Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering
gráficos, tablas
- Autores:
-
Ospina Dávila, Yesid Mauricio
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2022
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/82365
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
Classifier system design
Data-driven surrogates
Dissimilarity pattern recognition
Landslides
Pattern representation
Structural health monitoring
Slope stability
Deslizamientos
Diseño de sistemas de clasificación
Estabilidad de taludes
Monitoreo de salud estructural
Reconocimiento de patrones basado en disimilitudes
Representación de patrones
Sustitutos basados en datos
Ingeniería de la construcción
Construction engineering
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_dc115ff0d6a42583d4c9216f36716e33 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/82365 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering |
dc.title.translated.spa.fl_str_mv |
Representaciones de patrones para la clasificación de datos (no-)vectoriales (no-)métricos con aplicaciones en el Monitoreo de Salud Estructural y la ingeniería de amenazas geotécnicas/naturales |
title |
Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering |
spellingShingle |
Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Classifier system design Data-driven surrogates Dissimilarity pattern recognition Landslides Pattern representation Structural health monitoring Slope stability Deslizamientos Diseño de sistemas de clasificación Estabilidad de taludes Monitoreo de salud estructural Reconocimiento de patrones basado en disimilitudes Representación de patrones Sustitutos basados en datos Ingeniería de la construcción Construction engineering |
title_short |
Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering |
title_full |
Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering |
title_fullStr |
Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering |
title_full_unstemmed |
Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering |
title_sort |
Pattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineering |
dc.creator.fl_str_mv |
Ospina Dávila, Yesid Mauricio |
dc.contributor.advisor.none.fl_str_mv |
Orozco-Alzate, Mauricio |
dc.contributor.author.none.fl_str_mv |
Ospina Dávila, Yesid Mauricio |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores Classifier system design Data-driven surrogates Dissimilarity pattern recognition Landslides Pattern representation Structural health monitoring Slope stability Deslizamientos Diseño de sistemas de clasificación Estabilidad de taludes Monitoreo de salud estructural Reconocimiento de patrones basado en disimilitudes Representación de patrones Sustitutos basados en datos Ingeniería de la construcción Construction engineering |
dc.subject.proposal.eng.fl_str_mv |
Classifier system design Data-driven surrogates Dissimilarity pattern recognition Landslides Pattern representation Structural health monitoring Slope stability |
dc.subject.proposal.spa.fl_str_mv |
Deslizamientos Diseño de sistemas de clasificación Estabilidad de taludes Monitoreo de salud estructural Reconocimiento de patrones basado en disimilitudes Representación de patrones Sustitutos basados en datos |
dc.subject.unesco.none.fl_str_mv |
Ingeniería de la construcción Construction engineering |
description |
gráficos, tablas |
publishDate |
2022 |
dc.date.accessioned.none.fl_str_mv |
2022-10-11T17:04:20Z |
dc.date.available.none.fl_str_mv |
2022-10-11T17:04:20Z |
dc.date.issued.none.fl_str_mv |
2022 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Image Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/82365 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/82365 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Jamal A. Abdalla, Mousa F. Attom, and Rami Hawileh. Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network. Environmental Earth Sciences, 73(9):5463–5477, May 2015. Osama Abdeljaber, Onur Avci, Mustafa Serkan Kiranyaz, Boualem Boashash, Henry Sodano, and Daniel J. Inman. 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing, 275:1308–1317, 2018. Osama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and Daniel J. Inman. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration, 388:154–170, 2017. Yacine Achour and Hamid Reza Pourghasemi. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11(3):871–883, 2020. Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 3rd edition, 2014. Vinicius Alves, Alexandre Cury, Ney Roitman, Carlos Magluta, and Christian Cremona. Structural modification assessment using supervised learning methods applied to vibration data. Engineering Structures, 99:439 – 448, 2015. Onur Avci, Osama Abdeljaber, Serkan Kiranyaz, Mohammed Hussein, Moncef Gabbouj, and Daniel J. Inman. A review of vibration–based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mechanical Systems and Signal Processing, Yuequan Bao and Hui Li. Machine learning paradigm for structural health monitoring. Structural Health Monitoring, 20(4):1353–1372, 2021. Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58:82–115, 2020. Robert M. Bell and Yehuda Koren. Lessons from the Netflix Prize Challenge. SIGKDD Explorations Newsletter, 9(2):75–79, dec 2007. Manuele Bicego and Mauricio Orozco-Alzate. PowerHC: non linear normalization of distances for advanced nearest neighbor classification. In 25th International Conference on Pattern Recognition (ICPR), pages 1205–1211, 2021. Michael Biehl, Barbara Hammer, and Thomas Villmann. Prototype-based models in machine learning. WIREs Cognitive Science, 7(2):92–111, 2016. Alain Biem. A model selection criterion for classification: application to HMM topology optimization. In Proceedings of the Seventh International Conference on Document Analysis and Recognition - ICDAR 2003, pages 104–108, August 2003. Christopher Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, NY, 1st edition, 2006. Luke Bornn, Charles R. Farrar, David Higdon, and Kevin P. Murphy. Modeling and diagnosis of structural systems through sparse dynamic graphical models. Mechanical Systems and Signal Processing, 74:133–143, 2016. Special Issue in Honor of Professor Simon Braun. Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019. Lawrence A. Bull, Paul Gardner, Timothy J. Rogers, Elizabeth J. Cross, Nikolaos Dervilis, and Keith Worden. Probabilistic inference for structural health monitoring: New modes of learning from data. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(1):03120003, 2021. Raghavendra Chalapathy and Nguyen Lu Dang Khoa. Comparison of unsupervised shallow and deep models for structural health monitoring. Proceedings of the Institution of Civil Engineers - Bridge Engineering, pages 1–11, 2021. Wei Chen, Hamid Reza Pourghasemi, Aiding Kornejady, and Ning Zhang. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 305:314–327, 2017. Zuoyi Chen, Yanzhi Wang, Jun Wu, Chao Deng, and Kui Hu. Sensor data-driven structural damage detection based on deep convolutional neural networks and continuous wavelet transform. Applied Intelligence, 51(8):5598–5609, 2021. Min-Yuan Cheng and Nhat-Duc Hoang. Typhoon–induced slope collapse assessment using a novel bee colony optimized support vector classifier. Natural Hazards, 78(3):1961–1978, September 2015. Vladimir Cherkassky and Filip M. Mulier. Learning from Data: Concepts, Theory, and Methods. Wiley-IEEE Press, 2007. Jen-Tzung Chien and Chia-Chen Wu. Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans. Pattern Anal. Machine Intell., 24(12):1644–1649, 2002. Jianye Ching and Kok-Kwang Phoon. Characterizing Unknown Trend Using Sparse Bayesian Learning, chapter Geo-Risk 2017: Geotechnical Risk Assessment and Management, pages 22–31. 2017. Hung V. Dang, Mohsin Raza, Tung V. Nguyen, T. Bui-Tien, and Huan X. Nguyen. Deep learning-based detection of structural damage using time-series data. Structure and Infrastructure Engineering, 17(11):1474–1493, 2021. R. De Almeida Cardoso, Alexandre Cury, and Flavio Barbosa. Automated real–time damage detection strategy using raw dynamic measurements. Engineering Structures, 196:109364, 2019. Hao Du and Yan Qiu Chen. Rectified nearest feature line segment for pattern classification. Pattern Recognition, 40(5):1486 – 1497, 2007. Robert P. W. Duin. The origin of patterns. Frontiers in Computer Science, 3, 2021. Robert P. W. Duin, Manuele Bicego, Mauricio Orozco-Alzate, Sang-Woon Kim, and Marco Loog. Metric learning in dissimilarity space for improved nearest neighbor performance. In Pasi Fränti, Gavin Brown, Marco Loog, Francisco Escolano, and Marcello Pelillo, editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 183–192, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. Robert P. W. Duin and E. Pȩkalska. The dissimilarity space: Bridging structural and statistical pattern recognition. Pattern Recognition Letters, 33(7):826–832, 2012. Special Issue on Awards from ICPR 2010. Robert P. W. Duin, E. Pȩkalska, and Marco Loog. Non-Euclidean Dissimilarities: Causes, Embedding and Informativeness, pages 13–44. Springer London, London, 2013. R.P.W. Duin and E. Pȩkalska. The dissimilarity representation for structural pattern recognition. In C. San-Martin and Sang-Woon Kim, editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, volume 7042 of Lecture Notes in Computer Science, pages 1–24. Springer Berlin Heidelberg, 2011. Alireza Entezami, Hashem Shariatmadar, and Abbas Karamodin. Data–driven damage diagnosis under environmental and operational variability by novel statistical pattern recognition methods. Structural Health Monitoring, 18(5-6):1416–1443, 2019. Alireza Entezami, Hashem Shariatmadar, and Stefano Mariani. Early damage assessment in large-scale structures by innovative statistical pattern recognition methods based on time series modeling and novelty detection. Advances in Engineering Software, 150:102923, 2020. Zhice Fang, Yi Wang, Ling Peng, and Haoyuan Hong. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences, 139:104470, 2020. Charles R. Farrar and Keith Worden. Structural Health Monitoring: A Machine Learning Perspective. John Wiley & Sons, West Sussex, UK, 2013. Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15(90):3133–3181, 2014. P. A. Gardner, L. A. Bull, N. Dervilis, and K. Worden. On the Application of Heterogeneous Transfer Learning to Population-Based Structural Health Monitoring. In Ramin Madarshahian and Francois Hemez, editors, Data Science in Engineering, Volume 9, pages 87–98, Cham, 2022. Springer International Publishing. Lev Goldfarb. A unified approach to pattern recognition. Pattern Recognition, 17(5):575–582, 1984. Ralf Herbrich. Learning Kernel Classifiers. Theory and Algorithms. MIT Press, 2001. Nhat-Duc Hoang and Dieu Tien Bui. Chapter 18 - Slope Stability Evaluation Using Radial Basis Function Neural Network, Least Squares Support Vector Machines, and Extreme Learning Machine. In Pijush Samui, Sanjiban Sekhar, and Valentina E. Balas, editors, Handbook of Neural Computation, pages 333–344. Academic Press, 2017. Nhat-Duc Hoang and Anh-Duc Pham. Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis. Expert Systems with Applications, 46:60–68, 2016. Yu Huang and Lu Zhao. Review on landslide susceptibility mapping using support vector machines. CATENA, 165:520–529, 2018. Piotr Juszczak, David M.J. Tax, E. Pȩkalska, and R. P. W. Duin. Minimum spanning tree based one-class classifier. Neurocomputing, 72(7):1859–1869, 2009. Advances in Machine Learning and Computational Intelligence. George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021. Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. Towards parameter-free data mining. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 206–215, New York, NY, USA, 2004. Association for Computing Machinery. A.J. Li, S. Khoo, A.V. Lyamin, and Y. Wang. Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm. Automation in Construction, 65:42–50, 2016. Bo Li, Duanyou Li, Zhijun Zhang, Shengmei Yang, and Fan Wang. Slope stability analysis based on quantum–behaved particle swarm optimization and least squares support vector machine. Applied Mathematical Modelling, 39(17):5253–5264, 2015. Dian-Qing Li, Dong Zheng, Zi-Jun Cao, Xiao-Song Tang, and Kok-Kwang Phoon. Response surface methods for slope reliability analysis: Review and comparison. Engineering Geology, 203:3–14, 2016. Special Issue on Probabilistic and Soft Computing Methods for Engineering Geology. Jiang Li and Can-Yi Lu. A new decision rule for sparse representation based classification for face recognition. Neurocomputing, 116:265–271, 2013. Advanced Theory and Methodology in Intelligent Computing. Stan Z. Li and Juwei Lu. Face recognition using the nearest feature line method. IEEE Transactions on Neural Networks, 10(2):439–443, 1999. Y. Lin, K. Zhou, and J. Li. Prediction of slope stability using four supervised learning methods. IEEE Access, 6:31169–31179, 6 2018. Ramin Madarshahian and Francois Hemez, editors. Data Science in Engineering, Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, volume 9 of Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS), Berlin, Germany, 2021. Springer. Mehrisadat Makki Alamdari, Ali Anaissi, Nguyen L. D. Khoa, and Samir Mustapha. Frequency domain decomposition-based multisensor data fusion for assessment of progressive damage in structures. Structural Control and Health Monitoring, 26(2):e2299, 2019. Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT Press, 2nd edition, 2018. Maliki Moustapha, Stefano Marelli, and Bruno Sudret. Active learning for structural reliability: Survey, general framework and benchmark. Structural Safety, 96:102174, 2022. Maximilian Münch, Christoph Raab, and Frank-Michael Schleif. Encoding of Indefinite Proximity Data: A Structure Preserving Perspective. In Maria De Marsico, Gabriella Sanniti di Baja, and Ana Fred, editors, Pattern Recognition Applications and Methods, pages 112–137, Cham, 2020. Springer International Publishing. Maximilian Münch, Michiel Straat, Michael Biehl, and Frank-Michael Schleif. Complex-valued embeddings of generic proximity data. In Andrea Torsello, Luca Rossi, Marcello Pelillo, Battista Biggio, and Antonio Robles Kelly, editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 14–23, Cham, 2021. Springer International Publishing. W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44):22071–22080, 2019. Mauricio Orozco-Alzate, Sisto Baldo, and Manuele Bicego. Relation, transition and comparison between the adaptive nearest neighbor rule and the hypersphere classifier. In Elisa Ricci, Samuel Rota Bulò, Cees Snoek, Oswald Lanz, Stefano Messelodi, and Nicu Sebe, editors, Image Analysis and Processing – ICIAP 2019, pages 141–151, Cham, 2019. Springer International Publishing. Mauricio Orozco-Alzate and Manuele Bicego. A cheaper rectified-nearest-feature-line-segment classifier based on safe points. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 2787–2794, 2021. Mauricio Orozco-Alzate, Robert P. W. Duin, and César Germán Castellanos-Domı́nguez. A generalization of dissimilarity representations using feature lines and feature planes. Pattern Recognition Letters, 30(3):242–254, feb 2009. E. Pȩkalska and R. P.W. Duin. The Dissimilarity Representation for Pattern Recognition: Foundations and Applications, volume 64 of Machine Perception and Artificial Intelligence. World Scientific, Singapore, 2005. Elzbieta Pȩkalska, Pavel Paclik, and Robert P. W. Duin. A generalized kernel approach to dissimilarity-based classification. J. Mach. Learn. Res., 2:175–211, March 2002. E. Pekalska and R. P. W. Duin. Beyond Traditional Kernels: Classification in Two Dissimilarity-Based Representation Spaces. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(6):729–744, Nov 2008. Kok-Kwang Phoon, Jianye Ching, and Zijun Cao. Unpacking data-centric geotechnics. Underground Space, 2022. Kok-Kwang Phoon, Jianye Ching, and Takayuki Shuku. Challenges in data-driven site characterization. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 0(0):1–13, 2021. J. S.-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK, 2004. Adam Santos, Eloi Figueiredo, M.F.M. Silva, C.S. Sales, and J.C.W.A. Costa. Machine learning algorithms for damage detection: Kernel-based approaches. Journal of Sound and Vibration, 363:584 – 599, 2016. Hassan Sarmadi and Abbas Karamodin. A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects. Mechanical Systems and Signal Processing, 140:106495, 2020. W. J. Scheirer, M. J. Wilber, M. Eckmann, and T. E. Boult. Good recognition is non–metric. Pattern Recognition, 47:2721–2731, 2014. Frank-Michael Schleif and Peter Tino. Indefinite Proximity Learning: A Review. Neural Computation, 27(10):2039–2096, 10 2015. Osvaldo Simeone. A Brief Introduction to Machine Learning for Engineers, volume 12. Now Foundations and Trends, 2018. Hoon Sohn and Chang Kook Oh. Statistical Pattern Recognition, chapter 30. John Wiley & Sons, Ltd., 2009. David M.J Tax and Robert P.W Duin. Support vector domain description. Pattern Recognition Letters, 20(11):1191–1199, 1999. Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Academic Press, 2009. Jigang Wang, Predrag Neskovic, and Leon N. Cooper. Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognition Letters, 28(2):207 – 213, 2007. Renjie Wu and Eamonn Keogh. Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress. IEEE Transactions on Knowledge and Data Engineering, pages 1–9, 2021. JianXi Yang, Fei Yang, Likai Zhang, Ren Li, Shixin Jiang, Guiping Wang, Le Zhang, and Zeng Zeng. Bridge health anomaly detection using deep support vector data description. Neurocomputing, 2021. Z. Zhou, S.Z. Li, and K.L. Chan. A theoretical justification of nearest feature line method. In Proc. 15th ICPR International Conference on Pattern Recognition, volume 2, pages 759–762, 2000. Rania Rizki Arinta and Emanuel Andi W.R. Natural Disaster Application on Big Data and Machine Learning: A Review. In 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pages 249–254, 2019. Luke Bornn, Charles R. Farrar, Gyuhae Park, and Kevin Farinholt. Structural Health Monitoring With Autoregressive Support Vector Machines. Journal of Vibration and Acoustics, 131(2), 02 2009. Muhammad Shahzad Cheema, Abdalrahman Eweiwi, and Christian Bauckhage. High dimensional low sample size activity recognition using geometric classifiers. Digital Signal Processing, 42:61–69, 2015. Wei Chen, Hamid Reza Pourghasemi, Mahdi Panahi, Aiding Kornejady, Jiale Wang, Xiaoshen Xie, and Shubo Cao. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 297:69–85, 2017. A. J. Choobbasti, F. Farrokhzad, and A. Barari. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Arabian Journal of Geosciences, 2(4):311–319, Nov 2009. Paul Cilliers. Complexity and Postmodernism. Understanding Complex Systems. Routledge, 1st edition, 2002. Alexandre Cury and Christian Crémona. Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts. Structural Control and Health Monitoring, 19(2):161–186, 2012. Sarat Kumar Das, Rajani Kanta Biswal, N. Sivakugan, and Bitanjaya Das. Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environmental Earth Sciences, 64(1):201–210, Sep 2011. Rharã de Almeida Cardoso, Alexandre Cury, Flavio Barbosa, and Carmelo Gentile. Unsupervised real-time SHM technique based on novelty indexes. Structural Control and Health Monitoring, 26(7):e2364, 2019. Robert P. W. Duin and Elżbieta Pekalska. The Science of Pattern Recognition. Achievements and Perspectives, chapter 10, pages 221–259. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007. Robert P.W. Duin, E. Pȩkalska, P. Paclı́k, and D.M.J. Tax. The dissimilarity representation, a basis for a domain-based pattern recognition? In J Goldfarb, editor, Proceedings of a satellite workshop of the 17th international conference on pattern recognition, pages 43–56. s.n., 2004. R.P.W. Duin and E. Pȩkalska. Non–Euclidean dissimilarities: Causes and informativeness. In Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop, SSPR–SPR, Cesme, Izmir, Turkey, 2010. C. R. Farrar and H. Sohn. Pattern recognition for structural health monitoring. In Workshop on Mitigation of Earthquake Disaster by Advanced Technologies, pages 1–6, Las Vegas, NV, USA, Nov–Dec 2000. C. R. Farrar and K. Worden. An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):303–315, December 2007. Charles Farrar, Mayuko Nishio, Francois Hemez, Chris Stull, Gyuhae Park, Phil Cornwell, Eloi Figueiredo, D. J. Luscher, and Keith Worden. Feature Extraction for Structural Dynamics Model Validation. Technical Report LA-UR-16-20151, Los Alamos National Laboratory, 2016. Spilios D Fassois and John S Sakellariou. Time-series methods for fault detection and identification in vibrating structures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):411–448, 2007. Qingxiang Feng, Lijun Yan, and Jeng-Shyang Pan. A novel classifier based on nearest feature line. In International Conference on Computing, Measurement, Control and Sensor Network (CMCSN), pages 265–268, July 2012. M.D. Ferentinou and M.G. Sakellariou. Computational intelligence tools for the prediction of slope performance. Computers and Geotechnics, 34(5):362–384, 2007. Special Issue on Biologically Inspired and Other Novel Computing Techniques in Geomechanics. Eloi Figueiredo, Joaquim Figueiras, Gyuhae Park, Charles R. Farrar, and Keith Worden. Influence of the Autoregressive Model Order on Damage Detection. Computer-Aided Civil and nfrastructure Engineering, 26(3):225–238, 2011. Eloi Figueiredo, Gyuhae Park, Charles R Farrar, Keith Worden, and Joaquim Figueiras. Machine learning algorithms for damage detection under operational and environmental variability. Structural Health Monitoring, 10(6):559–572, 2011. Eloi Figueiredo, Gyuhae Park, Joaquim Figueiras, Charles Farrar, and Keith Worden. Structural Health Monitoring Algorithm Comparisons Using Standard Data Sets. Technical Report LA-14393, Los Alamos National Laboratory, 2009. Qing-Bin Gao and Zheng-Zhi Wang. Center–based nearest neighbor classifier. Pattern Recognition, 40(1):346–349, 2007. Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera. Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3):417–435, 2012. P. Gardner, L.A. Bull, J. Gosliga, J. Poole, N. Dervilis, and K. Worden. A population-based SHM methodology for heterogeneous structures: Transferring damage localisation knowledge between different aircraft wings. Mechanical Systems and Signal Processing, 172:108918, 2022. Jason N. Goetz, Richard H. Guthrie, and Alexander Brenning. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129(3):376–386, 2011. Behrouz Gordan, Danial Jahed Armaghani, Mohsen Hajihassani, and Masoud Monjezi. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineering with Computers, 32(1):85–97, Jan 2016. M. Gul and F. N. Catbas. Statistical pattern recognition for structural health monitoring using time series modeling: Theory and experimental verifications. Mechanical Systems and Signal Processing, 23(7):2192–2204, 2009. B. Haasdonk and D. Keysers. Tangent distance kernels for support vector machines. In 2002 International Conference on Pattern Recognition, volume 2, pages 864–868 vol.2, 2002. Ye Hua, Xianmin Wang, Yongwei Li, Peiyun Xu, and Wenxiang Xia. Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides, 18(1):281–302, 2021. Faming Huang, Jing Zhang, Chuangbing Zhou, Yuhao Wang, Jinsong Huang, and Li Zhu. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides, 17(1):217–229, 2020. Yang H. Huang. Slope Stability Analysis by the Limit Equilibrium Method. American Society of Civil Engineers, 2014. A. K. Jain, R. P. W. Duin, and Jianchang Mao. Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000. Kejie Jiang, Qiang Han, Xiuli Du, and Pinghe Ni. A decentralized unsupervised structural condition diagnosis approach using deep auto-encoders. Computer-Aided Civil and Infrastructure Engineering, 36(6):711–732, 2021. Navid Kardani, Annan Zhou, Majidreza Nazem, and Shui-Long Shen. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. Journal of Rock Mechanics and Geotechnical Engineering, 13(1):188–201, 2021. Eamonn Keogh, Stefano Lonardi, Chotirat Ann Ratanamahatana, Li Wei, Sang-Hee Lee, and John Handley. Compression-based data mining of sequential data. Data Mining and Knowledge Discovery, 14:99–129, 2007. Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J. Inman. 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151:107398, 2021. Mohammadreza Koopialipoor, Danial Jahed Armaghani, Ahmadreza Hedayat, Aminaton Marto, and Behrouz Gordan. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Computing, May 2018. Kundan Kumar, Prabir Kumar Biswas, and Nirjhar Dhang. Time series-based SHM using PCA with application to ASCE benchmark structure. Journal of Civil Structural Health Monitoring, 10(5):899–911, 2020. Manoj Kumar, Pijush Samui, and Ajay Kumar Naithani. Determination of stability of epimetamorphic rock slope using Minimax Probability Machine. Geomatics, Natural Hazards and Risk, 7(1):186–193, 2016. David J. Lary, Gebreab K. Zewdie, Xun Liu, Daji Wu, Estelle Levetin, Rebecca J. Allee, Nabin Malakar, Annette Walker, Hamse Mussa, Antonio Mannino, and Dirk Aurin. Machine Learning Applications for Earth Observation, pages 165–218. Springer International Publishing, Cham, 2018. S.Z Li and J. Lu. Generalizing capacity of face database for face recognition. In Third IEEE International Conference on Automatic Face and Gesture Recognition, pages 402–406, Apr 1998. Xueyou Li, Limin Zhang, and Shuai Zhang. Efficient bayesian networks for slope safety evaluation with large quantity monitoring information. Geoscience Frontiers, 9(6):1679–1687, 2018. Reliability Analysis of Geotechnical Infrastructures. Zaobao Liu, Jianfu Shao, Weiya Xu, Hongjie Chen, and Yu Zhang. An extreme learning machine approach for slope stability evaluation and prediction. Natural Hazards, 73(2):787–804, Sep 2014. Noel Lopes and Bernardete Ribeiro. Incremental Hypersphere Classifier (IHC). In Machine Learning for Adaptive Many-Core Machines - A Practical Approach, volume 7 of Studies in Big Data, chapter 6, pages 107–123. Springer International Publishing, Cham, 2015. I. Lopez and N. Sarigul-Klijn. A novel dimensional reduction approach for structural damage diagnosis using feature similarity. In Tribikram Kundu, editor, Health Monitoring of Structural and Biological Systems 2009, volume 7295, pages 511 – 522. International Society for Optics and Photonics, SPIE, 2009. Israel Lopez and Nesrin Sarigul-Klijn. Distance similarity matrix using ensemble of dimensional data reduction techniques: Vibration and aerocoustic case studies. Mechanical Systems and Signal Processing, 23(7):2287 – 2300, 2009. Zhengjing Ma, Gang Mei, and Francesco Piccialli. Machine learning for landslides prevention: a survey. Neural Computing and Applications, 33(17):10881–10907, 2021. Hossein Moayedi, Mansour Mosallanezhad, Ahmad Safuan A. Rashid, Wan Amizah Wan Jusoh, and Mohammed Abdullahi Muazu. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32(2):495–518, 2020. L. Moniz, J.M. Nichols, C.J. Nichols, M. Seaver, S.T. Trickey, M.D. Todd, L.M. Pecora, and L.N. Virgin. A multivariate, attractor-based approach to structural health monitoring. Journal of Sound and Vibration, 283(1):295–310, 2005. J. M. Nichols, M. D. Todd, M. Seaver, and L. N. Virgin. Use of chaotic excitation and attractor property analysis in structural health monitoring. Phys. Rev. E, 67:016209, Jan 2003. Mayuko Nishio, Francois Hemez, Keith Worden, Gyuhae Park, Nobuo Takeda, and Charles Farrar. Feature extraction for structural dynamics model validation. In Tom Proulx, editor, Linking Models and Experiments, Volume 2, pages 153–163, New York, NY, 2011. Springer New York. L.A. Overbey and M.D. Todd. Analysis of Local State Space Models for Feature Extraction in Structural Health Monitoring. Structural Health Monitoring, 6(2):145–172, 2007. E. Pȩkalska. Dissimilarity representations in pattern recognition. Concepts, theory and applications. PhD thesis, Delft University of Technology, 2005. E. Pȩkalska and R. P.W. Duin. Dissimilarity measures, volume 64 of Machine Perception and Artificial Intelligence, chapter 5, pages 215–252. World Scientific, Singapore, 2005. E. Pȩkalska and B. Haasdonk. Kernel discriminant analysis for positive definite and indefinite kernels. IEEE Transactions on Pattern Recognition and Machine Intelligence, 31(6):482–492, 2009. Jin-Song Pei, Dean F. Hougen, Sai Teja Kanneganti, Joseph P. Wright, Eric C. Mai, Andrew W. Smyth, Sami F. Masri, Armen Derkevorkian, François Gay-Balmaz, and Ludian Komini. Interpretable Machine Learning for Function Approximation in Structural Health Monitoring, pages 369–388. Springer International Publishing, Cham, 2022. Binh Thai Pham and Indra Prakash. A novel hybrid model of Bagging-based Naive Bayes Trees for landslide susceptibility assessment. Bulletin of Engineering Geology and the Environment, 78(3):1911–1925, 2021. Binh Thai Pham, Indra Prakash, Sushant K. Singh, Ataollah Shirzadi, Himan Shahabi, Thi-Thu-Trang Tran, and Dieu Tien Bui. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. CATENA, 175:203–218, 2019. Kok-Kwang Phoon and Wengang Zhang. Future of machine learning in geotechnics. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 0(0):1–16, 2022. Luca Piciullo, Michele Calvello, and José Mauricio Cepeda. Territorial early warning systems for rainfall-induced landslides. Earth-Science Reviews, 179:228–247, 2018. Daniele Posenato, Francesca Lanata, Daniele Inaudi, and Ian F.C. Smith. Model-free data interpretation for continuous monitoring of complex structures. Advanced Engineering Informatics, 22(1):135–144, 2008. Intelligent computing in engineering and architecture. Miguel A. Prada, Janne Toivola, Jyrki Kullaa, and Jaakko Hollmén. Three-way analysis of structural health monitoring data. Neurocomputing, 80:119 – 128, 2012. Special Issue on Machine Learning for Signal Processing 2010. Chongchong Qi and Xiaolin Tang. A hybrid ensemble method for improved prediction of slope stability. International Journal for Numerical and Analytical Methods in Geomechanics, 42(15):1823–1839, 2018. Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. ACM Transactions on Knowledge Discovery from Data, 7(3), September 2013. Paola Reichenbach, Mauro Rossi, Bruce D. Malamud, Monika Mihir, and Fausto Guzzetti. A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180:60–91, 2018. Hannah Ritchie and Max Roser. Natural disasters. Our World in Data, 2014. It was last revised in November 2021. G. Roberti, J. McGregor, S. Lam, D. Bigelow, B. Boyko, C. Ahern, V. Wang, B. Barnhart, C. Smyth, D. Poole, and S. Richard. INSPIRE standards as a framework for artificial intelligence applications: a landslide example. Natural Hazards and Earth System Sciences, 20(12):3455–3483, 2020. T.J. Rogers, K. Worden, R. Fuentes, N. Dervilis, U.T. Tygesen, and E.J. Cross. A Bayesian non-parametric clustering approach for semi-supervised structural health monitoring. Mechanical Systems and Signal Processing, 119:100–119, 2019. S. Rukhaiyar, M. N. Alam, and N. K. Samadhiya. A PSO–ANN hybrid model for predicting factor of safety of slope. International Journal of Geotechnical Engineering, 12(6):556–566, 2018. Seyedomid Sajedi and Xiao Liang. Dual Bayesian inference for risk-informed vibration-based damage diagnosis. Computer-Aided Civil and Infrastructure Engineering, 36(9):1168–1184, 2021. M. G. Sakellariou and M. D. Ferentinou. A study of slope stability prediction using neural networks. Geotechnical & Geological Engineering, 23(4):419, Aug 2005. P. Samui and D.P. Kothari. Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Scientia Iranica, 18(1):53–58, 2011. Pijush Samui. Slope stability analysis: a support vector machine approach. Environmental Geology, 56(2):255, Feb 2008. Pijush Samui. Support vector classifier analysis of slope. Geomatics, Natural Hazards and Risk, 4(1):1–12, 2013. João Pedro Santos, Christian Cremona, André D. Orcesi, and Paulo Silveira. Early Damage Detection Based on Pattern Recognition and Data Fusion. Journal of Structural Engineering, 143(2):04016162, 2017. Hassan Sarmadi, Alireza Entezami, Behzad Saeedi Razavi, and Ka-Veng Yuen. Ensemble learning-based structural health monitoring by Mahalanobis distance metrics. Structural Control and Health Monitoring, 28(2):e2663, 2021. Haichen Shi, Keith Worden, and Elizabeth J. Cross. A cointegration approach for heteroscedastic data based on a time series decomposition: An application to structural health monitoring. Mechanical Systems and Signal Processing, 120:16 – 31, 2019. Moisés Silva, Adam Santos, and Elói Figueiredo. Damage Detection for Structural Health Monitoring of Bridges as a Knowledge Discovery in Databases Process, pages 1–24. Springer Singapore, Singapore, 2019. Moisés Silva, Adam Santos, Eloi Figueiredo, Reginaldo Santos, Claudomiro Sales, and João C.W.A. Costa. A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges. Engineering Applications of Artificial Intelligence, 52:168 – 180, 2016. H Sohn, C R Farrar, F M Hemez, and J J Czarnecki. A Review of Structural Health Monitoring Literature: 1996-2001. Technical Report LA-UR-02-2095, Los Alamos National Lab. (LANL), 1 2002. Nikos A Spanos, John S Sakellariou, and Spilios D Fassois. Vibration-response-only statistical time series structural health monitoring methods: A comprehensive assessment via a scale jacket structure. Structural Health Monitoring, 19(3):736–750, 2020. M.D. Spiridonakos and S.D. Fassois. Adaptable functional series TARMA models for non-stationary signal representation and their application to mechanical random vibration modeling. Signal Processing, 96:63 – 79, 2014. Ingo Steinwart. Empirical Inference. Festschrift in Honor of Vladimir N. Vapnik, chapter Some Remarks on the Statistical Analysis of SVMs and Related Methods, pages 25–36. Springer-Verlag Berlin Heidelberg, 2013. Han Sun, Henry V. Burton, and Honglan Huang. Machine learning applications for building structural design and performance assessment: State-of-the-art review. Journal of Building Engineering, 33:101816, 2021. Zhiyi Tang, Zhicheng Chen, Yuequan Bao, and Hui Li. Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring. Structural Control and Health Monitoring, 26(1):e2296, 2019. David Tax. One-class classification: Concept-learning in the absence of counter-examples. Doctoral thesis, Delft University of Technology, Netherlands, June 2001. Dieu Tien Bui, Biswajeet Pradhan, Owe Lofman, Inge Revhaug, and Oystein B. Dick. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. CATENA, 96:28–40, 2012. Dieu Tien Bui, Biswajeet Pradhan, Haleh Nampak, Quang-Thanh Bui, Quynh-An Tran, and Quoc-Phi Nguyen. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540:317–330, 2016. Maria Valero, Fangyu Li, Liang Zhao, Chi Zhang, Jose Garrido, and Zhu Han. Vibration sensing-based human and infrastructure safety/health monitoring: A survey. Digital Signal Processing, 114:103037, 2021. Chaofeng Wang, Qian Yu, Kincho H. Law, Frank McKenna, Stella X. Yu, Ertugrul Taciroglu, Adam Zsarnóczay, Wael Elhaddad, and Barbaros Cetiner. Machine learning-based regional scale intelligent modeling of building information for natural hazard risk management. Automation in Construction, 122:103474, 2021. H.B. Wang, J.M. Li, B.Zhou, Y.Zhou, Z.Q. Yuan, , and Y.P. Chen. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility. Geoenvironmental Disasters, 4(15):1–12, 2017. Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn Keogh. Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013. Keith Worden, Charles R. Farrar, Jonathan Haywood, and Michael Todd. A review of nonlinear dynamics applications to structural health monitoring. Structural Control and Health Monitoring, 15(4):540–567, 2008. Keith Worden and Graeme Manson. The application of machine learning to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):515–537, 2007. Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, , Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1–37, 2008. Beibei Yang, Kunlong Yin, Suzanne Lacasse, and Zhongqiang Liu. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides, 16(4):677–694, 2019. Xin-She Yang, Siamak Talatahari, Amir Hossein Gandomi, and Amir Hossein Alavi, editors. Metaheuristics in Water, Geotechnical and Transport Engineering. Elsevier, 2013. Yang Yang, Zhike Peng, Wenming Zhang, and Guang Meng. Parameterised time–frequency analysis methods and their engineering applications: A review of recent advances. Mechanical Systems and Signal Processing, 119:182 – 221, 2019. Ruigen Yao and Shamim N. Pakzad. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures. Mechanical Systems and Signal Processing, 31:355–368, 2012. Zaher Mundher Yaseen, Ahmed El-shafie, Othman Jaafar, Haitham Abdulmohsin Afan, and Khamis Naba Sayl. Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530:829–844, 2015. Saleh Yousefi, Hamid Reza Pourghasemi, Sayed Naeim Emami, Soheila Pouyan, Saeedeh Eskandari, and John P. Tiefenbacher. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Scientific Reports, 10(1):12144, 2020. F Zhang, Zaobao Liu, Lifeng Zheng, and Yu Zhang. Development of an adaptive relevance vector machine approach for slope stability inference. Neural Computing and Applications, 25(7):2025–2035, December 2014. Yin Zhang, Miaolin Dai, and Zhimin Ju. Preliminary Discussion Regarding SVM Kernel Function Selection in the Twofold Rock Slope Prediction Model. Journal of Computing in Civil Engineering, 30(3):04015031, 2016. Hongbo Zhao, Shunde Yin, and Zhongliang Ru. Relevance vector machine applied to slope stability analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 36(5):643–652, 2012. Wenming Zheng, Li Zhao, and Cairong Zou. Locally nearest neighbor classifiers for pattern classification. Pattern Recognition, 37(6):1307–1309, 2004. Jian Zhou, Enming Li, Shan Yang, Mingzheng Wang, Xiuzhi Shi, Shu Yao, and Hani S. Mitri. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Safety Science, 118:505–518, 2019. Lim Yi Zhou, Fam Pei Shan, Kunio Shimizu, Tomoaki Imoto, Habibah Lateh, and Koay Swee Peng. A comparative study of slope failure prediction using logistic regression, support vector machine and least square support vector machine models. AIP Conference Proceedings, 1870(1):060012, 2017. Yonglei Zhou, Changshui Zhang, and Jingchun Wang. Extended nearest feature line classifier. In Chengqi Zhang, H. W. Guesgen, and Wai-Kiang Yeap, editors, PRICAI 2004: Trends in Artificial Intelligence, volume 3157 of Lecture Notes in Computer Science, pages 183–190. Springer Berlin Heidelberg, 2004. Zonglin Zhou and Chee Keong Kwoh. The pattern classification based on the nearest feature midpoints. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, volume 3, pages 446–449, Aug 2004. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xiv, 85 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.department.spa.fl_str_mv |
Departamento de Ingeniería Eléctrica y Electrónica |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/82365/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/82365/2/75092593.2022.pdf https://repositorio.unal.edu.co/bitstream/unal/82365/3/75092593.2022.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 519a43dc2b03a65c061d9d2018480417 99cf310339207af25594f8495157dc0b |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089757515317248 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Orozco-Alzate, Mauricio854bb7da044fd757cf5087bb23930d6d600Ospina Dávila, Yesid Mauricio77edae32e4fa6591301d95ae010006282022-10-11T17:04:20Z2022-10-11T17:04:20Z2022https://repositorio.unal.edu.co/handle/unal/82365Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/gráficos, tablasNowadays, data-driven modelling in structural and geo-engineering problems using Statistical Pattern Recognition and Machine Learning provides powerful and more versatile tools within a predictive framework. In contrast to the mainstream orientations of the state-of-art in data-driven structural and geo-engineering surrogates, which are based on advanced and (hyper-)parametrized classifiers, this thesis is focused on data representation issues. Firstly, for vectorial slope/landslide data, feature-based vector spaces are enriched and enhanced according to the Occam’s razor principle, which is achieved through three simple but powerful existing variants of a transparent classifier as the nearest neighbor rule. Secondly, for non-vectorial SHM data, powerful and highly discriminant dissimilarity-vector spaces are built-up using spectral/time-frequency information from structural states, adopting a proximity-based learning scheme. In both cases, the results show the importance of a proper data representation and its key role in a bottom-up design for surrogate modelling. (Texto tomado de la fuente)Actualmente, el Reconocimiento de Patrones Estadístico y el Aprendizaje de Máquinas proveen herramientas poderosas y versátiles para el modelamiento predictivo de problemas de estructuras civiles, mecánicas y de la geo-ingeniería. A diferencia de las principales tendencias en el estado del arte en los sustitutos basados en datos en problemas de estructuras y de geo-ingeniería, esta tesis se enfoca en la representación de los datos. Primero, para datos vectoriales de taludes/deslizamientos, los espacios vectoriales basados en características son enriquecidos y mejorados de acuerdo al principio de la navaja de Occam o de parsimonia, el cual se logra mediante tres simples pero poderosos variantes ya existentes del clasificador de vecinos más cercanos. Segundo, para datos no-vectoriales pertenecientes al Monitoreo de Salud Estructural, son construidos, poderosos y altamente discriminantes, espacios de disimilitudes usando información espectral/tiempo-frecuencia, tomando un esquema de aprendizaje basado en proximidades. En ambos casos, los resultados demuestran la importancia de una apropiada representación de datos y su influencia en el diseño incremental de modelos sustitutos.DoctoradoDoctor en IngenieríaStatistical Pattern Recognition, Machine Learning and Signal ProcessingEléctrica, Electrónica, Automatización Y Telecomunicacionesxiv, 85 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaDepartamento de Ingeniería Eléctrica y ElectrónicaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresClassifier system designData-driven surrogatesDissimilarity pattern recognitionLandslidesPattern representationStructural health monitoringSlope stabilityDeslizamientosDiseño de sistemas de clasificaciónEstabilidad de taludesMonitoreo de salud estructuralReconocimiento de patrones basado en disimilitudesRepresentación de patronesSustitutos basados en datosIngeniería de la construcciónConstruction engineeringPattern representations for classifying (non-)metric (non-)vectorial data with applications in Structural Health Monitoring and geotechnical/natural-hazard engineeringRepresentaciones de patrones para la clasificación de datos (no-)vectoriales (no-)métricos con aplicaciones en el Monitoreo de Salud Estructural y la ingeniería de amenazas geotécnicas/naturalesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageTextJamal A. Abdalla, Mousa F. Attom, and Rami Hawileh. Prediction of minimum factor of safety against slope failure in clayey soils using artificial neural network. Environmental Earth Sciences, 73(9):5463–5477, May 2015.Osama Abdeljaber, Onur Avci, Mustafa Serkan Kiranyaz, Boualem Boashash, Henry Sodano, and Daniel J. Inman. 1-D CNNs for structural damage detection: Verification on a structural health monitoring benchmark data. Neurocomputing, 275:1308–1317, 2018.Osama Abdeljaber, Onur Avci, Serkan Kiranyaz, Moncef Gabbouj, and Daniel J. Inman. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. Journal of Sound and Vibration, 388:154–170, 2017.Yacine Achour and Hamid Reza Pourghasemi. How do machine learning techniques help in increasing accuracy of landslide susceptibility maps? Geoscience Frontiers, 11(3):871–883, 2020.Ethem Alpaydin. Introduction to Machine Learning. MIT Press, 3rd edition, 2014.Vinicius Alves, Alexandre Cury, Ney Roitman, Carlos Magluta, and Christian Cremona. Structural modification assessment using supervised learning methods applied to vibration data. Engineering Structures, 99:439 – 448, 2015.Onur Avci, Osama Abdeljaber, Serkan Kiranyaz, Mohammed Hussein, Moncef Gabbouj, and Daniel J. Inman. A review of vibration–based damage detection in civil structures: From traditional methods to Machine Learning and Deep Learning applications. Mechanical Systems and Signal Processing,Yuequan Bao and Hui Li. Machine learning paradigm for structural health monitoring. Structural Health Monitoring, 20(4):1353–1372, 2021.Alejandro Barredo Arrieta, Natalia Dı́az-Rodrı́guez, Javier Del Ser, Adrien Bennetot, Siham Tabik, Alberto Barbado, Salvador Garcia, Sergio Gil-Lopez, Daniel Molina, Richard Benjamins, Raja Chatila, and Francisco Herrera. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Information Fusion, 58:82–115, 2020.Robert M. Bell and Yehuda Koren. Lessons from the Netflix Prize Challenge. SIGKDD Explorations Newsletter, 9(2):75–79, dec 2007.Manuele Bicego and Mauricio Orozco-Alzate. PowerHC: non linear normalization of distances for advanced nearest neighbor classification. In 25th International Conference on Pattern Recognition (ICPR), pages 1205–1211, 2021.Michael Biehl, Barbara Hammer, and Thomas Villmann. Prototype-based models in machine learning. WIREs Cognitive Science, 7(2):92–111, 2016.Alain Biem. A model selection criterion for classification: application to HMM topology optimization. In Proceedings of the Seventh International Conference on Document Analysis and Recognition - ICDAR 2003, pages 104–108, August 2003.Christopher Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, NY, 1st edition, 2006.Luke Bornn, Charles R. Farrar, David Higdon, and Kevin P. Murphy. Modeling and diagnosis of structural systems through sparse dynamic graphical models. Mechanical Systems and Signal Processing, 74:133–143, 2016. Special Issue in Honor of Professor Simon Braun.Steven L. Brunton and J. Nathan Kutz. Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control. Cambridge University Press, 2019.Lawrence A. Bull, Paul Gardner, Timothy J. Rogers, Elizabeth J. Cross, Nikolaos Dervilis, and Keith Worden. Probabilistic inference for structural health monitoring: New modes of learning from data. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 7(1):03120003, 2021.Raghavendra Chalapathy and Nguyen Lu Dang Khoa. Comparison of unsupervised shallow and deep models for structural health monitoring. Proceedings of the Institution of Civil Engineers - Bridge Engineering, pages 1–11, 2021.Wei Chen, Hamid Reza Pourghasemi, Aiding Kornejady, and Ning Zhang. Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 305:314–327, 2017.Zuoyi Chen, Yanzhi Wang, Jun Wu, Chao Deng, and Kui Hu. Sensor data-driven structural damage detection based on deep convolutional neural networks and continuous wavelet transform. Applied Intelligence, 51(8):5598–5609, 2021.Min-Yuan Cheng and Nhat-Duc Hoang. Typhoon–induced slope collapse assessment using a novel bee colony optimized support vector classifier. Natural Hazards, 78(3):1961–1978, September 2015.Vladimir Cherkassky and Filip M. Mulier. Learning from Data: Concepts, Theory, and Methods. Wiley-IEEE Press, 2007.Jen-Tzung Chien and Chia-Chen Wu. Discriminant waveletfaces and nearest feature classifiers for face recognition. IEEE Trans. Pattern Anal. Machine Intell., 24(12):1644–1649, 2002.Jianye Ching and Kok-Kwang Phoon. Characterizing Unknown Trend Using Sparse Bayesian Learning, chapter Geo-Risk 2017: Geotechnical Risk Assessment and Management, pages 22–31. 2017.Hung V. Dang, Mohsin Raza, Tung V. Nguyen, T. Bui-Tien, and Huan X. Nguyen. Deep learning-based detection of structural damage using time-series data. Structure and Infrastructure Engineering, 17(11):1474–1493, 2021.R. De Almeida Cardoso, Alexandre Cury, and Flavio Barbosa. Automated real–time damage detection strategy using raw dynamic measurements. Engineering Structures, 196:109364, 2019.Hao Du and Yan Qiu Chen. Rectified nearest feature line segment for pattern classification. Pattern Recognition, 40(5):1486 – 1497, 2007.Robert P. W. Duin. The origin of patterns. Frontiers in Computer Science, 3, 2021.Robert P. W. Duin, Manuele Bicego, Mauricio Orozco-Alzate, Sang-Woon Kim, and Marco Loog. Metric learning in dissimilarity space for improved nearest neighbor performance. In Pasi Fränti, Gavin Brown, Marco Loog, Francisco Escolano, and Marcello Pelillo, editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 183–192, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.Robert P. W. Duin and E. Pȩkalska. The dissimilarity space: Bridging structural and statistical pattern recognition. Pattern Recognition Letters, 33(7):826–832, 2012. Special Issue on Awards from ICPR 2010.Robert P. W. Duin, E. Pȩkalska, and Marco Loog. Non-Euclidean Dissimilarities: Causes, Embedding and Informativeness, pages 13–44. Springer London, London, 2013.R.P.W. Duin and E. Pȩkalska. The dissimilarity representation for structural pattern recognition. In C. San-Martin and Sang-Woon Kim, editors, Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications, volume 7042 of Lecture Notes in Computer Science, pages 1–24. Springer Berlin Heidelberg, 2011.Alireza Entezami, Hashem Shariatmadar, and Abbas Karamodin. Data–driven damage diagnosis under environmental and operational variability by novel statistical pattern recognition methods. Structural Health Monitoring, 18(5-6):1416–1443, 2019.Alireza Entezami, Hashem Shariatmadar, and Stefano Mariani. Early damage assessment in large-scale structures by innovative statistical pattern recognition methods based on time series modeling and novelty detection. Advances in Engineering Software, 150:102923, 2020.Zhice Fang, Yi Wang, Ling Peng, and Haoyuan Hong. Integration of convolutional neural network and conventional machine learning classifiers for landslide susceptibility mapping. Computers & Geosciences, 139:104470, 2020.Charles R. Farrar and Keith Worden. Structural Health Monitoring: A Machine Learning Perspective. John Wiley & Sons, West Sussex, UK, 2013.Manuel Fernández-Delgado, Eva Cernadas, Senén Barro, and Dinani Amorim. Do we need hundreds of classifiers to solve real world classification problems? Journal of Machine Learning Research, 15(90):3133–3181, 2014.P. A. Gardner, L. A. Bull, N. Dervilis, and K. Worden. On the Application of Heterogeneous Transfer Learning to Population-Based Structural Health Monitoring. In Ramin Madarshahian and Francois Hemez, editors, Data Science in Engineering, Volume 9, pages 87–98, Cham, 2022. Springer International Publishing.Lev Goldfarb. A unified approach to pattern recognition. Pattern Recognition, 17(5):575–582, 1984.Ralf Herbrich. Learning Kernel Classifiers. Theory and Algorithms. MIT Press, 2001.Nhat-Duc Hoang and Dieu Tien Bui. Chapter 18 - Slope Stability Evaluation Using Radial Basis Function Neural Network, Least Squares Support Vector Machines, and Extreme Learning Machine. In Pijush Samui, Sanjiban Sekhar, and Valentina E. Balas, editors, Handbook of Neural Computation, pages 333–344. Academic Press, 2017.Nhat-Duc Hoang and Anh-Duc Pham. Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis. Expert Systems with Applications, 46:60–68, 2016.Yu Huang and Lu Zhao. Review on landslide susceptibility mapping using support vector machines. CATENA, 165:520–529, 2018.Piotr Juszczak, David M.J. Tax, E. Pȩkalska, and R. P. W. Duin. Minimum spanning tree based one-class classifier. Neurocomputing, 72(7):1859–1869, 2009. Advances in Machine Learning and Computational Intelligence.George Em Karniadakis, Ioannis G. Kevrekidis, Lu Lu, Paris Perdikaris, Sifan Wang, and Liu Yang. Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.Eamonn Keogh, Stefano Lonardi, and Chotirat Ann Ratanamahatana. Towards parameter-free data mining. In Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’04, pages 206–215, New York, NY, USA, 2004. Association for Computing Machinery.A.J. Li, S. Khoo, A.V. Lyamin, and Y. Wang. Rock slope stability analyses using extreme learning neural network and terminal steepest descent algorithm. Automation in Construction, 65:42–50, 2016.Bo Li, Duanyou Li, Zhijun Zhang, Shengmei Yang, and Fan Wang. Slope stability analysis based on quantum–behaved particle swarm optimization and least squares support vector machine. Applied Mathematical Modelling, 39(17):5253–5264, 2015.Dian-Qing Li, Dong Zheng, Zi-Jun Cao, Xiao-Song Tang, and Kok-Kwang Phoon. Response surface methods for slope reliability analysis: Review and comparison. Engineering Geology, 203:3–14, 2016. Special Issue on Probabilistic and Soft Computing Methods for Engineering Geology.Jiang Li and Can-Yi Lu. A new decision rule for sparse representation based classification for face recognition. Neurocomputing, 116:265–271, 2013. Advanced Theory and Methodology in Intelligent Computing.Stan Z. Li and Juwei Lu. Face recognition using the nearest feature line method. IEEE Transactions on Neural Networks, 10(2):439–443, 1999.Y. Lin, K. Zhou, and J. Li. Prediction of slope stability using four supervised learning methods. IEEE Access, 6:31169–31179, 6 2018.Ramin Madarshahian and Francois Hemez, editors. Data Science in Engineering, Proceedings of the 39th IMAC, A Conference and Exposition on Structural Dynamics, volume 9 of Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS), Berlin, Germany, 2021. Springer.Mehrisadat Makki Alamdari, Ali Anaissi, Nguyen L. D. Khoa, and Samir Mustapha. Frequency domain decomposition-based multisensor data fusion for assessment of progressive damage in structures. Structural Control and Health Monitoring, 26(2):e2299, 2019.Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning. MIT Press, 2nd edition, 2018.Maliki Moustapha, Stefano Marelli, and Bruno Sudret. Active learning for structural reliability: Survey, general framework and benchmark. Structural Safety, 96:102174, 2022.Maximilian Münch, Christoph Raab, and Frank-Michael Schleif. Encoding of Indefinite Proximity Data: A Structure Preserving Perspective. In Maria De Marsico, Gabriella Sanniti di Baja, and Ana Fred, editors, Pattern Recognition Applications and Methods, pages 112–137, Cham, 2020. Springer International Publishing.Maximilian Münch, Michiel Straat, Michael Biehl, and Frank-Michael Schleif. Complex-valued embeddings of generic proximity data. In Andrea Torsello, Luca Rossi, Marcello Pelillo, Battista Biggio, and Antonio Robles Kelly, editors, Structural, Syntactic, and Statistical Pattern Recognition, pages 14–23, Cham, 2021. Springer International Publishing.W. James Murdoch, Chandan Singh, Karl Kumbier, Reza Abbasi-Asl, and Bin Yu. Definitions, methods, and applications in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44):22071–22080, 2019.Mauricio Orozco-Alzate, Sisto Baldo, and Manuele Bicego. Relation, transition and comparison between the adaptive nearest neighbor rule and the hypersphere classifier. In Elisa Ricci, Samuel Rota Bulò, Cees Snoek, Oswald Lanz, Stefano Messelodi, and Nicu Sebe, editors, Image Analysis and Processing – ICIAP 2019, pages 141–151, Cham, 2019. Springer International Publishing.Mauricio Orozco-Alzate and Manuele Bicego. A cheaper rectified-nearest-feature-line-segment classifier based on safe points. In 2020 25th International Conference on Pattern Recognition (ICPR), pages 2787–2794, 2021.Mauricio Orozco-Alzate, Robert P. W. Duin, and César Germán Castellanos-Domı́nguez. A generalization of dissimilarity representations using feature lines and feature planes. Pattern Recognition Letters, 30(3):242–254, feb 2009.E. Pȩkalska and R. P.W. Duin. The Dissimilarity Representation for Pattern Recognition: Foundations and Applications, volume 64 of Machine Perception and Artificial Intelligence. World Scientific, Singapore, 2005.Elzbieta Pȩkalska, Pavel Paclik, and Robert P. W. Duin. A generalized kernel approach to dissimilarity-based classification. J. Mach. Learn. Res., 2:175–211, March 2002.E. Pekalska and R. P. W. Duin. Beyond Traditional Kernels: Classification in Two Dissimilarity-Based Representation Spaces. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 38(6):729–744, Nov 2008.Kok-Kwang Phoon, Jianye Ching, and Zijun Cao. Unpacking data-centric geotechnics. Underground Space, 2022.Kok-Kwang Phoon, Jianye Ching, and Takayuki Shuku. Challenges in data-driven site characterization. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 0(0):1–13, 2021.J. S.-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge, UK, 2004.Adam Santos, Eloi Figueiredo, M.F.M. Silva, C.S. Sales, and J.C.W.A. Costa. Machine learning algorithms for damage detection: Kernel-based approaches. Journal of Sound and Vibration, 363:584 – 599, 2016.Hassan Sarmadi and Abbas Karamodin. A novel anomaly detection method based on adaptive Mahalanobis-squared distance and one-class kNN rule for structural health monitoring under environmental effects. Mechanical Systems and Signal Processing, 140:106495, 2020.W. J. Scheirer, M. J. Wilber, M. Eckmann, and T. E. Boult. Good recognition is non–metric. Pattern Recognition, 47:2721–2731, 2014.Frank-Michael Schleif and Peter Tino. Indefinite Proximity Learning: A Review. Neural Computation, 27(10):2039–2096, 10 2015.Osvaldo Simeone. A Brief Introduction to Machine Learning for Engineers, volume 12. Now Foundations and Trends, 2018.Hoon Sohn and Chang Kook Oh. Statistical Pattern Recognition, chapter 30. John Wiley & Sons, Ltd., 2009.David M.J Tax and Robert P.W Duin. Support vector domain description. Pattern Recognition Letters, 20(11):1191–1199, 1999.Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition. Academic Press, 2009.Jigang Wang, Predrag Neskovic, and Leon N. Cooper. Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognition Letters, 28(2):207 – 213, 2007.Renjie Wu and Eamonn Keogh. Current Time Series Anomaly Detection Benchmarks are Flawed and are Creating the Illusion of Progress. IEEE Transactions on Knowledge and Data Engineering, pages 1–9, 2021.JianXi Yang, Fei Yang, Likai Zhang, Ren Li, Shixin Jiang, Guiping Wang, Le Zhang, and Zeng Zeng. Bridge health anomaly detection using deep support vector data description. Neurocomputing, 2021.Z. Zhou, S.Z. Li, and K.L. Chan. A theoretical justification of nearest feature line method. In Proc. 15th ICPR International Conference on Pattern Recognition, volume 2, pages 759–762, 2000.Rania Rizki Arinta and Emanuel Andi W.R. Natural Disaster Application on Big Data and Machine Learning: A Review. In 2019 4th International Conference on Information Technology, Information Systems and Electrical Engineering (ICITISEE), pages 249–254, 2019.Luke Bornn, Charles R. Farrar, Gyuhae Park, and Kevin Farinholt. Structural Health Monitoring With Autoregressive Support Vector Machines. Journal of Vibration and Acoustics, 131(2), 02 2009.Muhammad Shahzad Cheema, Abdalrahman Eweiwi, and Christian Bauckhage. High dimensional low sample size activity recognition using geometric classifiers. Digital Signal Processing, 42:61–69, 2015.Wei Chen, Hamid Reza Pourghasemi, Mahdi Panahi, Aiding Kornejady, Jiale Wang, Xiaoshen Xie, and Shubo Cao. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and support vector machine techniques. Geomorphology, 297:69–85, 2017.A. J. Choobbasti, F. Farrokhzad, and A. Barari. Prediction of slope stability using artificial neural network (case study: Noabad, Mazandaran, Iran). Arabian Journal of Geosciences, 2(4):311–319, Nov 2009.Paul Cilliers. Complexity and Postmodernism. Understanding Complex Systems. Routledge, 1st edition, 2002.Alexandre Cury and Christian Crémona. Pattern recognition of structural behaviors based on learning algorithms and symbolic data concepts. Structural Control and Health Monitoring, 19(2):161–186, 2012.Sarat Kumar Das, Rajani Kanta Biswal, N. Sivakugan, and Bitanjaya Das. Classification of slopes and prediction of factor of safety using differential evolution neural networks. Environmental Earth Sciences, 64(1):201–210, Sep 2011.Rharã de Almeida Cardoso, Alexandre Cury, Flavio Barbosa, and Carmelo Gentile. Unsupervised real-time SHM technique based on novelty indexes. Structural Control and Health Monitoring, 26(7):e2364, 2019.Robert P. W. Duin and Elżbieta Pekalska. The Science of Pattern Recognition. Achievements and Perspectives, chapter 10, pages 221–259. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.Robert P.W. Duin, E. Pȩkalska, P. Paclı́k, and D.M.J. Tax. The dissimilarity representation, a basis for a domain-based pattern recognition? In J Goldfarb, editor, Proceedings of a satellite workshop of the 17th international conference on pattern recognition, pages 43–56. s.n., 2004.R.P.W. Duin and E. Pȩkalska. Non–Euclidean dissimilarities: Causes and informativeness. In Structural, Syntactic, and Statistical Pattern Recognition, Joint IAPR International Workshop, SSPR–SPR, Cesme, Izmir, Turkey, 2010.C. R. Farrar and H. Sohn. Pattern recognition for structural health monitoring. In Workshop on Mitigation of Earthquake Disaster by Advanced Technologies, pages 1–6, Las Vegas, NV, USA, Nov–Dec 2000.C. R. Farrar and K. Worden. An introduction to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):303–315, December 2007.Charles Farrar, Mayuko Nishio, Francois Hemez, Chris Stull, Gyuhae Park, Phil Cornwell, Eloi Figueiredo, D. J. Luscher, and Keith Worden. Feature Extraction for Structural Dynamics Model Validation. Technical Report LA-UR-16-20151, Los Alamos National Laboratory, 2016.Spilios D Fassois and John S Sakellariou. Time-series methods for fault detection and identification in vibrating structures. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):411–448, 2007.Qingxiang Feng, Lijun Yan, and Jeng-Shyang Pan. A novel classifier based on nearest feature line. In International Conference on Computing, Measurement, Control and Sensor Network (CMCSN), pages 265–268, July 2012.M.D. Ferentinou and M.G. Sakellariou. Computational intelligence tools for the prediction of slope performance. Computers and Geotechnics, 34(5):362–384, 2007. Special Issue on Biologically Inspired and Other Novel Computing Techniques in Geomechanics.Eloi Figueiredo, Joaquim Figueiras, Gyuhae Park, Charles R. Farrar, and Keith Worden. Influence of the Autoregressive Model Order on Damage Detection. Computer-Aided Civil and nfrastructure Engineering, 26(3):225–238, 2011.Eloi Figueiredo, Gyuhae Park, Charles R Farrar, Keith Worden, and Joaquim Figueiras. Machine learning algorithms for damage detection under operational and environmental variability. Structural Health Monitoring, 10(6):559–572, 2011.Eloi Figueiredo, Gyuhae Park, Joaquim Figueiras, Charles Farrar, and Keith Worden. Structural Health Monitoring Algorithm Comparisons Using Standard Data Sets. Technical Report LA-14393, Los Alamos National Laboratory, 2009.Qing-Bin Gao and Zheng-Zhi Wang. Center–based nearest neighbor classifier. Pattern Recognition, 40(1):346–349, 2007.Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco Herrera. Prototype selection for nearest neighbor classification: Taxonomy and empirical study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(3):417–435, 2012.P. Gardner, L.A. Bull, J. Gosliga, J. Poole, N. Dervilis, and K. Worden. A population-based SHM methodology for heterogeneous structures: Transferring damage localisation knowledge between different aircraft wings. Mechanical Systems and Signal Processing, 172:108918, 2022.Jason N. Goetz, Richard H. Guthrie, and Alexander Brenning. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology, 129(3):376–386, 2011.Behrouz Gordan, Danial Jahed Armaghani, Mohsen Hajihassani, and Masoud Monjezi. Prediction of seismic slope stability through combination of particle swarm optimization and neural network. Engineering with Computers, 32(1):85–97, Jan 2016.M. Gul and F. N. Catbas. Statistical pattern recognition for structural health monitoring using time series modeling: Theory and experimental verifications. Mechanical Systems and Signal Processing, 23(7):2192–2204, 2009.B. Haasdonk and D. Keysers. Tangent distance kernels for support vector machines. In 2002 International Conference on Pattern Recognition, volume 2, pages 864–868 vol.2, 2002.Ye Hua, Xianmin Wang, Yongwei Li, Peiyun Xu, and Wenxiang Xia. Dynamic development of landslide susceptibility based on slope unit and deep neural networks. Landslides, 18(1):281–302, 2021.Faming Huang, Jing Zhang, Chuangbing Zhou, Yuhao Wang, Jinsong Huang, and Li Zhu. A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction. Landslides, 17(1):217–229, 2020.Yang H. Huang. Slope Stability Analysis by the Limit Equilibrium Method. American Society of Civil Engineers, 2014.A. K. Jain, R. P. W. Duin, and Jianchang Mao. Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(1):4–37, 2000.Kejie Jiang, Qiang Han, Xiuli Du, and Pinghe Ni. A decentralized unsupervised structural condition diagnosis approach using deep auto-encoders. Computer-Aided Civil and Infrastructure Engineering, 36(6):711–732, 2021.Navid Kardani, Annan Zhou, Majidreza Nazem, and Shui-Long Shen. Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data. Journal of Rock Mechanics and Geotechnical Engineering, 13(1):188–201, 2021.Eamonn Keogh, Stefano Lonardi, Chotirat Ann Ratanamahatana, Li Wei, Sang-Hee Lee, and John Handley. Compression-based data mining of sequential data. Data Mining and Knowledge Discovery, 14:99–129, 2007.Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef Gabbouj, and Daniel J. Inman. 1D convolutional neural networks and applications: A survey. Mechanical Systems and Signal Processing, 151:107398, 2021.Mohammadreza Koopialipoor, Danial Jahed Armaghani, Ahmadreza Hedayat, Aminaton Marto, and Behrouz Gordan. Applying various hybrid intelligent systems to evaluate and predict slope stability under static and dynamic conditions. Soft Computing, May 2018.Kundan Kumar, Prabir Kumar Biswas, and Nirjhar Dhang. Time series-based SHM using PCA with application to ASCE benchmark structure. Journal of Civil Structural Health Monitoring, 10(5):899–911, 2020.Manoj Kumar, Pijush Samui, and Ajay Kumar Naithani. Determination of stability of epimetamorphic rock slope using Minimax Probability Machine. Geomatics, Natural Hazards and Risk, 7(1):186–193, 2016.David J. Lary, Gebreab K. Zewdie, Xun Liu, Daji Wu, Estelle Levetin, Rebecca J. Allee, Nabin Malakar, Annette Walker, Hamse Mussa, Antonio Mannino, and Dirk Aurin. Machine Learning Applications for Earth Observation, pages 165–218. Springer International Publishing, Cham, 2018.S.Z Li and J. Lu. Generalizing capacity of face database for face recognition. In Third IEEE International Conference on Automatic Face and Gesture Recognition, pages 402–406, Apr 1998.Xueyou Li, Limin Zhang, and Shuai Zhang. Efficient bayesian networks for slope safety evaluation with large quantity monitoring information. Geoscience Frontiers, 9(6):1679–1687, 2018. Reliability Analysis of Geotechnical Infrastructures.Zaobao Liu, Jianfu Shao, Weiya Xu, Hongjie Chen, and Yu Zhang. An extreme learning machine approach for slope stability evaluation and prediction. Natural Hazards, 73(2):787–804, Sep 2014.Noel Lopes and Bernardete Ribeiro. Incremental Hypersphere Classifier (IHC). In Machine Learning for Adaptive Many-Core Machines - A Practical Approach, volume 7 of Studies in Big Data, chapter 6, pages 107–123. Springer International Publishing, Cham, 2015.I. Lopez and N. Sarigul-Klijn. A novel dimensional reduction approach for structural damage diagnosis using feature similarity. In Tribikram Kundu, editor, Health Monitoring of Structural and Biological Systems 2009, volume 7295, pages 511 – 522. International Society for Optics and Photonics, SPIE, 2009.Israel Lopez and Nesrin Sarigul-Klijn. Distance similarity matrix using ensemble of dimensional data reduction techniques: Vibration and aerocoustic case studies. Mechanical Systems and Signal Processing, 23(7):2287 – 2300, 2009.Zhengjing Ma, Gang Mei, and Francesco Piccialli. Machine learning for landslides prevention: a survey. Neural Computing and Applications, 33(17):10881–10907, 2021.Hossein Moayedi, Mansour Mosallanezhad, Ahmad Safuan A. Rashid, Wan Amizah Wan Jusoh, and Mohammed Abdullahi Muazu. A systematic review and meta-analysis of artificial neural network application in geotechnical engineering: theory and applications. Neural Computing and Applications, 32(2):495–518, 2020.L. Moniz, J.M. Nichols, C.J. Nichols, M. Seaver, S.T. Trickey, M.D. Todd, L.M. Pecora, and L.N. Virgin. A multivariate, attractor-based approach to structural health monitoring. Journal of Sound and Vibration, 283(1):295–310, 2005.J. M. Nichols, M. D. Todd, M. Seaver, and L. N. Virgin. Use of chaotic excitation and attractor property analysis in structural health monitoring. Phys. Rev. E, 67:016209, Jan 2003.Mayuko Nishio, Francois Hemez, Keith Worden, Gyuhae Park, Nobuo Takeda, and Charles Farrar. Feature extraction for structural dynamics model validation. In Tom Proulx, editor, Linking Models and Experiments, Volume 2, pages 153–163, New York, NY, 2011. Springer New York.L.A. Overbey and M.D. Todd. Analysis of Local State Space Models for Feature Extraction in Structural Health Monitoring. Structural Health Monitoring, 6(2):145–172, 2007.E. Pȩkalska. Dissimilarity representations in pattern recognition. Concepts, theory and applications. PhD thesis, Delft University of Technology, 2005.E. Pȩkalska and R. P.W. Duin. Dissimilarity measures, volume 64 of Machine Perception and Artificial Intelligence, chapter 5, pages 215–252. World Scientific, Singapore, 2005.E. Pȩkalska and B. Haasdonk. Kernel discriminant analysis for positive definite and indefinite kernels. IEEE Transactions on Pattern Recognition and Machine Intelligence, 31(6):482–492, 2009.Jin-Song Pei, Dean F. Hougen, Sai Teja Kanneganti, Joseph P. Wright, Eric C. Mai, Andrew W. Smyth, Sami F. Masri, Armen Derkevorkian, François Gay-Balmaz, and Ludian Komini. Interpretable Machine Learning for Function Approximation in Structural Health Monitoring, pages 369–388. Springer International Publishing, Cham, 2022.Binh Thai Pham and Indra Prakash. A novel hybrid model of Bagging-based Naive Bayes Trees for landslide susceptibility assessment. Bulletin of Engineering Geology and the Environment, 78(3):1911–1925, 2021.Binh Thai Pham, Indra Prakash, Sushant K. Singh, Ataollah Shirzadi, Himan Shahabi, Thi-Thu-Trang Tran, and Dieu Tien Bui. Landslide susceptibility modeling using Reduced Error Pruning Trees and different ensemble techniques: Hybrid machine learning approaches. CATENA, 175:203–218, 2019.Kok-Kwang Phoon and Wengang Zhang. Future of machine learning in geotechnics. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 0(0):1–16, 2022.Luca Piciullo, Michele Calvello, and José Mauricio Cepeda. Territorial early warning systems for rainfall-induced landslides. Earth-Science Reviews, 179:228–247, 2018.Daniele Posenato, Francesca Lanata, Daniele Inaudi, and Ian F.C. Smith. Model-free data interpretation for continuous monitoring of complex structures. Advanced Engineering Informatics, 22(1):135–144, 2008. Intelligent computing in engineering and architecture.Miguel A. Prada, Janne Toivola, Jyrki Kullaa, and Jaakko Hollmén. Three-way analysis of structural health monitoring data. Neurocomputing, 80:119 – 128, 2012. Special Issue on Machine Learning for Signal Processing 2010.Chongchong Qi and Xiaolin Tang. A hybrid ensemble method for improved prediction of slope stability. International Journal for Numerical and Analytical Methods in Geomechanics, 42(15):1823–1839, 2018.Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista, Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. Addressing Big Data Time Series: Mining Trillions of Time Series Subsequences Under Dynamic Time Warping. ACM Transactions on Knowledge Discovery from Data, 7(3), September 2013.Paola Reichenbach, Mauro Rossi, Bruce D. Malamud, Monika Mihir, and Fausto Guzzetti. A review of statistically-based landslide susceptibility models. Earth-Science Reviews, 180:60–91, 2018.Hannah Ritchie and Max Roser. Natural disasters. Our World in Data, 2014. It was last revised in November 2021.G. Roberti, J. McGregor, S. Lam, D. Bigelow, B. Boyko, C. Ahern, V. Wang, B. Barnhart, C. Smyth, D. Poole, and S. Richard. INSPIRE standards as a framework for artificial intelligence applications: a landslide example. Natural Hazards and Earth System Sciences, 20(12):3455–3483, 2020.T.J. Rogers, K. Worden, R. Fuentes, N. Dervilis, U.T. Tygesen, and E.J. Cross. A Bayesian non-parametric clustering approach for semi-supervised structural health monitoring. Mechanical Systems and Signal Processing, 119:100–119, 2019.S. Rukhaiyar, M. N. Alam, and N. K. Samadhiya. A PSO–ANN hybrid model for predicting factor of safety of slope. International Journal of Geotechnical Engineering, 12(6):556–566, 2018.Seyedomid Sajedi and Xiao Liang. Dual Bayesian inference for risk-informed vibration-based damage diagnosis. Computer-Aided Civil and Infrastructure Engineering, 36(9):1168–1184, 2021.M. G. Sakellariou and M. D. Ferentinou. A study of slope stability prediction using neural networks. Geotechnical & Geological Engineering, 23(4):419, Aug 2005.P. Samui and D.P. Kothari. Utilization of a least square support vector machine (LSSVM) for slope stability analysis. Scientia Iranica, 18(1):53–58, 2011.Pijush Samui. Slope stability analysis: a support vector machine approach. Environmental Geology, 56(2):255, Feb 2008.Pijush Samui. Support vector classifier analysis of slope. Geomatics, Natural Hazards and Risk, 4(1):1–12, 2013.João Pedro Santos, Christian Cremona, André D. Orcesi, and Paulo Silveira. Early Damage Detection Based on Pattern Recognition and Data Fusion. Journal of Structural Engineering, 143(2):04016162, 2017.Hassan Sarmadi, Alireza Entezami, Behzad Saeedi Razavi, and Ka-Veng Yuen. Ensemble learning-based structural health monitoring by Mahalanobis distance metrics. Structural Control and Health Monitoring, 28(2):e2663, 2021.Haichen Shi, Keith Worden, and Elizabeth J. Cross. A cointegration approach for heteroscedastic data based on a time series decomposition: An application to structural health monitoring. Mechanical Systems and Signal Processing, 120:16 – 31, 2019.Moisés Silva, Adam Santos, and Elói Figueiredo. Damage Detection for Structural Health Monitoring of Bridges as a Knowledge Discovery in Databases Process, pages 1–24. Springer Singapore, Singapore, 2019.Moisés Silva, Adam Santos, Eloi Figueiredo, Reginaldo Santos, Claudomiro Sales, and João C.W.A. Costa. A novel unsupervised approach based on a genetic algorithm for structural damage detection in bridges. Engineering Applications of Artificial Intelligence, 52:168 – 180, 2016.H Sohn, C R Farrar, F M Hemez, and J J Czarnecki. A Review of Structural Health Monitoring Literature: 1996-2001. Technical Report LA-UR-02-2095, Los Alamos National Lab. (LANL), 1 2002.Nikos A Spanos, John S Sakellariou, and Spilios D Fassois. Vibration-response-only statistical time series structural health monitoring methods: A comprehensive assessment via a scale jacket structure. Structural Health Monitoring, 19(3):736–750, 2020.M.D. Spiridonakos and S.D. Fassois. Adaptable functional series TARMA models for non-stationary signal representation and their application to mechanical random vibration modeling. Signal Processing, 96:63 – 79, 2014.Ingo Steinwart. Empirical Inference. Festschrift in Honor of Vladimir N. Vapnik, chapter Some Remarks on the Statistical Analysis of SVMs and Related Methods, pages 25–36. Springer-Verlag Berlin Heidelberg, 2013.Han Sun, Henry V. Burton, and Honglan Huang. Machine learning applications for building structural design and performance assessment: State-of-the-art review. Journal of Building Engineering, 33:101816, 2021.Zhiyi Tang, Zhicheng Chen, Yuequan Bao, and Hui Li. Convolutional neural network-based data anomaly detection method using multiple information for structural health monitoring. Structural Control and Health Monitoring, 26(1):e2296, 2019.David Tax. One-class classification: Concept-learning in the absence of counter-examples. Doctoral thesis, Delft University of Technology, Netherlands, June 2001.Dieu Tien Bui, Biswajeet Pradhan, Owe Lofman, Inge Revhaug, and Oystein B. Dick. Spatial prediction of landslide hazards in Hoa Binh province (Vietnam): A comparative assessment of the efficacy of evidential belief functions and fuzzy logic models. CATENA, 96:28–40, 2012.Dieu Tien Bui, Biswajeet Pradhan, Haleh Nampak, Quang-Thanh Bui, Quynh-An Tran, and Quoc-Phi Nguyen. Hybrid artificial intelligence approach based on neural fuzzy inference model and metaheuristic optimization for flood susceptibility modeling in a high-frequency tropical cyclone area using GIS. Journal of Hydrology, 540:317–330, 2016.Maria Valero, Fangyu Li, Liang Zhao, Chi Zhang, Jose Garrido, and Zhu Han. Vibration sensing-based human and infrastructure safety/health monitoring: A survey. Digital Signal Processing, 114:103037, 2021.Chaofeng Wang, Qian Yu, Kincho H. Law, Frank McKenna, Stella X. Yu, Ertugrul Taciroglu, Adam Zsarnóczay, Wael Elhaddad, and Barbaros Cetiner. Machine learning-based regional scale intelligent modeling of building information for natural hazard risk management. Automation in Construction, 122:103474, 2021.H.B. Wang, J.M. Li, B.Zhou, Y.Zhou, Z.Q. Yuan, , and Y.P. Chen. Application of a hybrid model of neural networks and genetic algorithms to evaluate landslide susceptibility. Geoenvironmental Disasters, 4(15):1–12, 2017.Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann, and Eamonn Keogh. Experimental comparison of representation methods and distance measures for time series data. Data Mining and Knowledge Discovery, 26(2):275–309, 2013.Keith Worden, Charles R. Farrar, Jonathan Haywood, and Michael Todd. A review of nonlinear dynamics applications to structural health monitoring. Structural Control and Health Monitoring, 15(4):540–567, 2008.Keith Worden and Graeme Manson. The application of machine learning to structural health monitoring. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851):515–537, 2007.Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep Ghosh, Qiang Yang, , Hiroshi Motoda, Geoffrey J. McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua Zhou, Michael Steinbach, David J. Hand, and Dan Steinberg. Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1):1–37, 2008.Beibei Yang, Kunlong Yin, Suzanne Lacasse, and Zhongqiang Liu. Time series analysis and long short-term memory neural network to predict landslide displacement. Landslides, 16(4):677–694, 2019.Xin-She Yang, Siamak Talatahari, Amir Hossein Gandomi, and Amir Hossein Alavi, editors. Metaheuristics in Water, Geotechnical and Transport Engineering. Elsevier, 2013.Yang Yang, Zhike Peng, Wenming Zhang, and Guang Meng. Parameterised time–frequency analysis methods and their engineering applications: A review of recent advances. Mechanical Systems and Signal Processing, 119:182 – 221, 2019.Ruigen Yao and Shamim N. Pakzad. Autoregressive statistical pattern recognition algorithms for damage detection in civil structures. Mechanical Systems and Signal Processing, 31:355–368, 2012.Zaher Mundher Yaseen, Ahmed El-shafie, Othman Jaafar, Haitham Abdulmohsin Afan, and Khamis Naba Sayl. Artificial intelligence based models for stream-flow forecasting: 2000–2015. Journal of Hydrology, 530:829–844, 2015.Saleh Yousefi, Hamid Reza Pourghasemi, Sayed Naeim Emami, Soheila Pouyan, Saeedeh Eskandari, and John P. Tiefenbacher. A machine learning framework for multi-hazards modeling and mapping in a mountainous area. Scientific Reports, 10(1):12144, 2020.F Zhang, Zaobao Liu, Lifeng Zheng, and Yu Zhang. Development of an adaptive relevance vector machine approach for slope stability inference. Neural Computing and Applications, 25(7):2025–2035, December 2014.Yin Zhang, Miaolin Dai, and Zhimin Ju. Preliminary Discussion Regarding SVM Kernel Function Selection in the Twofold Rock Slope Prediction Model. Journal of Computing in Civil Engineering, 30(3):04015031, 2016.Hongbo Zhao, Shunde Yin, and Zhongliang Ru. Relevance vector machine applied to slope stability analysis. International Journal for Numerical and Analytical Methods in Geomechanics, 36(5):643–652, 2012.Wenming Zheng, Li Zhao, and Cairong Zou. Locally nearest neighbor classifiers for pattern classification. Pattern Recognition, 37(6):1307–1309, 2004.Jian Zhou, Enming Li, Shan Yang, Mingzheng Wang, Xiuzhi Shi, Shu Yao, and Hani S. Mitri. Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories. Safety Science, 118:505–518, 2019.Lim Yi Zhou, Fam Pei Shan, Kunio Shimizu, Tomoaki Imoto, Habibah Lateh, and Koay Swee Peng. A comparative study of slope failure prediction using logistic regression, support vector machine and least square support vector machine models. AIP Conference Proceedings, 1870(1):060012, 2017.Yonglei Zhou, Changshui Zhang, and Jingchun Wang. Extended nearest feature line classifier. In Chengqi Zhang, H. W. Guesgen, and Wai-Kiang Yeap, editors, PRICAI 2004: Trends in Artificial Intelligence, volume 3157 of Lecture Notes in Computer Science, pages 183–190. Springer Berlin Heidelberg, 2004.Zonglin Zhou and Chee Keong Kwoh. The pattern classification based on the nearest feature midpoints. In Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, volume 3, pages 446–449, Aug 2004.BibliotecariosEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82365/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL75092593.2022.pdf75092593.2022.pdfDoctorado en Ingeniería - Automáticaapplication/pdf8746227https://repositorio.unal.edu.co/bitstream/unal/82365/2/75092593.2022.pdf519a43dc2b03a65c061d9d2018480417MD52THUMBNAIL75092593.2022.pdf.jpg75092593.2022.pdf.jpgGenerated Thumbnailimage/jpeg4874https://repositorio.unal.edu.co/bitstream/unal/82365/3/75092593.2022.pdf.jpg99cf310339207af25594f8495157dc0bMD53unal/82365oai:repositorio.unal.edu.co:unal/823652023-08-09 23:04:32.511Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |