Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama

ilustraciones, diagramas

Autores:
Guarín Insignares, Marco Antonio
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86063
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86063
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines::621 - Física aplicada
610 - Medicina y salud::616 - Enfermedades
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Neoplasias de la Mama/diagnóstico por imagen
Terapia Neoadyuvante/mortalidad
Diagnóstico por Imagen/métodos
Breast Neoplasms/diagnostic imaging
Neoadjuvant Therapy/mortality
Diagnostic Imaging/methods
Positron Emission Tomography (PET)
Magnetic Resonance Imaging (MRI)
Radiomics
Breast Cancer
Radiomics-based prediction of pathologic complete response
Tomografía por emisión de positrones (PET)
Resonancia Magnética (RM)
Cáncer de mama
Predicción de la respuesta patológica completa (pCR) basada en radiomics
Radiómica
Rights
openAccess
License
Atribución-NoComercial-CompartirIgual 4.0 Internacional
id UNACIONAL2_ddde032a0a86ab99ca7cd4d592d7b974
oai_identifier_str oai:repositorio.unal.edu.co:unal/86063
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama
dc.title.translated.eng.fl_str_mv 18f FDG PET and multiparametric magnetic resonance imaging based radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast cance
title Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama
spellingShingle Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama
620 - Ingeniería y operaciones afines::621 - Física aplicada
610 - Medicina y salud::616 - Enfermedades
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Neoplasias de la Mama/diagnóstico por imagen
Terapia Neoadyuvante/mortalidad
Diagnóstico por Imagen/métodos
Breast Neoplasms/diagnostic imaging
Neoadjuvant Therapy/mortality
Diagnostic Imaging/methods
Positron Emission Tomography (PET)
Magnetic Resonance Imaging (MRI)
Radiomics
Breast Cancer
Radiomics-based prediction of pathologic complete response
Tomografía por emisión de positrones (PET)
Resonancia Magnética (RM)
Cáncer de mama
Predicción de la respuesta patológica completa (pCR) basada en radiomics
Radiómica
title_short Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama
title_full Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama
title_fullStr Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama
title_full_unstemmed Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama
title_sort Análisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama
dc.creator.fl_str_mv Guarín Insignares, Marco Antonio
dc.contributor.advisor.spa.fl_str_mv Agulles Pedros, Luis
Namías, Mauro
dc.contributor.author.spa.fl_str_mv Guarín Insignares, Marco Antonio
dc.contributor.researchgate.spa.fl_str_mv https://www.researchgate.net/profile/Marco-Guarin
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines::621 - Física aplicada
610 - Medicina y salud::616 - Enfermedades
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
topic 620 - Ingeniería y operaciones afines::621 - Física aplicada
610 - Medicina y salud::616 - Enfermedades
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Neoplasias de la Mama/diagnóstico por imagen
Terapia Neoadyuvante/mortalidad
Diagnóstico por Imagen/métodos
Breast Neoplasms/diagnostic imaging
Neoadjuvant Therapy/mortality
Diagnostic Imaging/methods
Positron Emission Tomography (PET)
Magnetic Resonance Imaging (MRI)
Radiomics
Breast Cancer
Radiomics-based prediction of pathologic complete response
Tomografía por emisión de positrones (PET)
Resonancia Magnética (RM)
Cáncer de mama
Predicción de la respuesta patológica completa (pCR) basada en radiomics
Radiómica
dc.subject.decs.spa.fl_str_mv Neoplasias de la Mama/diagnóstico por imagen
Terapia Neoadyuvante/mortalidad
Diagnóstico por Imagen/métodos
dc.subject.decs.eng.fl_str_mv Breast Neoplasms/diagnostic imaging
Neoadjuvant Therapy/mortality
Diagnostic Imaging/methods
dc.subject.proposal.eng.fl_str_mv Positron Emission Tomography (PET)
Magnetic Resonance Imaging (MRI)
Radiomics
Breast Cancer
Radiomics-based prediction of pathologic complete response
dc.subject.proposal.spa.fl_str_mv Tomografía por emisión de positrones (PET)
Resonancia Magnética (RM)
Cáncer de mama
Predicción de la respuesta patológica completa (pCR) basada en radiomics
Radiómica
description ilustraciones, diagramas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-05-09T19:10:03Z
dc.date.available.none.fl_str_mv 2024-05-09T19:10:03Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86063
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86063
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv International Agency for Research on Cancer, “Global Cancer Observatory: Cancer Today”. Consultado: el 10 de noviembre de 2023. [En línea]. Disponible en: http://gco.iarc.fr/today
L. M. Spring et al., “Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis”, Clinical Cancer Research, vol. 26, núm. 12, pp. 2838–2848, jun. 2020, doi: 10.1158/1078-0432.CCR-19-3492.
A. Marusyk, V. Almendro, y K. Polyak, “Intra-tumour heterogeneity: a looking glass for cancer?”, Nat Rev Cancer, vol. 12, núm. 5, pp. 323–334, may 2012, doi: 10.1038/nrc3261.
R. Fisher, L. Pusztai, y C. Swanton, “Cancer heterogeneity: implications for targeted therapeutics”, Br J Cancer, vol. 108, núm. 3, pp. 479–485, feb. 2013, doi: 10.1038/bjc.2012.581.
R. J. Gillies, P. E. Kinahan, y H. Hricak, “Radiomics: Images Are More than Pictures, They Are Data”, Radiology, vol. 278, núm. 2, pp. 563–577, feb. 2016, doi: 10.1148/radiol.2015151169.
S. S. F. Yip y H. J. W. L. Aerts, “Applications and limitations of radiomics”, Phys Med Biol, vol. 61, núm. 13, pp. R150–R166, jul. 2016, doi: 10.1088/0031-9155/61/13/R150.
B. Bendriem y D. W. Townsend, The Theory and Practice of 3D PET. Dordrecht: Springer Netherlands, 1998. doi: 10.1007/978-94-017-3475-2.
D. L. Bailey, D. W. Townsend, P. E. Valk, y M. N. Maisey, Positron Emission Tomography: Basic Sciences. Springer London, 2005. doi: https://doi.org/10.1007/b136169.
D. L. Bailey, J. L. Humm, A. Todd-Pokropek, y A. van Aswegen, Nuclear medicine physics: A handbook for teachers and students. 2014. [En línea]. Disponible en: https://api.semanticscholar.org/CorpusID:183658714
D. W. Townsend, “Dual-Modality Imaging: Combining Anatomy and Function”, Journal of Nuclear Medicine, vol. 49, núm. 6, p. 938, jun. 2008, doi: 10.2967/jnumed.108.051276.
D. W. Townsend, T. Beyer, y T. M. Blodgett, “PET/CT scanners: A hardware approach to image fusion”, Semin Nucl Med, vol. 33, núm. 3, pp. 193–204, jul. 2003, doi: 10.1053/snuc.2003.127314.
John M Ollinger, “Model-based scatter correction for fully 3D PET”, Phys Med Biol, vol. 41, núm. 1, p. 153, 1996, doi: 10.1088/0031-9155/41/1/012.
L. A. Shepp y Y. Vardi, “Maximum Likelihood Reconstruction for Emission Tomography”, IEEE Trans Med Imaging, vol. 1, núm. 2, pp. 113–122, 1982, doi: 10.1109/TMI.1982.4307558.
M. Soret, S. L. Bacharach, y I. Buvat, “Partial-Volume Effect in PET Tumor Imaging”, Journal of Nuclear Medicine, vol. 48, núm. 6, p. 932, jun. 2007, doi: 10.2967/jnumed.106.035774.
J. M. M. Rogasch, F. Hofheinz, L. van Heek, C.-A. Voltin, R. Boellaard, y C. Kobe, “Influences on PET Quantification and Interpretation”, Diagnostics, vol. 12, núm. 2, p. 451, feb. 2022, doi: 10.3390/diagnostics12020451.
M. Eskian et al., “Effect of blood glucose level on standardized uptake value (SUV) in 18F- FDG PET-scan: a systematic review and meta-analysis of 20,807 individual SUV measurements”, Eur J Nucl Med Mol Imaging, vol. 46, núm. 1, pp. 224–237, ene. 2019, doi: 10.1007/s00259-018-4194-x.
M. C. Adams, T. G. Turkington, J. M. Wilson, y T. Z. Wong, “A Systematic Review of the Factors Affecting Accuracy of SUV Measurements”, American Journal of Roentgenology, vol. 195, núm. 2, pp. 310–320, ago. 2010, doi: 10.2214/AJR.10.4923.
J. T. Bushberg, J. A. Seibert, E. M. Leidholdt Jr., y J. M. Boone, The Essential Physics of Medical Imaging, 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2012. doi: 10.1118/1.4811156.
A. D. Elster, “Questions and Answers in MRI”. Consultado: el 7 de agosto de 2022. [En línea]. Disponible en: https://www.mriquestions.com
A. B. Cohen, Concepts of Nuclear Physics. Tata McGraw-Hil, 1971.
L. G. Hanson, “Introduction to Magnetic Resonance Imaging Techniques”, Copenhagen, ago. 2009. Consultado: el 7 de agosto de 2022. [En línea]. Disponible en: https://eprints.drcmr.dk/37/
L. G. Hanson, “Is quantum mechanics necessary for understanding magnetic resonance?”, Concepts in Magnetic Resonance Part A, vol. 32A, núm. 5, pp. 329–340, 2008, doi: https://doi.org/10.1002/cmr.a.20123.
R. P. Feynman, Jr. Vernon Frank L., y R. W. Hellwarth, “Geometrical Representation of the Schrödinger Equation for Solving Maser Problems”, J Appl Phys, vol. 28, núm. 1, pp. 49–52, ene. 1957, doi: 10.1063/1.1722572.
J. N. Oshinski, “MR Physics I: Magnetization, resonant frequency, relaxation and the MR signal”, en College on Medical Physics: Medical Imaging Physics and Technology. Principles of Optimisation, Safety and Education Development for Building Capacity in Developing Countries, Trieste: ICTP, sep. 2022.
R. J. Gillies, P. E. Kinahan, y H. Hricak, “Radiomics: Images are more than pictures, they are data”, Radiology, vol. 278, núm. 2, pp. 563–577, feb. 2016, doi: 10.1148/radiol.2015151169.
L. Urso et al., “PET-Derived Radiomics and Artificial Intelligence in Breast Cancer: A Systematic Review”, Int J Mol Sci, vol. 23, núm. 21, p. 13409, nov. 2022, doi: 10.3390/ijms232113409.
S.-H. Lee, H. Park, y E. S. Ko, “Radiomics in Breast Imaging from Techniques to Clinical Applications: A Review”, Korean J Radiol, vol. 21, núm. 7, p. 779, 2020, doi: 10.3348/kjr.2019.0855.
V. Kumar et al., “Radiomics: the process and the challenges”, Magn Reson Imaging, vol. 30, núm. 9, pp. 1234–1248, nov. 2012, doi: 10.1016/j.mri.2012.06.010.
RSNA, “Quantitative Imaging Biomarkers Alliance”. Consultado: el 27 de enero de 2021. [En línea]. Disponible en: https://www.rsna.org/research/quantitative-imaging-biomarkers-alliance
E. J. Limkin et al., “Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology”, Annals of Oncology, vol. 28, núm. 6, pp. 1191–1206, jun. 2017, doi: 10.1093/annonc/mdx034.
A. Zwanenburg, S. Leger, M. Vallières, y S. Löck, “Image biomarker standardisation initiative”, dic. 2016, doi: 10.1148/radiol.2020191145.
K. Cheng, A. Lin, J. Yuvaraj, S. J. Nicholls, y D. T. L. Wong, “Cardiac Computed Tomography Radiomics for the Non-Invasive Assessment of Coronary Inflammation”, Cells, vol. 10, núm. 4, p. 879, abr. 2021, doi: 10.3390/cells10040879.
The University of Texas MD Anderson Cancer Center, “Residual Cancer Burden Calculator”. Consultado: el 10 de noviembre de 2022. [En línea]. Disponible en: https://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3
R. Boellaard et al., “FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0”, Eur J Nucl Med Mol Imaging, vol. 42, núm. 2, pp. 328–354, feb. 2015, doi: 10.1007/s00259-014-2961-x.
D. Koopman et al., “Technical note: how to determine the FDG activity for tumour PET imaging that satisfies European guidelines”, EJNMMI Phys, vol. 3, núm. 1, p. 22, dic. 2016, doi: 10.1186/s40658-016-0158-z.
EANM, “18F Accreditation specifications”. Consultado: el 10 de noviembre de 2023. [En línea]. Disponible en: https://earl.eanm.org/accreditation-specifications/
National Electrical Manufacturers Association, “NEMA MS 3-2008 (R2014) Determination Of Image Uniformity In Diagnostic Magnetic Resonance Images”, 2014.
National Electrical Manufacturers Association, “NEMA MS 5, 2018 Edition, 2018 - Determination of Slice Thickness in Diagnostic Magnetic Resonance Imaging”, ene. 2018.
M. Hatt et al., “Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211”, Med Phys, vol. 44, núm. 6, pp. e1–e42, 2017, doi: 10.1002/mp.12124.
M. Tamal, “Intensity threshold based solid tumour segmentation method for Positron Emission Tomography (PET) images: A review”, Heliyon, vol. 6, núm. 10, p. e05267, oct. 2020, doi: 10.1016/j.heliyon.2020.e05267.
U. Nestle et al., “Comparison of Different Methods for Delineation of <sup>18</sup>F-FDG PET–Positive Tissue for Target Volume Definition in Radiotherapy of Patients with Non–Small Cell Lung Cancer”, Journal of Nuclear Medicine, vol. 46, núm. 8, p. 1342, ago. 2005, [En línea]. Disponible en: http://jnm.snmjournals.org/content/46/8/1342.abstract
C. Nioche et al., “LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity”, Cancer Res, vol. 78, núm. 16, pp. 4786–4789, ago. 2018, doi: 10.1158/0008-5472.CAN-18-0125.
A. Fedorov et al., “3D Slicer as an image computing platform for the Quantitative Imaging Network”, Magn Reson Imaging, 2012, doi: 10.1016/j.mri.2012.05.001.
J. J. M. van Griethuysen et al., “Computational Radiomics System to Decode the Radiographic Phenotype”, Cancer Res, vol. 77, núm. 21, pp. e104–e107, nov. 2017, doi: 10.1158/0008-5472.CAN-17-0339.
Pyradiomics Community, “Radiomic Features”. Consultado: el 9 de octubre de 2022. [En línea]. Disponible en: http://github.com/radiomics/pyradiomics Revision 6a761c4e
A. Traverso, L. Wee, A. Dekker, y R. Gillies, “Repeatability and Reproducibility of Radiomic Features: A Systematic Review”, International Journal of Radiation Oncology*Biology*Physics, vol. 102, núm. 4, pp. 1143–1158, nov. 2018, doi: 10.1016/j.ijrobp.2018.05.053.
R. T. H. Leijenaar et al., “The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis”, Sci Rep, vol. 5, núm. 1, p. 11075, ago. 2015, doi: 10.1038/srep11075.
E. Pfaehler et al., “Repeatability of 18 F‐ <scp>FDG PET</scp> radiomic features: A phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method”, Med Phys, vol. 46, núm. 2, pp. 665–678, feb. 2019, doi: 10.1002/mp.13322.
P. Brynolfsson et al., “Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters”, Sci Rep, vol. 7, núm. 1, p. 4041, jun. 2017, doi: 10.1038/s41598-017-04151-4.
E. Ulrich, “PET-IndiC Extension”. Iowa. Consultado: el 27 de agosto de 2021. [En línea]. Disponible en: https://www.slicer.org/wiki/Documentation/Nightly/Extensions/PET-IndiC
K. V. Mardia, J. T. Kent, y J. M. Bibby, “Multivariate Analysis”, Academic Press, 1979.
J. Peerlings et al., “Stability of radiomics features in apparent diffusion coefficient maps from a multi-centre test-retest trial”, Sci Rep, vol. 9, núm. 1, p. 4800, mar. 2019, doi: 10.1038/s41598-019-41344-5.
G. Collewet, M. Strzelecki, y F. Mariette, “Influence of MRI acquisition protocols and image intensity normalization methods on texture classification”, Magn Reson Imaging, vol. 22, núm. 1, pp. 81–91, ene. 2004, doi: 10.1016/j.mri.2003.09.001.
L. Duron et al., “Gray-level discretization impacts reproducible MRI radiomics texture features”, PLoS One, vol. 14, núm. 3, p. e0213459, mar. 2019, doi: 10.1371/journal.pone.0213459.
R. Cattell, S. Chen, y C. Huang, “Robustness of radiomic features in magnetic resonance imaging: review and a phantom study”, Vis Comput Ind Biomed Art, vol. 2, núm. 1, p. 19, dic. 2019, doi: 10.1186/s42492-019-0025-6.
T. Zoeller, “Intraclass correlation coefficient with confidence intervals”. Consultado: el 29 de octubre de 2023. [En línea]. Disponible en: https://la.mathworks.com/matlabcentral/fileexchange/26885-intraclass-correlation-coefficient-with-confidence-intervals
The MathWorks INC., “MATLAB”. Natick, MA, USA, 2021. Consultado: el 9 de octubre de 2022. [En línea]. Disponible en: https://www.mathworks.com/products/matlab.html
C. Spick et al., “Diffusion‐weighted MRI of breast lesions: a prospective clinical investigation of the quantitative imaging biomarker characteristics of reproducibility, repeatability, and diagnostic accuracy”, NMR Biomed, vol. 29, núm. 10, pp. 1445–1453, oct. 2016, doi: 10.1002/nbm.3596.
M. B. Kursa y W. R. Rudnicki, “Feature Selection with the Boruta Package”, J Stat Softw, vol. 36, núm. 11, 2010, doi: 10.18637/jss.v036.i11.
V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, y B. P. Feuston, “Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling”, J Chem Inf Comput Sci, vol. 43, núm. 6, pp. 1947–1958, nov. 2003, doi: 10.1021/ci034160g.
H. He, Y. Bai, E. A. Garcia, y S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning”, en 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, pp. 1322–1328. doi: 10.1109/IJCNN.2008.4633969.
V. Romeo et al., “A Simultaneous Multiparametric 18F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer”, Cancers (Basel), vol. 14, núm. 16, p. 3944, ago. 2022, doi: 10.3390/cancers14163944.
A. A. van Loevezijn et al., “[18F]FDG-PET/CT in prone compared to supine position for optimal axillary staging and treatment in clinically node-positive breast cancer patients with neoadjuvant systemic therapy”, EJNMMI Res, vol. 11, núm. 1, p. 78, dic. 2021, doi: 10.1186/s13550-021-00824-4.
J. H. Choi et al., “Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning”, Sci Rep, vol. 10, núm. 1, p. 21149, dic. 2020, doi: 10.1038/s41598-020-77875-5.
T. Sengoz et al., “Role of F-18 FDG PET/CT in Predicting Response to Neoadjuvant Chemotherapy in Invasive Ductal Breast Cancer”, Eur J Breast Health, vol. 19, núm. 2, pp. 159–165, abr. 2023, doi: 10.4274/ejbh.galenos.2023.2023-1-3.
R. Ranjbarzadeh, A. Bagherian Kasgari, S. Jafarzadeh Ghoushchi, S. Anari, M. Naseri, y M. Bendechache, “Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images”, Sci Rep, vol. 11, núm. 1, p. 10930, may 2021, doi: 10.1038/s41598-021-90428-8.
W. Yue et al., “Deep learning-based automatic segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging”, Front Oncol, vol. 12, ago. 2022, doi: 10.3389/fonc.2022.984626.
U. Bashir et al., “The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer”, EJNMMI Res, vol. 7, núm. 1, p. 60, 2017, doi: 10.1186/s13550-017-0310-3.
N. M. Braman et al., “Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI”, Breast Cancer Research, vol. 19, núm. 1, p. 57, dic. 2017, doi: 10.1186/s13058-017-0846-1.
R. T. H. Leijenaar et al., “The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis”, Sci Rep, vol. 5, núm. 1, p. 11075, ago. 2015, doi: 10.1038/srep11075.
A. Traverso et al., “Sensitivity of radiomic features to inter-observer variability and image pre-processing in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients”, Radiotherapy and Oncology, vol. 143, pp. 88–94, feb. 2020, doi: 10.1016/j.radonc.2019.08.008.
R. W. Y. Granzier et al., “MRI-based radiomics in breast cancer: feature robustness with respect to inter-observer segmentation variability”, Sci Rep, vol. 10, núm. 1, p. 14163, ago. 2020, doi: 10.1038/s41598-020-70940-z.
C. Parmar, P. Grossmann, J. Bussink, P. Lambin, y H. J. W. L. Aerts, “Machine Learning methods for Quantitative Radiomic Biomarkers”, Sci Rep, vol. 5, núm. 1, p. 13087, ago. 2015, doi: 10.1038/srep13087.
M. Guarin et al., “18F-FDG-PET/CT and MRI in the Assessment of Neoadjuvant Chemotherapy Treatment Response in Breast Cancer. Correlation with Pathological Response”, San Antonio: San Antonio Breast Cancer Symposium, 2020.
H. Li et al., “MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis”, The Breast, vol. 40, pp. 106–115, 2018, doi: https://doi.org/10.1016/j.breast.2018.04.018.
H. Yoon, Y. Kim, J. Chung, y B. S. Kim, “Predicting neo‐adjuvant chemotherapy response and progression‐free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F‐18 <scp>FDG PET</scp> / <scp>CT</scp> and diffusion‐weighted <scp>MR</scp> imaging”, Breast J, vol. 25, núm. 3, pp. 373–380, may 2019, doi: 10.1111/tbj.13032.
M. Sollini et al., “PET/CT radiomics in breast cancer: Mind the step”, Methods, vol. 188, pp. 122–132, abr. 2021, doi: 10.1016/j.ymeth.2020.01.007.
H. Horng et al., “Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects”, Sci Rep, vol. 12, núm. 1, p. 4493, mar. 2022, doi: 10.1038/s41598-022-08412-9.
T. K. Koo y M. Y. Li, “A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research”, J Chiropr Med, vol. 15, núm. 2, pp. 155–163, jun. 2016, doi: 10.1016/j.jcm.2016.02.012.
S. ying Huang et al., “Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis”, NPJ Breast Cancer, vol. 4, núm. 1, 2018, doi: 10.1038/s41523-018-0078-2.
D. Leithner et al., “Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes”, Mol Imaging Biol, vol. 22, núm. 2, pp. 453–461, abr. 2020, doi: 10.1007/s11307-019-01383-w.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-CompartirIgual 4.0 Internacional
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxiii, 90 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Física Médica
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86063/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86063/2/1032437176.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86063/3/1032437176.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
372b2694d310011d78ad720ad18ef51f
c0ac9845476dbdfb2c768fa048c25ffd
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089788233351168
spelling Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Agulles Pedros, Luis2c8db60360320997af52663ab8100dbb600Namías, Mauro9c58773138058afee3e9caedcea3440b600Guarín Insignares, Marco Antonio4b0cc50c3fc96fb03c692df1e50019aehttps://www.researchgate.net/profile/Marco-Guarin2024-05-09T19:10:03Z2024-05-09T19:10:03Z2024https://repositorio.unal.edu.co/handle/unal/86063Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasEl propósito de este estudio fue evaluar si las características radiómicas derivadas de imágenes de F-18 FDG PET y los mapas de ADC obtenidos por resonancia magnética (RM) son capaces de predecir la respuesta patológica completa (pCR) a la quimioterapia neoadyuvante (QNA) en pacientes con cáncer de mama localmente avanzado. 30 pacientes sin tratamiento previo sometidas a PET con F18-FDG y RM fueron incluidas en este estudio. Los especímenes de la biopsia pretratamiento fueron usados para extraer las características inmunohistoquímicas del tumor. Los resultados histopatológicos del tumor resecado post QNA fueron usados para clasificar entre pCR y No-pCR. 1702 características radiómicas y 4 por biopsia fueron extraídas. La reproducibilidad ante la variabilidad intra- e inter-observador fue evaluada usando el coeficiente de correlación intraclase ICC>0.9. La reducción de la dimensionalidad fue realizada por selección de mínima redundancia y máxima relevancia. Tres métodos: Boruta, Wilcoxon y un modelo Random Forest fueron implementados para seleccionar las características más importantes. Un modelo de aprendizaje supervisado por Random Forest con validación cruzada por Leave-One-Out fue implementado. El mayor rendimiento fue obtenido por la característica de PET “wavelet-HHL_glcm_Imc1” (AUC=0.78; IC95%: 0.70-0.87; sensibilidad: 50%; especificidad: 91%) que también fue la de mayor robustez entre los modelos de selección. El método de muestreo sintético adaptativo (ADASYN) fue implementado para balancear las clases y el modelo combinado entre la expresión de receptores de estrógenos (RE) obtenida por biopsia y la característica de PET “wavelet-HHL_glcm_Imc1” obtuvo el mejor rendimiento (AUC=0.95; sensibilidad=90%; especificidad=86%). El análisis radiómico combinado tiene el potencial para predecir la pCR a la QNA en pacientes con Ca de mama localmente avanzado y mejorar la estratificación preterapéutica. En este trabajo se ha desarrollado un flujo de trabajo radiómico robusto y reproducible para su implementación. (Texto tomado de la fuente).Background: The aim of this study was to assess whether 18F FDG and multiparametric MRI-based radiomics analysis is able to predict pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) in breast cancer patients. Methods: A total of 30 female patients with locally advanced breast cancer proven by biopsy were included in this prospective study. All PET and MRI datasets were imported to dedicated software 3DSlicer (v. 4.11) for lesion annotation using a semiautomated method. Pretreatment biopsy specimens were used to determine tumour histology, tumor and nuclear grades, and immunohistochemical status. Histopathological results from surgical tumour specimens were used as the reference standard to distinguish between pCR and non-pCR. 1702 radiomics features were extracted using pyradiomics and 4 features from biopsy. The dimensionality reduction was achieved by minimum redundancy-maximum relevance. Three methods: Boruta, Wilcoxon and machine learning Random Forest were used to select the most important features. A supervised machine learning model with Random Forest and cross validated by Leave-One-Out was implemented. Results: The best performance was obtained by the PET feature “wavelet-HHL_glcm_Imc1” (AUC=0.78; IC95%: 0.70-0.87; sensibility=50%, specificity=91%) which was also the most robust among the selection models. The data were subsequently balanced using the method adaptive synthetic sampling (ADASYN) and better values in all metrics were obtained (AUC=0.95). The adaptive synthetic sampling (ADASYN) method to balance the classes was implemented and the best performance was obtained by the combined model between the expression of estrogen receptors (ER) and the PET feature “waveletHHL_glcm_Imc1” (AUC=0.95; sensibility=90%; specificity=86%). Conclusion: multiparametric radiomic features demonstrated ability as imaging biomarkers to predict the pCR to NAC in locally advanced breast cancer patients and hence potentially enhance pretherapeutic patient stratification.La Fundación Centro Diagnóstico Nuclear es una alianza público-privada en Buenos Aires, Argentina, que trabaja en pro del diagnóstico eficiente de los pacientes oncológicos.MaestríaMagíster en Física MédicaModelo de aprendizaje automático supervisado a partir de datos clínicos de un estudio prospectivoFísica Médica del diagnóstico por imágenesxxiii, 90 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Física MédicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afines::621 - Física aplicada610 - Medicina y salud::616 - Enfermedades000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresNeoplasias de la Mama/diagnóstico por imagenTerapia Neoadyuvante/mortalidadDiagnóstico por Imagen/métodosBreast Neoplasms/diagnostic imagingNeoadjuvant Therapy/mortalityDiagnostic Imaging/methodsPositron Emission Tomography (PET)Magnetic Resonance Imaging (MRI)RadiomicsBreast CancerRadiomics-based prediction of pathologic complete responseTomografía por emisión de positrones (PET)Resonancia Magnética (RM)Cáncer de mamaPredicción de la respuesta patológica completa (pCR) basada en radiomicsRadiómicaAnálisis de características radiómicas en imágenes de F-18-FDG PET y Resonancia Magnética multiparamétrica como predictores de la respuesta al tratamiento de quimioterapia neoadyuvante en cáncer de mama18f FDG PET and multiparametric magnetic resonance imaging based radiomics for prediction of pathological complete response to neoadjuvant chemotherapy in breast canceTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMInternational Agency for Research on Cancer, “Global Cancer Observatory: Cancer Today”. Consultado: el 10 de noviembre de 2023. [En línea]. Disponible en: http://gco.iarc.fr/todayL. M. Spring et al., “Pathologic Complete Response after Neoadjuvant Chemotherapy and Impact on Breast Cancer Recurrence and Survival: A Comprehensive Meta-analysis”, Clinical Cancer Research, vol. 26, núm. 12, pp. 2838–2848, jun. 2020, doi: 10.1158/1078-0432.CCR-19-3492.A. Marusyk, V. Almendro, y K. Polyak, “Intra-tumour heterogeneity: a looking glass for cancer?”, Nat Rev Cancer, vol. 12, núm. 5, pp. 323–334, may 2012, doi: 10.1038/nrc3261.R. Fisher, L. Pusztai, y C. Swanton, “Cancer heterogeneity: implications for targeted therapeutics”, Br J Cancer, vol. 108, núm. 3, pp. 479–485, feb. 2013, doi: 10.1038/bjc.2012.581.R. J. Gillies, P. E. Kinahan, y H. Hricak, “Radiomics: Images Are More than Pictures, They Are Data”, Radiology, vol. 278, núm. 2, pp. 563–577, feb. 2016, doi: 10.1148/radiol.2015151169.S. S. F. Yip y H. J. W. L. Aerts, “Applications and limitations of radiomics”, Phys Med Biol, vol. 61, núm. 13, pp. R150–R166, jul. 2016, doi: 10.1088/0031-9155/61/13/R150.B. Bendriem y D. W. Townsend, The Theory and Practice of 3D PET. Dordrecht: Springer Netherlands, 1998. doi: 10.1007/978-94-017-3475-2.D. L. Bailey, D. W. Townsend, P. E. Valk, y M. N. Maisey, Positron Emission Tomography: Basic Sciences. Springer London, 2005. doi: https://doi.org/10.1007/b136169.D. L. Bailey, J. L. Humm, A. Todd-Pokropek, y A. van Aswegen, Nuclear medicine physics: A handbook for teachers and students. 2014. [En línea]. Disponible en: https://api.semanticscholar.org/CorpusID:183658714D. W. Townsend, “Dual-Modality Imaging: Combining Anatomy and Function”, Journal of Nuclear Medicine, vol. 49, núm. 6, p. 938, jun. 2008, doi: 10.2967/jnumed.108.051276.D. W. Townsend, T. Beyer, y T. M. Blodgett, “PET/CT scanners: A hardware approach to image fusion”, Semin Nucl Med, vol. 33, núm. 3, pp. 193–204, jul. 2003, doi: 10.1053/snuc.2003.127314.John M Ollinger, “Model-based scatter correction for fully 3D PET”, Phys Med Biol, vol. 41, núm. 1, p. 153, 1996, doi: 10.1088/0031-9155/41/1/012.L. A. Shepp y Y. Vardi, “Maximum Likelihood Reconstruction for Emission Tomography”, IEEE Trans Med Imaging, vol. 1, núm. 2, pp. 113–122, 1982, doi: 10.1109/TMI.1982.4307558.M. Soret, S. L. Bacharach, y I. Buvat, “Partial-Volume Effect in PET Tumor Imaging”, Journal of Nuclear Medicine, vol. 48, núm. 6, p. 932, jun. 2007, doi: 10.2967/jnumed.106.035774.J. M. M. Rogasch, F. Hofheinz, L. van Heek, C.-A. Voltin, R. Boellaard, y C. Kobe, “Influences on PET Quantification and Interpretation”, Diagnostics, vol. 12, núm. 2, p. 451, feb. 2022, doi: 10.3390/diagnostics12020451.M. Eskian et al., “Effect of blood glucose level on standardized uptake value (SUV) in 18F- FDG PET-scan: a systematic review and meta-analysis of 20,807 individual SUV measurements”, Eur J Nucl Med Mol Imaging, vol. 46, núm. 1, pp. 224–237, ene. 2019, doi: 10.1007/s00259-018-4194-x.M. C. Adams, T. G. Turkington, J. M. Wilson, y T. Z. Wong, “A Systematic Review of the Factors Affecting Accuracy of SUV Measurements”, American Journal of Roentgenology, vol. 195, núm. 2, pp. 310–320, ago. 2010, doi: 10.2214/AJR.10.4923.J. T. Bushberg, J. A. Seibert, E. M. Leidholdt Jr., y J. M. Boone, The Essential Physics of Medical Imaging, 3rd ed. Philadelphia, PA: Lippincott Williams & Wilkins, 2012. doi: 10.1118/1.4811156.A. D. Elster, “Questions and Answers in MRI”. Consultado: el 7 de agosto de 2022. [En línea]. Disponible en: https://www.mriquestions.comA. B. Cohen, Concepts of Nuclear Physics. Tata McGraw-Hil, 1971.L. G. Hanson, “Introduction to Magnetic Resonance Imaging Techniques”, Copenhagen, ago. 2009. Consultado: el 7 de agosto de 2022. [En línea]. Disponible en: https://eprints.drcmr.dk/37/L. G. Hanson, “Is quantum mechanics necessary for understanding magnetic resonance?”, Concepts in Magnetic Resonance Part A, vol. 32A, núm. 5, pp. 329–340, 2008, doi: https://doi.org/10.1002/cmr.a.20123.R. P. Feynman, Jr. Vernon Frank L., y R. W. Hellwarth, “Geometrical Representation of the Schrödinger Equation for Solving Maser Problems”, J Appl Phys, vol. 28, núm. 1, pp. 49–52, ene. 1957, doi: 10.1063/1.1722572.J. N. Oshinski, “MR Physics I: Magnetization, resonant frequency, relaxation and the MR signal”, en College on Medical Physics: Medical Imaging Physics and Technology. Principles of Optimisation, Safety and Education Development for Building Capacity in Developing Countries, Trieste: ICTP, sep. 2022.R. J. Gillies, P. E. Kinahan, y H. Hricak, “Radiomics: Images are more than pictures, they are data”, Radiology, vol. 278, núm. 2, pp. 563–577, feb. 2016, doi: 10.1148/radiol.2015151169.L. Urso et al., “PET-Derived Radiomics and Artificial Intelligence in Breast Cancer: A Systematic Review”, Int J Mol Sci, vol. 23, núm. 21, p. 13409, nov. 2022, doi: 10.3390/ijms232113409.S.-H. Lee, H. Park, y E. S. Ko, “Radiomics in Breast Imaging from Techniques to Clinical Applications: A Review”, Korean J Radiol, vol. 21, núm. 7, p. 779, 2020, doi: 10.3348/kjr.2019.0855.V. Kumar et al., “Radiomics: the process and the challenges”, Magn Reson Imaging, vol. 30, núm. 9, pp. 1234–1248, nov. 2012, doi: 10.1016/j.mri.2012.06.010.RSNA, “Quantitative Imaging Biomarkers Alliance”. Consultado: el 27 de enero de 2021. [En línea]. Disponible en: https://www.rsna.org/research/quantitative-imaging-biomarkers-allianceE. J. Limkin et al., “Promises and challenges for the implementation of computational medical imaging (radiomics) in oncology”, Annals of Oncology, vol. 28, núm. 6, pp. 1191–1206, jun. 2017, doi: 10.1093/annonc/mdx034.A. Zwanenburg, S. Leger, M. Vallières, y S. Löck, “Image biomarker standardisation initiative”, dic. 2016, doi: 10.1148/radiol.2020191145.K. Cheng, A. Lin, J. Yuvaraj, S. J. Nicholls, y D. T. L. Wong, “Cardiac Computed Tomography Radiomics for the Non-Invasive Assessment of Coronary Inflammation”, Cells, vol. 10, núm. 4, p. 879, abr. 2021, doi: 10.3390/cells10040879.The University of Texas MD Anderson Cancer Center, “Residual Cancer Burden Calculator”. Consultado: el 10 de noviembre de 2022. [En línea]. Disponible en: https://www3.mdanderson.org/app/medcalc/index.cfm?pagename=jsconvert3R. Boellaard et al., “FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0”, Eur J Nucl Med Mol Imaging, vol. 42, núm. 2, pp. 328–354, feb. 2015, doi: 10.1007/s00259-014-2961-x.D. Koopman et al., “Technical note: how to determine the FDG activity for tumour PET imaging that satisfies European guidelines”, EJNMMI Phys, vol. 3, núm. 1, p. 22, dic. 2016, doi: 10.1186/s40658-016-0158-z.EANM, “18F Accreditation specifications”. Consultado: el 10 de noviembre de 2023. [En línea]. Disponible en: https://earl.eanm.org/accreditation-specifications/National Electrical Manufacturers Association, “NEMA MS 3-2008 (R2014) Determination Of Image Uniformity In Diagnostic Magnetic Resonance Images”, 2014.National Electrical Manufacturers Association, “NEMA MS 5, 2018 Edition, 2018 - Determination of Slice Thickness in Diagnostic Magnetic Resonance Imaging”, ene. 2018.M. Hatt et al., “Classification and evaluation strategies of auto-segmentation approaches for PET: Report of AAPM task group No. 211”, Med Phys, vol. 44, núm. 6, pp. e1–e42, 2017, doi: 10.1002/mp.12124.M. Tamal, “Intensity threshold based solid tumour segmentation method for Positron Emission Tomography (PET) images: A review”, Heliyon, vol. 6, núm. 10, p. e05267, oct. 2020, doi: 10.1016/j.heliyon.2020.e05267.U. Nestle et al., “Comparison of Different Methods for Delineation of &lt;sup&gt;18&lt;/sup&gt;F-FDG PET–Positive Tissue for Target Volume Definition in Radiotherapy of Patients with Non–Small Cell Lung Cancer”, Journal of Nuclear Medicine, vol. 46, núm. 8, p. 1342, ago. 2005, [En línea]. Disponible en: http://jnm.snmjournals.org/content/46/8/1342.abstractC. Nioche et al., “LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity”, Cancer Res, vol. 78, núm. 16, pp. 4786–4789, ago. 2018, doi: 10.1158/0008-5472.CAN-18-0125.A. Fedorov et al., “3D Slicer as an image computing platform for the Quantitative Imaging Network”, Magn Reson Imaging, 2012, doi: 10.1016/j.mri.2012.05.001.J. J. M. van Griethuysen et al., “Computational Radiomics System to Decode the Radiographic Phenotype”, Cancer Res, vol. 77, núm. 21, pp. e104–e107, nov. 2017, doi: 10.1158/0008-5472.CAN-17-0339.Pyradiomics Community, “Radiomic Features”. Consultado: el 9 de octubre de 2022. [En línea]. Disponible en: http://github.com/radiomics/pyradiomics Revision 6a761c4eA. Traverso, L. Wee, A. Dekker, y R. Gillies, “Repeatability and Reproducibility of Radiomic Features: A Systematic Review”, International Journal of Radiation Oncology*Biology*Physics, vol. 102, núm. 4, pp. 1143–1158, nov. 2018, doi: 10.1016/j.ijrobp.2018.05.053.R. T. H. Leijenaar et al., “The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis”, Sci Rep, vol. 5, núm. 1, p. 11075, ago. 2015, doi: 10.1038/srep11075.E. Pfaehler et al., “Repeatability of 18 F‐ <scp>FDG PET</scp> radiomic features: A phantom study to explore sensitivity to image reconstruction settings, noise, and delineation method”, Med Phys, vol. 46, núm. 2, pp. 665–678, feb. 2019, doi: 10.1002/mp.13322.P. Brynolfsson et al., “Haralick texture features from apparent diffusion coefficient (ADC) MRI images depend on imaging and pre-processing parameters”, Sci Rep, vol. 7, núm. 1, p. 4041, jun. 2017, doi: 10.1038/s41598-017-04151-4.E. Ulrich, “PET-IndiC Extension”. Iowa. Consultado: el 27 de agosto de 2021. [En línea]. Disponible en: https://www.slicer.org/wiki/Documentation/Nightly/Extensions/PET-IndiCK. V. Mardia, J. T. Kent, y J. M. Bibby, “Multivariate Analysis”, Academic Press, 1979.J. Peerlings et al., “Stability of radiomics features in apparent diffusion coefficient maps from a multi-centre test-retest trial”, Sci Rep, vol. 9, núm. 1, p. 4800, mar. 2019, doi: 10.1038/s41598-019-41344-5.G. Collewet, M. Strzelecki, y F. Mariette, “Influence of MRI acquisition protocols and image intensity normalization methods on texture classification”, Magn Reson Imaging, vol. 22, núm. 1, pp. 81–91, ene. 2004, doi: 10.1016/j.mri.2003.09.001.L. Duron et al., “Gray-level discretization impacts reproducible MRI radiomics texture features”, PLoS One, vol. 14, núm. 3, p. e0213459, mar. 2019, doi: 10.1371/journal.pone.0213459.R. Cattell, S. Chen, y C. Huang, “Robustness of radiomic features in magnetic resonance imaging: review and a phantom study”, Vis Comput Ind Biomed Art, vol. 2, núm. 1, p. 19, dic. 2019, doi: 10.1186/s42492-019-0025-6.T. Zoeller, “Intraclass correlation coefficient with confidence intervals”. Consultado: el 29 de octubre de 2023. [En línea]. Disponible en: https://la.mathworks.com/matlabcentral/fileexchange/26885-intraclass-correlation-coefficient-with-confidence-intervalsThe MathWorks INC., “MATLAB”. Natick, MA, USA, 2021. Consultado: el 9 de octubre de 2022. [En línea]. Disponible en: https://www.mathworks.com/products/matlab.htmlC. Spick et al., “Diffusion‐weighted MRI of breast lesions: a prospective clinical investigation of the quantitative imaging biomarker characteristics of reproducibility, repeatability, and diagnostic accuracy”, NMR Biomed, vol. 29, núm. 10, pp. 1445–1453, oct. 2016, doi: 10.1002/nbm.3596.M. B. Kursa y W. R. Rudnicki, “Feature Selection with the Boruta Package”, J Stat Softw, vol. 36, núm. 11, 2010, doi: 10.18637/jss.v036.i11.V. Svetnik, A. Liaw, C. Tong, J. C. Culberson, R. P. Sheridan, y B. P. Feuston, “Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling”, J Chem Inf Comput Sci, vol. 43, núm. 6, pp. 1947–1958, nov. 2003, doi: 10.1021/ci034160g.H. He, Y. Bai, E. A. Garcia, y S. Li, “ADASYN: Adaptive synthetic sampling approach for imbalanced learning”, en 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), 2008, pp. 1322–1328. doi: 10.1109/IJCNN.2008.4633969.V. Romeo et al., “A Simultaneous Multiparametric 18F-FDG PET/MRI Radiomics Model for the Diagnosis of Triple Negative Breast Cancer”, Cancers (Basel), vol. 14, núm. 16, p. 3944, ago. 2022, doi: 10.3390/cancers14163944.A. A. van Loevezijn et al., “[18F]FDG-PET/CT in prone compared to supine position for optimal axillary staging and treatment in clinically node-positive breast cancer patients with neoadjuvant systemic therapy”, EJNMMI Res, vol. 11, núm. 1, p. 78, dic. 2021, doi: 10.1186/s13550-021-00824-4.J. H. Choi et al., “Early prediction of neoadjuvant chemotherapy response for advanced breast cancer using PET/MRI image deep learning”, Sci Rep, vol. 10, núm. 1, p. 21149, dic. 2020, doi: 10.1038/s41598-020-77875-5.T. Sengoz et al., “Role of F-18 FDG PET/CT in Predicting Response to Neoadjuvant Chemotherapy in Invasive Ductal Breast Cancer”, Eur J Breast Health, vol. 19, núm. 2, pp. 159–165, abr. 2023, doi: 10.4274/ejbh.galenos.2023.2023-1-3.R. Ranjbarzadeh, A. Bagherian Kasgari, S. Jafarzadeh Ghoushchi, S. Anari, M. Naseri, y M. Bendechache, “Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images”, Sci Rep, vol. 11, núm. 1, p. 10930, may 2021, doi: 10.1038/s41598-021-90428-8.W. Yue et al., “Deep learning-based automatic segmentation for size and volumetric measurement of breast cancer on magnetic resonance imaging”, Front Oncol, vol. 12, ago. 2022, doi: 10.3389/fonc.2022.984626.U. Bashir et al., “The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer”, EJNMMI Res, vol. 7, núm. 1, p. 60, 2017, doi: 10.1186/s13550-017-0310-3.N. M. Braman et al., “Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI”, Breast Cancer Research, vol. 19, núm. 1, p. 57, dic. 2017, doi: 10.1186/s13058-017-0846-1.R. T. H. Leijenaar et al., “The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis”, Sci Rep, vol. 5, núm. 1, p. 11075, ago. 2015, doi: 10.1038/srep11075.A. Traverso et al., “Sensitivity of radiomic features to inter-observer variability and image pre-processing in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients”, Radiotherapy and Oncology, vol. 143, pp. 88–94, feb. 2020, doi: 10.1016/j.radonc.2019.08.008.R. W. Y. Granzier et al., “MRI-based radiomics in breast cancer: feature robustness with respect to inter-observer segmentation variability”, Sci Rep, vol. 10, núm. 1, p. 14163, ago. 2020, doi: 10.1038/s41598-020-70940-z.C. Parmar, P. Grossmann, J. Bussink, P. Lambin, y H. J. W. L. Aerts, “Machine Learning methods for Quantitative Radiomic Biomarkers”, Sci Rep, vol. 5, núm. 1, p. 13087, ago. 2015, doi: 10.1038/srep13087.M. Guarin et al., “18F-FDG-PET/CT and MRI in the Assessment of Neoadjuvant Chemotherapy Treatment Response in Breast Cancer. Correlation with Pathological Response”, San Antonio: San Antonio Breast Cancer Symposium, 2020.H. Li et al., “MRI and PET/CT for evaluation of the pathological response to neoadjuvant chemotherapy in breast cancer: A systematic review and meta-analysis”, The Breast, vol. 40, pp. 106–115, 2018, doi: https://doi.org/10.1016/j.breast.2018.04.018.H. Yoon, Y. Kim, J. Chung, y B. S. Kim, “Predicting neo‐adjuvant chemotherapy response and progression‐free survival of locally advanced breast cancer using textural features of intratumoral heterogeneity on F‐18 <scp>FDG PET</scp> / <scp>CT</scp> and diffusion‐weighted <scp>MR</scp> imaging”, Breast J, vol. 25, núm. 3, pp. 373–380, may 2019, doi: 10.1111/tbj.13032.M. Sollini et al., “PET/CT radiomics in breast cancer: Mind the step”, Methods, vol. 188, pp. 122–132, abr. 2021, doi: 10.1016/j.ymeth.2020.01.007.H. Horng et al., “Generalized ComBat harmonization methods for radiomic features with multi-modal distributions and multiple batch effects”, Sci Rep, vol. 12, núm. 1, p. 4493, mar. 2022, doi: 10.1038/s41598-022-08412-9.T. K. Koo y M. Y. Li, “A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research”, J Chiropr Med, vol. 15, núm. 2, pp. 155–163, jun. 2016, doi: 10.1016/j.jcm.2016.02.012.S. ying Huang et al., “Exploration of PET and MRI radiomic features for decoding breast cancer phenotypes and prognosis”, NPJ Breast Cancer, vol. 4, núm. 1, 2018, doi: 10.1038/s41523-018-0078-2.D. Leithner et al., “Radiomic Signatures Derived from Diffusion-Weighted Imaging for the Assessment of Breast Cancer Receptor Status and Molecular Subtypes”, Mol Imaging Biol, vol. 22, núm. 2, pp. 453–461, abr. 2020, doi: 10.1007/s11307-019-01383-w.APORTE DE MAMMI-PET, PET/TC y RMN EN EL MANEJO DEL CÁNCER DE MAMA LOCALMENTE AVANZADOFundación Centro Diagnóstico NuclearInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86063/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032437176.2024.pdf1032437176.2024.pdfTesis de Maestría en Física Médicaapplication/pdf2046403https://repositorio.unal.edu.co/bitstream/unal/86063/2/1032437176.2024.pdf372b2694d310011d78ad720ad18ef51fMD52THUMBNAIL1032437176.2024.pdf.jpg1032437176.2024.pdf.jpgGenerated Thumbnailimage/jpeg4939https://repositorio.unal.edu.co/bitstream/unal/86063/3/1032437176.2024.pdf.jpgc0ac9845476dbdfb2c768fa048c25ffdMD53unal/86063oai:repositorio.unal.edu.co:unal/860632024-08-24 23:13:54.124Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=