Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley
ilustraciones, diagramas
- Autores:
-
Valencia Cifuentes, Daniel Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/84108
- Palabra clave:
- 620 - Ingeniería y operaciones afines::624 - Ingeniería civil
Mecánica de suelos
Soil mechanics
Residual soil
Constitutive model
Inverse analysis
Hypoplasticity
Mechanical behavior
Numerical modelling
Suelo residual
Modelo constitutivo
Análisis inverso
Hipoplasticidad
Comportamiento mecánico
Modelación numérica
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_dcb35f0f932b4afd29e0ec752eb18cd8 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/84108 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley |
dc.title.translated.spa.fl_str_mv |
Evaluación de modelos constitutivos para predecir el comportamiento mecánico de un suelo residual de roca ígnea en el sur del Valle de Aburrá |
title |
Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley |
spellingShingle |
Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley 620 - Ingeniería y operaciones afines::624 - Ingeniería civil Mecánica de suelos Soil mechanics Residual soil Constitutive model Inverse analysis Hypoplasticity Mechanical behavior Numerical modelling Suelo residual Modelo constitutivo Análisis inverso Hipoplasticidad Comportamiento mecánico Modelación numérica |
title_short |
Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley |
title_full |
Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley |
title_fullStr |
Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley |
title_full_unstemmed |
Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley |
title_sort |
Constitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá Valley |
dc.creator.fl_str_mv |
Valencia Cifuentes, Daniel Fernando |
dc.contributor.advisor.none.fl_str_mv |
Zapata Medina, David Guillermo Aparicio Ortube, Alan Jaret |
dc.contributor.author.none.fl_str_mv |
Valencia Cifuentes, Daniel Fernando |
dc.contributor.orcid.spa.fl_str_mv |
Aparicio Ortube, Alan Jaret [0000-0003-0114-7779] Zapata Medina, David Guillermo [0000-0001-8868-8740] |
dc.subject.ddc.spa.fl_str_mv |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil |
topic |
620 - Ingeniería y operaciones afines::624 - Ingeniería civil Mecánica de suelos Soil mechanics Residual soil Constitutive model Inverse analysis Hypoplasticity Mechanical behavior Numerical modelling Suelo residual Modelo constitutivo Análisis inverso Hipoplasticidad Comportamiento mecánico Modelación numérica |
dc.subject.lemb.spa.fl_str_mv |
Mecánica de suelos |
dc.subject.lemb.eng.fl_str_mv |
Soil mechanics |
dc.subject.proposal.eng.fl_str_mv |
Residual soil Constitutive model Inverse analysis Hypoplasticity Mechanical behavior Numerical modelling |
dc.subject.proposal.spa.fl_str_mv |
Suelo residual Modelo constitutivo Análisis inverso Hipoplasticidad Comportamiento mecánico Modelación numérica |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-06-29T16:07:35Z |
dc.date.available.none.fl_str_mv |
2023-06-29T16:07:35Z |
dc.date.issued.none.fl_str_mv |
2023-06 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/84108 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/84108 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
RedCol LaReferencia |
dc.relation.references.spa.fl_str_mv |
Área Metropolitana del Valle de Aburrá. (2007). Plan de Ordenación y Manejo de la Cuenca del río Aburrá, POMCA. Alonso, E., Gens, A., and Josa, A. (1990). “A constitutive model for partially saturated soils.” Géotechnique, 40(3), 405–430. Andresen, A., and P. Kolstad. (1979). “The NGI 54-mm sampler for undisturbed sampling of clays and representative sampling of coarser materials.” In Proc., of the Int. Conf. on Soil Sampling, 13-21. Oslo, Norway: Norwegian Geotechnical Institute. Arboleda-Monsalve, L. (2014). “Performance, Instrumentation and Numerical Simulation of One Museum Park West Excavation.” Doctor of Philosophy Dissertation, Northwestern University, Evanston, Illinois. Arboleda-Monsalve, L., Teng, F., Kim, T. and Finno, R. (2017). “Numerical Simulation of Triaxial Stress Probes and Recent Stress-History Effects of Compressible Chicago Glacial Clays.” Journal of Geotechnical and Geoenvironmental Engineering. 143(7) 04017029. Atkinson, J. H., Richardson, D., and Stallebrass, S. E. (1990). “Effect of recent stress history on the stiffness of overconsolidated soil.” Géotechnique, 40(4), 531–540. Baba, K., Bahi, L., Ouadif, L., and Akhssas, A. (2012). "Slope Stability Evaluations by Limit Equilibrium and Finite Element Methods Applied to a Railway in the Moroccan Rif" Open Journal of Civil Engineering, 2(1), 27-32. Baudet, B. (2001). “Modeling effects of structure in soft natural clays.” PhD thesis, City University, London. Baudet, B.A., Stallebrass, S.E. (2004). “A constitutive model for structured clays”. Géotechnique, 54(4), 269–278. Becker, D. E., J. H. A. Crooks, K. Been, and M. G. Jefferies. (1987). “Work as a criterion for determining in situ and yield stresses in clays.” Can. Geotech. J., 24 (4), 549–564. Benz, T. (2006). Small-Strain Stiffness of Soils and its Numerical Consequences. PhD thesis, Universität Stuttgart. Boulanger, R. W., and Ziotopoulou, K. (2018). “PM4Silt (Version 1): A silt plasticity model for earthquake engineering applications.” Report No. UCD/CGM-18/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA, 108 pp. Brinkgreve, RBJ. (2005). “Selection of soil models and parameters for geotechnical engineering application”. Geo-Frontiers Congress, Austin, Texas, Soil Constitutive Models: American Society of Civil Engineers (ASCE), Reston,Virginia, 69-98. Brinkgreve, R.B.J., Engin, E. and Swolfs, W.M. (2017). Plaxis 2D manual. Rotterdam, Netherlands, Balkema. Calvello, M. (2002). “Inverse Analysis of a Supported Excavation through Chicago Glacial Clays.” Doctor of Philosophy Dissertation, Northwestern University, Evanston, Illinois. Callisto, L., and Rampello, S. (2002). “Shear strength and small-strain stiffness of a natural clay under general stress conditions.“ Géotechnique, 52(8), 547–560. Chiu, C. F., and C. W. W. Ng. (2014). “Relationships between chemical weathering indices and physical and mechanical properties of decomposed granite.” Eng. Geol., 179, 76–89. Cotecchia, F., Chandler, J. (2000). “A general framework for the mechanical behaviour of clays.” Géotechnique, 50(4), 431–447. Coop, M. R., and Cotecchia, F. (1995). “The compression of sediments at the archeological site of Sibari.” The interplay between geotechnical engineering and engineering geology: XI ECSMFE; proceedings of the eleventh European Conference on Soil Mechanics and Foundation Engineering: Vol. 8: Case histories demonstrating interplay, Danish Geotechnical Society, Copenhagen, 19-26. Dearman, R. (1991). Engineering Geological Mapping, Butterworth-Heinemann Ltda., Oxford. Desai, C.S., and Zaman, M. (2014). Advanced Geotechnical Engineering, Soil–Structure Interaction Using Computer and Material Models., Taylor & Francis Group, Florida. Ellison, K.C., Soga, K., and Simpson, B. (2012). “A strain space soil model with evolving stiffness anisotropy.” Géotechnique, 62(7), 627–641. Finno, R. J., and Kim, T. (2012). “Effects of Stress Path Rotation Angle on Small Strain Responses.” J. Geotech. Geoenvironmental Eng., 138(4), 526–534. Finno, R. J., and Cho, W. (2011). “Recent stress history effects on compressible Chicago glacial clays.” J. Geotech. Geoenviron. Eng.,137(3), 197–207. Galeano, D.I. (2020). “Estimation of Dynamic Parameters in Residual Soils Derived from Crystalline Rocks Based on Geophysical Multichannel Analysis of Surface Waves tests.” Doctor of Philosophy Dissertation, Universidad Nacional de Colombia, Medellin, Colombia. Graham, J., and Houlsby, G. T. (1983). “Anisotropic elasticity of a natural clay.” Géotechnique, 33(2), 354-354. Gudehus, G. (1996). “A comprehensive constitutive Equation for granular materials.” Soils and Foundations, 36(1), 1–12. Gudehus, G., Amorosi., A., Gens, A., Herle, I., Kolymbas, D., Mašín, D., Muir Wood, D., Nova, R., Niemunis, A., Pastor, M., Tamagnini, C., and Viggiani, G. (2008). “The soilmodels.infoproject.” International Journal for Numerical and Analytical Methods in Geomechanics, 32(12), 1571-1572. Hardin, B.O., Drnevich, V.P. (1972). “Shear modulus and damping in soils: Design equations and curves.” Journal of the Soil Mechanics and Foundations Division, 98(SM7), 667–692. Hájek, V., Mašín, D., Boháč, J. (2009). “Capability of constitutive models to simulate soils with different OCR using a single set of parameters.” Computers and Geotechnics, 36(4), 655-664. Herle, I., and Kolymbas, D. (2004). “Hypoplasticity for soils with low friction angles.” Computers and Geotechnics, 31(5), 365–373. Hill, M. C. (2000). “Methods and Guidelines for Effective Model Calibration.” Joint Conference on Water Resource Engineering and Water Resources Planning and Management, (Ed: Hotchkiss, R.H., and Glade, M.), Pullman, Washington, 124-134. Hsiung, B.C.D. and Dao, S.D. (2014). “Evaluation of Constitutive Soil Models for Predicting Movements Caused by a Deep Excavation in Sands”. Electronic Journal of Geotechnical Engineering, 19: 17325-17344. Jaky, J. (1944). “A nyugalmi nyomas tenyezoje” [The coefficient of earth pressure at rest]. [In Hungarian]. Journal of the Society of Hungarian Engineers and Architects, 78(22), 355–358. Jardine, R. J. (1992). “Some observations on the kinematic nature of soil stiffness.” Soils Found., 32(2), 111–124. Kim, S. (2018). “Observed Performance and Inverse Analysis of a Sheet Pile-Supported Excavation in Chicago Clays” Doctor of Philosophy Dissertation, Northwestern University, Illinois, U.S. Kim, S., and Finno, R. J (2020). “Inverse analysis of Hypoplastic Clay model for computing deformations caused by excavations” Computers and Geotechnics, 122, 103499. Knabe, T., Schweiger, H. F. and Schanz, T. (2012). “Calibration of constitutive parameters by inverse analysis for a geotechnical boundary problem”. Can. Geotech. J., 49(2), 170–183. Kolymbas, D. (1978). “Eine konstitutive Theorie für Böden und andere körnige Stoffe”. Ph.D. Thesis, University of Karlsruhe. Krahn, J. (2003). “The 2001 R.M. Hardy Lecture: The limits of limit equilibrium analyses”. Can. Geotech. J., 40(3), 643-660. Ladd, C. C., and D. J. DeGroot. (2003). “Recommended practice for soft ground site characterization.” In Proc., of the 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, 3–57. MIT, Cambridge: Massachusetts Institute of Technology. Lade, P.V. (2005). “Overview of Constitutive Models for Soils”. ASCE Geotechnical Special Publication No.128, Soil Constitutive Models: Evaluation, Selection and Calibration, Geo-Frontiers Congress 2005, Austin, Texas, 1-34. Lanier, J., Caillerie, D., Chambon, R., Viggiani, G., Bésuelle, P., and Desrues, J. (2004). “A general formulation of hypoplasticity.” International Journal for Numerical and Analytical Methods in Geomechanics, 28(15), 1461-1478. Lim, J. X., Chong, S. Y., Tanaka, Y., and Lee, M. L. (2019). “CI and CK0 Triaxial Tests for Tropical Residual Soil in Malaysia.” 1st Malaysian Geotechnical Society (MGS) and Geotechnical Society of Singapore (GeoSS) Conference: Geotechnics in Urban Infrastructure, Petaling Jaya, Malaysia. Liu Xinyu, Xianwei Zhang, Lingwei Kong, Xinming Li, Gang Wang. (2021). “Effect of cementation on the small-strain stiffness of granite residual soil”. Soils and Foundations, 61(2), 520-532. Lunne, T., T. Berre, K. H. Andersen, S. Strandvik, and M. Sjursen. (2006). “Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays.” Can. Geotech. J., 43 (7), 726-750. Mašín, D. (2005). “A Hypoplastic constitutive model for clays.” International Journal for Numerical and Analytical Methods in Geomechanics, 29(4), 311–336. Mašín, D., and Herle. I., (2005). “State boundary surface of a Hypoplastic model for clays.” Computers and Geotechnics, 32(6), 400–410. Mašín, D. (2007). “A Hypoplastic constitutive model for clays with meta-stable structure”. Can. Geotech. J., 44(3), 363–375. Mašín, D. (2013). “Clay hypoplasticity with explicitly defined asymptotic states.” Acta Geotechnica, 8(5), 481–496. Mašín, D. (2015). Hypoplasticity for practical applications. PhD Course on hypoplasticity. Zhejiang University. Mašín, D. (2017). “PLAXIS implementation of Hypoplasticity.” 35. Moré, J.J. (1978). “The Levenberg-Marquardt algorithm: Implementation and theory.” Numerical Analysis, Springer, Berlin, Heidelberg (Ed: Watson, G. A.), Dundee, Scotland, 105-116. Muir Wood, D. (1990). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press. Ng., C. W. W., Fung, W. T, Cheuk, C. Y., and Zhang. L. (2004). “Influence of Stress Ratio and Stress Path on Behavior of Loose Decomposed Granite.” Journal of Geotechnical and Geoenvironmental Engineering, 130(1), 36–44. Ng, C. W. W., D. B. Akinniyi, and C. F. Chiu. (2019). “Comparisons of weathered lateritic, granitic and volcanic soils: Compressibility and shear strength.” Eng. Geol., 249, 235-240. Niemunis, A., and Herle, I. (1997). “Hypoplastic model for cohesionless soils with elastic strain range.” Mechanics of Cohesive-Frictional Materials, 4(2), 279–299. Niemunis, A. (2002). "Extended Hypoplastic models for soils." Habilitation Thesis, Ruhr-University, Bochum. Niemunis, A. (2003). “Anisotropic effects in hypoplasticity.” 3rd International Symposium on Deformation Characteristics of Geomaterials, (Ed: Di Benedetto et al.), Lyon, France, 1211-1217. Poeter, E.P. and Hill, M.C. (1998). Documentation of UCODE, a computer code for universal inverse modeling, U.S. Geological Survey Water-Resources, Denver, Colorado. Rahardjo, H., B. H. Ong, and E. C. Leong. (2004). “Shear strength of a compacted residual soil from consolidated drained and constant water content triaxial tests.” Can. Geotech J., 41 (3), 421–436. Rocchi, I., and Coop., M. R. (2015). “The effects of weathering on the physical and mechanical properties of a granitic saprolite.” Géotechnique, 65(6), 482–493. Roscoe, K.H., Burland, J.B. (1968). “On the generalized stress-strain behavior of “wet” clay”. In: Heyman & Leckie, Engineering Plasticity, Cambridge University Press. 535–609. Roscoe, K.H., Schofield, A.N., Thurairajah, A. (1963). “Yielding of clays in states wetter than critical”. Géotechnique. 13(3), 211–240. Sarabia, F. (2012). "Hypoplastic Constitutive Law Adapted to Simulate Excavations in Chicago Glacial Clays." Doctor of Philosophy Dissertation, Northwestern University, Evanston, Illinois. Schanz, T., Vermeer, A., and Bonnier, P. (1999). “The hardening soil model: formulation and verification.” Beyond 2000 in Computational Geotechnics: 10 Years of Plaxis International, Proceedings of the International Symposium Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam, Netherlands, 281-296. Schofield, A.N., and Wroth, C.P. (1968). Critical state soil mechanics, McGraw-Hill, London. Schweiger, H.F. (2008), The Role of Advanced Constitutive Models in Geotechnical Engineering. Geomechanics and Tunnelling, 1(5), 336-344. Shu, R., Kong, L., Liu, B., Wang, J. (2021). “Stress–Strain Strength Characteristics of Undisturbed Granite Residual Soil Considering Different Patterns of Variation of Mean Effective Stress”. Appl. Sci., 11, 1874. Smith, P. R., Jardine, R. J., and Hight, D. W. (1992). “The yielding of bothkennar clay.” Géotechnique, 42(2), 257–274. Teachavorasinskun, S., and Amornwithayalax, T. (2002). “Elastic shear modulus of Bangkok clay during undrained triaxial compression.” Géotechnique, 52(7), 537–540. The MathWorks, I. (2020). Symbolic Math Toolbox, Natick, Massachusetts, United State. Available at: https://www.mathworks.com/help/symbolic/. Timoshenko, S., and Goodier J. N. (1951). Theory of elasticity, 2nd Ed., McGraw-Hill, New York. Ti, K. S., Huat, B. B., Noorzaei, J., Jaafar, M. S., & Sew, G. S. (2009). “A review of basic soil constitutive models for geotechnical application”. Electronic Journal of Geotechnical Engineering, 14, 1-18. Torres, C., and Colmenares, J. E. (2018). "Influence of ConfiningStress on the Small Strain Stiffness of a Residual Soilunder K0 Conditions," PanAm Unsaturated Soils 2017. Dallas, Texas. United Nations Department of Economic and Social Affairs. (2019). Revision of world population prospects. New York: UN DESA Vaughan, P. R., and Kwan, C. W. (1984). “Weathering, structure and in situ stress in residual soils.” Géotechnique, 34(1), 43–59. Viana da Fonseca, A., Fernandes, M. M., and Cardoso, S. A. (1997). “Interpretation of a footing load test on a saprolitic soil from granite.” Géotechnique, 47(3), 633–651. Viggiani, G., and Atkinson, J. H. (1995). “Stiffness of fine–grained soil at very small strains.” Géotechnique, 45(2), 245–265. von Wolffersdorff., P. A. (1996). “A hypoplastic relation for granular materials with a predefined limit state surface.” Mechanics of Cohesive-Frictional Materials, 1(3), 251–271. Wang, Y., and Ng. (2005). “Effects of stress paths on the small strain stiffness of completely decomposed granite.” Canadian Geotechnical Journal, 42 (4), 1200–1211. Wesley, L.D. (1990). “Influence of structure and composition on residual soils.” Journal of Geotechnical Engineering, 116(4), 589–603. Wesley, L. D. (2009). Fundamentals of soil mechanics for sedimentary and residual soils., John Wiley & Sons, Inc., New Jersey. Wesley, L. D. (2010). Geotechnical engineering in residual soils., John Wiley & Sons, Inc., New Jersey. Wichtmann, T. (2016). “Soil Behaviour under Cyclic Loading – Experimental Observations”, Constitutive Description and Applications. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik am KIT. Habilitation. Helft 181. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
154 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Geotecnia |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/84108/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/84108/2/1040746260.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/84108/3/1040746260.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a f4bc3aefcdb411fa76ab512f09136871 129904da5e164d9a5ecd6c575c01bb80 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089614333313024 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Zapata Medina, David Guillermod0cb89e6158ab687ccff97cd4bbcefebAparicio Ortube, Alan Jareted68ee8a5403ca41cb7d05bdb0e70458Valencia Cifuentes, Daniel Fernandoa39886be15426e4821d06c13f9641c17Aparicio Ortube, Alan Jaret [0000-0003-0114-7779]Zapata Medina, David Guillermo [0000-0001-8868-8740]2023-06-29T16:07:35Z2023-06-29T16:07:35Z2023-06https://repositorio.unal.edu.co/handle/unal/84108Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasThe dynamic growth shown by cities has generated an accelerated reduction in useful areas and therefore the need to optimize space. This implies the need to execute works with special conditions such as important excavations, often surrounded by infrastructure that is prone to suffer affectations in its functionality and stability. In these cases, a stress-strain behavior evaluation of the soil is necessary. Geotechnical modeling has become the main engineers resource, providing a tool to numerically reproduce or predict the soil behavior. Advanced constitutive models which account for soil anisotropy, stress history, hardening-softening, among other soil characteristics, have been developed in the last decades. Nevertheless, the state of local practice shows that the vast majority of analyses are approached through limit equilibrium theories, or the application of very simple constitutive models. The application of these methods leads to not very accurate predictive results. Another important identified limitation is the lack of studies focused on the mechanical behavior of residual soils and the development and validation of constitutive models, which are often carried out on sedimentary soils. In this work an evaluation of the capabilities of three (3) constitutive models to reproduce the mechanical behavior of an Igneous residual soil in south of The Aburrá Valley is presented. Starting from advanced available residual soil characterization experimental data, the predictive capacity of the evaluated constitutive models was evaluated against very small and large strain responses, drain and undrained conditions, and different shearing paths, considering one single set of constitutive parameters per model. Inverse analysis techniques were applied in order to identify correctly the constitutive parameters that could not be obtained from the experimental data, demonstrating the high applicability of these tools on geotechnical modeling.El crecimiento dinámico de las ciudades ha generado una reducción de áreas útiles, haciendo necesaria la optimización de espacio, lo que implica la ejecución de obras con condiciones especiales como excavaciones de gran magnitud, frecuentemente cerca de infraestructura existente propensa a sufrir daños. En estos casos se hace necesaria la evaluación del desempeño esfuerzo-deformación del suelo. La modelación numérica se ha convertido en el principal recurso de los ingenieros para predecir el comportamiento del suelo. A pesar de que los modelos constitutivos avanzados son capaces de reproducir aspectos del comportamiento del suelo tales como su historia de carga, anisotropía, entre otros, el estado de la práctica local se desarrolla todavía bajo teorías de equilibrio límite o modelos constitutivos muy simples, cuya aplicación resulta en predicciones poco acertadas. Otra importante falencia identificada es la falta de estudios enfocados en el comportamiento mecánico de suelos residuales, y el desarrollo y validación de modelos constitutivos aplicados a estos, que en la mayoría de casos se enfocan en suelos de origen sedimentario. En este trabajo se evalúa la capacidad de tres modelos constitutivos para reproducir el comportamiento mecánico de un suelo de origen residual de roca Ígnea del sur del Valle de Aburrá. A partir de datos experimentales avanzados de caracterización mecánica se evaluó la capacidad predictiva de los modelos ante respuesta en el rango de muy bajas y largas deformaciones, condiciones drenadas y no drenadas, y diferentes trayectorias de falla, considerando un solo set de parámetros por cada modelo. Se implementaron técnicas de análisis inverso para definir los parámetros que no pudieron ser identificados a partir de los datos experimentales disponibles, demostrando la alta aplicabilidad de este tipo de herramientas en la modelación geotécnica. (Texto tomado de la fuente)MaestríaMagíster en Ingeniería - GeotecniaModelación numéricaSimulación Numérica del SueloÁrea Curricular de Ingeniería Civil154 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - GeotecniaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afines::624 - Ingeniería civilMecánica de suelosSoil mechanicsResidual soilConstitutive modelInverse analysisHypoplasticityMechanical behaviorNumerical modellingSuelo residualModelo constitutivoAnálisis inversoHipoplasticidadComportamiento mecánicoModelación numéricaConstitutive model evaluation for predicting the mechanical behavior of a residual igneous soil in the south of the Aburrá ValleyEvaluación de modelos constitutivos para predecir el comportamiento mecánico de un suelo residual de roca ígnea en el sur del Valle de AburráTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMRedColLaReferenciaÁrea Metropolitana del Valle de Aburrá. (2007). Plan de Ordenación y Manejo de la Cuenca del río Aburrá, POMCA.Alonso, E., Gens, A., and Josa, A. (1990). “A constitutive model for partially saturated soils.” Géotechnique, 40(3), 405–430.Andresen, A., and P. Kolstad. (1979). “The NGI 54-mm sampler for undisturbed sampling of clays and representative sampling of coarser materials.” In Proc., of the Int. Conf. on Soil Sampling, 13-21. Oslo, Norway: Norwegian Geotechnical Institute.Arboleda-Monsalve, L. (2014). “Performance, Instrumentation and Numerical Simulation of One Museum Park West Excavation.” Doctor of Philosophy Dissertation, Northwestern University, Evanston, Illinois.Arboleda-Monsalve, L., Teng, F., Kim, T. and Finno, R. (2017). “Numerical Simulation of Triaxial Stress Probes and Recent Stress-History Effects of Compressible Chicago Glacial Clays.” Journal of Geotechnical and Geoenvironmental Engineering. 143(7) 04017029.Atkinson, J. H., Richardson, D., and Stallebrass, S. E. (1990). “Effect of recent stress history on the stiffness of overconsolidated soil.” Géotechnique, 40(4), 531–540.Baba, K., Bahi, L., Ouadif, L., and Akhssas, A. (2012). "Slope Stability Evaluations by Limit Equilibrium and Finite Element Methods Applied to a Railway in the Moroccan Rif" Open Journal of Civil Engineering, 2(1), 27-32.Baudet, B. (2001). “Modeling effects of structure in soft natural clays.” PhD thesis, City University, London.Baudet, B.A., Stallebrass, S.E. (2004). “A constitutive model for structured clays”. Géotechnique, 54(4), 269–278.Becker, D. E., J. H. A. Crooks, K. Been, and M. G. Jefferies. (1987). “Work as a criterion for determining in situ and yield stresses in clays.” Can. Geotech. J., 24 (4), 549–564.Benz, T. (2006). Small-Strain Stiffness of Soils and its Numerical Consequences. PhD thesis, Universität Stuttgart.Boulanger, R. W., and Ziotopoulou, K. (2018). “PM4Silt (Version 1): A silt plasticity model for earthquake engineering applications.” Report No. UCD/CGM-18/01, Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA, 108 pp.Brinkgreve, RBJ. (2005). “Selection of soil models and parameters for geotechnical engineering application”. Geo-Frontiers Congress, Austin, Texas, Soil Constitutive Models: American Society of Civil Engineers (ASCE), Reston,Virginia, 69-98.Brinkgreve, R.B.J., Engin, E. and Swolfs, W.M. (2017). Plaxis 2D manual. Rotterdam, Netherlands, Balkema.Calvello, M. (2002). “Inverse Analysis of a Supported Excavation through Chicago Glacial Clays.” Doctor of Philosophy Dissertation, Northwestern University, Evanston, Illinois.Callisto, L., and Rampello, S. (2002). “Shear strength and small-strain stiffness of a natural clay under general stress conditions.“ Géotechnique, 52(8), 547–560.Chiu, C. F., and C. W. W. Ng. (2014). “Relationships between chemical weathering indices and physical and mechanical properties of decomposed granite.” Eng. Geol., 179, 76–89.Cotecchia, F., Chandler, J. (2000). “A general framework for the mechanical behaviour of clays.” Géotechnique, 50(4), 431–447.Coop, M. R., and Cotecchia, F. (1995). “The compression of sediments at the archeological site of Sibari.” The interplay between geotechnical engineering and engineering geology: XI ECSMFE; proceedings of the eleventh European Conference on Soil Mechanics and Foundation Engineering: Vol. 8: Case histories demonstrating interplay, Danish Geotechnical Society, Copenhagen, 19-26.Dearman, R. (1991). Engineering Geological Mapping, Butterworth-Heinemann Ltda., Oxford.Desai, C.S., and Zaman, M. (2014). Advanced Geotechnical Engineering, Soil–Structure Interaction Using Computer and Material Models., Taylor & Francis Group, Florida.Ellison, K.C., Soga, K., and Simpson, B. (2012). “A strain space soil model with evolving stiffness anisotropy.” Géotechnique, 62(7), 627–641.Finno, R. J., and Kim, T. (2012). “Effects of Stress Path Rotation Angle on Small Strain Responses.” J. Geotech. Geoenvironmental Eng., 138(4), 526–534.Finno, R. J., and Cho, W. (2011). “Recent stress history effects on compressible Chicago glacial clays.” J. Geotech. Geoenviron. Eng.,137(3), 197–207.Galeano, D.I. (2020). “Estimation of Dynamic Parameters in Residual Soils Derived from Crystalline Rocks Based on Geophysical Multichannel Analysis of Surface Waves tests.” Doctor of Philosophy Dissertation, Universidad Nacional de Colombia, Medellin, Colombia.Graham, J., and Houlsby, G. T. (1983). “Anisotropic elasticity of a natural clay.” Géotechnique, 33(2), 354-354.Gudehus, G. (1996). “A comprehensive constitutive Equation for granular materials.” Soils and Foundations, 36(1), 1–12.Gudehus, G., Amorosi., A., Gens, A., Herle, I., Kolymbas, D., Mašín, D., Muir Wood, D., Nova, R., Niemunis, A., Pastor, M., Tamagnini, C., and Viggiani, G. (2008). “The soilmodels.infoproject.” International Journal for Numerical and Analytical Methods in Geomechanics, 32(12), 1571-1572.Hardin, B.O., Drnevich, V.P. (1972). “Shear modulus and damping in soils: Design equations and curves.” Journal of the Soil Mechanics and Foundations Division, 98(SM7), 667–692.Hájek, V., Mašín, D., Boháč, J. (2009). “Capability of constitutive models to simulate soils with different OCR using a single set of parameters.” Computers and Geotechnics, 36(4), 655-664.Herle, I., and Kolymbas, D. (2004). “Hypoplasticity for soils with low friction angles.” Computers and Geotechnics, 31(5), 365–373.Hill, M. C. (2000). “Methods and Guidelines for Effective Model Calibration.” Joint Conference on Water Resource Engineering and Water Resources Planning and Management, (Ed: Hotchkiss, R.H., and Glade, M.), Pullman, Washington, 124-134.Hsiung, B.C.D. and Dao, S.D. (2014). “Evaluation of Constitutive Soil Models for Predicting Movements Caused by a Deep Excavation in Sands”. Electronic Journal of Geotechnical Engineering, 19: 17325-17344.Jaky, J. (1944). “A nyugalmi nyomas tenyezoje” [The coefficient of earth pressure at rest]. [In Hungarian]. Journal of the Society of Hungarian Engineers and Architects, 78(22), 355–358.Jardine, R. J. (1992). “Some observations on the kinematic nature of soil stiffness.” Soils Found., 32(2), 111–124.Kim, S. (2018). “Observed Performance and Inverse Analysis of a Sheet Pile-Supported Excavation in Chicago Clays” Doctor of Philosophy Dissertation, Northwestern University, Illinois, U.S.Kim, S., and Finno, R. J (2020). “Inverse analysis of Hypoplastic Clay model for computing deformations caused by excavations” Computers and Geotechnics, 122, 103499.Knabe, T., Schweiger, H. F. and Schanz, T. (2012). “Calibration of constitutive parameters by inverse analysis for a geotechnical boundary problem”. Can. Geotech. J., 49(2), 170–183.Kolymbas, D. (1978). “Eine konstitutive Theorie für Böden und andere körnige Stoffe”. Ph.D. Thesis, University of Karlsruhe.Krahn, J. (2003). “The 2001 R.M. Hardy Lecture: The limits of limit equilibrium analyses”. Can. Geotech. J., 40(3), 643-660.Ladd, C. C., and D. J. DeGroot. (2003). “Recommended practice for soft ground site characterization.” In Proc., of the 12th Panamerican Conference on Soil Mechanics and Geotechnical Engineering, 3–57. MIT, Cambridge: Massachusetts Institute of Technology.Lade, P.V. (2005). “Overview of Constitutive Models for Soils”. ASCE Geotechnical Special Publication No.128, Soil Constitutive Models: Evaluation, Selection and Calibration, Geo-Frontiers Congress 2005, Austin, Texas, 1-34.Lanier, J., Caillerie, D., Chambon, R., Viggiani, G., Bésuelle, P., and Desrues, J. (2004). “A general formulation of hypoplasticity.” International Journal for Numerical and Analytical Methods in Geomechanics, 28(15), 1461-1478.Lim, J. X., Chong, S. Y., Tanaka, Y., and Lee, M. L. (2019). “CI and CK0 Triaxial Tests for Tropical Residual Soil in Malaysia.” 1st Malaysian Geotechnical Society (MGS) and Geotechnical Society of Singapore (GeoSS) Conference: Geotechnics in Urban Infrastructure, Petaling Jaya, Malaysia.Liu Xinyu, Xianwei Zhang, Lingwei Kong, Xinming Li, Gang Wang. (2021). “Effect of cementation on the small-strain stiffness of granite residual soil”. Soils and Foundations, 61(2), 520-532.Lunne, T., T. Berre, K. H. Andersen, S. Strandvik, and M. Sjursen. (2006). “Effects of sample disturbance and consolidation procedures on measured shear strength of soft marine Norwegian clays.” Can. Geotech. J., 43 (7), 726-750.Mašín, D. (2005). “A Hypoplastic constitutive model for clays.” International Journal for Numerical and Analytical Methods in Geomechanics, 29(4), 311–336.Mašín, D., and Herle. I., (2005). “State boundary surface of a Hypoplastic model for clays.” Computers and Geotechnics, 32(6), 400–410.Mašín, D. (2007). “A Hypoplastic constitutive model for clays with meta-stable structure”. Can. Geotech. J., 44(3), 363–375.Mašín, D. (2013). “Clay hypoplasticity with explicitly defined asymptotic states.” Acta Geotechnica, 8(5), 481–496.Mašín, D. (2015). Hypoplasticity for practical applications. PhD Course on hypoplasticity. Zhejiang University.Mašín, D. (2017). “PLAXIS implementation of Hypoplasticity.” 35.Moré, J.J. (1978). “The Levenberg-Marquardt algorithm: Implementation and theory.” Numerical Analysis, Springer, Berlin, Heidelberg (Ed: Watson, G. A.), Dundee, Scotland, 105-116.Muir Wood, D. (1990). Soil Behaviour and Critical State Soil Mechanics. Cambridge University Press.Ng., C. W. W., Fung, W. T, Cheuk, C. Y., and Zhang. L. (2004). “Influence of Stress Ratio and Stress Path on Behavior of Loose Decomposed Granite.” Journal of Geotechnical and Geoenvironmental Engineering, 130(1), 36–44.Ng, C. W. W., D. B. Akinniyi, and C. F. Chiu. (2019). “Comparisons of weathered lateritic, granitic and volcanic soils: Compressibility and shear strength.” Eng. Geol., 249, 235-240.Niemunis, A., and Herle, I. (1997). “Hypoplastic model for cohesionless soils with elastic strain range.” Mechanics of Cohesive-Frictional Materials, 4(2), 279–299.Niemunis, A. (2002). "Extended Hypoplastic models for soils." Habilitation Thesis, Ruhr-University, Bochum.Niemunis, A. (2003). “Anisotropic effects in hypoplasticity.” 3rd International Symposium on Deformation Characteristics of Geomaterials, (Ed: Di Benedetto et al.), Lyon, France, 1211-1217.Poeter, E.P. and Hill, M.C. (1998). Documentation of UCODE, a computer code for universal inverse modeling, U.S. Geological Survey Water-Resources, Denver, Colorado.Rahardjo, H., B. H. Ong, and E. C. Leong. (2004). “Shear strength of a compacted residual soil from consolidated drained and constant water content triaxial tests.” Can. Geotech J., 41 (3), 421–436.Rocchi, I., and Coop., M. R. (2015). “The effects of weathering on the physical and mechanical properties of a granitic saprolite.” Géotechnique, 65(6), 482–493.Roscoe, K.H., Burland, J.B. (1968). “On the generalized stress-strain behavior of “wet” clay”. In: Heyman & Leckie, Engineering Plasticity, Cambridge University Press. 535–609.Roscoe, K.H., Schofield, A.N., Thurairajah, A. (1963). “Yielding of clays in states wetter than critical”. Géotechnique. 13(3), 211–240.Sarabia, F. (2012). "Hypoplastic Constitutive Law Adapted to Simulate Excavations in Chicago Glacial Clays." Doctor of Philosophy Dissertation, Northwestern University, Evanston, Illinois.Schanz, T., Vermeer, A., and Bonnier, P. (1999). “The hardening soil model: formulation and verification.” Beyond 2000 in Computational Geotechnics: 10 Years of Plaxis International, Proceedings of the International Symposium Beyond 2000 in Computational Geotechnics, Balkema, Rotterdam, Netherlands, 281-296.Schofield, A.N., and Wroth, C.P. (1968). Critical state soil mechanics, McGraw-Hill, London.Schweiger, H.F. (2008), The Role of Advanced Constitutive Models in Geotechnical Engineering. Geomechanics and Tunnelling, 1(5), 336-344.Shu, R., Kong, L., Liu, B., Wang, J. (2021). “Stress–Strain Strength Characteristics of Undisturbed Granite Residual Soil Considering Different Patterns of Variation of Mean Effective Stress”. Appl. Sci., 11, 1874.Smith, P. R., Jardine, R. J., and Hight, D. W. (1992). “The yielding of bothkennar clay.” Géotechnique, 42(2), 257–274.Teachavorasinskun, S., and Amornwithayalax, T. (2002). “Elastic shear modulus of Bangkok clay during undrained triaxial compression.” Géotechnique, 52(7), 537–540.The MathWorks, I. (2020). Symbolic Math Toolbox, Natick, Massachusetts, United State. Available at: https://www.mathworks.com/help/symbolic/.Timoshenko, S., and Goodier J. N. (1951). Theory of elasticity, 2nd Ed., McGraw-Hill, New York.Ti, K. S., Huat, B. B., Noorzaei, J., Jaafar, M. S., & Sew, G. S. (2009). “A review of basic soil constitutive models for geotechnical application”. Electronic Journal of Geotechnical Engineering, 14, 1-18.Torres, C., and Colmenares, J. E. (2018). "Influence of ConfiningStress on the Small Strain Stiffness of a Residual Soilunder K0 Conditions," PanAm Unsaturated Soils 2017. Dallas, Texas.United Nations Department of Economic and Social Affairs. (2019). Revision of world population prospects. New York: UN DESAVaughan, P. R., and Kwan, C. W. (1984). “Weathering, structure and in situ stress in residual soils.” Géotechnique, 34(1), 43–59.Viana da Fonseca, A., Fernandes, M. M., and Cardoso, S. A. (1997). “Interpretation of a footing load test on a saprolitic soil from granite.” Géotechnique, 47(3), 633–651.Viggiani, G., and Atkinson, J. H. (1995). “Stiffness of fine–grained soil at very small strains.” Géotechnique, 45(2), 245–265.von Wolffersdorff., P. A. (1996). “A hypoplastic relation for granular materials with a predefined limit state surface.” Mechanics of Cohesive-Frictional Materials, 1(3), 251–271.Wang, Y., and Ng. (2005). “Effects of stress paths on the small strain stiffness of completely decomposed granite.” Canadian Geotechnical Journal, 42 (4), 1200–1211.Wesley, L.D. (1990). “Influence of structure and composition on residual soils.” Journal of Geotechnical Engineering, 116(4), 589–603.Wesley, L. D. (2009). Fundamentals of soil mechanics for sedimentary and residual soils., John Wiley & Sons, Inc., New Jersey.Wesley, L. D. (2010). Geotechnical engineering in residual soils., John Wiley & Sons, Inc., New Jersey.Wichtmann, T. (2016). “Soil Behaviour under Cyclic Loading – Experimental Observations”, Constitutive Description and Applications. Veröffentlichungen des Instituts für Bodenmechanik und Felsmechanik am KIT. Habilitation. Helft 181.EstudiantesInvestigadoresMaestrosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/84108/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1040746260.2023.pdf1040746260.2023.pdfTesis de Maestría en Ingeniería - Geotecniaapplication/pdf5459109https://repositorio.unal.edu.co/bitstream/unal/84108/2/1040746260.2023.pdff4bc3aefcdb411fa76ab512f09136871MD52THUMBNAIL1040746260.2023.pdf.jpg1040746260.2023.pdf.jpgGenerated Thumbnailimage/jpeg6039https://repositorio.unal.edu.co/bitstream/unal/84108/3/1040746260.2023.pdf.jpg129904da5e164d9a5ecd6c575c01bb80MD53unal/84108oai:repositorio.unal.edu.co:unal/841082024-08-12 23:11:35.434Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |