Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources

ilustraciones, graficas

Autores:
Escobar Fajardo, Ana Cristina
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82098
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82098
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
ONDAS ELECTROMAGNETICAS
Electromagnetic waves
Huygens' sources
Metamaterials
Metasurfaces
Left-handed
Periodic structures
Permittivity
Permeability
Fuentes de Huygens
Estructuras periódicasa
Metamateriales
Metasuperficies
Medio zurdo
Permitividad
Permeabilidad
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_de53e660db491f503b7a1b01bbb6e08d
oai_identifier_str oai:repositorio.unal.edu.co:unal/82098
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources
dc.title.translated.spa.fl_str_mv Control de ondas electromagnéticas usando metamateriales y metasuperficies basados en fuentes de Huygens
title Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources
spellingShingle Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources
620 - Ingeniería y operaciones afines::621 - Física aplicada
ONDAS ELECTROMAGNETICAS
Electromagnetic waves
Huygens' sources
Metamaterials
Metasurfaces
Left-handed
Periodic structures
Permittivity
Permeability
Fuentes de Huygens
Estructuras periódicasa
Metamateriales
Metasuperficies
Medio zurdo
Permitividad
Permeabilidad
title_short Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources
title_full Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources
title_fullStr Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources
title_full_unstemmed Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources
title_sort Control of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sources
dc.creator.fl_str_mv Escobar Fajardo, Ana Cristina
dc.contributor.advisor.none.fl_str_mv Baena Doello, Juan Domingo
dc.contributor.author.none.fl_str_mv Escobar Fajardo, Ana Cristina
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física Aplicada
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
ONDAS ELECTROMAGNETICAS
Electromagnetic waves
Huygens' sources
Metamaterials
Metasurfaces
Left-handed
Periodic structures
Permittivity
Permeability
Fuentes de Huygens
Estructuras periódicasa
Metamateriales
Metasuperficies
Medio zurdo
Permitividad
Permeabilidad
dc.subject.lemb.spa.fl_str_mv ONDAS ELECTROMAGNETICAS
dc.subject.lemb.eng.fl_str_mv Electromagnetic waves
dc.subject.proposal.eng.fl_str_mv Huygens' sources
Metamaterials
Metasurfaces
Left-handed
Periodic structures
Permittivity
Permeability
dc.subject.proposal.spa.fl_str_mv Fuentes de Huygens
Estructuras periódicasa
Metamateriales
Metasuperficies
Medio zurdo
Permitividad
Permeabilidad
description ilustraciones, graficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-08-25T15:32:44Z
dc.date.available.none.fl_str_mv 2022-08-25T15:32:44Z
dc.date.issued.none.fl_str_mv 2022-06
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82098
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82098
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv J. D. Baena, L. Jelinek, and R. Marqués, “Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B, vol. 76, p. 245115, Dec 2007.
V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics, vol. 7, no. 6, pp. 1069–1094, 2018.
R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications. Wiley Series in Microwave and Optical Engineering, Wiley, 2011.
X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E, vol. 70, p. 016608, Jul 2004.
M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3d metamaterials,” Nature Reviews Physics, vol. 1, pp. 198–210, Mar 2019.
M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nature Communications, vol. 6, p. 10102, Dec 2015.
J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett., vol. 76, no. 25, pp. 4773–4776, 1996.
P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B, vol. 67, p. 113103, 2003.
J. D. Baena, L. Jelinek, R. Marqués, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A, vol. 78, p. 013842, Jul 2008.
M. Silveirinha, J. Baena, L. Jelinek, and R. Marqués, “Nonlocal homogenization of an array of cubic particles made of resonant rings,” Metamaterials, vol. 3, no. 3, pp. 115– 128, 2009.
F. Mesa, R. Rodríguez-Berral, and F. Medina, “Considerations on the usage of transmission matrices to study the dispersion behavior of glide-symmetry structures,” in 13th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, 2019.
F. Mesa, G. Valerio, R. Rodríguez-Berral, and O. Quevedo-Teruel, “Simulation-assisted efficient computation of the dispersion diagram of periodic structures: A comprehensive overview with applications to filters, leaky-wave antennas and metasurfaces,” IEEE Antennas and Propagation Magazine, vol. 63, no. 5, pp. 33–45, 2021.
A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials, vol. 1, no. 1, pp. 2–11, 2007.
R. Marqués, L. Jelinek, M. J. Freire, J. D. Baena, and M. Lapine, “Bulk metamaterials made of resonant rings,” Proceedings of the IEEE, vol. 99, no. 10, pp. 1660–1668, 2011.
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, May 2000.
C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine, vol. 54, no. 2, pp. 10–35, 2012.
S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Physics Reports, vol. 634, pp. 1–72, 2016. Metasurfaces: From microwaves to visible.
M. Albooyeh, S. Tretyakov, and C. Simovski, “Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework,” Annalen der Physik, vol. 528, no. 9-10, pp. 721–737, 2016.
J. D. Baena, L. Jelinek, R. Marqués, J. J. Mock, J. Gollub, and D. R. Smith, “Isotropic frequency selective surfaces made of cubic resonators,” Applied Physics Letters, vol. 91, no. 19, p. 191105, 2007.
J. P. del Risco, I. S. Mikhalka, V. A. Lenets, M. S. Sidorenko, A. D. Sayanskiy, S. B. Glybovski, A. L. Samofalov, S. A. Khakhomov, I. V. Semchenko, J. D. Ortiz, and J. D. Baena, “Optimal angular stability of reflectionless metasurface absorbers,” Phys. Rev. B, vol. 103, p. 115426, 2021.
J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B, vol. 92, p. 245413, Dec 2015.
N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, vol. 340, no. 6138, pp. 1304–1307, 2013.
J. D. Baena, S. B. Glybovski, J. P. del Risco, A. P. Slobozhanyuk, and P. A. Belov, “Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4124–4133, 2017.
N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333–337, 2011.
X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science, vol. 335, no. 6067, pp. 427–427, 2012.
C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett., vol. 110, p. 197401, May 2013.
M. Londoño, A. Sayanskiy, J. L. Araque-Quijano, S. B. Glybovski, and J. D. Baena, “Broadband huygens’ metasurface based on hybrid resonances,” Phys. Rev. Applied, vol. 10, p. 034026, Sep 2018.
V. S. Asadchy, M. S. Mirmoosa, A. Díaz-Rubio, S. Fan, and S. A. Tretyakov, “Tutorial on electromagnetic nonreciprocity and its origins,” Proceedings of the IEEE, vol. 108, no. 10, pp. 1684–1727, 2020.
S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 7, pp. 1006–1014, 1996.
S. A. Tretyakov, C. R. Simovski, and A. A. Sochava, The Relation Between Co- and Cross-Polarizabilities of Small Conductive Bi-Anisotropic Particles, pp. 271–280. Dordrecht: Springer Netherlands, 1997.
M. Albooyeh, V. S. Asadchy, R. Alaee, S. M. Hashemi, M. Yazdi, M. S. Mirmoosa, C. Rockstuhl, C. R. Simovski, and S. A. Tretyakov, “Purely bianisotropic scatterers,” Phys. Rev. B, vol. 94, p. 245428, Dec 2016.
M. Albooyeh, S. M. Hashemi, V. Asadchy, R. Alaee, M. Yazdi, M. S. Mirmoosa, C. Rockstuhl, C. R. Simovski, and S. A. Tretyakov, “Magnetoelectric coupling without electric and magnetic response?,” in 2016 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 215–217, 2016.
J. L. Araque and J. D. Baena, “A general method to retrieve electromagnetic polarizability tensors of metamaterial resonators,” in 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, pp. 490–492, 2013.
A. C. Escobar and J. D. Baena, “Demonstration of the relation between co- and cross-polarizabilities using a multipole expansion of the electromotive force for planar bianisotropic scatterers,” in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. 118–120, 2020.
J. D. Jackson, Classical Electrodynamics. Wiley, 1998.
J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.
J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451–1461, 2005.
A. C. Escobar, A. Sayanskiy, J. L. Araque-Quijano, S. B. Glybovski, and J. D. Baena, “Quasi-isotropic huygens resonant scatterer in microwaves,” in 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. X–053–X–055, 2019.
R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett., vol. 40, pp. 2645–2648, Jun 2015.
R. Dezert, P. Richetti, and A. Baron, “Isotropic huygens dipoles and multipoles with colloidal particles,” Phys. Rev. B, vol. 96, p. 180201, Nov 2017.
P. Jin and R. W. Ziolkowski, “Metamaterial-inspired, electrically small huygens sources,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 501–505, 2010.
M. Tang, H. Wang, and R. W. Ziolkowski, “Design and testing of simple, electrically small, low-profile, huygens source antennas with broadside radiation performance,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 11, pp. 4607–4617, 2016.
M. Tang, T. Shi, and R. W. Ziolkowski, “Electrically small, broadside radiating huygens source antenna augmented with internal non-foster elements to increase its bandwidth,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 712–715, 2017.
M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics, vol. 4, no. 2, p. 020802, 2019.
E. Saenz, I. Semchenko, S. Khakhomov, K. Guven, R. Gonzalo, E. Ozbay, and S. Tretyakov, “Modeling of spirals with equal dielectric, magnetic, and chiral susceptibilities,” Electromagnetics, vol. 28, no. 7, pp. 476–493, 2008.
A. Osipov and S. Tretyakov, Modern Electromagnetic Scattering Theory with Applications. Wiley, 2017.
M. Londoño, “Metasuperficies transparentes con control total del salto de fase,” Master’s thesis, Universidad Nacional de Colombia, 2017.
R. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure. Properties of Materials: Anisotropy, Symmetry, Structure, OUP Oxford, 2004.
M. Londoño, A. C. Escobar, and J. D. Baena, “Broadband transparent metasurfaces for anomalous refraction,” in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. 204–206, 2020.
S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Physics Reports, vol. 634, pp. 1 – 72, 2016. Metasurfaces: From microwaves to visible.
M. Chen, M. Kim, A. M. Wong, and G. V. Eleftheriades, “Huygens’ metasurfaces from microwaves to optics: a review,” Nanophotonics, vol. 7, no. 6, pp. 1207 – 1231, 2018.
J. P. S. Wong, M. Selvanayagam, and G. V. Eleftheriades, “Polarization considerations for scalar huygens metasurfaces and characterization for 2-d refraction,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 913–924, 2015.
A. Epstein and G. V. Eleftheriades, “Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 9, pp. 3880–3895, 2016.
A. C. Escobar, J. P. Del Risco, O. Quevedo-Teruel, F. Mesa, and J. D. Baena, “Retrieval of the constitutive parameters and dispersion relation of glide-symmetric metamaterials via the multimodal transfer matrix method,” in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. 312–314, 2020.
M. Bagheriasl, O. Quevedo-Teruel, and G. Valerio, “Bloch analysis of artificial lines and surfaces exhibiting glide symmetry,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 2618–2628, 2019.
A. Alex-Amor, A. Palomares-Caballero, F. Mesa, and O. Quevedo-Teruel, “Dispersion analysis of periodic structures in anisotropic media: Application to liquid crystals.” Submitted, 2022.
B. Bandlow, R. Schuhmann, G. Lubkowski, and T. Weiland, “Analysis of single-cell modeling of periodic metamaterial structures,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1662–1665, 2008.
R. Collin, I. Antennas, and P. Society, Field Theory of Guided Waves. IEEE/OUP series on electromagnetic wave theory, IEEE Press, 1990.
D. M. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011.
J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proceedings of the IEE - Part IV: Institution Monographs, vol. 100, no. 5, pp. 51–62, 1953.
V. G. Veselago, “The electrodynamics of substances with silmultaneously negative values of ϵ and µ,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, apr 1968.
M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B, vol. 75, p. 235114, Jun 2007.
H. T. Nguyen, T. S. Bui, S. Yan, G. A. E. Vandenbosch, P. Lievens, L. D. Vu, and E. Janssens, “Broadband negative refractive index obtained by plasmonic hybridization in metamaterials,” Applied Physics Letters, vol. 109, no. 22, p. 221902, 2016.
R. Liu, A. Degiron, J. J. Mock, and D. R. Smith, “Negative index material composed of electric and magnetic resonators,” Applied Physics Letters, vol. 90, no. 26, p. 263504, 2007.
W. Jia-Fu, Q. Shao-Bo, X. Zhuo, X. Song, M. Hua, W. Qian, Y. Yi-Ming, and W. Xiang, “Experimental verification of left-handed metamaterials composed of coplanar electric and magnetic resonators,” Chinese Physics Letters, vol. 27, p. 034104, mar 2010.
S. M. Rudolph and A. Grbic, “Volumetric negative-refractive-index medium exhibiting broadband negative permeability,” Journal of Applied Physics, vol. 102, no. 1, p. 013904, 2007.
J. a. T. Costa and M. G. Silveirinha, “Mimicking the veselago-pendry lens with broadband matched double-negative metamaterials,” Phys. Rev. B, vol. 84, p. 155131, Oct 2011.
D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Impedance-matched, double-zero optical metamaterials based on weakly resonant metal oxide nanowires,” Photonics, vol. 5, no. 2, 2018.
R. Harrington and J. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Transactions on Antennas and Propagation, vol. 19, no. 5, pp. 622–628, 1971.
R. Harrington, J. Mautz, and Y. Chang, “Characteristic modes for dielectric and magnetic bodies,” IEEE Transactions on Antennas and Propagation, vol. 20, no. 2, pp. 194–198, 1972.
Y. Chen and C.-F. Wang, Characteristic Mode Theory for PEC Bodies, pp. 37–97. 2015.
B. K. Lau, M. Capek, and A. M. Hassan, “Characteristic modes: Progress, overview, and emerging topics,” IEEE Antennas and Propagation Magazine, vol. 64, no. 2, pp. 14–22, 2022.
A. Alu, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B, vol. 84, p. 075153, Aug 2011.
B. Bandlow, R. Schuhmann, G. Lubkowski, and T. Weiland, “Analysis of single-cell modeling of periodic metamaterial structures,” IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1662–1665, 2008.
M. Bagheriasl, O. Quevedo-Teruel, and G. Valerio, “Bloch analysis of artificial lines and surfaces exhibiting glide symmetry,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, pp. 2618–2628, July 2019.
C. Caloz, A. Alu, S. Tretyakov, D. Sounas, K. Achouri, and Z.-L. Deck-Léger, “Electromagnetic nonreciprocity,” Phys. Rev. Applied, vol. 10, p. 047001, Oct 2018.
F. Capolino, Theory and Phenomena of Metamaterials. Metamaterials Handbook, CRC Press, 2009.
X.-X. Liu and A. Alu, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B, vol. 87, p. 235136, Jun 2013.
F. Mesa, R. Rodríguez-Berral, and F. Medina, “Considerations on the usage of transmission matrices to study the dispersion behavior of glide-symmetry structures,” in 2019 13th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, March 2019.
F. J. Mustieles, E. Ballesteros, and F. Hernandez-Gil, “Multimodal analysis method for the design of passive te/tm converters in integrated waveguides,” IEEE Photonics Technology Letters, vol. 5, pp. 809–811, July 1993.
D. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011.
C. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of bloch lattices,” Metamaterials, vol. 1, no. 2, pp. 62–80, 2007.
D. R. Smith, “Analytic expressions for the constitutive parameters of magnetoelectric metamaterials,” Phys. Rev. E, vol. 81, p. 036605, Mar 2010.
J. L. Araque-Quijano, J. P. del Risco, M. A. Londoño, A. Sayanskiy, S. B. Glybovski, and J. D. Baena, “Huygens’ metasurfaces covering from waveplates to perfect absorbers,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 511–514, 2018.
M. Chen and G. V. Eleftheriades, “Omega-bianisotropic wire-loop huygens’ metasurface for reflectionless wide-angle refraction,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 1477–1490, 2020.
M. Chen, E. Abdo-Sánchez, A. Epstein, and G. V. Eleftheriades, “Theory, design, and experimental verification of a reflectionless bianisotropic Huygens’s metasurface for wide-angle refraction,” Phys. Rev. B, vol. 97, p. 125433, Mar 2018.
S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Advanced Optical Materials, vol. 6, no. 13, p. 1800104, 2018.
F. S. Cuesta, I. A. Faniayeu, V. S. Asadchy, and S. A. Tretyakov, “Planar broadband huygens’ metasurfaces for wave manipulations,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7117–7127, 2018.
A. H. Dorrah, M. Chen, and G. V. Eleftheriades, “Bianisotropic huygens’ metasurface for wideband impedance matching between two dielectric media,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4729–4742, 2018.
N. Mohammadi Estakhri and A. Alu, “Wave-front transformation with gradient metasurfaces,” Phys. Rev. X, vol. 6, p. 041008, Oct 2016.
H. Kazemi, M. Albooyeh, and F. Capolino, “Perfect anomalous reflection and refraction accompanied by an ideal polarization conversion: Potential of a chiral metasurface,” in 2019 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 1–4, May 2019.
H. Li, G. Wang, T. Cai, H. Hou, and W. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Applied, vol. 11, p. 014043, Jan 2019.
Y. Ra’di, D. L. Sounas, and A. Alu, “Metagratings: Beyond the limits of graded metasurfaces for wave front control,” Phys. Rev. Lett., vol. 119, p. 067404, Aug 2017.
A. M. H. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with a bipartite huygens’ metasurface,” Phys. Rev. X, vol. 8, p. 011036, Feb 2018.
K. Aydin and E. Ozbay, “Negative refraction through an impedance-matched left-handed metamaterial slab,” J. Opt. Soc. Am. B, vol. 23, pp. 415–418, Mar 2006.
K. Aydin, I. Bulu, and E. Ozbay, “Verification of impedance matching at the surface of left-handed materials,” Microwave and Optical Technology Letters, vol. 48, no. 12, pp. 2548–2552, 2006.
N. Engheta and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations. Wiley, 2006.
R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Applied Physics Letters, vol. 78, no. 4, pp. 489–491, 2001.
D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, May 2000.
T. Yamaguchi, T. Ishiyama, T. Ueda, and T. Itoh, “Unit cell block for 3-d isotropic negative-index metamaterials impedance-matched to free space by using dielectric cubes and metallic mesh,” in 2018 Asia-Pacific Microwave Conference (APMC), pp. 1118–1120, 2018.
J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Communications, vol. 3, pp. 1171 EP –, 11 2012.
M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am., vol. 73, pp. 765–767, Jun 1983.
I. V. Semchenko, S. A. Khakhomov, and A. L. Samofalov, “Helices of optimal shape for nonreflecting covering,” Eur. Phys. J. Appl. Phys., vol. 49, no. 3, p. 33002, 2010.
V. Rumsey, “Some new forms of huygens’ principle,” IRE Transactions on Antennas and Propagation, vol. 7, no. 5, pp. 103–116, 1959.
I. V. Semchenko, S. A. Khakhomov, and A. L. Samofalov, “Optimal helix shape: Equality of dielectric, magnetic, and chiral susceptibilities,” Russian Physics Journal, vol. 52, no. 5, p. 472, 2009.
R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core–shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New Journal of Physics, vol. 13, p. 123017, dec 2011.
A. Alu, “First-principles homogenization theory for periodic metamaterials,” Physical Review B - Condensed Matter and Materials Physics, vol. 84, no. 7, 2011.
J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.
A. F. Peterson, S. L. Ray, and R. Mittra, Electromagnetic Theory, pp. 1–36. Wiley, 1998.
C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of bloch lattices,” Metamaterials, vol. 1, no. 2, pp. 62–80, 2007.
V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics, vol. 7, no. 6, pp. 1069–1094, 2018.
T. Chang, J. U. Kim, S. K. Kang, H. Kim, D. K. Kim, Y.-H. Lee, and J. Shin, “Broadband giant-refractive-index material based on mesoscopic space-filling curves,” Nat. Commun., vol. 7, Article number 12661, 2016.
D. Cavallo and C. Felita, “Analytical formulas for artificial dielectrics with nonaligned layers,” IEEE Trans. Antennas Propag., vol. 65, pp. 5303–5311, Oct 2017.
D. Cavallo, “Dissipation losses in artificial dielectric layers,” IEEE Trans. Antennas Propag., vol. 66, pp. 7460–7465, Dec 2018.
M. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep., vol. 9, pp. 2045–2322, Sept 2019.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xx, 87 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.department.spa.fl_str_mv Departamento de Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82098/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82098/5/1107083739.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/82098/6/1107083739.2022.pdf.jpg
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
759fba647b7b5e08951ae75d6c17743d
25a26e463bed13466053ec7690593d6a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090054669172736
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Baena Doello, Juan Domingo4386a9021817ff44106f82a0846e4903Escobar Fajardo, Ana Cristinaf8862e7ba0cbdcf8b763744331d346c5Grupo de Física Aplicada2022-08-25T15:32:44Z2022-08-25T15:32:44Z2022-06https://repositorio.unal.edu.co/handle/unal/82098Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasThis Master's thesis is about the study of a Huygens' source and its application to the design of two applications where the small backscattering is required: a left-handed metamaterial matched to free-space impedance and a Huygens' metasurface for anomalous refraction. In this work, we begin with the analysis of the polarizability tensor of subwavelength scatterers; for some scatterers, the co- and cross-polarizability components are bounded. Later on, we obtain the dipole moments and polarizability tensor requirements to have an anisotropic and an isotropic Huygens' source. We demonstrate that a pair of Split Ring Resonators can satisfy the conditions. Then we use these results for the design of the metasurface and metamaterial. For the demonstration of the left-handedness and impedance matching, we use the dispersion relation, impedance, permittivity, and permeability from a homogenization model obtained from the multimodal transfer matrix method.En el presente trabajo se estudia una fuente de Huygens y su aplicación en dos diseños en los que se requiere baja reflexión: un metamaterial zurdo adaptado a la impedancia del vacío y una metasuperficie de Huygens que presenta refracción anómala. En este trabajo, comenzamos con el análisis del tensor de polarizabilidad de dispersores de sub-longitud de onda, y, para algunos dispersores, se estudia que las componentes de co-polarizabilidad y de polarizabilidad cruzada pueden están relacionadas. Posteriormente, obtenemos los momentos dipolares y los requisitos del tensor de polarizabilidad para tener una fuente de Huygens anisótropa e isótropa. Demostramos que un par de resonadores de anillo partido (SRR, por sus siglas en inglés) pueden satisfacer las condiciones. A continuación, utilizamos estos resultados para el diseño de la metasuperficie para la refracción anómala y del metamaterial zurdo. Para la demostración del medio zurdo y de la adaptación de la impedancia, utilizamos la relación de dispersión, la impedancia, la permitividad y la permeabilidad de un modelo de homogeneización obtenido a partir del método de la matriz de transferencia multimodal. (Texto tomado de la fuente)MaestríaMagíster en Ciencias - FísicaElectromagnetismo aplicadoxx, 87 páginasapplication/pdfUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaDepartamento de FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::621 - Física aplicadaONDAS ELECTROMAGNETICASElectromagnetic wavesHuygens' sourcesMetamaterialsMetasurfacesLeft-handedPeriodic structuresPermittivityPermeabilityFuentes de HuygensEstructuras periódicasaMetamaterialesMetasuperficiesMedio zurdoPermitividadPermeabilidadControl of electromagnetic waves using metamaterials and metasurfaces based on Huygens' sourcesControl de ondas electromagnéticas usando metamateriales y metasuperficies basados en fuentes de HuygensTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaJ. D. Baena, L. Jelinek, and R. Marqués, “Towards a systematic design of isotropic bulk magnetic metamaterials using the cubic point groups of symmetry,” Phys. Rev. B, vol. 76, p. 245115, Dec 2007.V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics, vol. 7, no. 6, pp. 1069–1094, 2018.R. Marqués, F. Martín, and M. Sorolla, Metamaterials with Negative Parameters: Theory, Design, and Microwave Applications. Wiley Series in Microwave and Optical Engineering, Wiley, 2011.X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, and J. A. Kong, “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys. Rev. E, vol. 70, p. 016608, Jul 2004.M. Kadic, G. W. Milton, M. van Hecke, and M. Wegener, “3d metamaterials,” Nature Reviews Physics, vol. 1, pp. 198–210, Mar 2019.M. V. Rybin, D. S. Filonov, K. B. Samusev, P. A. Belov, Y. S. Kivshar, and M. F. Limonov, “Phase diagram for the transition from photonic crystals to dielectric metamaterials,” Nature Communications, vol. 6, p. 10102, Dec 2015.J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, “Extremely low frequency plasmons in metallic mesostructures,” Phys. Rev. Lett., vol. 76, no. 25, pp. 4773–4776, 1996.P. A. Belov, R. Marqués, S. I. Maslovski, I. S. Nefedov, M. Silveirinha, C. R. Simovski, and S. A. Tretyakov, “Strong spatial dispersion in wire media in the very large wavelength limit,” Phys. Rev. B, vol. 67, p. 113103, 2003.J. D. Baena, L. Jelinek, R. Marqués, and M. Silveirinha, “Unified homogenization theory for magnetoinductive and electromagnetic waves in split-ring metamaterials,” Phys. Rev. A, vol. 78, p. 013842, Jul 2008.M. Silveirinha, J. Baena, L. Jelinek, and R. Marqués, “Nonlocal homogenization of an array of cubic particles made of resonant rings,” Metamaterials, vol. 3, no. 3, pp. 115– 128, 2009.F. Mesa, R. Rodríguez-Berral, and F. Medina, “Considerations on the usage of transmission matrices to study the dispersion behavior of glide-symmetry structures,” in 13th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, 2019.F. Mesa, G. Valerio, R. Rodríguez-Berral, and O. Quevedo-Teruel, “Simulation-assisted efficient computation of the dispersion diagram of periodic structures: A comprehensive overview with applications to filters, leaky-wave antennas and metasurfaces,” IEEE Antennas and Propagation Magazine, vol. 63, no. 5, pp. 33–45, 2021.A. Sihvola, “Metamaterials in electromagnetics,” Metamaterials, vol. 1, no. 1, pp. 2–11, 2007.R. Marqués, L. Jelinek, M. J. Freire, J. D. Baena, and M. Lapine, “Bulk metamaterials made of resonant rings,” Proceedings of the IEEE, vol. 99, no. 10, pp. 1660–1668, 2011.D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, May 2000.C. L. Holloway, E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, “An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials,” IEEE Antennas and Propagation Magazine, vol. 54, no. 2, pp. 10–35, 2012.S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Physics Reports, vol. 634, pp. 1–72, 2016. Metasurfaces: From microwaves to visible.M. Albooyeh, S. Tretyakov, and C. Simovski, “Electromagnetic characterization of bianisotropic metasurfaces on refractive substrates: General theoretical framework,” Annalen der Physik, vol. 528, no. 9-10, pp. 721–737, 2016.J. D. Baena, L. Jelinek, R. Marqués, J. J. Mock, J. Gollub, and D. R. Smith, “Isotropic frequency selective surfaces made of cubic resonators,” Applied Physics Letters, vol. 91, no. 19, p. 191105, 2007.J. P. del Risco, I. S. Mikhalka, V. A. Lenets, M. S. Sidorenko, A. D. Sayanskiy, S. B. Glybovski, A. L. Samofalov, S. A. Khakhomov, I. V. Semchenko, J. D. Ortiz, and J. D. Baena, “Optimal angular stability of reflectionless metasurface absorbers,” Phys. Rev. B, vol. 103, p. 115426, 2021.J. D. Baena, J. P. del Risco, A. P. Slobozhanyuk, S. B. Glybovski, and P. A. Belov, “Self-complementary metasurfaces for linear-to-circular polarization conversion,” Phys. Rev. B, vol. 92, p. 245413, Dec 2015.N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, and H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science, vol. 340, no. 6138, pp. 1304–1307, 2013.J. D. Baena, S. B. Glybovski, J. P. del Risco, A. P. Slobozhanyuk, and P. A. Belov, “Broadband and thin linear-to-circular polarizers based on self-complementary zigzag metasurfaces,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 8, pp. 4124–4133, 2017.N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: Generalized laws of reflection and refraction,” Science, vol. 334, no. 6054, pp. 333–337, 2011.X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science, vol. 335, no. 6067, pp. 427–427, 2012.C. Pfeiffer and A. Grbic, “Metamaterial huygens’ surfaces: Tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett., vol. 110, p. 197401, May 2013.M. Londoño, A. Sayanskiy, J. L. Araque-Quijano, S. B. Glybovski, and J. D. Baena, “Broadband huygens’ metasurface based on hybrid resonances,” Phys. Rev. Applied, vol. 10, p. 034026, Sep 2018.V. S. Asadchy, M. S. Mirmoosa, A. Díaz-Rubio, S. Fan, and S. A. Tretyakov, “Tutorial on electromagnetic nonreciprocity and its origins,” Proceedings of the IEEE, vol. 108, no. 10, pp. 1684–1727, 2020.S. A. Tretyakov, F. Mariotte, C. R. Simovski, T. G. Kharina, and J. Heliot, “Analytical antenna model for chiral scatterers: comparison with numerical and experimental data,” IEEE Transactions on Antennas and Propagation, vol. 44, no. 7, pp. 1006–1014, 1996.S. A. Tretyakov, C. R. Simovski, and A. A. Sochava, The Relation Between Co- and Cross-Polarizabilities of Small Conductive Bi-Anisotropic Particles, pp. 271–280. Dordrecht: Springer Netherlands, 1997.M. Albooyeh, V. S. Asadchy, R. Alaee, S. M. Hashemi, M. Yazdi, M. S. Mirmoosa, C. Rockstuhl, C. R. Simovski, and S. A. Tretyakov, “Purely bianisotropic scatterers,” Phys. Rev. B, vol. 94, p. 245428, Dec 2016.M. Albooyeh, S. M. Hashemi, V. Asadchy, R. Alaee, M. Yazdi, M. S. Mirmoosa, C. Rockstuhl, C. R. Simovski, and S. A. Tretyakov, “Magnetoelectric coupling without electric and magnetic response?,” in 2016 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 215–217, 2016.J. L. Araque and J. D. Baena, “A general method to retrieve electromagnetic polarizability tensors of metamaterial resonators,” in 2013 7th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, pp. 490–492, 2013.A. C. Escobar and J. D. Baena, “Demonstration of the relation between co- and cross-polarizabilities using a multipole expansion of the electromotive force for planar bianisotropic scatterers,” in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. 118–120, 2020.J. D. Jackson, Classical Electrodynamics. Wiley, 1998.J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.J. D. Baena, J. Bonache, F. Martin, R. M. Sillero, F. Falcone, T. Lopetegi, M. A. G. Laso, J. Garcia-Garcia, I. Gil, M. F. Portillo, and M. Sorolla, “Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1451–1461, 2005.A. C. Escobar, A. Sayanskiy, J. L. Araque-Quijano, S. B. Glybovski, and J. D. Baena, “Quasi-isotropic huygens resonant scatterer in microwaves,” in 2019 Thirteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. X–053–X–055, 2019.R. Alaee, R. Filter, D. Lehr, F. Lederer, and C. Rockstuhl, “A generalized kerker condition for highly directive nanoantennas,” Opt. Lett., vol. 40, pp. 2645–2648, Jun 2015.R. Dezert, P. Richetti, and A. Baron, “Isotropic huygens dipoles and multipoles with colloidal particles,” Phys. Rev. B, vol. 96, p. 180201, Nov 2017.P. Jin and R. W. Ziolkowski, “Metamaterial-inspired, electrically small huygens sources,” IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 501–505, 2010.M. Tang, H. Wang, and R. W. Ziolkowski, “Design and testing of simple, electrically small, low-profile, huygens source antennas with broadside radiation performance,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 11, pp. 4607–4617, 2016.M. Tang, T. Shi, and R. W. Ziolkowski, “Electrically small, broadside radiating huygens source antenna augmented with internal non-foster elements to increase its bandwidth,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 712–715, 2017.M. I. Abdelrahman, H. Saleh, I. Fernandez-Corbaton, B. Gralak, J.M. Geffrin, and C. Rockstuhl, “Experimental demonstration of spectrally broadband huygens sources using low-index spheres,” APL Photonics, vol. 4, no. 2, p. 020802, 2019.E. Saenz, I. Semchenko, S. Khakhomov, K. Guven, R. Gonzalo, E. Ozbay, and S. Tretyakov, “Modeling of spirals with equal dielectric, magnetic, and chiral susceptibilities,” Electromagnetics, vol. 28, no. 7, pp. 476–493, 2008.A. Osipov and S. Tretyakov, Modern Electromagnetic Scattering Theory with Applications. Wiley, 2017.M. Londoño, “Metasuperficies transparentes con control total del salto de fase,” Master’s thesis, Universidad Nacional de Colombia, 2017.R. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure. Properties of Materials: Anisotropy, Symmetry, Structure, OUP Oxford, 2004.M. Londoño, A. C. Escobar, and J. D. Baena, “Broadband transparent metasurfaces for anomalous refraction,” in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. 204–206, 2020.S. B. Glybovski, S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, “Metasurfaces: From microwaves to visible,” Physics Reports, vol. 634, pp. 1 – 72, 2016. Metasurfaces: From microwaves to visible.M. Chen, M. Kim, A. M. Wong, and G. V. Eleftheriades, “Huygens’ metasurfaces from microwaves to optics: a review,” Nanophotonics, vol. 7, no. 6, pp. 1207 – 1231, 2018.J. P. S. Wong, M. Selvanayagam, and G. V. Eleftheriades, “Polarization considerations for scalar huygens metasurfaces and characterization for 2-d refraction,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 3, pp. 913–924, 2015.A. Epstein and G. V. Eleftheriades, “Arbitrary power-conserving field transformations with passive lossless omega-type bianisotropic metasurfaces,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 9, pp. 3880–3895, 2016.A. C. Escobar, J. P. Del Risco, O. Quevedo-Teruel, F. Mesa, and J. D. Baena, “Retrieval of the constitutive parameters and dispersion relation of glide-symmetric metamaterials via the multimodal transfer matrix method,” in 2020 Fourteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), pp. 312–314, 2020.M. Bagheriasl, O. Quevedo-Teruel, and G. Valerio, “Bloch analysis of artificial lines and surfaces exhibiting glide symmetry,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 2618–2628, 2019.A. Alex-Amor, A. Palomares-Caballero, F. Mesa, and O. Quevedo-Teruel, “Dispersion analysis of periodic structures in anisotropic media: Application to liquid crystals.” Submitted, 2022.B. Bandlow, R. Schuhmann, G. Lubkowski, and T. Weiland, “Analysis of single-cell modeling of periodic metamaterial structures,” IEEE Trans. Magn., vol. 44, no. 6, pp. 1662–1665, 2008.R. Collin, I. Antennas, and P. Society, Field Theory of Guided Waves. IEEE/OUP series on electromagnetic wave theory, IEEE Press, 1990.D. M. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011.J. Brown, “Artificial dielectrics having refractive indices less than unity,” Proceedings of the IEE - Part IV: Institution Monographs, vol. 100, no. 5, pp. 51–62, 1953.V. G. Veselago, “The electrodynamics of substances with silmultaneously negative values of ϵ and µ,” Soviet Physics Uspekhi, vol. 10, pp. 509–514, apr 1968.M. Kafesaki, I. Tsiapa, N. Katsarakis, T. Koschny, C. M. Soukoulis, and E. N. Economou, “Left-handed metamaterials: The fishnet structure and its variations,” Phys. Rev. B, vol. 75, p. 235114, Jun 2007.H. T. Nguyen, T. S. Bui, S. Yan, G. A. E. Vandenbosch, P. Lievens, L. D. Vu, and E. Janssens, “Broadband negative refractive index obtained by plasmonic hybridization in metamaterials,” Applied Physics Letters, vol. 109, no. 22, p. 221902, 2016.R. Liu, A. Degiron, J. J. Mock, and D. R. Smith, “Negative index material composed of electric and magnetic resonators,” Applied Physics Letters, vol. 90, no. 26, p. 263504, 2007.W. Jia-Fu, Q. Shao-Bo, X. Zhuo, X. Song, M. Hua, W. Qian, Y. Yi-Ming, and W. Xiang, “Experimental verification of left-handed metamaterials composed of coplanar electric and magnetic resonators,” Chinese Physics Letters, vol. 27, p. 034104, mar 2010.S. M. Rudolph and A. Grbic, “Volumetric negative-refractive-index medium exhibiting broadband negative permeability,” Journal of Applied Physics, vol. 102, no. 1, p. 013904, 2007.J. a. T. Costa and M. G. Silveirinha, “Mimicking the veselago-pendry lens with broadband matched double-negative metamaterials,” Phys. Rev. B, vol. 84, p. 155131, Oct 2011.D. R. Abujetas, R. Paniagua-Domínguez, and J. A. Sánchez-Gil, “Impedance-matched, double-zero optical metamaterials based on weakly resonant metal oxide nanowires,” Photonics, vol. 5, no. 2, 2018.R. Harrington and J. Mautz, “Theory of characteristic modes for conducting bodies,” IEEE Transactions on Antennas and Propagation, vol. 19, no. 5, pp. 622–628, 1971.R. Harrington, J. Mautz, and Y. Chang, “Characteristic modes for dielectric and magnetic bodies,” IEEE Transactions on Antennas and Propagation, vol. 20, no. 2, pp. 194–198, 1972.Y. Chen and C.-F. Wang, Characteristic Mode Theory for PEC Bodies, pp. 37–97. 2015.B. K. Lau, M. Capek, and A. M. Hassan, “Characteristic modes: Progress, overview, and emerging topics,” IEEE Antennas and Propagation Magazine, vol. 64, no. 2, pp. 14–22, 2022.A. Alu, “First-principles homogenization theory for periodic metamaterials,” Phys. Rev. B, vol. 84, p. 075153, Aug 2011.B. Bandlow, R. Schuhmann, G. Lubkowski, and T. Weiland, “Analysis of single-cell modeling of periodic metamaterial structures,” IEEE Transactions on Magnetics, vol. 44, no. 6, pp. 1662–1665, 2008.M. Bagheriasl, O. Quevedo-Teruel, and G. Valerio, “Bloch analysis of artificial lines and surfaces exhibiting glide symmetry,” IEEE Transactions on Microwave Theory and Techniques, vol. 67, pp. 2618–2628, July 2019.C. Caloz, A. Alu, S. Tretyakov, D. Sounas, K. Achouri, and Z.-L. Deck-Léger, “Electromagnetic nonreciprocity,” Phys. Rev. Applied, vol. 10, p. 047001, Oct 2018.F. Capolino, Theory and Phenomena of Metamaterials. Metamaterials Handbook, CRC Press, 2009.X.-X. Liu and A. Alu, “Generalized retrieval method for metamaterial constitutive parameters based on a physically driven homogenization approach,” Phys. Rev. B, vol. 87, p. 235136, Jun 2013.F. Mesa, R. Rodríguez-Berral, and F. Medina, “Considerations on the usage of transmission matrices to study the dispersion behavior of glide-symmetry structures,” in 2019 13th European Conference on Antennas and Propagation (EuCAP), pp. 1–4, March 2019.F. J. Mustieles, E. Ballesteros, and F. Hernandez-Gil, “Multimodal analysis method for the design of passive te/tm converters in integrated waveguides,” IEEE Photonics Technology Letters, vol. 5, pp. 809–811, July 1993.D. Pozar, Microwave Engineering, 4th Edition. Wiley, 2011.C. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of bloch lattices,” Metamaterials, vol. 1, no. 2, pp. 62–80, 2007.D. R. Smith, “Analytic expressions for the constitutive parameters of magnetoelectric metamaterials,” Phys. Rev. E, vol. 81, p. 036605, Mar 2010.J. L. Araque-Quijano, J. P. del Risco, M. A. Londoño, A. Sayanskiy, S. B. Glybovski, and J. D. Baena, “Huygens’ metasurfaces covering from waveplates to perfect absorbers,” in 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), pp. 511–514, 2018.M. Chen and G. V. Eleftheriades, “Omega-bianisotropic wire-loop huygens’ metasurface for reflectionless wide-angle refraction,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 3, pp. 1477–1490, 2020.M. Chen, E. Abdo-Sánchez, A. Epstein, and G. V. Eleftheriades, “Theory, design, and experimental verification of a reflectionless bianisotropic Huygens’s metasurface for wide-angle refraction,” Phys. Rev. B, vol. 97, p. 125433, Mar 2018.S. Chen, Z. Li, Y. Zhang, H. Cheng, and J. Tian, “Phase manipulation of electromagnetic waves with metasurfaces and its applications in nanophotonics,” Advanced Optical Materials, vol. 6, no. 13, p. 1800104, 2018.F. S. Cuesta, I. A. Faniayeu, V. S. Asadchy, and S. A. Tretyakov, “Planar broadband huygens’ metasurfaces for wave manipulations,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 12, pp. 7117–7127, 2018.A. H. Dorrah, M. Chen, and G. V. Eleftheriades, “Bianisotropic huygens’ metasurface for wideband impedance matching between two dielectric media,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 9, pp. 4729–4742, 2018.N. Mohammadi Estakhri and A. Alu, “Wave-front transformation with gradient metasurfaces,” Phys. Rev. X, vol. 6, p. 041008, Oct 2016.H. Kazemi, M. Albooyeh, and F. Capolino, “Perfect anomalous reflection and refraction accompanied by an ideal polarization conversion: Potential of a chiral metasurface,” in 2019 URSI International Symposium on Electromagnetic Theory (EMTS), pp. 1–4, May 2019.H. Li, G. Wang, T. Cai, H. Hou, and W. Guo, “Wideband transparent beam-forming metadevice with amplitude- and phase-controlled metasurface,” Phys. Rev. Applied, vol. 11, p. 014043, Jan 2019.Y. Ra’di, D. L. Sounas, and A. Alu, “Metagratings: Beyond the limits of graded metasurfaces for wave front control,” Phys. Rev. Lett., vol. 119, p. 067404, Aug 2017.A. M. H. Wong and G. V. Eleftheriades, “Perfect anomalous reflection with a bipartite huygens’ metasurface,” Phys. Rev. X, vol. 8, p. 011036, Feb 2018.K. Aydin and E. Ozbay, “Negative refraction through an impedance-matched left-handed metamaterial slab,” J. Opt. Soc. Am. B, vol. 23, pp. 415–418, Mar 2006.K. Aydin, I. Bulu, and E. Ozbay, “Verification of impedance matching at the surface of left-handed materials,” Microwave and Optical Technology Letters, vol. 48, no. 12, pp. 2548–2552, 2006.N. Engheta and R. Ziolkowski, Metamaterials: Physics and Engineering Explorations. Wiley, 2006.R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial,” Applied Physics Letters, vol. 78, no. 4, pp. 489–491, 2001.D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with simultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, May 2000.T. Yamaguchi, T. Ishiyama, T. Ueda, and T. Itoh, “Unit cell block for 3-d isotropic negative-index metamaterials impedance-matched to free space by using dielectric cubes and metallic mesh,” in 2018 Asia-Pacific Microwave Conference (APMC), pp. 1118–1120, 2018.J. M. Geffrin, B. García-Cámara, R. Gómez-Medina, P. Albella, L. S. Froufe-Pérez, C. Eyraud, A. Litman, R. Vaillon, F. González, M. Nieto-Vesperinas, J. J. Sáenz, and F. Moreno, “Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere,” Nature Communications, vol. 3, pp. 1171 EP –, 11 2012.M. Kerker, D.-S. Wang, and C. L. Giles, “Electromagnetic scattering by magnetic spheres,” J. Opt. Soc. Am., vol. 73, pp. 765–767, Jun 1983.I. V. Semchenko, S. A. Khakhomov, and A. L. Samofalov, “Helices of optimal shape for nonreflecting covering,” Eur. Phys. J. Appl. Phys., vol. 49, no. 3, p. 33002, 2010.V. Rumsey, “Some new forms of huygens’ principle,” IRE Transactions on Antennas and Propagation, vol. 7, no. 5, pp. 103–116, 1959.I. V. Semchenko, S. A. Khakhomov, and A. L. Samofalov, “Optimal helix shape: Equality of dielectric, magnetic, and chiral susceptibilities,” Russian Physics Journal, vol. 52, no. 5, p. 472, 2009.R. Paniagua-Domínguez, F. López-Tejeira, R. Marqués, and J. A. Sánchez-Gil, “Metallo-dielectric core–shell nanospheres as building blocks for optical three-dimensional isotropic negative-index metamaterials,” New Journal of Physics, vol. 13, p. 123017, dec 2011.A. Alu, “First-principles homogenization theory for periodic metamaterials,” Physical Review B - Condensed Matter and Materials Physics, vol. 84, no. 7, 2011.J. Pendry, A. Holden, D. Robbins, and W. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 11, pp. 2075–2084, 1999.A. F. Peterson, S. L. Ray, and R. Mittra, Electromagnetic Theory, pp. 1–36. Wiley, 1998.C. R. Simovski, “Bloch material parameters of magneto-dielectric metamaterials and the concept of bloch lattices,” Metamaterials, vol. 1, no. 2, pp. 62–80, 2007.V. S. Asadchy, A. Díaz-Rubio, and S. A. Tretyakov, “Bianisotropic metasurfaces: physics and applications,” Nanophotonics, vol. 7, no. 6, pp. 1069–1094, 2018.T. Chang, J. U. Kim, S. K. Kang, H. Kim, D. K. Kim, Y.-H. Lee, and J. Shin, “Broadband giant-refractive-index material based on mesoscopic space-filling curves,” Nat. Commun., vol. 7, Article number 12661, 2016.D. Cavallo and C. Felita, “Analytical formulas for artificial dielectrics with nonaligned layers,” IEEE Trans. Antennas Propag., vol. 65, pp. 5303–5311, Oct 2017.D. Cavallo, “Dissipation losses in artificial dielectric layers,” IEEE Trans. Antennas Propag., vol. 66, pp. 7460–7465, Dec 2018.M. M. Shanei, D. Fathi, F. Ghasemifard, and O. Quevedo-Teruel, “All-silicon reconfigurable metasurfaces for multifunction and tunable performance at optical frequencies based on glide symmetry,” Sci. Rep., vol. 9, pp. 2045–2322, Sept 2019.EstudiantesInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.unal.edu.co/bitstream/unal/82098/4/license.txt8a4605be74aa9ea9d79846c1fba20a33MD54ORIGINAL1107083739.2022.pdf1107083739.2022.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf8211153https://repositorio.unal.edu.co/bitstream/unal/82098/5/1107083739.2022.pdf759fba647b7b5e08951ae75d6c17743dMD55THUMBNAIL1107083739.2022.pdf.jpg1107083739.2022.pdf.jpgGenerated Thumbnailimage/jpeg4456https://repositorio.unal.edu.co/bitstream/unal/82098/6/1107083739.2022.pdf.jpg25a26e463bed13466053ec7690593d6aMD56unal/82098oai:repositorio.unal.edu.co:unal/820982023-08-05 23:04:29.944Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=