Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia

Ilustraciones

Autores:
Navarro Quintero, Carlos Eduardo
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85295
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85295
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Haber Bosch
Bosch Meiser
Hidrógeno verde
Amoniaco Verde
Urea verde
portador de hidrógeno
celda de combustible
electrolisis
Green Hydrogen
Green Ammonia
Green Urea
Haber Bosch
Bosch Meiser
hydrogen carrier
fuel cell
electrolysis
Hidrógeno verde
Amoniaco
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_dc880c56630250c4e78bd7643c7f569a
oai_identifier_str oai:repositorio.unal.edu.co:unal/85295
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia
dc.title.translated.eng.fl_str_mv Urea and ammonia for transport and use of green hydrogen in Colombia
title Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia
spellingShingle Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia
620 - Ingeniería y operaciones afines
Haber Bosch
Bosch Meiser
Hidrógeno verde
Amoniaco Verde
Urea verde
portador de hidrógeno
celda de combustible
electrolisis
Green Hydrogen
Green Ammonia
Green Urea
Haber Bosch
Bosch Meiser
hydrogen carrier
fuel cell
electrolysis
Hidrógeno verde
Amoniaco
title_short Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia
title_full Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia
title_fullStr Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia
title_full_unstemmed Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia
title_sort Urea y amoniaco para el transporte y uso del hidrógeno verde en Colombia
dc.creator.fl_str_mv Navarro Quintero, Carlos Eduardo
dc.contributor.advisor.none.fl_str_mv Espinosa Oviedo, Jairo José
dc.contributor.author.none.fl_str_mv Navarro Quintero, Carlos Eduardo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Automática de la Universidad Nacional, GAUNAL
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Haber Bosch
Bosch Meiser
Hidrógeno verde
Amoniaco Verde
Urea verde
portador de hidrógeno
celda de combustible
electrolisis
Green Hydrogen
Green Ammonia
Green Urea
Haber Bosch
Bosch Meiser
hydrogen carrier
fuel cell
electrolysis
Hidrógeno verde
Amoniaco
dc.subject.proposal.spa.fl_str_mv Haber Bosch
Bosch Meiser
Hidrógeno verde
Amoniaco Verde
Urea verde
portador de hidrógeno
celda de combustible
electrolisis
dc.subject.proposal.eng.fl_str_mv Green Hydrogen
Green Ammonia
Green Urea
Haber Bosch
Bosch Meiser
hydrogen carrier
fuel cell
electrolysis
dc.subject.wikidata.none.fl_str_mv Hidrógeno verde
Amoniaco
description Ilustraciones
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-15T19:55:43Z
dc.date.available.none.fl_str_mv 2024-01-15T19:55:43Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85295
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85295
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv U. Khan, T. Yamamoto, and H. Sato, “An insight into potential early adopters of hydrogen fuel-cell vehicles in Japan,” Int J Hydrogen Energy, vol. 46, no. 18, pp. 10589–10607, 2021, doi: 10.1016/j.ijhydene.2020.12.173.
R. Marin, Subido por : 2003.
“Global Energy Review 2019,” Global Energy Review 2019, 2020, doi: 10.1787/90c8c125-en.
Ministerio de Energía, “Estrategia nacional de hidrógeno verde,” p. 33, 2020.
E. Javier and B. Castro, “Viabilidad del uso del hidrógeno como sistema de almacenamiento de energía eléctrica en el contexto colombiano,” 2021.
R. A. Molina et al., Hidrógeno y su almacenamiento. 2021.
M. Reuß, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, and D. Stolten, “Seasonal storage and alternative carriers: A flexible hydrogen supply chain model,” Appl Energy, vol. 200, pp. 290–302, 2017, doi: 10.1016/j.apenergy.2017.05.050.
M. Aziz, A. TriWijayanta, and A. B. D. Nandiyanto, “Ammonia as effective hydrogen storage: A review on production, storage and utilization,” Energies (Basel), vol. 13, no. 12, Jun. 2020, doi: 10.3390/en13123062.
M. Ravi and J. W. Makepeace, “Facilitating green ammonia manufacture under milder conditions: What do heterogeneous catalyst formulations have to offer?,” Chem Sci, vol. 13, no. 4, pp. 890–908, Jan. 2022, doi: 10.1039/d1sc04734e.
Industria del Amoníaco: estado actual y oportunidades para la descarbonización. 2022. [Online]. Available: www.energia.gob.cl
Industria del Amoníaco: estado actual y oportunidades para la descarbonización. 2022. [Online]. Available: www.energia.gob.cl
J. Guo and P. Chen, “Catalyst: NH 3 as an Energy Carrier.” [Online]. Available: http://www
N. Salmon and R. Bañares-Alcántara, “A global, spatially granular techno-economic analysis of offshore green ammonia production,” J Clean Prod, vol. 367, Sep. 2022, doi: 10.1016/j.jclepro.2022.133045.
D. R. MacFarlane et al., “A Roadmap to the Ammonia Economy,” Joule, vol. 4, no. 6. Cell Press, pp. 1186–1205, Jun. 17, 2020. doi: 10.1016/j.joule.2020.04.004.
Y. International ASA, “Fertilizer Industry Handbook 2022 with notes,” 2022. [Online]. Available: www.yara.com/investor-relations/reports-presentations/
“Amoniaco: usos, características, seguridad y manejo,” Amoquimicos Colombia SAS. https://www.amoquimicos.com/usos-del-amoniaco-liquido (accessed Mar. 11, 2023).
R. Lan, J. T. S. Irvine, and S. Tao, “Ammonia and related chemicals as potential indirect hydrogen storage materials,” Int J Hydrogen Energy, vol. 37, no. 2, pp. 1482–1494, Jan. 2012, doi: 10.1016/J.IJHYDENE.2011.10.004.
C. Smith, A. K. Hill, and L. Torrente-Murciano, “Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape,” Energy Environ Sci, vol. 13, no. 2, pp. 331– 344, Feb. 2020, doi: 10.1039/c9ee02873k.
S. Ghavam, M. Vahdati, I. A. G. Wilson, and P. Styring, “Sustainable Ammonia Production Processes,” Frontiers in Energy Research, vol. 9. Frontiers Media S.A., Mar. 29, 2021. doi: 10.3389/fenrg.2021.580808.
J. Cha et al., “An efficient process for sustainable and scalable hydrogen production from green ammonia,” Renewable and Sustainable Energy Reviews, vol. 152, p. 111562, Dec. 2021, doi: 10.1016/J.RSER.2021.111562.
W. S. Chai, Y. Bao, P. Jin, G. Tang, and L. Zhou, “A review on ammonia, ammonia-hydrogen and ammonia-methane fuels,” Renewable and Sustainable Energy Reviews, vol. 147, p. 111254, Sep. 2021, doi: 10.1016/J.RSER.2021.111254.
S. Chiuta, R. C. Everson, H. W. J. P. Neomagus, P. Van Der Gryp, and D. G. Bessarabov, “Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review,” Int J Hydrogen Energy, vol. 38, no. 35, pp. 14968–14991, Nov. 2013, doi: 10.1016/J.IJHYDENE.2013.09.067.
I. Lucentini, X. Garcia, X. Vendrell, and J. Llorca, “Review of the Decomposition of Ammonia to Generate Hydrogen,” Ind Eng Chem Res, vol. 60, no. 51, pp. 18560–18611, Dec. 2021, doi: 10.1021/acs.iecr.1c00843.
A. Lipman and T. Shah, “UC Berkeley Recent Work Title Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report Permalink https://escholarship.org/uc/item/7z69v4wp Publication Date,” 2007. [Online]. Available: https://escholarship.org/uc/item/7z69v4wp
Y. R. Hossein Ali and D. Shin, “Green Hydrogen Production Technologies from Ammonia Cracking,” Energies, vol. 15, no. 21. MDPI, Nov. 01, 2022. doi: 10.3390/en15218246.
D. Cheddie, “Ammonia as a Hydrogen Source for Fuel Cells: A Review,” in Hydrogen Energy - Challenges and Perspectives, InTech, 2012. doi: 10.5772/47759.
T. J. Pearsall and C. G. Garabedian, “Combustion of Anhydrous Ammonia in Diesel Engines,” 1968. [Online]. Available: https://about.jstor.org/terms
M. Aziz, A. TriWijayanta, and A. B. D. Nandiyanto, “Ammonia as effective hydrogen storage: A review on production, storage and utilization,” Energies (Basel), vol. 13, no. 12, Jun. 2020, doi: 10.3390/en13123062.
J. María Álvarez Reyes, “‘ANÁLISIS DE IMPLEMENTACIÓN DE AMONÍACO COMO COMBUSTIBLE PARA LA PROPULSIÓN DE BUQUES MERCANTES’ ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS.”
J. Atchison, “Ammonia-powered cargo shipping in Finland,” AMMONIA ENERGY ASSOCIATION, Oct. 06, 2022. https://www.ammoniaenergy.org/articles/ammonia-poweredcargo-shipping-in-finland/ (accessed Feb. 13, 2023).
J. Atchison, “Wärtsilä & Møkster join forces, Japanese maritime consortium takes next steps,” Wärtsilä & Møkster join forces, Japanese maritime consortium takes next steps, Nov. 01, 2021. https://www.ammoniaenergy.org/articles/wartsila-mokster-join-forces-japanesemaritime-consortium-takes-next-steps/ (accessed Feb. 13, 2023).
J. Atchison, “Fortescue, LMG Marin and Eidesvik to launch ammonia-powered ships,” AMMONIA ENERGY ASSOCIATION, Nov. 17, 2021. https://www.ammoniaenergy.org/articles/fortescue-lmg-marin-and-eidesvik-to-launchammonia-powered-ships/ (accessed Feb. 11, 2023).
J. Atchison, “WinGD to develop ammonia maritime engines by 2025,” WinGD to develop ammonia maritime engines by 2025, Dec. 08, 2021. https://www.ammoniaenergy.org/articles/wingd-to-develop-ammonia-maritime-enginesby-2025/ (accessed Feb. 09, 2023).
J. Atchison, “Retrofitting vessels for ammonia fuel: new technical study from Grieg Star,” AMMONIA ENERGY ASSOCIATION, Mar. 21, 2023. https://www.ammoniaenergy.org/articles/retrofitting-vessels-for-ammonia-fuel-newtechnical-study-from-grieg-star/ (accessed Apr. 03, 2023).
J. Atchison, “Maritime developments: on-water cracking, AiPs and Singapore bunker study releases first results,” AMMONIA ENERGY ASSOCIATION, May 2023. https://www.ammoniaenergy.org/articles/maritime-developments-on-water-cracking-aipsand-singapore-bunker-study-releases-first-results/ (accessed May 05, 2023).
G. Jeerh, M. Zhang, and S. Tao, “Recent progress in ammonia fuel cells and their potential applications,” Journal of Materials Chemistry A, vol. 9, no. 2. Royal Society of Chemistry, pp. 727–752, Jan. 14, 2021. doi: 10.1039/d0ta08810b.
M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ionconducting electrolyte,” J Power Sources, vol. 183, no. 2, pp. 682–686, Sep. 2008, doi: 10.1016/J.JPOWSOUR.2008.05.022.
D. Faehn, M. G. Bull, and J. R. Shekleton, “Experimental Investigation of Ammonia as a Gas Turbine Engine Fuel SOCIETY OF AUTOMOTIVE ENGINEERS,” 2018.
A. Karabeyoglu and B. Evans, “Fuel Conditioning System for Ammonia-Fired Power Plants 9th Annual NH3 Fuel Association Conference,” 2012.
D. Lee and H. H. Song, “Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics,” Journal of Mechanical Science and Technology, vol. 32, no. 4, pp. 1905–1925, Apr. 2018, doi: 10.1007/s12206-018-0347-x.
A. Sánchez, E. Castellano, M. Martín, and P. Vega, “Evaluating ammonia as green fuel for power generation: A thermo-chemical perspective,” Appl Energy, vol. 293, p. 116956, Jul. 2021, doi: 10.1016/J.APENERGY.2021.116956
H. Zhang, L. Wang, J. Van herle, F. Maréchal, and U. Desideri, “Techno-economic comparison of 100% renewable urea production processes,” Appl Energy, vol. 284, p. 116401, Feb. 2021, doi: 10.1016/J.APENERGY.2020.116401
S. Argentina de Gastroenterología Argentina Parquet and R. A. Herman Boerhaave, “Acta Gastroenterológica Latinoamericana,” vol. 43, no. 1, p. 8, 2013, [Online]. Available: http://www.redalyc.org/articulo.oa?id=199326065017
“INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS TESIS EVALUACIÓN TÉCNICA Y ECONÓMICA PARA LA FABRICACIÓN DE LA UREA EN MÉXICO.”
A. N. Rollinson, J. Jones, V. Dupont, and M. V. Twigg, “Urea as a hydrogen carrier: A perspective on its potential for safe, sustainable and long-term energy supply,” Energy and Environmental Science, vol. 4, no. 4. pp. 1216–1224, Apr. 2011. doi: 10.1039/c0ee00705f.
J. Meessen, “Urea synthesis,” Chemie-Ingenieur-Technik, vol. 86, no. 12. Wiley-VCH Verlag, pp. 2180–2189, Dec. 01, 2014. doi: 10.1002/cite.201400064.
“1454430885_ficha-de-seguridad-verde-urea-web-”
“Urea,” Thechemicalcompany, Nov. 12, 2021. https://thechemco.com/chemical/urea/#:~:text=Urea%20is%20a%20raw%20material,prod ucts%2C%20and%20in%20resin%20production. (accessed Apr. 19, 2023).
“NR09142”.
J. Piquero-Casals, D. Morgado-Carrasco, J. Delgado, and A. Garre, “Indications of topical urea in dermatology,” Piel, vol. 36, no. 10, pp. 689–694, Dec. 2021, doi: 10.1016/j.piel.2021.06.008
T. Fin and D. E. Máster, “ESCOLA TÉCNICA SUPERIOR DE NÁUTICA E MÁQUINAS UNIVERSIDADE DA CORUÑA ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS.”
“UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA,” 2019.
B. Guan, R. Zhan, H. Lin, and Z. Huang, “Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust,” Appl Therm Eng, vol. 66, no. 1–2, pp. 395–414, May 2014, doi: 10.1016/J.APPLTHERMALENG.2014.02.021.
“UNIVERSIDAD POLITÉCNICA DE CARTAGENA.”
“TOTAL RECYCLE PROCESSES,” CASALE. https://www.casale.ch/revamping/urearevamping/total-recycleprocesses#:~:text=In%20Total%20Recycle%20processes%20the,dioxide%20and%20ammoni a%20are%20recovered. (accessed May 23, 2023).
“STRIPPER,” STAMICARBON. https://www.stamicarbon.com/advance-design-safurex-highpressure-stripper (accessed May 19, 2023).
N. Zhu, F. Qian, X. Xu, M. Wang, and Q. Teng, “Thermogravimetric experiment of urea at constant temperatures,” Materials, vol. 14, no. 20, Oct. 2021, doi: 10.3390/ma14206190.
A. N. Rollinson, G. L. Rickett, A. Lea-Langton, V. Dupont, and M. V. Twigg, “Hydrogen from urea-water and ammonia-water solutions,” Appl Catal B, vol. 106, no. 3–4, pp. 304–315, Aug. 2011, doi: 10.1016/j.apcatb.2011.05.031.
R. L. King and G. G. Botte, “Hydrogen production via urea electrolysis using a gel electrolyte,” J Power Sources, vol. 196, no. 5, pp. 2773–2778, Mar. 2011, doi: 10.1016/j.jpowsour.2010.11.006.
S. Paygozar, A. Sabour Rouh Aghdam, E. Hassanizadeh, R. Andaveh, and G. Barati Darband, “Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production,” International Journal of Hydrogen Energy, vol. 48, no. 20. Elsevier Ltd, pp. 7219–7259, Mar. 05, 2023. doi: 10.1016/j.ijhydene.2022.11.087.
H. Sun et al., “Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide,” Sci Bull (Beijing), vol. 67, no. 17, pp. 1763–1775, Sep. 2022, doi: 10.1016/j.scib.2022.08.008.
H. Liu, D. Wen, and B. Zhu, “In-situ growth of hierarchical nickel sulfide composites on nickel foam for enhanced urea oxidation reaction and urine electrolysis,” Journal of Electroanalytical Chemistry, vol. 928, Jan. 2023, doi: 10.1016/j.jelechem.2022.117082.
R. L. King, “Investigation of Anode Catalysts and Alternative Electrolytes for Stable Hydrogen Production from Urea Solutions,” 2010.
B. K. Boggs, R. L. King, and G. G. Botte, “Urea electrolysis: Direct hydrogen production from urine,” Chemical Communications, no. 32, pp. 4859–4861, 2009, doi: 10.1039/b905974a.
B. Guan, R. Zhan, H. Lin, and Z. Huang, “Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust,” Applied Thermal Engineering, vol. 66, no. 1–2. Elsevier Ltd, pp. 395–414, 2014. doi: 10.1016/j.applthermaleng.2014.02.021.
M. Tayyeb Javed, N. Irfan, and B. M. Gibbs, “Control of combustion-generated nitrogen oxides by selective non-catalytic reduction,” J Environ Manage, vol. 83, no. 3, pp. 251–289, May 2007, doi: 10.1016/J.JENVMAN.2006.03.006.
Y. Liao, P. Dimopoulos Eggenschwiler, D. Rentsch, F. Curto, and K. Boulouchos, “Characterization of the urea-water spray impingement in diesel selective catalytic reduction systems,” Appl Energy, vol. 205, pp. 964–975, Nov. 2017, doi: 10.1016/J.APENERGY.2017.08.088.
R. Lan, S. Tao, and J. T. S. Irvine, “A direct urea fuel cell - Power from fertiliser and waste,” Energy Environ Sci, vol. 3, no. 4, pp. 438–441, 2010, doi: 10.1039/b924786f.
G. Gnana kumar, A. Farithkhan, and A. Manthiram, “Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis,” Advanced Energy and Sustainability Research, vol. 1, no. 1, p. 2000015, Nov. 2020, doi: 10.1002/aesr.202000015.
Y. M. T. A. Putri, J. Gunlazuardi, Y. Yulizar, R. Wibowo, Y. Einaga, and T. A. Ivandini, “Recent progress in direct urea fuel cell,” Open Chemistry, vol. 19, no. 1. De Gruyter Open Ltd, pp. 1116–1133, Jan. 01, 2021. doi: 10.1515/chem-2021-0100.
F. Ishak, “Thermodynamic Analysis of Ammonia and Urea fed Solid Oxide Fuel Cells,” 2011.
“Estadisticas.” https://www-legiscomexcom.luisamigo.proxybk.com/Home/Estadisticas?id=a528a9624a5a4596b8d4aa2efa701838 (accessed Feb. 05, 2023).
“¿Cómo debe ser el almacenamiento y transporte del amoniaco?,” Amoquimicos Colombia SAS. https://www.amoquimicos.com/almacenamiento-y-transporte-de-amoniaco (accessed May 19, 2023).
“Clasificación de sustancias químicas según las Naciones Unidas,” SURA. https://www.arlsura.com/index.php?option=com_content&view=article&id=47 (accessed May 17, 2023).
“Control para el manejo de productos y sustancias químicas,” Ministerio de Justicia. https://www.minjusticia.gov.co/programas-co/control-para-el-manejo-sustancias-quimicas (accessed May 20, 2023).
“Autorización extraordinaria.”
“¿Qué es la urea y por qué Colombia no la produce?,” Periódico UNAL. https://periodico.unal.edu.co/articulos/que-es-la-urea-y-por-que-colombia-no-la-produce/ (accessed May 18, 2023).
“Manejo y transporte de fertilizantes minerales,” YARA. https://www.yara.com.pe/nutricion-vegetal/almacenaje-y-manejo/manejo-y-transporte/ (accessed May 18, 2023).
R. M. Nayak-Luke, C. Forbes, Z. Cesaro, and R. Bãnares-Alcántara, “Techno-Economic Aspects of Production, Storage and Distribution of Ammonia,” in Techno-Economic Challenges of Green Ammonia as an Energy Vector, Elsevier, 2020, pp. 191–207. doi: 10.1016/B978-0-12-820560-0.00008-4.
G. Subbaraman, “Final Report-Rev0 Emerging and Existing Oxygen Production Technology Scan and Evaluation,” 2018. [Online]. Available: www.gastechnology.org
M. Jain, R. Muthalathu, and X. Y. Wu, “Electrified ammonia production as a commodity and energy storage medium to connect the food, energy, and trade sectors,” iScience, vol. 25, no. 8, Aug. 2022, doi: 10.1016/j.isci.2022.104724.
M. Rivarolo, G. Riveros-Godoy, L. Magistri, and A. F. Massardo, “Clean hydrogen and ammonia synthesis in paraguay from the Itaipu 14 GW hydroelectric plant,” ChemEngineering, vol. 3, no. 4, pp. 1–11, Dec. 2019, doi: 10.3390/chemengineering3040087.
“Fuel ammonia supply cost analysis (Interim report) Fuel ammonia supply chain publicprivate task force,” 2022.
Ammonia : zero-carbon fertiliser, fuel and energy store
“Fuel production cost estimates and assumptions.”
S. Y. Lee, J.-H. Ryu, and I.-B. Lee, “A PRELIMINARY TECHNO-ECONOMIC ANALYSIS OF POWER TO AMMNONIA PROCESSES USING ALKALINE ELECTROLYSIS AND AIR SEPARATION UNIT,” 2019.
W. C. Leighty, “Alternatives to Electricity for Transmission and Annual-scale Firming Storage for Diverse, Stranded, Renewable Energy Resources: Hydrogen and Ammonia.”
A. Castañeda, A. Sofía, G. Diego, M. Castrillón, and J. C. Farfán, “Cartagena como centro industrial de hidrógeno bajo en carbono,” 2022.
“Working_Paper_Costo_de_Transporte_vf”
Ammonia : zero-carbon fertiliser, fuel and energy store.
W. C. Leighty, “Alternatives to Electricity for Transmission and Annual-scale Firming Storage for Diverse, Stranded, Renewable Energy Resources: Hydrogen and Ammonia.”
H. Zhang, L. Wang, J. Van herle, F. Maréchal, and U. Desideri, “Techno-economic comparison of 100% renewable urea production processes,” Appl Energy, vol. 284, Feb. 2021, doi: 10.1016/j.apenergy.2020.116401.
C. Fernando and W. W. Purwanto, “Techno-economic analysis of a small-scale power-togreen urea plant,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Apr. 2021. doi: 10.1088/1755-1315/716/1/012010
“TFG_JOSE_MANUEL_PERALES_FERNANDEZ”.
“INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS TESIS EVALUACIÓN TÉCNICA Y ECONÓMICA PARA LA FABRICACIÓN DE LA UREA EN MÉXICO.”
pidjoe, “The Future of Hydrogen.”
R. E. Beu and S. Transporte, “Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética.”
Y. Rizi, H. Ali, and D. Shin, “Process of Converting Ammonia to Hydrogen.”
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 81 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85295/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85295/2/1098775727.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85295/3/1098775727.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
c184ec0943ef6404d0e92110e09d99de
aaa44fb92b94c14240d936324bce7535
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089807775662080
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Espinosa Oviedo, Jairo Joséad115e960b2989299b2018dae59e6ec2Navarro Quintero, Carlos Eduardof53a31089f73a346c298f549e45d46e6Grupo de Automática de la Universidad Nacional, GAUNAL2024-01-15T19:55:43Z2024-01-15T19:55:43Z2023https://repositorio.unal.edu.co/handle/unal/85295Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesCon la integración de las energías renovables no convencionales al proceso de electrolisis para la obtención de hidrógeno a partir del agua, los costos de producción de este potencial vector energético se han logrado disminuir, proyectando precios competitivos a un mediano plazo frente al hidrógeno “negro”, hidrógeno “gris” e hidrógeno “azul”, producidos a partir del carbón, del gas natural y de combustibles fósiles con sistemas de captura de carbono, correspondientemente, los cuales son los más utilizados en los procesos de obtención de H2 actualmente. El hidrógeno se ha visualizado como un elemento clave no solo para dar un alto a la contaminación, sino para iniciar un proceso de descarbonización, descentralización y democratización de los actuales sistemas energéticos. Esto ha llevado a que se sueñe con una sociedad sostenible basada en hidrógeno, cuyo objetivo es reducir la dependencia a los combustibles fósiles [1] y compuestos químicos contaminantes en sectores como el eléctrico, el transporte, el agrícola, entre otros. Uno de los retos que tiene el hidrógeno verde es resolver su alto costo de almacenamiento y transporte, buscando así ser más competitivo frente a los tipos de hidrógeno convencionales, los cuales son producidos en grandes cantidades directamente en el sitio de consumo. Para esto, se han evaluado diferentes alternativas como hidruros metálicos y compuestos químicos, de los cuales resalta el amoniaco como una solución prometedora. La urea, al ser un derivado del amoniaco, ser transportado de manera muy fácil y tener un amplio uso actualmente en el sector agrícola, se postula también como una solución frente a la problemática antes expuesta. Este trabajo final de maestría compara técnica y financieramente el transporte de hidrógeno puro frente al amoniaco y la urea, realizando un contexto inicial de las características fisicoquímicas de los compuestos propuestos como portadores de hidrogeno, sus usos, su mercado nacional e internacional actual y las maneras como son transportados, incluyendo costos, recomendaciones y restricciones. Además, se presentan los métodos de producción presentes en el mercado y los que aún se encuentran en investigación para la obtención de ambos compuestos, con el fin de tomar el proceso con mayor madurez tecnológica y proyectar una planta de amoniaco de 160 toneladas por día y una planta de urea de 392,82 toneladas por día en el departamento de La Guajira. Con lo anterior y apoyado de estudios previos similares, se hace una estimación financiera para encontrar el costo nivelado el amoniaco y la urea producido en Colombia, considerando una vida útil de la planta de 25 años. También se mencionan los procesos para el uso directo de los portadores de hidrógeno como materia prima de motores de combustión, turbinas de gas y celdas de combustible, junto con los métodos de reconversión para recuperar nuevamente el hidrógeno después de ser transportado al lugar de destino. Por último, recopilada toda la información, se hace el comparativo para encontrar la forma de transporte y almacenamiento de hidrógeno más adecuada, con un caso de estudio que consiste en trasladarlo desde La Guajira hasta la ciudad de Medellín. Se analizan tres opciones en destino: 1. Costo del Hidrógeno, amoniaco y urea sin sufrir ninguna transformación y antes de cualquier uso. 2. Costo del hidrógeno y sus portadores después de utilizarse como materia prima en motores de combustión y celdas de combustible. 3. Costo del hidrógeno al recuperarse del amoniaco y la urea. (texto tomado de la fuente)With the integration of non-conventional renewable energies into the electrolysis process for obtaining hydrogen from water, the production costs of this potential energy vector have been reduced, projecting competitive prices in the medium term compared to "black" hydrogen, "gray" hydrogen and "blue" hydrogen, produced from coal, natural gas, and fossil fuels with carbon capture systems, correspondingly, which are currently the most used in the processes of obtaining H2. Hydrogen has been seen as a key element to stop pollution and initiate decarbonization, decentralization, and democratization of current energy systems. This has led to the dream of a sustainable society based on hydrogen, which aims to reduce dependence on fossil fuels [1] and polluting chemical compounds in sectors such as electricity, transportation, and agriculture. One of the challenges of green hydrogen is to solve its high storage and transportation cost, seeking to be more competitive with conventional types of hydrogen, which are produced in large quantities directly at the site of consumption. For this purpose, different alternatives have been evaluated, such as metal hydrides and chemical compounds, of which ammonia stands out as a promising solution. Urea, being a derivative of ammonia, being easily transported and having wide use in the agricultural sector, is also postulated as a solution to the above-mentioned problems. This thesis compares technically and financially the transport of pure hydrogen versus ammonia and urea, making an initial context of the physicochemical characteristics of the compounds proposed as hydrogen carriers, their uses, their current national and international market, and how they are transported, including costs, recommendations, and restrictions. In addition, the production methods present in the market and those that are still under research for obtaining both compounds are presented, to take the process with greater technological maturity and project an ammonia plant of 160 tons per day and a urea plant of 392.82 tons per day in the department of La Guajira. With the above and supported by similar previous studies, a financial estimate is made to find the levelized cost of ammonia and urea, considering a useful life of the plant of 25 years. The processes for the direct use of hydrogen carriers as raw material for combustion engines, gas turbines, and fuel cells are also mentioned, together with the conversion methods to recover the hydrogen again after being transported to the destination site. Finally, once all the information has been compiled, a comparison is made to find the most appropriate way of transporting and storing hydrogen, with a case study that consists of transporting it from La Guajira to the city of Medellin. Three destination options are analyzed: 1. Cost of Hydrogen, ammonia and urea without undergoing any transformation and before any use. 2. Cost of hydrogen and its carriers after being used as raw material in combustion engines and fuel cells. 3. Cost of hydrogen when recovered from ammonia and urea.MaestríaMaestría en Ingeniería - Ingeniería EléctricaCalidad de la Energía, Electrónica de Potencia y Fuentes Alternas de EnergíaÁrea Curricular de Ingeniería Eléctrica e Ingeniería de Control81 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería EléctricaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín620 - Ingeniería y operaciones afinesHaber BoschBosch MeiserHidrógeno verdeAmoniaco VerdeUrea verdeportador de hidrógenocelda de combustibleelectrolisisGreen HydrogenGreen AmmoniaGreen UreaHaber BoschBosch Meiserhydrogen carrierfuel cellelectrolysisHidrógeno verdeAmoniacoUrea y amoniaco para el transporte y uso del hidrógeno verde en ColombiaUrea and ammonia for transport and use of green hydrogen in ColombiaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMU. Khan, T. Yamamoto, and H. Sato, “An insight into potential early adopters of hydrogen fuel-cell vehicles in Japan,” Int J Hydrogen Energy, vol. 46, no. 18, pp. 10589–10607, 2021, doi: 10.1016/j.ijhydene.2020.12.173.R. Marin, Subido por : 2003.“Global Energy Review 2019,” Global Energy Review 2019, 2020, doi: 10.1787/90c8c125-en.Ministerio de Energía, “Estrategia nacional de hidrógeno verde,” p. 33, 2020.E. Javier and B. Castro, “Viabilidad del uso del hidrógeno como sistema de almacenamiento de energía eléctrica en el contexto colombiano,” 2021.R. A. Molina et al., Hidrógeno y su almacenamiento. 2021.M. Reuß, T. Grube, M. Robinius, P. Preuster, P. Wasserscheid, and D. Stolten, “Seasonal storage and alternative carriers: A flexible hydrogen supply chain model,” Appl Energy, vol. 200, pp. 290–302, 2017, doi: 10.1016/j.apenergy.2017.05.050.M. Aziz, A. TriWijayanta, and A. B. D. Nandiyanto, “Ammonia as effective hydrogen storage: A review on production, storage and utilization,” Energies (Basel), vol. 13, no. 12, Jun. 2020, doi: 10.3390/en13123062.M. Ravi and J. W. Makepeace, “Facilitating green ammonia manufacture under milder conditions: What do heterogeneous catalyst formulations have to offer?,” Chem Sci, vol. 13, no. 4, pp. 890–908, Jan. 2022, doi: 10.1039/d1sc04734e.Industria del Amoníaco: estado actual y oportunidades para la descarbonización. 2022. [Online]. Available: www.energia.gob.clIndustria del Amoníaco: estado actual y oportunidades para la descarbonización. 2022. [Online]. Available: www.energia.gob.clJ. Guo and P. Chen, “Catalyst: NH 3 as an Energy Carrier.” [Online]. Available: http://wwwN. Salmon and R. Bañares-Alcántara, “A global, spatially granular techno-economic analysis of offshore green ammonia production,” J Clean Prod, vol. 367, Sep. 2022, doi: 10.1016/j.jclepro.2022.133045.D. R. MacFarlane et al., “A Roadmap to the Ammonia Economy,” Joule, vol. 4, no. 6. Cell Press, pp. 1186–1205, Jun. 17, 2020. doi: 10.1016/j.joule.2020.04.004.Y. International ASA, “Fertilizer Industry Handbook 2022 with notes,” 2022. [Online]. Available: www.yara.com/investor-relations/reports-presentations/“Amoniaco: usos, características, seguridad y manejo,” Amoquimicos Colombia SAS. https://www.amoquimicos.com/usos-del-amoniaco-liquido (accessed Mar. 11, 2023).R. Lan, J. T. S. Irvine, and S. Tao, “Ammonia and related chemicals as potential indirect hydrogen storage materials,” Int J Hydrogen Energy, vol. 37, no. 2, pp. 1482–1494, Jan. 2012, doi: 10.1016/J.IJHYDENE.2011.10.004.C. Smith, A. K. Hill, and L. Torrente-Murciano, “Current and future role of Haber-Bosch ammonia in a carbon-free energy landscape,” Energy Environ Sci, vol. 13, no. 2, pp. 331– 344, Feb. 2020, doi: 10.1039/c9ee02873k.S. Ghavam, M. Vahdati, I. A. G. Wilson, and P. Styring, “Sustainable Ammonia Production Processes,” Frontiers in Energy Research, vol. 9. Frontiers Media S.A., Mar. 29, 2021. doi: 10.3389/fenrg.2021.580808.J. Cha et al., “An efficient process for sustainable and scalable hydrogen production from green ammonia,” Renewable and Sustainable Energy Reviews, vol. 152, p. 111562, Dec. 2021, doi: 10.1016/J.RSER.2021.111562.W. S. Chai, Y. Bao, P. Jin, G. Tang, and L. Zhou, “A review on ammonia, ammonia-hydrogen and ammonia-methane fuels,” Renewable and Sustainable Energy Reviews, vol. 147, p. 111254, Sep. 2021, doi: 10.1016/J.RSER.2021.111254.S. Chiuta, R. C. Everson, H. W. J. P. Neomagus, P. Van Der Gryp, and D. G. Bessarabov, “Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review,” Int J Hydrogen Energy, vol. 38, no. 35, pp. 14968–14991, Nov. 2013, doi: 10.1016/J.IJHYDENE.2013.09.067.I. Lucentini, X. Garcia, X. Vendrell, and J. Llorca, “Review of the Decomposition of Ammonia to Generate Hydrogen,” Ind Eng Chem Res, vol. 60, no. 51, pp. 18560–18611, Dec. 2021, doi: 10.1021/acs.iecr.1c00843.A. Lipman and T. Shah, “UC Berkeley Recent Work Title Ammonia as an Alternative Energy Storage Medium for Hydrogen Fuel Cells: Scientific and Technical Review for Near-Term Stationary Power Demonstration Projects, Final Report Permalink https://escholarship.org/uc/item/7z69v4wp Publication Date,” 2007. [Online]. Available: https://escholarship.org/uc/item/7z69v4wpY. R. Hossein Ali and D. Shin, “Green Hydrogen Production Technologies from Ammonia Cracking,” Energies, vol. 15, no. 21. MDPI, Nov. 01, 2022. doi: 10.3390/en15218246.D. Cheddie, “Ammonia as a Hydrogen Source for Fuel Cells: A Review,” in Hydrogen Energy - Challenges and Perspectives, InTech, 2012. doi: 10.5772/47759.T. J. Pearsall and C. G. Garabedian, “Combustion of Anhydrous Ammonia in Diesel Engines,” 1968. [Online]. Available: https://about.jstor.org/termsM. Aziz, A. TriWijayanta, and A. B. D. Nandiyanto, “Ammonia as effective hydrogen storage: A review on production, storage and utilization,” Energies (Basel), vol. 13, no. 12, Jun. 2020, doi: 10.3390/en13123062.J. María Álvarez Reyes, “‘ANÁLISIS DE IMPLEMENTACIÓN DE AMONÍACO COMO COMBUSTIBLE PARA LA PROPULSIÓN DE BUQUES MERCANTES’ ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS.”J. Atchison, “Ammonia-powered cargo shipping in Finland,” AMMONIA ENERGY ASSOCIATION, Oct. 06, 2022. https://www.ammoniaenergy.org/articles/ammonia-poweredcargo-shipping-in-finland/ (accessed Feb. 13, 2023).J. Atchison, “Wärtsilä & Møkster join forces, Japanese maritime consortium takes next steps,” Wärtsilä & Møkster join forces, Japanese maritime consortium takes next steps, Nov. 01, 2021. https://www.ammoniaenergy.org/articles/wartsila-mokster-join-forces-japanesemaritime-consortium-takes-next-steps/ (accessed Feb. 13, 2023).J. Atchison, “Fortescue, LMG Marin and Eidesvik to launch ammonia-powered ships,” AMMONIA ENERGY ASSOCIATION, Nov. 17, 2021. https://www.ammoniaenergy.org/articles/fortescue-lmg-marin-and-eidesvik-to-launchammonia-powered-ships/ (accessed Feb. 11, 2023).J. Atchison, “WinGD to develop ammonia maritime engines by 2025,” WinGD to develop ammonia maritime engines by 2025, Dec. 08, 2021. https://www.ammoniaenergy.org/articles/wingd-to-develop-ammonia-maritime-enginesby-2025/ (accessed Feb. 09, 2023).J. Atchison, “Retrofitting vessels for ammonia fuel: new technical study from Grieg Star,” AMMONIA ENERGY ASSOCIATION, Mar. 21, 2023. https://www.ammoniaenergy.org/articles/retrofitting-vessels-for-ammonia-fuel-newtechnical-study-from-grieg-star/ (accessed Apr. 03, 2023).J. Atchison, “Maritime developments: on-water cracking, AiPs and Singapore bunker study releases first results,” AMMONIA ENERGY ASSOCIATION, May 2023. https://www.ammoniaenergy.org/articles/maritime-developments-on-water-cracking-aipsand-singapore-bunker-study-releases-first-results/ (accessed May 05, 2023).G. Jeerh, M. Zhang, and S. Tao, “Recent progress in ammonia fuel cells and their potential applications,” Journal of Materials Chemistry A, vol. 9, no. 2. Royal Society of Chemistry, pp. 727–752, Jan. 14, 2021. doi: 10.1039/d0ta08810b.M. Ni, D. Y. C. Leung, and M. K. H. Leung, “Thermodynamic analysis of ammonia fed solid oxide fuel cells: Comparison between proton-conducting electrolyte and oxygen ionconducting electrolyte,” J Power Sources, vol. 183, no. 2, pp. 682–686, Sep. 2008, doi: 10.1016/J.JPOWSOUR.2008.05.022.D. Faehn, M. G. Bull, and J. R. Shekleton, “Experimental Investigation of Ammonia as a Gas Turbine Engine Fuel SOCIETY OF AUTOMOTIVE ENGINEERS,” 2018.A. Karabeyoglu and B. Evans, “Fuel Conditioning System for Ammonia-Fired Power Plants 9th Annual NH3 Fuel Association Conference,” 2012.D. Lee and H. H. Song, “Development of combustion strategy for the internal combustion engine fueled by ammonia and its operating characteristics,” Journal of Mechanical Science and Technology, vol. 32, no. 4, pp. 1905–1925, Apr. 2018, doi: 10.1007/s12206-018-0347-x.A. Sánchez, E. Castellano, M. Martín, and P. Vega, “Evaluating ammonia as green fuel for power generation: A thermo-chemical perspective,” Appl Energy, vol. 293, p. 116956, Jul. 2021, doi: 10.1016/J.APENERGY.2021.116956H. Zhang, L. Wang, J. Van herle, F. Maréchal, and U. Desideri, “Techno-economic comparison of 100% renewable urea production processes,” Appl Energy, vol. 284, p. 116401, Feb. 2021, doi: 10.1016/J.APENERGY.2020.116401S. Argentina de Gastroenterología Argentina Parquet and R. A. Herman Boerhaave, “Acta Gastroenterológica Latinoamericana,” vol. 43, no. 1, p. 8, 2013, [Online]. Available: http://www.redalyc.org/articulo.oa?id=199326065017“INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS TESIS EVALUACIÓN TÉCNICA Y ECONÓMICA PARA LA FABRICACIÓN DE LA UREA EN MÉXICO.”A. N. Rollinson, J. Jones, V. Dupont, and M. V. Twigg, “Urea as a hydrogen carrier: A perspective on its potential for safe, sustainable and long-term energy supply,” Energy and Environmental Science, vol. 4, no. 4. pp. 1216–1224, Apr. 2011. doi: 10.1039/c0ee00705f.J. Meessen, “Urea synthesis,” Chemie-Ingenieur-Technik, vol. 86, no. 12. Wiley-VCH Verlag, pp. 2180–2189, Dec. 01, 2014. doi: 10.1002/cite.201400064.“1454430885_ficha-de-seguridad-verde-urea-web-”“Urea,” Thechemicalcompany, Nov. 12, 2021. https://thechemco.com/chemical/urea/#:~:text=Urea%20is%20a%20raw%20material,prod ucts%2C%20and%20in%20resin%20production. (accessed Apr. 19, 2023).“NR09142”.J. Piquero-Casals, D. Morgado-Carrasco, J. Delgado, and A. Garre, “Indications of topical urea in dermatology,” Piel, vol. 36, no. 10, pp. 689–694, Dec. 2021, doi: 10.1016/j.piel.2021.06.008T. Fin and D. E. Máster, “ESCOLA TÉCNICA SUPERIOR DE NÁUTICA E MÁQUINAS UNIVERSIDADE DA CORUÑA ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS.”“UNIVERSIDAD AUTÓNOMA DE NUEVO LEÓN FACULTAD DE INGENIERÍA MECÁNICA Y ELÉCTRICA,” 2019.B. Guan, R. Zhan, H. Lin, and Z. Huang, “Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust,” Appl Therm Eng, vol. 66, no. 1–2, pp. 395–414, May 2014, doi: 10.1016/J.APPLTHERMALENG.2014.02.021.“UNIVERSIDAD POLITÉCNICA DE CARTAGENA.”“TOTAL RECYCLE PROCESSES,” CASALE. https://www.casale.ch/revamping/urearevamping/total-recycleprocesses#:~:text=In%20Total%20Recycle%20processes%20the,dioxide%20and%20ammoni a%20are%20recovered. (accessed May 23, 2023).“STRIPPER,” STAMICARBON. https://www.stamicarbon.com/advance-design-safurex-highpressure-stripper (accessed May 19, 2023).N. Zhu, F. Qian, X. Xu, M. Wang, and Q. Teng, “Thermogravimetric experiment of urea at constant temperatures,” Materials, vol. 14, no. 20, Oct. 2021, doi: 10.3390/ma14206190.A. N. Rollinson, G. L. Rickett, A. Lea-Langton, V. Dupont, and M. V. Twigg, “Hydrogen from urea-water and ammonia-water solutions,” Appl Catal B, vol. 106, no. 3–4, pp. 304–315, Aug. 2011, doi: 10.1016/j.apcatb.2011.05.031.R. L. King and G. G. Botte, “Hydrogen production via urea electrolysis using a gel electrolyte,” J Power Sources, vol. 196, no. 5, pp. 2773–2778, Mar. 2011, doi: 10.1016/j.jpowsour.2010.11.006.S. Paygozar, A. Sabour Rouh Aghdam, E. Hassanizadeh, R. Andaveh, and G. Barati Darband, “Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production,” International Journal of Hydrogen Energy, vol. 48, no. 20. Elsevier Ltd, pp. 7219–7259, Mar. 05, 2023. doi: 10.1016/j.ijhydene.2022.11.087.H. Sun et al., “Highly efficient overall urea electrolysis via single-atomically active centers on layered double hydroxide,” Sci Bull (Beijing), vol. 67, no. 17, pp. 1763–1775, Sep. 2022, doi: 10.1016/j.scib.2022.08.008.H. Liu, D. Wen, and B. Zhu, “In-situ growth of hierarchical nickel sulfide composites on nickel foam for enhanced urea oxidation reaction and urine electrolysis,” Journal of Electroanalytical Chemistry, vol. 928, Jan. 2023, doi: 10.1016/j.jelechem.2022.117082.R. L. King, “Investigation of Anode Catalysts and Alternative Electrolytes for Stable Hydrogen Production from Urea Solutions,” 2010.B. K. Boggs, R. L. King, and G. G. Botte, “Urea electrolysis: Direct hydrogen production from urine,” Chemical Communications, no. 32, pp. 4859–4861, 2009, doi: 10.1039/b905974a.B. Guan, R. Zhan, H. Lin, and Z. Huang, “Review of state of the art technologies of selective catalytic reduction of NOx from diesel engine exhaust,” Applied Thermal Engineering, vol. 66, no. 1–2. Elsevier Ltd, pp. 395–414, 2014. doi: 10.1016/j.applthermaleng.2014.02.021.M. Tayyeb Javed, N. Irfan, and B. M. Gibbs, “Control of combustion-generated nitrogen oxides by selective non-catalytic reduction,” J Environ Manage, vol. 83, no. 3, pp. 251–289, May 2007, doi: 10.1016/J.JENVMAN.2006.03.006.Y. Liao, P. Dimopoulos Eggenschwiler, D. Rentsch, F. Curto, and K. Boulouchos, “Characterization of the urea-water spray impingement in diesel selective catalytic reduction systems,” Appl Energy, vol. 205, pp. 964–975, Nov. 2017, doi: 10.1016/J.APENERGY.2017.08.088.R. Lan, S. Tao, and J. T. S. Irvine, “A direct urea fuel cell - Power from fertiliser and waste,” Energy Environ Sci, vol. 3, no. 4, pp. 438–441, 2010, doi: 10.1039/b924786f.G. Gnana kumar, A. Farithkhan, and A. Manthiram, “Direct Urea Fuel Cells: Recent Progress and Critical Challenges of Urea Oxidation Electrocatalysis,” Advanced Energy and Sustainability Research, vol. 1, no. 1, p. 2000015, Nov. 2020, doi: 10.1002/aesr.202000015.Y. M. T. A. Putri, J. Gunlazuardi, Y. Yulizar, R. Wibowo, Y. Einaga, and T. A. Ivandini, “Recent progress in direct urea fuel cell,” Open Chemistry, vol. 19, no. 1. De Gruyter Open Ltd, pp. 1116–1133, Jan. 01, 2021. doi: 10.1515/chem-2021-0100.F. Ishak, “Thermodynamic Analysis of Ammonia and Urea fed Solid Oxide Fuel Cells,” 2011.“Estadisticas.” https://www-legiscomexcom.luisamigo.proxybk.com/Home/Estadisticas?id=a528a9624a5a4596b8d4aa2efa701838 (accessed Feb. 05, 2023).“¿Cómo debe ser el almacenamiento y transporte del amoniaco?,” Amoquimicos Colombia SAS. https://www.amoquimicos.com/almacenamiento-y-transporte-de-amoniaco (accessed May 19, 2023).“Clasificación de sustancias químicas según las Naciones Unidas,” SURA. https://www.arlsura.com/index.php?option=com_content&view=article&id=47 (accessed May 17, 2023).“Control para el manejo de productos y sustancias químicas,” Ministerio de Justicia. https://www.minjusticia.gov.co/programas-co/control-para-el-manejo-sustancias-quimicas (accessed May 20, 2023).“Autorización extraordinaria.”“¿Qué es la urea y por qué Colombia no la produce?,” Periódico UNAL. https://periodico.unal.edu.co/articulos/que-es-la-urea-y-por-que-colombia-no-la-produce/ (accessed May 18, 2023).“Manejo y transporte de fertilizantes minerales,” YARA. https://www.yara.com.pe/nutricion-vegetal/almacenaje-y-manejo/manejo-y-transporte/ (accessed May 18, 2023).R. M. Nayak-Luke, C. Forbes, Z. Cesaro, and R. Bãnares-Alcántara, “Techno-Economic Aspects of Production, Storage and Distribution of Ammonia,” in Techno-Economic Challenges of Green Ammonia as an Energy Vector, Elsevier, 2020, pp. 191–207. doi: 10.1016/B978-0-12-820560-0.00008-4.G. Subbaraman, “Final Report-Rev0 Emerging and Existing Oxygen Production Technology Scan and Evaluation,” 2018. [Online]. Available: www.gastechnology.orgM. Jain, R. Muthalathu, and X. Y. Wu, “Electrified ammonia production as a commodity and energy storage medium to connect the food, energy, and trade sectors,” iScience, vol. 25, no. 8, Aug. 2022, doi: 10.1016/j.isci.2022.104724.M. Rivarolo, G. Riveros-Godoy, L. Magistri, and A. F. Massardo, “Clean hydrogen and ammonia synthesis in paraguay from the Itaipu 14 GW hydroelectric plant,” ChemEngineering, vol. 3, no. 4, pp. 1–11, Dec. 2019, doi: 10.3390/chemengineering3040087.“Fuel ammonia supply cost analysis (Interim report) Fuel ammonia supply chain publicprivate task force,” 2022.Ammonia : zero-carbon fertiliser, fuel and energy store“Fuel production cost estimates and assumptions.”S. Y. Lee, J.-H. Ryu, and I.-B. Lee, “A PRELIMINARY TECHNO-ECONOMIC ANALYSIS OF POWER TO AMMNONIA PROCESSES USING ALKALINE ELECTROLYSIS AND AIR SEPARATION UNIT,” 2019.W. C. Leighty, “Alternatives to Electricity for Transmission and Annual-scale Firming Storage for Diverse, Stranded, Renewable Energy Resources: Hydrogen and Ammonia.”A. Castañeda, A. Sofía, G. Diego, M. Castrillón, and J. C. Farfán, “Cartagena como centro industrial de hidrógeno bajo en carbono,” 2022.“Working_Paper_Costo_de_Transporte_vf”Ammonia : zero-carbon fertiliser, fuel and energy store.W. C. Leighty, “Alternatives to Electricity for Transmission and Annual-scale Firming Storage for Diverse, Stranded, Renewable Energy Resources: Hydrogen and Ammonia.”H. Zhang, L. Wang, J. Van herle, F. Maréchal, and U. Desideri, “Techno-economic comparison of 100% renewable urea production processes,” Appl Energy, vol. 284, Feb. 2021, doi: 10.1016/j.apenergy.2020.116401.C. Fernando and W. W. Purwanto, “Techno-economic analysis of a small-scale power-togreen urea plant,” in IOP Conference Series: Earth and Environmental Science, IOP Publishing Ltd, Apr. 2021. doi: 10.1088/1755-1315/716/1/012010“TFG_JOSE_MANUEL_PERALES_FERNANDEZ”.“INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍMICA E INDUSTRIAS EXTRACTIVAS TESIS EVALUACIÓN TÉCNICA Y ECONÓMICA PARA LA FABRICACIÓN DE LA UREA EN MÉXICO.”pidjoe, “The Future of Hydrogen.”R. E. Beu and S. Transporte, “Primer balance de Energía Útil para Colombia y Cuantificación de las Perdidas energéticas relacionadas y la brecha de eficiencia energética.”Y. Rizi, H. Ali, and D. Shin, “Process of Converting Ammonia to Hydrogen.”Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85295/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1098775727.2023.pdf1098775727.2023.pdfTesis de Maestría en Ingeniería Eléctricaapplication/pdf2386048https://repositorio.unal.edu.co/bitstream/unal/85295/2/1098775727.2023.pdfc184ec0943ef6404d0e92110e09d99deMD52THUMBNAIL1098775727.2023.pdf.jpg1098775727.2023.pdf.jpgGenerated Thumbnailimage/jpeg4376https://repositorio.unal.edu.co/bitstream/unal/85295/3/1098775727.2023.pdf.jpgaaa44fb92b94c14240d936324bce7535MD53unal/85295oai:repositorio.unal.edu.co:unal/852952024-01-15 23:03:56.234Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=