Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano

Entre los ecosistemas costeros considerados estratégicos en la mitigación del cambio climático se encuentran las praderas de pastos marinos, debido a su alta productividad primaria y altas tasas de captura de carbono. En el presente trabajo se analizó la relación entre la reserva de carbono orgánico...

Full description

Autores:
Bernal-Glen, Daniel Felipe
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86442
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86442
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
Thalassia testudinum
Calcificación
Productividad primaria
Carbono azul
Biomasa
Thalassia testudinum
Blue carbon
Primary production
Biomass
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_dc8f96f5a08851c2f3d44ba2b062e159
oai_identifier_str oai:repositorio.unal.edu.co:unal/86442
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano
dc.title.translated.eng.fl_str_mv Variation of the carbonate system and accumulation of organic carbon in water masses adjacent to seagrass meadows in the Colombian insular Caribbean
title Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano
spellingShingle Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano
570 - Biología::577 - Ecología
Thalassia testudinum
Calcificación
Productividad primaria
Carbono azul
Biomasa
Thalassia testudinum
Blue carbon
Primary production
Biomass
title_short Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano
title_full Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano
title_fullStr Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano
title_full_unstemmed Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano
title_sort Variación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombiano
dc.creator.fl_str_mv Bernal-Glen, Daniel Felipe
dc.contributor.advisor.none.fl_str_mv Bernal, César Augusto
Mancera, Jose Ernesto
dc.contributor.author.none.fl_str_mv Bernal-Glen, Daniel Felipe
dc.contributor.researchgroup.spa.fl_str_mv Modelacion de Ecosistemas Costeros
dc.contributor.orcid.spa.fl_str_mv Bernal Glen, Daniel Felipe [0009000097643819]
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
topic 570 - Biología::577 - Ecología
Thalassia testudinum
Calcificación
Productividad primaria
Carbono azul
Biomasa
Thalassia testudinum
Blue carbon
Primary production
Biomass
dc.subject.proposal.spa.fl_str_mv Thalassia testudinum
Calcificación
Productividad primaria
Carbono azul
Biomasa
dc.subject.proposal.eng.fl_str_mv Thalassia testudinum
Blue carbon
Primary production
Biomass
description Entre los ecosistemas costeros considerados estratégicos en la mitigación del cambio climático se encuentran las praderas de pastos marinos, debido a su alta productividad primaria y altas tasas de captura de carbono. En el presente trabajo se analizó la relación entre la reserva de carbono orgánico en praderas de pastos marinos de la isla de San Andrés, reserva internacional de Biosfera Seaflower, y la dinámica del sistema de carbonatos, con el fin de evaluar cuantitativamente el efecto modulador que la captura de carbono en el pasto marino podría ejercer sobre el sistema de carbonatos en las masas de agua. Se tomaron mediciones de Alcalinidad Total y Carbono Inorgánico Disuelto sobre una pradera de pastos marinos y sobre un punto adyacente sin pasto durante varias épocas climáticas entre 2019 y 2021. Adicionalmente se evaluó la biomasa en pie, biomasa rizoidal y contenido de carbono orgánico en el sedimento de la pradera. Se encontró una fuerte influencia estacional caracterizada por valores de Carbono Inorgánico más bajos durante la época seca. Al mismo tiempo, en la época húmeda la pradera está sujeta a un fuerte fenómeno de remineralización que anula temporalmente el efecto de la captura de carbono sobre el sistema de carbonatos. Los flujos de carbono orgánico e inorgánico alóctono entre la pradera, el bosque de manglar y el arrecife coralino, así como el rol de los organismos calcificadores, surgen como puntos fundamentales a dilucidar para comprender cabalmente el ciclo de carbono inorgánico dentro de la pradera de pasto marino (Texto tomado de la fuente)
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-12T20:17:35Z
dc.date.available.none.fl_str_mv 2024-07-12T20:17:35Z
dc.date.issued.none.fl_str_mv 2024-07
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86442
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86442
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Akhand, A., Watanabe, K., Chanda, A., Tokoro, T., Chakraborty, K., Moki, H., Tanaya, T., Ghosh, J., & Kuwae, T. (2021). Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Science of the Total Environment, 752. https://doi.org/10.1016/j.scitotenv.2020.142190
Albis-Salas, M. R., & Gavio, B. (2015). NOTES ON THE MARINE ALGAE OF THE INTERNATIONAL BIOSPHERE RESERVE SEAFLOWER, CARIBBEAN COLOMBIA IV: NEW RECORDS OF MACROALGAL EPIPHYTES ON THE SEAGRASS THALASSIA TESTUDINUM. Bol. Invest. Mar. Cost, 44(1), 55–70.
Andersson, A. J., & Gledhill, D. (2013). Ocean acidification and coral reefs: Effects on breakdown, dissolution, and net ecosystem calcification. Annual Review of Marine Science, 5, 321–348. https://doi.org/10.1146/annurev-marine-121211-172241
Anthony, K. R. N., Diaz-Pulido, G., Verlinden, N., Tilbrook, B., & Andersson, A. J. (2013). Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences, 10(7), 4897–4909. https://doi.org/10.5194/bg-10-4897-2013
APHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington DC: American Public Health Association.
Astor, Y. M., Lorenzoni, L., Guzman, L., Fuentes, G., Muller-Karger, F., Varela, R., Scranton, M., Taylor, G. T., & Thunell, R. (2017). Distribution and variability of the dissolved inorganic carbon system in the Cariaco Basin, Venezuela. Marine Chemistry, 195(July), 15–26. https://doi.org/10.1016/j.marchem.2017.08.004
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S. I., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., … Xu, S. (2016). A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383–413. https://doi.org/10.5194/essd-8-383-2016
Basu, S., & Mackey, K. R. M. (2018). Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate. Sustainability (Switzerland), 10(3). https://doi.org/10.3390/su10030869
Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., & Santana-Casiano, J. M. (2014). A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography, 27(1), 126–141. https://doi.org/10.5670/oceanog.2014.16
Bates, N. R., Best, M. H. P., Neely, K., Garley, R., Dickson, A. G., & Johnson, R. J. (2012). Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences, 9(7), 2509–2522. https://doi.org/10.5194/bg-9-2509-2012
Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., & Regnier, P. A. G. (2013a). The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61–70. https://doi.org/10.1038/nature12857
Beaufort, L., Probert, I., De Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., & De Vargas, C. (2011). Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476(7358), 80–83. https://doi.org/10.1038/nature10295
Bergstrom, E., Silva, J., Martins, C., & Horta, P. (2019). Seagrass can mitigate negative ocean acidification effects on calcifying algae. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-35670-3
Bernal, C. A., Gómez Batista, M., Sanchez Cabeza, J. A., Cartas Aguila, H., Herrera Merlo, J., Ruíz-Rodríguez, G., & Hernández-Ayón, M. (2021). Determinación de alcalinidad total en agua de mar utilizando dispensador manual. Método de titulación en celda abierta. Red de Investigación de Estresores Marinos - Costeros En Latinoamérica y El Caribe – REMARCO. Santa Marta, Colombia., 9 pp.
Bernal, C. A., Sanchez-Cabeza, J. A., Martínez-Galarza, R. A., Gómez Batista, M., & Norzagaray-López, C. O. (2021). Determinación de carbono inorgánico disuelto en agua de mar utilizando analizador automático con detección infrarrojo- AIRICA. Red de Investigación de Estresores Marinos - Costeros En Latinoamérica y El Caribe – REMARCO. Santa Marta, Colombia., 18 pp.
Borges, A. V., Delille, B., & Frankignoulle, M. (2005). Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts. Geophysical Research Letters, 32(14), 1–4. https://doi.org/10.1029/2005GL023053
Bouillon, S., Dehairs, F., Velimirov, B., Abril, G., & Borges, A. V. (2007). Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya). Journal of Geophysical Research: Biogeosciences, 112(2). https://doi.org/10.1029/2006JG000325
Bouillon, S., Moens, T., & Dehairs, F. (2004). Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya). In Biogeosciences (Vol. 1). www.biogeosciences.net/bg/1/71/
Cabré, A., Marinov, I., & Leung, S. (2015). Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Climate Dynamics, 45(5–6), 1253–1280. https://doi.org/10.1007/s00382-014-2374-3
Cao, R., Liu, Y., Wang, Q., Zhang, Q., Yang, D., Liu, H., Qu, Y., & Zhao, J. (2018). The impact of ocean acidification and cadmium on the immune responses of Pacific oyster, Crassostrea gigas. Fish and Shellfish Immunology, 81(July), 456–462. https://doi.org/10.1016/j.fsi.2018.07.055
Cao, Z., Dai, M., Zheng, N., Wang, D., Li, Q., Zhai, W., Meng, F., & Gan, J. (2011). Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. Journal of Geophysical Research: Biogeosciences, 116(2), 1–14. https://doi.org/10.1029/2010JG001596
Carstensen, J., & Duarte, C. M. (2019). Drivers of pH Variability in Coastal Ecosystems [Review-article]. Environmental Science and Technology, 53(8), 4020–4029. https://doi.org/10.1021/acs.est.8b03655
Chauvin, A., Denis, V., & Cuet, P. (2011). Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs, 30(4), 911–923. https://doi.org/10.1007/s00338-011-0786-7
Chavez, F. P., Messié, M., & Pennington, J. T. (2011). Marine primary production in relation to climate variability and change. Annual Review of Marine Science, 3, 227–260. https://doi.org/10.1146/annurev.marine.010908.163917
Chen, G., Azkab, M. H., Chmura, G. L., Chen, S., Sastrosuwondo, P., Ma, Z., Dharmawan, I. W. E., Yin, X., & Chen, B. (2017). Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Scientific Reports, 7. https://doi.org/10.1038/srep42406
Church, M. J., Lomas, M. W., & Muller-Karger, F. (2013). Sea change: Charting the course for biogeochemical ocean time-series research in a new millennium. Deep-Sea Research Part II: Topical Studies in Oceanography, 93, 2–15. https://doi.org/10.1016/j.dsr2.2013.01.035
Clargo, N. M., Salt, L. A., Thomas, H., & de Baar, H. J. W. (2015). Rapid increase of observed DIC and pCO2 in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes. Marine Chemistry, 177, 566–581. https://doi.org/10.1016/j.marchem.2015.08.010
CORALINA-INVEMAR. (2012). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina -CORALINA-. Serie de Publicaciones Especiales de INVEMAR # 28.
Dai, M., Cao, Z., Guo, X., Zhai, W., Liu, Z., Yin, Z., Xu, Y., Gan, J., Hu, J., & Du, C. (2013). Why are some marginal seas sources of atmospheric CO2? Geophysical Research Letters, 40(10), 2154–2158. https://doi.org/10.1002/grl.50390
DANE. (2019). San Andrés. Archipiélago de San Andrés. https://sitios.dane.gov.co/cnpv/app/views/informacion/perfiles/88001_infografia.pdf
De La Rocha, C. L., & Passow, U. (2007). Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(5–7), 639–658. https://doi.org/10.1016/j.dsr2.2007.01.004
De Marchi, L., Pretti, C., Chiellini, F., Morelli, A., Neto, V., Soares, A. M. V. M., Figueira, E., & Freitas, R. (2019). The influence of simulated global ocean acidification on the toxic effects of carbon nanoparticles on polychaetes. Science of the Total Environment, 666, 1178–1187. https://doi.org/10.1016/j.scitotenv.2019.02.109
Devries, T. (2014). The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era. Global Biogeochemical Cycles, 28(7), 631–647. https://doi.org/10.1002/2013GB004739
Diaz, J. M., Gómez-López, D. I., Barrios, L. M., & Montoya, P. (2003). Composición y distribución de las praderas de pastos marinos en Colombia. In Las praderas de pastos marinos en Colombia: estructura y distribución de un ecosistema complejo. INVEMAR, Serie Publicaciones Especiales No. 10, Santa Marta. (pp. 25–80). https://doi.org/10.13140/2.1.4073.6322
Dickson, A. G. (1990). Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics, 22(2), 113–127.
Dickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. In Deep-Sea Research (Vol. 34, Issue 111).
Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., & McCulloch, M. (2013). Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH. Estuaries and Coasts, 36(2), 221–236. https://doi.org/10.1007/s12237-013-9594-3
Elliff, C. I., & Silva, I. R. (2017). Coral reefs as the first line of defense: Shoreline protection in face of climate change. Marine Environmental Research, 127, 148–154. https://doi.org/10.1016/j.marenvres.2017.03.007
Fuentes-Lema, A., Sanleón-Bartolomé, H., Lubián, L. M., & Sobrino, C. (2018). Effects of elevated CO2 and phytoplankton-derived organic matter on the metabolism of bacterial communities from coastal waters. Biogeosciences, 15(22), 6927–6940. https://doi.org/10.5194/bg-15-6927-2018
Gao, K., & Campbell, D. A. (2014). Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review. Functional Plant Biology, 41(5), 449–459. https://doi.org/10.1071/FP13247
Gruber, N., Sarmiento, J. L., & Stocker, T. F. (1996). An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochemical Cycles, 10(4), 809–837. https://doi.org/10.1029/96GB01608
Guerra-Vargas, L. A., Gillis, L. G., & Mancera-Pineda, J. E. (2020a). Stronger Together: Do Coral Reefs Enhance Seagrass Meadows “Blue Carbon” Potential? Frontiers in Marine Science, 7(July), 1–15. https://doi.org/10.3389/fmars.2020.00628
Heck, K. L., Carruthers, T. J. B., Duarte, C. M., Randall Hughes, A., Kendrick, G., Orth, R. J., & Williams, S. W. (2008). Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. In Ecosystems (Vol. 11, Issue 7, pp. 1198–1210). https://doi.org/10.1007/s10021-008-9155-y
Heinrich, L., & Krause, T. (2017). Fishing in acid waters: A vulnerability assessment of the norwegian fishing industry in the face of increasing ocean acidification. Integrated Environmental Assessment and Management, 13(4), 778–789. https://doi.org/10.1002/ieam.1843
Hendriks, I. E., Duarte, C. M., Olsen, Y. S., Steckbauer, A., Ramajo, L., Moore, T. S., Trotter, J. A., & McCulloch, M. (2015). Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. Estuarine, Coastal and Shelf Science, 152, A1–A8. https://doi.org/10.1016/j.ecss.2014.07.019
Hendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore, T. S., Howard, J., & Duarte, C. M. (2014a). Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences, 11(2), 333–346. https://doi.org/10.5194/bg-11-333-2014
Herr, D., & Landis, E. (2014). Coastal blue carbon ecosystems. In National Wetlands Newsletter (Vol. 36, Issue 1).
Hofmann, M., & Schellnhuber, H. (2009). Oceanic acidification affects marine carbon pump. In Situ, 1–6.
Holmberg, R. J., Wilcox-Freeburg, E., Rhyne, A. L., Tlusty, M. F., Stebbins, A., Nye, S. W., Honig, A., Johnston, A. E., San Antonio, C. M., Bourque, B., & Hannigan, R. E. (2019). Ocean acidification alters morphology of all otolith types in Clark’s anemonefish (Amphiprion clarkii). PeerJ, 2019(1), 1–24. https://doi.org/10.7717/peerj.6152
Huang, H., Yuan, X. C., Cai, W. J., Zhang, C. L., Li, X., & Liu, S. (2014). Positive and negative responses of coral calcification to elevated pCO 2: Case studies of two coral species and the implications of their responses. Marine Ecology Progress Series, 502(May), 145–156. https://doi.org/10.3354/meps10720
Hurd, C. L. (2015). Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. Journal of Phycology, 51(4), 599–605. https://doi.org/10.1111/jpy.12307
Ibarra, Karen., Obando Paola., & Espinosa, L. (2023). Análisis: Departamento Archipiélago de San Andrés, Providencia y Santa Catalina. In J. Cusba, P. Obando, & L. Espinosa (Eds.), INVEMAR. 2023. Diagnóstico de calidad ambiental marina REDCAM. Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia – REDCAM: INVEMAR, MinAmbiente, CORALINA... Informe técnico final 2022, Santa Marta. 233 p. (pp. 45–56).
IGAC. (1986). San Andrés y Providencia: aspectos geográficos. Ministerio de Hacienda y Crédito Público, Instituto Geográfico" Agustín Codazzi," Subdirección de Investigación y Divulgación Geográfica.
Kawahata, H., Fujita, K., Iguchi, A., Inoue, M., Iwasaki, S., Kuroyanagi, A., Maeda, A., Manaka, T., Moriya, K., Takagi, H., Toyofuku, T., Yoshimura, T., & Suzuki, A. (2019). Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world “hot house.” In Progress in Earth and Planetary Science (Vol. 6, Issue 1). Progress in Earth and Planetary Science. https://doi.org/10.1186/s40645-018-0239-9
Koch, F., Beszteri, S., Harms, L., & Trimborn, S. (2019). The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica. Limnology and Oceanography, 64(1), 357–375. https://doi.org/10.1002/lno.11045
Laffoley, D., Baxter, J. M., Arias-Isaza, F. A., Sierra-Correa, P. C., Lagos, N., Graco, M., Jewett, E. B., & Isensee, K. (2019). Regional action plan on ocean acidification for Latin America and the Caribbean – encouraging collaboration and inspiring action. In Serie de Publicaciones Generales (Vol. 99).
Laruelle, G. G., Dürr, H. H., Lauerwald, R., Hartmann, J., Slomp, C. P., Goossens, N., & Regnier, P. A. G. (2013). Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrology and Earth System Sciences, 17(5), 2029–2051. https://doi.org/10.5194/hess-17-2029-2013
Le Quéré, C., Barbero, L., Hauck, J., Andrew, R. M., Canadell, J. G., Sitch, S., & Korsbakken, J. I. (2018). Global Carbon Budget 2016 Global Carbon Budget 2016. Earth System Science Data, 0(April 2017), 2141–2194.
Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G. H., Wanninkhof, R., Feely, R. A., & Key, R. M. (2006). Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters, 33(19), 1–5. https://doi.org/10.1029/2006GL027207
Lemasson, A. J., Fletcher, S., Hall-Spencer, J. M., & Knights, A. M. (2017). Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: A review. Journal of Experimental Marine Biology and Ecology, 492, 49–62. https://doi.org/10.1016/j.jembe.2017.01.019
Liu, J., Weinbauer, M. G., Maier, C., Dai, M., & Gattuso, J. P. (2010). Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquatic Microbial Ecology, 61(3), 291–305. https://doi.org/10.3354/ame01446
Lovenduski, N. S., McKinley, G. A., Fay, A. R., Lindsay, K., & Long, M. C. (2016). Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure. Global Biogeochemical Cycles, 30(9), 1276–1287. https://doi.org/10.1002/2016GB005426
Marinov, I., Follows, M. J., Gnanadesikan, A., Sarmiento, J. L., & Slater, R. D. (2008). How does ocean biology affect atmospheric pCO2? Theory and models. Journal of Geophysical Research: Oceans, 113(7), 1–20. https://doi.org/10.1029/2007JC004598
Mazarrasa, I., Marbà, N., Krause-Jensen, D., Kennedy, H., Santos, R., Lovelock, C. E., & Duarte, C. M. (2019). Decreasing carbonate load of seagrass leaves with increasing latitude. Aquatic Botany, 159(July 2018), 103147. https://doi.org/10.1016/j.aquabot.2019.103147
Mazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., & Duarte, C. M. (2015). Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences, 12(16), 4993–5003. https://doi.org/10.5194/bg-12-4993-2015
McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552–560. https://doi.org/10.1890/110004
Mehrbach, C., Culberson, C. H., Hawley, J. E., & Pytkowicx, R. M. (1973). MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE. Limnology and Oceanography, 18(6), 897–907. https://doi.org/10.4319/lo.1973.18.6.0897
Meyer, K. M., Ridgwell, A., & Payne, J. L. (2016). The influence of the biological pump on ocean chemistry: Implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology, 14(3), 207–219. https://doi.org/10.1111/gbi.12176
Middelburg, J. J., Soetaert, K., & Hagens, M. (2020). Ocean Alkalinity, Buffering and Biogeochemical Processes. Reviews of Geophysics, 58(3). https://doi.org/10.1029/2019RG000681
Muller-Karger, F. E., Astor, Y. M., Benitez-Nelson, C. R., Buck, K. N., Fanning, K. A., Lorenzoni, L., Montes, E., Rueda-Roa, D. T., Scranton, M. I., Tappa, E., Taylor, G. T., Thunell, R. C., Troccoli, L., & Varela, R. (2019). The scientific legacy of the CARIACO ocean time-series program. Annual Review of Marine Science, 11(November 1995), 413–437. https://doi.org/10.1146/annurev-marine-010318-095150
Pan, T. C. F., Applebaum, S. L., & Manahan, D. T. (2015). Experimental ocean acidification alters the allocation of metabolic energy. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4696–4701. https://doi.org/10.1073/pnas.1416967112
Pierrot, D., Lewis, E., & Wallace, D. W. R. (2006). MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a.
Ponce Oliva, R. D., Vasquez-Lavín, F., San Martin, V. A., Hernández, J. I., Vargas, C. A., Gonzalez, P. S., & Gelcich, S. (2019). Ocean Acidification, Consumers’ Preferences, and Market Adaptation Strategies in the Mussel Aquaculture Industry. Ecological Economics, 158(October 2018), 42–50. https://doi.org/10.1016/j.ecolecon.2018.12.011
Ramajo, L., Lagos, N. A., & Duarte, C. M. (2019). Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Marine Pollution Bulletin, 146(December 2018), 247–254. https://doi.org/10.1016/j.marpolbul.2019.06.011
Rheuban, J. E., Doney, S. C., Cooley, S. R., & Hart, D. R. (2018). Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLoS ONE, 13(9), 1–21. https://doi.org/10.1371/journal.pone.0203536
Riebesell, U., Rtzinger, A. K., & Oschlies, A. (2009). Sensitivities of marine carbon fluxes to ocean change. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20602–20609. https://doi.org/10.1073/pnas.0813291106
Saderne, V., Baldry, K., Anton, A., Agustí, S., & Duarte, C. M. (2019). Characterization of the CO2 System in a Coral Reef, a Seagrass Meadow, and a Mangrove Forest in the Central Red Sea. Journal of Geophysical Research: Oceans, 124(11), 7513–7528. https://doi.org/10.1029/2019JC015266
Saderne, V., Geraldi, N. R., Macreadie, P. I., Maher, D. T., Middelburg, J. J., Serrano, O., Almahasheer, H., Arias-Ortiz, A., Cusack, M., Eyre, B. D., Fourqurean, J. W., Kennedy, H., Krause-Jensen, D., Kuwae, T., Lavery, P. S., Lovelock, C. E., Marba, N., Masqué, P., Mateo, M. A., … Duarte, C. M. (2019). Role of carbonate burial in Blue Carbon budgets. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08842-6
Semesi, I. S., Beer, S., & Björk, M. (2009). Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series, 382, 41–47. https://doi.org/10.3354/meps07973
Seroy, S. K., & Grünbaum, D. (2018). Individual and population level effects of ocean acidification on a predator−prey system with inducible defenses: Bryozoan−nudibranch interactions in the Salish Sea. Marine Ecology Progress Series, 607, 1–18. https://doi.org/10.3354/meps12793
Serrano, O., Gómez-López, D. I., Sánchez-Valencia, L., Acosta-Chaparro, A., Navas-Camacho, R., González-Corredor, J., Salinas, C., Masque, P., Bernal, C. A., & Marbà, N. (2021a). Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-90544-5
Simeone, S., Molinaroli, E., Conforti, A., & De Falco, G. (2018). Impact of ocean acidification on the carbonate sediment budget of a temperate mixed beach. Climatic Change, 150(3–4), 227–242. https://doi.org/10.1007/s10584-018-2282-3
Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C., & Santos, I. R. (2016). Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global Biogeochemical Cycles, 30(Dic), 753–766. https://doi.org/10.1111/1462-2920.13280
Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., & Greenwood, J. (2007). The effect of biogeochemical processes on pH. Marine Chemistry, 105(1–2), 30–51. https://doi.org/10.1016/j.marchem.2006.12.012
Speers, A. E., Besedin, E. Y., Palardy, J. E., & Moore, C. (2016). Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological-economic model. Ecological Economics, 128, 33–43. https://doi.org/10.1016/j.ecolecon.2016.04.012
Strickland, J. D. H., & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis (2nd ed.). Fisheries Research Board of Canada.
Sutton, A. J., Sabine, C. L., Feely, R. A., Cai, W. J., Cronin, M. F., McPhaden, M. J., Morell, J. M., Newton, J. A., Noh, J. H., Ólafsdóttir, S. R., Salisbury, J. E., Send, U., Vandemark, D. C., & Weller, R. A. (2016). Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences, 13(17), 5065–5083. https://doi.org/10.5194/bg-13-5065-2016
Takahashi, T., & Azevedo, A. E. G. (2008). The oceans as a CO2 reservoir. AIP Conference Proceedings, 83, 83–110. https://doi.org/10.1063/1.33473
Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., & Nojiri, Y. (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(9–10), 1601–1622. https://doi.org/10.1016/S0967-0645(02)00003-6
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., … de Baar, H. J. W. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(8–10), 554–577. https://doi.org/10.1016/j.dsr2.2008.12.009
Taylor, G. T., Muller-Karger, F. E., Thunell, R. C., Scranton, M. I., Astor, Y., Varela, R., Ghinaglia, L. T., Lorenzoni, L., Fanning, K. A., Hameed, S., & Doherty, O. (2012). Ecosystem responses in the southern Caribbean Sea to global climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19315–19320. https://doi.org/10.1073/pnas.1207514109
Tong, S., Hutchins, D. A., & Gao, K. (2019). Physiological and biochemical responses of Emiliania huxleyi to ocean acidification and warming are modulated by UV radiation. Biogeosciences, 16(2), 561–572. https://doi.org/10.5194/bg-16-561-2019
Touratier, F., Azouzi, L., & Goyet, C. (2007). CFC-11, Δ14C and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. Tellus, Series B: Chemical and Physical Meteorology, 59(2), 318–325. https://doi.org/10.1111/j.1600-0889.2006.00247.x
Touratier, F., & Goyet, C. (2004). Applying the new TrOCA approach to assess the distribution of anthropogenic CO2 in the Atlantic Ocean. Journal of Marine Systems, 46(1–4), 181–197. https://doi.org/10.1016/j.jmarsys.2003.11.020
Tribollet, A., Chauvin, A., & Cuet, P. (2019). Carbonate dissolution by reef microbial borers: a biogeological process producing alkalinity under different pCO 2 conditions. Facies, 65(2), 1–10. https://doi.org/10.1007/s10347-018-0548-x
UNESCO. (1983). CHEMICAL METHODS FOR USE IN MARINE ENVIRONMENTAL MONITORING. Intergovernmental Oceanographic Commission. Manuals and Guides, 12.
Uppström, L. R. (1974). The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Research, 21, 161–162.
Van Dam, B. R., Zeller, M. A., Lopes, C., Smyth, A. R., Böttcher, M. E., Osburn, C. L., Zimmerman, T., Pröfrock, D., Fourqurean, J. W., & Thomas, H. (2021). Calcification-driven CO2emissions exceed “blue Carbon” sequestration in a carbonate seagrass meadow. Science Advances, 7(51), 1–12. https://doi.org/10.1126/sciadv.abj1372
Vargas-Rojas, J. S. (2020). Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental [Master Thesis]. Universidad Nacional de Colombia.
Vázquez-Rodríguez, M., Padin, X. A., Ríos, A. F., Bellerby, R. G. J., & Pérez, F. F. (2009). An upgraded carbon-based method to estimate the anthropogenic fraction of dissolved CO<sub>2</sub> in the Atlantic Ocean. Biogeosciences Discussions, 6(2), 4527–4571.
Vázquez-Rodríguez, M., Touratier, F., Monaco, C. Lo, Waugh, D. W., Padin, X. A., Bellerby, R. G. J., Goyet, C., Metzl, N., Ríos, A. F., & Pérez, F. F. (2009). Anthropogenic carbon distributions in the Atlantic Ocean: Data-based estimates from the Arctic to the Antarctic. Biogeosciences, 6(3), 439–451. https://doi.org/10.5194/bg-6-439-2009
Wang, Z. A., Wanninkhof, R., Cai, W. J., Byrne, R. H., Hu, X., Peng, T. H., & Huang, W. J. (2013). The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: Insights from a transregional coastal carbon study. Limnology and Oceanography, 58(1), 325–342. https://doi.org/10.4319/lo.2013.58.1.0325
Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12(JUN), 351–362. https://doi.org/10.4319/lom.2014.12.351
Ware, J. R., Smith, S. V, & Reaka-Kudla, M. L. (1992). Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs, 11, 127–130.
Webb, A. E., Pomponi, S. A., van Duyl, F. C., Reichart, G. J., & de Nooijer, L. J. (2019). pH Regulation and Tissue Coordination Pathways Promote Calcium Carbonate Bioerosion by Excavating Sponges. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-36702-8
Yu, T., & Chen, Y. (2019). Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Science of the Total Environment, 655, 865–879. https://doi.org/10.1016/j.scitotenv.2018.11.301
Zeebe, R. E., & Wolf-Gradow, D. (2001). CO2 in Seawater: Equilibrium, Kinetics, Isotopes (D. Halpern, Ed.). Elsiever Ocenaographic Series. https://doi.org/10.1016/s0924-7963(02)00179-3
Zunino, S., Canu, D. M., Zupo, V., & Solidoro, C. (2019). Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Global Ecology and Conservation, 18, e00625. https://doi.org/10.1016/j.gecco.2019.e00625
Gavio, B., Palmer-Cantillo, S., & Mancera, J. E. (2010). Historical analysis (2000-2005) of the coastal water quality in San Andrés Island, SeaFlower Biosphere Reserve, Caribbean Colombia. Marine Pollution Bulletin, 60(7), 1018–1030. https://doi.org/10.1016/j.marpolbul.2010.01.025
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv XIV, 64 paginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Caribe - Caribe - Maestría en Ciencias - Biología
dc.publisher.department.spa.fl_str_mv Centro de estudios en Ciencias del mar-CECIMAR
dc.publisher.faculty.spa.fl_str_mv Facultad Caribe
dc.publisher.place.spa.fl_str_mv San Andrés Islas
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Caribe
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86442/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86442/2/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20Biolog%c3%ada
https://repositorio.unal.edu.co/bitstream/unal/86442/3/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20Biolog%c3%ada.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
655ad8fcf470c0b69d53cecb8c63b2d1
8d4407a6eb4fb5b50869f6d88b68bb91
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090124329222144
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Bernal, César Augustoed48a485163e6c6ef994f48f31e411a8Mancera, Jose Ernesto69f33466a2d5c3f8b9c59fc596c82ecf600Bernal-Glen, Daniel Felipe20cecd638ea9b0655ded7a3e8828ed90600Modelacion de Ecosistemas CosterosBernal Glen, Daniel Felipe [0009000097643819]2024-07-12T20:17:35Z2024-07-12T20:17:35Z2024-07https://repositorio.unal.edu.co/handle/unal/86442Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Entre los ecosistemas costeros considerados estratégicos en la mitigación del cambio climático se encuentran las praderas de pastos marinos, debido a su alta productividad primaria y altas tasas de captura de carbono. En el presente trabajo se analizó la relación entre la reserva de carbono orgánico en praderas de pastos marinos de la isla de San Andrés, reserva internacional de Biosfera Seaflower, y la dinámica del sistema de carbonatos, con el fin de evaluar cuantitativamente el efecto modulador que la captura de carbono en el pasto marino podría ejercer sobre el sistema de carbonatos en las masas de agua. Se tomaron mediciones de Alcalinidad Total y Carbono Inorgánico Disuelto sobre una pradera de pastos marinos y sobre un punto adyacente sin pasto durante varias épocas climáticas entre 2019 y 2021. Adicionalmente se evaluó la biomasa en pie, biomasa rizoidal y contenido de carbono orgánico en el sedimento de la pradera. Se encontró una fuerte influencia estacional caracterizada por valores de Carbono Inorgánico más bajos durante la época seca. Al mismo tiempo, en la época húmeda la pradera está sujeta a un fuerte fenómeno de remineralización que anula temporalmente el efecto de la captura de carbono sobre el sistema de carbonatos. Los flujos de carbono orgánico e inorgánico alóctono entre la pradera, el bosque de manglar y el arrecife coralino, así como el rol de los organismos calcificadores, surgen como puntos fundamentales a dilucidar para comprender cabalmente el ciclo de carbono inorgánico dentro de la pradera de pasto marino (Texto tomado de la fuente)Among the coastal ecosystems considered strategic in climate change mitigation are seagrass meadows, due to their high primary productivity and high carbon capture rates. In the present work, the relationship between the organic carbon reserve in seagrass meadows of San Andrés Island, an international Biosphere Reserve Seaflower, and the carbonate system dynamics was analyzed to quantitatively evaluate the modulatory effect that carbon capture in seagrass could exert on the carbonate system in water masses. Total Alkalinity and Dissolved Inorganic Carbon measurements were taken over a seagrass meadow and an adjacent point without seagrass during various climatic seasons between 2019 and 2021. Additionally, the standing biomass, rhizoidal biomass, and organic carbon content in the meadow sediment were evaluated. A strong seasonal influence was found, characterized by lower Inorganic Carbon values during the dry season. At the same time, during the wet season, the meadow is subject to a strong remineralization phenomenon that temporarily nullifies the effect of carbon capture on the carbonate system. The fluxes of allochthonous organic and inorganic carbon between the meadow, mangrove forest, and coral reef, as well as the role of calcifying organisms, emerge as fundamental points to elucidate to fully understand the inorganic carbon cycle within the seagrass meadow.The Ocean Foundation es una fundación comunitaria con sede en Washington, D.C. y establecida en 2002. Su misión es "apoyar, fortalecer y promover aquellas organizaciones dedicadas a revertir la tendencia de destrucción de los ambientes oceánicos en todo el mundo".MaestríaMagíster en Ciencias - BiologíaModelación de EcosistemasOtra. Sede CaribeXIV, 64 paginasapplication/pdfspaUniversidad Nacional de ColombiaCaribe - Caribe - Maestría en Ciencias - BiologíaCentro de estudios en Ciencias del mar-CECIMARFacultad CaribeSan Andrés IslasUniversidad Nacional de Colombia - Sede Caribe570 - Biología::577 - EcologíaThalassia testudinumCalcificaciónProductividad primariaCarbono azulBiomasaThalassia testudinumBlue carbonPrimary productionBiomassVariación del sistema de carbonatos y acumulación de carbono orgánico en masas de agua adyacentes a praderas de pastos marinos en el Caribe insular colombianoVariation of the carbonate system and accumulation of organic carbon in water masses adjacent to seagrass meadows in the Colombian insular CaribbeanTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAkhand, A., Watanabe, K., Chanda, A., Tokoro, T., Chakraborty, K., Moki, H., Tanaya, T., Ghosh, J., & Kuwae, T. (2021). Lateral carbon fluxes and CO2 evasion from a subtropical mangrove-seagrass-coral continuum. Science of the Total Environment, 752. https://doi.org/10.1016/j.scitotenv.2020.142190Albis-Salas, M. R., & Gavio, B. (2015). NOTES ON THE MARINE ALGAE OF THE INTERNATIONAL BIOSPHERE RESERVE SEAFLOWER, CARIBBEAN COLOMBIA IV: NEW RECORDS OF MACROALGAL EPIPHYTES ON THE SEAGRASS THALASSIA TESTUDINUM. Bol. Invest. Mar. Cost, 44(1), 55–70.Andersson, A. J., & Gledhill, D. (2013). Ocean acidification and coral reefs: Effects on breakdown, dissolution, and net ecosystem calcification. Annual Review of Marine Science, 5, 321–348. https://doi.org/10.1146/annurev-marine-121211-172241Anthony, K. R. N., Diaz-Pulido, G., Verlinden, N., Tilbrook, B., & Andersson, A. J. (2013). Benthic buffers and boosters of ocean acidification on coral reefs. Biogeosciences, 10(7), 4897–4909. https://doi.org/10.5194/bg-10-4897-2013APHA. (2017). Standard Methods for the Examination of Water and Wastewater (23rd ed.). Washington DC: American Public Health Association.Astor, Y. M., Lorenzoni, L., Guzman, L., Fuentes, G., Muller-Karger, F., Varela, R., Scranton, M., Taylor, G. T., & Thunell, R. (2017). Distribution and variability of the dissolved inorganic carbon system in the Cariaco Basin, Venezuela. Marine Chemistry, 195(July), 15–26. https://doi.org/10.1016/j.marchem.2017.08.004Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O’Brien, K. M., Olsen, A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S. I., Nojiri, Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B., Wada, C., Wanninkhof, R., … Xu, S. (2016). A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383–413. https://doi.org/10.5194/essd-8-383-2016Basu, S., & Mackey, K. R. M. (2018). Phytoplankton as key mediators of the biological carbon pump: Their responses to a changing climate. Sustainability (Switzerland), 10(3). https://doi.org/10.3390/su10030869Bates, N. R., Astor, Y. M., Church, M. J., Currie, K., Dore, J. E., González-Dávila, M., Lorenzoni, L., Muller-Karger, F., Olafsson, J., & Santana-Casiano, J. M. (2014). A time-series view of changing surface ocean chemistry due to ocean uptake of anthropogenic CO2 and ocean acidification. Oceanography, 27(1), 126–141. https://doi.org/10.5670/oceanog.2014.16Bates, N. R., Best, M. H. P., Neely, K., Garley, R., Dickson, A. G., & Johnson, R. J. (2012). Detecting anthropogenic carbon dioxide uptake and ocean acidification in the North Atlantic Ocean. Biogeosciences, 9(7), 2509–2522. https://doi.org/10.5194/bg-9-2509-2012Bauer, J. E., Cai, W. J., Raymond, P. A., Bianchi, T. S., Hopkinson, C. S., & Regnier, P. A. G. (2013a). The changing carbon cycle of the coastal ocean. Nature, 504(7478), 61–70. https://doi.org/10.1038/nature12857Beaufort, L., Probert, I., De Garidel-Thoron, T., Bendif, E. M., Ruiz-Pino, D., Metzl, N., Goyet, C., Buchet, N., Coupel, P., Grelaud, M., Rost, B., Rickaby, R. E. M., & De Vargas, C. (2011). Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Nature, 476(7358), 80–83. https://doi.org/10.1038/nature10295Bergstrom, E., Silva, J., Martins, C., & Horta, P. (2019). Seagrass can mitigate negative ocean acidification effects on calcifying algae. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-35670-3Bernal, C. A., Gómez Batista, M., Sanchez Cabeza, J. A., Cartas Aguila, H., Herrera Merlo, J., Ruíz-Rodríguez, G., & Hernández-Ayón, M. (2021). Determinación de alcalinidad total en agua de mar utilizando dispensador manual. Método de titulación en celda abierta. Red de Investigación de Estresores Marinos - Costeros En Latinoamérica y El Caribe – REMARCO. Santa Marta, Colombia., 9 pp.Bernal, C. A., Sanchez-Cabeza, J. A., Martínez-Galarza, R. A., Gómez Batista, M., & Norzagaray-López, C. O. (2021). Determinación de carbono inorgánico disuelto en agua de mar utilizando analizador automático con detección infrarrojo- AIRICA. Red de Investigación de Estresores Marinos - Costeros En Latinoamérica y El Caribe – REMARCO. Santa Marta, Colombia., 18 pp.Borges, A. V., Delille, B., & Frankignoulle, M. (2005). Budgeting sinks and sources of CO2 in the coastal ocean: Diversity of ecosystem counts. Geophysical Research Letters, 32(14), 1–4. https://doi.org/10.1029/2005GL023053Bouillon, S., Dehairs, F., Velimirov, B., Abril, G., & Borges, A. V. (2007). Dynamics of organic and inorganic carbon across contiguous mangrove and seagrass systems (Gazi Bay, Kenya). Journal of Geophysical Research: Biogeosciences, 112(2). https://doi.org/10.1029/2006JG000325Bouillon, S., Moens, T., & Dehairs, F. (2004). Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya). In Biogeosciences (Vol. 1). www.biogeosciences.net/bg/1/71/Cabré, A., Marinov, I., & Leung, S. (2015). Consistent global responses of marine ecosystems to future climate change across the IPCC AR5 earth system models. Climate Dynamics, 45(5–6), 1253–1280. https://doi.org/10.1007/s00382-014-2374-3Cao, R., Liu, Y., Wang, Q., Zhang, Q., Yang, D., Liu, H., Qu, Y., & Zhao, J. (2018). The impact of ocean acidification and cadmium on the immune responses of Pacific oyster, Crassostrea gigas. Fish and Shellfish Immunology, 81(July), 456–462. https://doi.org/10.1016/j.fsi.2018.07.055Cao, Z., Dai, M., Zheng, N., Wang, D., Li, Q., Zhai, W., Meng, F., & Gan, J. (2011). Dynamics of the carbonate system in a large continental shelf system under the influence of both a river plume and coastal upwelling. Journal of Geophysical Research: Biogeosciences, 116(2), 1–14. https://doi.org/10.1029/2010JG001596Carstensen, J., & Duarte, C. M. (2019). Drivers of pH Variability in Coastal Ecosystems [Review-article]. Environmental Science and Technology, 53(8), 4020–4029. https://doi.org/10.1021/acs.est.8b03655Chauvin, A., Denis, V., & Cuet, P. (2011). Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs, 30(4), 911–923. https://doi.org/10.1007/s00338-011-0786-7Chavez, F. P., Messié, M., & Pennington, J. T. (2011). Marine primary production in relation to climate variability and change. Annual Review of Marine Science, 3, 227–260. https://doi.org/10.1146/annurev.marine.010908.163917Chen, G., Azkab, M. H., Chmura, G. L., Chen, S., Sastrosuwondo, P., Ma, Z., Dharmawan, I. W. E., Yin, X., & Chen, B. (2017). Mangroves as a major source of soil carbon storage in adjacent seagrass meadows. Scientific Reports, 7. https://doi.org/10.1038/srep42406Church, M. J., Lomas, M. W., & Muller-Karger, F. (2013). Sea change: Charting the course for biogeochemical ocean time-series research in a new millennium. Deep-Sea Research Part II: Topical Studies in Oceanography, 93, 2–15. https://doi.org/10.1016/j.dsr2.2013.01.035Clargo, N. M., Salt, L. A., Thomas, H., & de Baar, H. J. W. (2015). Rapid increase of observed DIC and pCO2 in the surface waters of the North Sea in the 2001-2011 decade ascribed to climate change superimposed by biological processes. Marine Chemistry, 177, 566–581. https://doi.org/10.1016/j.marchem.2015.08.010CORALINA-INVEMAR. (2012). Atlas de la Reserva de Biósfera Seaflower. Archipiélago de San Andrés, Providencia y Santa Catalina. Instituto de Investigaciones Marinas y Costeras “José Benito Vives De Andréis” -INVEMAR- y Corporación para el Desarrollo Sostenible del Archipiélago de San Andrés, Providencia y Santa Catalina -CORALINA-. Serie de Publicaciones Especiales de INVEMAR # 28.Dai, M., Cao, Z., Guo, X., Zhai, W., Liu, Z., Yin, Z., Xu, Y., Gan, J., Hu, J., & Du, C. (2013). Why are some marginal seas sources of atmospheric CO2? Geophysical Research Letters, 40(10), 2154–2158. https://doi.org/10.1002/grl.50390DANE. (2019). San Andrés. Archipiélago de San Andrés. https://sitios.dane.gov.co/cnpv/app/views/informacion/perfiles/88001_infografia.pdfDe La Rocha, C. L., & Passow, U. (2007). Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Research Part II: Topical Studies in Oceanography, 54(5–7), 639–658. https://doi.org/10.1016/j.dsr2.2007.01.004De Marchi, L., Pretti, C., Chiellini, F., Morelli, A., Neto, V., Soares, A. M. V. M., Figueira, E., & Freitas, R. (2019). The influence of simulated global ocean acidification on the toxic effects of carbon nanoparticles on polychaetes. Science of the Total Environment, 666, 1178–1187. https://doi.org/10.1016/j.scitotenv.2019.02.109Devries, T. (2014). The oceanic anthropogenic CO2 sink: Storage, air-sea fluxes, and transports over the industrial era. Global Biogeochemical Cycles, 28(7), 631–647. https://doi.org/10.1002/2013GB004739Diaz, J. M., Gómez-López, D. I., Barrios, L. M., & Montoya, P. (2003). Composición y distribución de las praderas de pastos marinos en Colombia. In Las praderas de pastos marinos en Colombia: estructura y distribución de un ecosistema complejo. INVEMAR, Serie Publicaciones Especiales No. 10, Santa Marta. (pp. 25–80). https://doi.org/10.13140/2.1.4073.6322Dickson, A. G. (1990). Standard potential of the reaction: AgCl(s) + 12H2(g) = Ag(s) + HCl(aq), and and the standard acidity constant of the ion HSO4− in synthetic sea water from 273.15 to 318.15 K. The Journal of Chemical Thermodynamics, 22(2), 113–127.Dickson, A. G., & Millero, F. J. (1987). A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. In Deep-Sea Research (Vol. 34, Issue 111).Duarte, C. M., Hendriks, I. E., Moore, T. S., Olsen, Y. S., Steckbauer, A., Ramajo, L., Carstensen, J., Trotter, J. A., & McCulloch, M. (2013). Is Ocean Acidification an Open-Ocean Syndrome? Understanding Anthropogenic Impacts on Seawater pH. Estuaries and Coasts, 36(2), 221–236. https://doi.org/10.1007/s12237-013-9594-3Elliff, C. I., & Silva, I. R. (2017). Coral reefs as the first line of defense: Shoreline protection in face of climate change. Marine Environmental Research, 127, 148–154. https://doi.org/10.1016/j.marenvres.2017.03.007Fuentes-Lema, A., Sanleón-Bartolomé, H., Lubián, L. M., & Sobrino, C. (2018). Effects of elevated CO2 and phytoplankton-derived organic matter on the metabolism of bacterial communities from coastal waters. Biogeosciences, 15(22), 6927–6940. https://doi.org/10.5194/bg-15-6927-2018Gao, K., & Campbell, D. A. (2014). Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: A review. Functional Plant Biology, 41(5), 449–459. https://doi.org/10.1071/FP13247Gruber, N., Sarmiento, J. L., & Stocker, T. F. (1996). An improved method for detecting anthropogenic CO2 in the oceans. Global Biogeochemical Cycles, 10(4), 809–837. https://doi.org/10.1029/96GB01608Guerra-Vargas, L. A., Gillis, L. G., & Mancera-Pineda, J. E. (2020a). Stronger Together: Do Coral Reefs Enhance Seagrass Meadows “Blue Carbon” Potential? Frontiers in Marine Science, 7(July), 1–15. https://doi.org/10.3389/fmars.2020.00628Heck, K. L., Carruthers, T. J. B., Duarte, C. M., Randall Hughes, A., Kendrick, G., Orth, R. J., & Williams, S. W. (2008). Trophic transfers from seagrass meadows subsidize diverse marine and terrestrial consumers. In Ecosystems (Vol. 11, Issue 7, pp. 1198–1210). https://doi.org/10.1007/s10021-008-9155-yHeinrich, L., & Krause, T. (2017). Fishing in acid waters: A vulnerability assessment of the norwegian fishing industry in the face of increasing ocean acidification. Integrated Environmental Assessment and Management, 13(4), 778–789. https://doi.org/10.1002/ieam.1843Hendriks, I. E., Duarte, C. M., Olsen, Y. S., Steckbauer, A., Ramajo, L., Moore, T. S., Trotter, J. A., & McCulloch, M. (2015). Biological mechanisms supporting adaptation to ocean acidification in coastal ecosystems. Estuarine, Coastal and Shelf Science, 152, A1–A8. https://doi.org/10.1016/j.ecss.2014.07.019Hendriks, I. E., Olsen, Y. S., Ramajo, L., Basso, L., Steckbauer, A., Moore, T. S., Howard, J., & Duarte, C. M. (2014a). Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences, 11(2), 333–346. https://doi.org/10.5194/bg-11-333-2014Herr, D., & Landis, E. (2014). Coastal blue carbon ecosystems. In National Wetlands Newsletter (Vol. 36, Issue 1).Hofmann, M., & Schellnhuber, H. (2009). Oceanic acidification affects marine carbon pump. In Situ, 1–6.Holmberg, R. J., Wilcox-Freeburg, E., Rhyne, A. L., Tlusty, M. F., Stebbins, A., Nye, S. W., Honig, A., Johnston, A. E., San Antonio, C. M., Bourque, B., & Hannigan, R. E. (2019). Ocean acidification alters morphology of all otolith types in Clark’s anemonefish (Amphiprion clarkii). PeerJ, 2019(1), 1–24. https://doi.org/10.7717/peerj.6152Huang, H., Yuan, X. C., Cai, W. J., Zhang, C. L., Li, X., & Liu, S. (2014). Positive and negative responses of coral calcification to elevated pCO 2: Case studies of two coral species and the implications of their responses. Marine Ecology Progress Series, 502(May), 145–156. https://doi.org/10.3354/meps10720Hurd, C. L. (2015). Slow-flow habitats as refugia for coastal calcifiers from ocean acidification. Journal of Phycology, 51(4), 599–605. https://doi.org/10.1111/jpy.12307Ibarra, Karen., Obando Paola., & Espinosa, L. (2023). Análisis: Departamento Archipiélago de San Andrés, Providencia y Santa Catalina. In J. Cusba, P. Obando, & L. Espinosa (Eds.), INVEMAR. 2023. Diagnóstico de calidad ambiental marina REDCAM. Red de vigilancia para la conservación y protección de las aguas marinas y costeras de Colombia – REDCAM: INVEMAR, MinAmbiente, CORALINA... Informe técnico final 2022, Santa Marta. 233 p. (pp. 45–56).IGAC. (1986). San Andrés y Providencia: aspectos geográficos. Ministerio de Hacienda y Crédito Público, Instituto Geográfico" Agustín Codazzi," Subdirección de Investigación y Divulgación Geográfica.Kawahata, H., Fujita, K., Iguchi, A., Inoue, M., Iwasaki, S., Kuroyanagi, A., Maeda, A., Manaka, T., Moriya, K., Takagi, H., Toyofuku, T., Yoshimura, T., & Suzuki, A. (2019). Perspective on the response of marine calcifiers to global warming and ocean acidification—Behavior of corals and foraminifera in a high CO2 world “hot house.” In Progress in Earth and Planetary Science (Vol. 6, Issue 1). Progress in Earth and Planetary Science. https://doi.org/10.1186/s40645-018-0239-9Koch, F., Beszteri, S., Harms, L., & Trimborn, S. (2019). The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica. Limnology and Oceanography, 64(1), 357–375. https://doi.org/10.1002/lno.11045Laffoley, D., Baxter, J. M., Arias-Isaza, F. A., Sierra-Correa, P. C., Lagos, N., Graco, M., Jewett, E. B., & Isensee, K. (2019). Regional action plan on ocean acidification for Latin America and the Caribbean – encouraging collaboration and inspiring action. In Serie de Publicaciones Generales (Vol. 99).Laruelle, G. G., Dürr, H. H., Lauerwald, R., Hartmann, J., Slomp, C. P., Goossens, N., & Regnier, P. A. G. (2013). Global multi-scale segmentation of continental and coastal waters from the watersheds to the continental margins. Hydrology and Earth System Sciences, 17(5), 2029–2051. https://doi.org/10.5194/hess-17-2029-2013Le Quéré, C., Barbero, L., Hauck, J., Andrew, R. M., Canadell, J. G., Sitch, S., & Korsbakken, J. I. (2018). Global Carbon Budget 2016 Global Carbon Budget 2016. Earth System Science Data, 0(April 2017), 2141–2194.Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G., Goyet, C., Park, G. H., Wanninkhof, R., Feely, R. A., & Key, R. M. (2006). Global relationships of total alkalinity with salinity and temperature in surface waters of the world’s oceans. Geophysical Research Letters, 33(19), 1–5. https://doi.org/10.1029/2006GL027207Lemasson, A. J., Fletcher, S., Hall-Spencer, J. M., & Knights, A. M. (2017). Linking the biological impacts of ocean acidification on oysters to changes in ecosystem services: A review. Journal of Experimental Marine Biology and Ecology, 492, 49–62. https://doi.org/10.1016/j.jembe.2017.01.019Liu, J., Weinbauer, M. G., Maier, C., Dai, M., & Gattuso, J. P. (2010). Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquatic Microbial Ecology, 61(3), 291–305. https://doi.org/10.3354/ame01446Lovenduski, N. S., McKinley, G. A., Fay, A. R., Lindsay, K., & Long, M. C. (2016). Partitioning uncertainty in ocean carbon uptake projections: Internal variability, emission scenario, and model structure. Global Biogeochemical Cycles, 30(9), 1276–1287. https://doi.org/10.1002/2016GB005426Marinov, I., Follows, M. J., Gnanadesikan, A., Sarmiento, J. L., & Slater, R. D. (2008). How does ocean biology affect atmospheric pCO2? Theory and models. Journal of Geophysical Research: Oceans, 113(7), 1–20. https://doi.org/10.1029/2007JC004598Mazarrasa, I., Marbà, N., Krause-Jensen, D., Kennedy, H., Santos, R., Lovelock, C. E., & Duarte, C. M. (2019). Decreasing carbonate load of seagrass leaves with increasing latitude. Aquatic Botany, 159(July 2018), 103147. https://doi.org/10.1016/j.aquabot.2019.103147Mazarrasa, I., Marbà, N., Lovelock, C. E., Serrano, O., Lavery, P. S., Fourqurean, J. W., Kennedy, H., Mateo, M. A., Krause-Jensen, D., Steven, A. D. L., & Duarte, C. M. (2015). Seagrass meadows as a globally significant carbonate reservoir. Biogeosciences, 12(16), 4993–5003. https://doi.org/10.5194/bg-12-4993-2015McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552–560. https://doi.org/10.1890/110004Mehrbach, C., Culberson, C. H., Hawley, J. E., & Pytkowicx, R. M. (1973). MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE. Limnology and Oceanography, 18(6), 897–907. https://doi.org/10.4319/lo.1973.18.6.0897Meyer, K. M., Ridgwell, A., & Payne, J. L. (2016). The influence of the biological pump on ocean chemistry: Implications for long-term trends in marine redox chemistry, the global carbon cycle, and marine animal ecosystems. Geobiology, 14(3), 207–219. https://doi.org/10.1111/gbi.12176Middelburg, J. J., Soetaert, K., & Hagens, M. (2020). Ocean Alkalinity, Buffering and Biogeochemical Processes. Reviews of Geophysics, 58(3). https://doi.org/10.1029/2019RG000681Muller-Karger, F. E., Astor, Y. M., Benitez-Nelson, C. R., Buck, K. N., Fanning, K. A., Lorenzoni, L., Montes, E., Rueda-Roa, D. T., Scranton, M. I., Tappa, E., Taylor, G. T., Thunell, R. C., Troccoli, L., & Varela, R. (2019). The scientific legacy of the CARIACO ocean time-series program. Annual Review of Marine Science, 11(November 1995), 413–437. https://doi.org/10.1146/annurev-marine-010318-095150Pan, T. C. F., Applebaum, S. L., & Manahan, D. T. (2015). Experimental ocean acidification alters the allocation of metabolic energy. Proceedings of the National Academy of Sciences of the United States of America, 112(15), 4696–4701. https://doi.org/10.1073/pnas.1416967112Pierrot, D., Lewis, E., & Wallace, D. W. R. (2006). MS Excel Program Developed for CO2 System Calculations. ORNL/CDIAC-105a.Ponce Oliva, R. D., Vasquez-Lavín, F., San Martin, V. A., Hernández, J. I., Vargas, C. A., Gonzalez, P. S., & Gelcich, S. (2019). Ocean Acidification, Consumers’ Preferences, and Market Adaptation Strategies in the Mussel Aquaculture Industry. Ecological Economics, 158(October 2018), 42–50. https://doi.org/10.1016/j.ecolecon.2018.12.011Ramajo, L., Lagos, N. A., & Duarte, C. M. (2019). Seagrass Posidonia oceanica diel pH fluctuations reduce the mortality of epiphytic forams under experimental ocean acidification. Marine Pollution Bulletin, 146(December 2018), 247–254. https://doi.org/10.1016/j.marpolbul.2019.06.011Rheuban, J. E., Doney, S. C., Cooley, S. R., & Hart, D. R. (2018). Projected impacts of future climate change, ocean acidification, and management on the US Atlantic sea scallop (Placopecten magellanicus) fishery. PLoS ONE, 13(9), 1–21. https://doi.org/10.1371/journal.pone.0203536Riebesell, U., Rtzinger, A. K., & Oschlies, A. (2009). Sensitivities of marine carbon fluxes to ocean change. Proceedings of the National Academy of Sciences of the United States of America, 106(49), 20602–20609. https://doi.org/10.1073/pnas.0813291106Saderne, V., Baldry, K., Anton, A., Agustí, S., & Duarte, C. M. (2019). Characterization of the CO2 System in a Coral Reef, a Seagrass Meadow, and a Mangrove Forest in the Central Red Sea. Journal of Geophysical Research: Oceans, 124(11), 7513–7528. https://doi.org/10.1029/2019JC015266Saderne, V., Geraldi, N. R., Macreadie, P. I., Maher, D. T., Middelburg, J. J., Serrano, O., Almahasheer, H., Arias-Ortiz, A., Cusack, M., Eyre, B. D., Fourqurean, J. W., Kennedy, H., Krause-Jensen, D., Kuwae, T., Lavery, P. S., Lovelock, C. E., Marba, N., Masqué, P., Mateo, M. A., … Duarte, C. M. (2019). Role of carbonate burial in Blue Carbon budgets. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-08842-6Semesi, I. S., Beer, S., & Björk, M. (2009). Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series, 382, 41–47. https://doi.org/10.3354/meps07973Seroy, S. K., & Grünbaum, D. (2018). Individual and population level effects of ocean acidification on a predator−prey system with inducible defenses: Bryozoan−nudibranch interactions in the Salish Sea. Marine Ecology Progress Series, 607, 1–18. https://doi.org/10.3354/meps12793Serrano, O., Gómez-López, D. I., Sánchez-Valencia, L., Acosta-Chaparro, A., Navas-Camacho, R., González-Corredor, J., Salinas, C., Masque, P., Bernal, C. A., & Marbà, N. (2021a). Seagrass blue carbon stocks and sequestration rates in the Colombian Caribbean. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-90544-5Simeone, S., Molinaroli, E., Conforti, A., & De Falco, G. (2018). Impact of ocean acidification on the carbonate sediment budget of a temperate mixed beach. Climatic Change, 150(3–4), 227–242. https://doi.org/10.1007/s10584-018-2282-3Sippo, J. Z., Maher, D. T., Tait, D. R., Holloway, C., & Santos, I. R. (2016). Are mangroves drivers or buffers of coastal acidification? Insights from alkalinity and dissolved inorganic carbon export estimates across a latitudinal transect. Global Biogeochemical Cycles, 30(Dic), 753–766. https://doi.org/10.1111/1462-2920.13280Soetaert, K., Hofmann, A. F., Middelburg, J. J., Meysman, F. J. R., & Greenwood, J. (2007). The effect of biogeochemical processes on pH. Marine Chemistry, 105(1–2), 30–51. https://doi.org/10.1016/j.marchem.2006.12.012Speers, A. E., Besedin, E. Y., Palardy, J. E., & Moore, C. (2016). Impacts of climate change and ocean acidification on coral reef fisheries: An integrated ecological-economic model. Ecological Economics, 128, 33–43. https://doi.org/10.1016/j.ecolecon.2016.04.012Strickland, J. D. H., & Parsons, T. R. (1972). A Practical Handbook of Seawater Analysis (2nd ed.). Fisheries Research Board of Canada.Sutton, A. J., Sabine, C. L., Feely, R. A., Cai, W. J., Cronin, M. F., McPhaden, M. J., Morell, J. M., Newton, J. A., Noh, J. H., Ólafsdóttir, S. R., Salisbury, J. E., Send, U., Vandemark, D. C., & Weller, R. A. (2016). Using present-day observations to detect when anthropogenic change forces surface ocean carbonate chemistry outside preindustrial bounds. Biogeosciences, 13(17), 5065–5083. https://doi.org/10.5194/bg-13-5065-2016Takahashi, T., & Azevedo, A. E. G. (2008). The oceans as a CO2 reservoir. AIP Conference Proceedings, 83, 83–110. https://doi.org/10.1063/1.33473Takahashi, T., Sutherland, S. C., Sweeney, C., Poisson, A., Metzl, N., Tilbrook, B., Bates, N., Wanninkhof, R., Feely, R. A., Sabine, C., Olafsson, J., & Nojiri, Y. (2002). Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Research Part II: Topical Studies in Oceanography, 49(9–10), 1601–1622. https://doi.org/10.1016/S0967-0645(02)00003-6Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., … de Baar, H. J. W. (2009). Climatological mean and decadal change in surface ocean pCO2, and net sea-air CO2 flux over the global oceans. Deep-Sea Research Part II: Topical Studies in Oceanography, 56(8–10), 554–577. https://doi.org/10.1016/j.dsr2.2008.12.009Taylor, G. T., Muller-Karger, F. E., Thunell, R. C., Scranton, M. I., Astor, Y., Varela, R., Ghinaglia, L. T., Lorenzoni, L., Fanning, K. A., Hameed, S., & Doherty, O. (2012). Ecosystem responses in the southern Caribbean Sea to global climate change. Proceedings of the National Academy of Sciences of the United States of America, 109(47), 19315–19320. https://doi.org/10.1073/pnas.1207514109Tong, S., Hutchins, D. A., & Gao, K. (2019). Physiological and biochemical responses of Emiliania huxleyi to ocean acidification and warming are modulated by UV radiation. Biogeosciences, 16(2), 561–572. https://doi.org/10.5194/bg-16-561-2019Touratier, F., Azouzi, L., & Goyet, C. (2007). CFC-11, Δ14C and 3H tracers as a means to assess anthropogenic CO2 concentrations in the ocean. Tellus, Series B: Chemical and Physical Meteorology, 59(2), 318–325. https://doi.org/10.1111/j.1600-0889.2006.00247.xTouratier, F., & Goyet, C. (2004). Applying the new TrOCA approach to assess the distribution of anthropogenic CO2 in the Atlantic Ocean. Journal of Marine Systems, 46(1–4), 181–197. https://doi.org/10.1016/j.jmarsys.2003.11.020Tribollet, A., Chauvin, A., & Cuet, P. (2019). Carbonate dissolution by reef microbial borers: a biogeological process producing alkalinity under different pCO 2 conditions. Facies, 65(2), 1–10. https://doi.org/10.1007/s10347-018-0548-xUNESCO. (1983). CHEMICAL METHODS FOR USE IN MARINE ENVIRONMENTAL MONITORING. Intergovernmental Oceanographic Commission. Manuals and Guides, 12.Uppström, L. R. (1974). The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Research, 21, 161–162.Van Dam, B. R., Zeller, M. A., Lopes, C., Smyth, A. R., Böttcher, M. E., Osburn, C. L., Zimmerman, T., Pröfrock, D., Fourqurean, J. W., & Thomas, H. (2021). Calcification-driven CO2emissions exceed “blue Carbon” sequestration in a carbonate seagrass meadow. Science Advances, 7(51), 1–12. https://doi.org/10.1126/sciadv.abj1372Vargas-Rojas, J. S. (2020). Crecimiento y asignación de biomasa radicular de Thalassia testudinum y Syringodium filiforme, en praderas marinas monoespecíficas y mixtas de la región de Barú, Caribe suroccidental [Master Thesis]. Universidad Nacional de Colombia.Vázquez-Rodríguez, M., Padin, X. A., Ríos, A. F., Bellerby, R. G. J., & Pérez, F. F. (2009). An upgraded carbon-based method to estimate the anthropogenic fraction of dissolved CO<sub>2</sub> in the Atlantic Ocean. Biogeosciences Discussions, 6(2), 4527–4571.Vázquez-Rodríguez, M., Touratier, F., Monaco, C. Lo, Waugh, D. W., Padin, X. A., Bellerby, R. G. J., Goyet, C., Metzl, N., Ríos, A. F., & Pérez, F. F. (2009). Anthropogenic carbon distributions in the Atlantic Ocean: Data-based estimates from the Arctic to the Antarctic. Biogeosciences, 6(3), 439–451. https://doi.org/10.5194/bg-6-439-2009Wang, Z. A., Wanninkhof, R., Cai, W. J., Byrne, R. H., Hu, X., Peng, T. H., & Huang, W. J. (2013). The marine inorganic carbon system along the Gulf of Mexico and Atlantic coasts of the United States: Insights from a transregional coastal carbon study. Limnology and Oceanography, 58(1), 325–342. https://doi.org/10.4319/lo.2013.58.1.0325Wanninkhof, R. (2014). Relationship between wind speed and gas exchange over the ocean revisited. Limnology and Oceanography: Methods, 12(JUN), 351–362. https://doi.org/10.4319/lom.2014.12.351Ware, J. R., Smith, S. V, & Reaka-Kudla, M. L. (1992). Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs, 11, 127–130.Webb, A. E., Pomponi, S. A., van Duyl, F. C., Reichart, G. J., & de Nooijer, L. J. (2019). pH Regulation and Tissue Coordination Pathways Promote Calcium Carbonate Bioerosion by Excavating Sponges. Scientific Reports, 9(1), 1–10. https://doi.org/10.1038/s41598-018-36702-8Yu, T., & Chen, Y. (2019). Effects of elevated carbon dioxide on environmental microbes and its mechanisms: A review. Science of the Total Environment, 655, 865–879. https://doi.org/10.1016/j.scitotenv.2018.11.301Zeebe, R. E., & Wolf-Gradow, D. (2001). CO2 in Seawater: Equilibrium, Kinetics, Isotopes (D. Halpern, Ed.). Elsiever Ocenaographic Series. https://doi.org/10.1016/s0924-7963(02)00179-3Zunino, S., Canu, D. M., Zupo, V., & Solidoro, C. (2019). Direct and indirect impacts of marine acidification on the ecosystem services provided by coralligenous reefs and seagrass systems. Global Ecology and Conservation, 18, e00625. https://doi.org/10.1016/j.gecco.2019.e00625Gavio, B., Palmer-Cantillo, S., & Mancera, J. E. (2010). Historical analysis (2000-2005) of the coastal water quality in San Andrés Island, SeaFlower Biosphere Reserve, Caribbean Colombia. Marine Pollution Bulletin, 60(7), 1018–1030. https://doi.org/10.1016/j.marpolbul.2010.01.025Seagrass Restoration as Mitigation of Ocean Acidification in the Caribbean Region: Blue Carbon Restoration - Código Hermes 46559The Ocean FoundationPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86442/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis de Maestría en Ciencias BiologíaTesis de Maestría en Ciencias Biologíaapplication/pdf1052520https://repositorio.unal.edu.co/bitstream/unal/86442/2/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20Biolog%c3%ada655ad8fcf470c0b69d53cecb8c63b2d1MD52THUMBNAILTesis de Maestría en Ciencias Biología.jpgTesis de Maestría en Ciencias Biología.jpgGenerated Thumbnailimage/jpeg6043https://repositorio.unal.edu.co/bitstream/unal/86442/3/Tesis%20de%20Maestr%c3%ada%20en%20Ciencias%20Biolog%c3%ada.jpg8d4407a6eb4fb5b50869f6d88b68bb91MD53unal/86442oai:repositorio.unal.edu.co:unal/864422024-08-26 23:10:17.004Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=