,2017.[67] R. Tomas-Jover, A. J. R. Guill, M. Gonzalez, A. A. Fern ́andez, and L. Jord ́a, “Structure frommotion (sfm): una tecnica fotogrametrica de bajo coste para la caracterizacion y monitoreode macizos rocosos,” 2016[68] R. B. Rusu, Z. C. Marton, N. Blodow, M. Dolha, and M. Beetz, “Towards 3d pointcloud based object maps for household environments,”Robotics and Autonomous Systems,vol. 56, no. 11, pp. 927–941, 2008, semantic Knowledge in Robotics. [Online]. Available:https://www.sciencedirect.com/science/article/pii/S0921889008001140[69] A. F. C. Salcedo, A. B. Mart ́ınez, and E. A. Q. Salazar, “Procesamiento de nubes de puntospor medio de la librer ́ıa pcl,”Scientia et technica, vol. 2, no. 52, pp. 136–142, 2012.[70] H. Zhu, F. Meng, J. Cai, and S. Lu, “Beyond pixels: A comprehensive survey frombottom-up to semantic image segmentation and cosegmentation,”Journal of VisualCommunication and Image Representation, vol. 34, pp. 12–27, 2016. [Online]. Available:https://www.sciencedirect.com/science/article/pii/S1047320315002035GeneralLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80092/3/license.txtcccfe52f796b7c63423298c2d3365fc6MD53ORIGINAL1022397480.2021.pdf1022397480.2021.pdfTesis de Maestría en Ingeniería - Automatización Industrialapplication/pdf73359641https://repositorio.unal.edu.co/bitstream/unal/80092/4/1022397480.2021.pdf664c8056dc635ec2ef4018e7cc6584ceMD54THUMBNAIL1022397480.2021.pdf.jpg1022397480.2021.pdf.jpgGenerated Thumbnailimage/jpeg4900https://repositorio.unal.edu.co/bitstream/unal/80092/5/1022397480.2021.pdf.jpg32518f2279846d7c3ff00ed302065da3MD55unal/80092oai:repositorio.unal.edu.co:unal/800922023-07-27 23:03:31.586Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |