Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado

Ilustraciones

Autores:
Salazar Hoyos, Luis Daniel
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85284
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85284
https://repositorio.unal.edu.co/
Palabra clave:
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadas
Electroquímica
Fotoelectrocatálisis
Nanobarras de ZnO
Rojo reactivo 239
Cinética
Vía y mecanismos de degradación
Photoelectrocatalysis
ZnO nanorods
Reactive Red 239
Kinetics
Degradation pathway and mechanisms
Teoría cinética
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_dbe251c94e1435905d559796e2d46f78
oai_identifier_str oai:repositorio.unal.edu.co:unal/85284
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado
dc.title.translated.eng.fl_str_mv Kinetic model for the photoelectrocatalytic degradation of reactive red dye 239 in textile waters using nanostructured zinc oxide
title Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado
spellingShingle Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado
500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadas
Electroquímica
Fotoelectrocatálisis
Nanobarras de ZnO
Rojo reactivo 239
Cinética
Vía y mecanismos de degradación
Photoelectrocatalysis
ZnO nanorods
Reactive Red 239
Kinetics
Degradation pathway and mechanisms
Teoría cinética
title_short Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado
title_full Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado
title_fullStr Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado
title_full_unstemmed Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado
title_sort Modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructurado
dc.creator.fl_str_mv Salazar Hoyos, Luis Daniel
dc.contributor.advisor.none.fl_str_mv Sánchez Sáenz, Carlos Ignacio
dc.contributor.author.none.fl_str_mv Salazar Hoyos, Luis Daniel
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Ingenieria Electroquímica Griequi
dc.contributor.orcid.spa.fl_str_mv Salazar Hoyos, Lis Daniel [0000-0003-2635-028X]
dc.contributor.cvlac.spa.fl_str_mv 0000-0003-2635-028X
dc.subject.ddc.spa.fl_str_mv 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadas
topic 500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados
620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería
660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadas
Electroquímica
Fotoelectrocatálisis
Nanobarras de ZnO
Rojo reactivo 239
Cinética
Vía y mecanismos de degradación
Photoelectrocatalysis
ZnO nanorods
Reactive Red 239
Kinetics
Degradation pathway and mechanisms
Teoría cinética
dc.subject.lemb.none.fl_str_mv Electroquímica
dc.subject.proposal.spa.fl_str_mv Fotoelectrocatálisis
Nanobarras de ZnO
Rojo reactivo 239
Cinética
Vía y mecanismos de degradación
dc.subject.proposal.eng.fl_str_mv Photoelectrocatalysis
ZnO nanorods
Reactive Red 239
Kinetics
Degradation pathway and mechanisms
dc.subject.wikidata.none.fl_str_mv Teoría cinética
description Ilustraciones
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-15T18:09:08Z
dc.date.available.none.fl_str_mv 2024-01-15T18:09:08Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85284
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85284
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv [1] F. Henao, J. P. Viteri, Y. Rodríguez, J. Gomez, and I. Dyner, “Annual and interannual complementarities of renewable energy sources in Colombia,” Renewable and Sustainable Energy Reviews, vol. 134, p. 110318, 2020.
[2] J. F. Conte, Perfeccionamiento del modelo ionosférico la plata (lpim). PhD thesis, Universidad Nacional de La Plata, 2015.
[3] D. Serrato, R. Nieto-Aguilar, and A. Aguilera-Méndez, “Efectos negativos de la radiación ionizante empleada en diagnóstico odontológico,” Investigación y Ciencia, vol. 26, no. 74, pp. 81–87, 2018.
[4] C. Hu, “Modern semiconductor devices for integrated circuits.[chenming c., hu ],”Chapter, vol. 4, pp. 89–156, 2009.
[5] J. Schneider, D. Bahnemann, J. Ye, G. L. Puma, and D. D. Dionysiou, Photocatalysis: fundamentals and perspectives. Royal Society of Chemistry, 2016.
[6] R. Beranek, “(photo) electrochemical methods for the determination of the band edge positions of tio2-based nanomaterials,” Advances in Physical Chemistry, vol. 2011, 2011.
[7] T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects,” International journal of hydrogen energy, vol. 27, no. 10, pp. 991–1022, 2002.
[8] R. v. d. Krol, “Principles of photoelectrochemical cells,” in Photoelectrochemical hydrogen production, pp. 13–67, Springer, 2012.
[9] S. Bermúdez, “Degradación fotoelectrocatalítica de colorante azoico rojo reactivo 239, en aguas contaminadas de la industria textil,” 2022.
[10] C. Jiang, S. J. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting–materials and challenges,” Chemical Society Reviews, vol. 46, no. 15, pp. 4645–4660, 2017.
[11] J. Cui, “Zinc oxide nanowires,” Materials Characterization, vol. 64, pp. 43–52, 2012.
[12] S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M. E. Orazem, “Electrochemical impedance spectroscopy,” Nature Reviews Methods Primers, vol. 1, no. 1, p. 41, 2021.
[13] A. Hankin, F. E. Bedoya-Lora, J. C. Alexander, A. Regoutz, and G. H. Kelsall, “Flat band potential determination: avoiding the pitfalls,” Journal of Materials Chemistry A, vol. 7, no. 45, pp. 26162–26176, 2019.
[14] Z. Chen, H. Dinh, and E. Miller, “Photoelectrochemical water splitting: standards, experimental methods, and protocols, 2013,” Springer. doi, vol. 10, pp. 978–1.
[15] Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, et al., “Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols,” Journal of Materials Research, vol. 25, no. 1, pp. 3–16, 2010.
[16] I. Cristina, C. Cuéllar, J. Ricardo, V. Cabra, M. Angel González Curbelo, D. Angélica, ´ V. Martínez, and E. R. Valencia, APLICACIONES Y GENERALIDADES DE UN ESPECTROFOTOMETRO UV-VIS UV-1800 DE SHIMADZU ´ .
[17] E. I. Ltd., “Blog fluorescence spectroscopy: Measuring fluorescence from a sample.”
[18] R. López and R. Gómez, “Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial tio 2: a comparative study,” Journal of sol-gel science and technology, vol. 61, pp. 1–7, 2012.
[19] A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Revista mexicana de física, vol. 53, no. 5, pp. 18–22, 2007.
[20] A. A. Bunaciu, E. G. UdriS¸Tioiu, and H. Y. Aboul-Enein, “X-ray diffraction: instrumentation and applications,” Critical reviews in analytical chemistry, vol. 45, no. 4, pp. 289–299, 2015.
[21] N. Das, S. Biswas, and P. E. Sokol, “The photovoltaic performance of zno nanorods in bulk heterojunction solar cells,” Journal of Renewable and Sustainable Energy, vol. 3, no. 3, p. 033105, 2011.
[22] R. C. H. Cik, C. T. Foo, and A. F. O. Nor, “Field emission scanning electron microscope (fesem) facility in bti,” 2015.
[23] R. S. Prabhu, R. Priyanka, M. Vijay, and G. R. K. Vikashini, “Field emission scanning electron microscopy (fesem) with a very big future in pharmaceutical research,” Research Article — Pharmaceutical Sciences — OA Journal — MCI Approved — Index Copernicus, vol. 11, pp. 2321–3272, 2021.
[24] S. Mandizadeh, F. Soofivand, S. Bagheri, and M. Salavati-Niasari, “Srcrxfe12-xo19 nanoceramics as an effective catalyst for desulfurization of liquid fuels: Green sol-gel synthesis, characterization, magnetic and optical properties,” PloS one, vol. 12, no. 5, p. e0162891, 2017.
[25] ThermoScientific, “Data sheet apreo 2 sem,” 2020.
[26] L. R. Snyder, J. J. Kirkland, and J. W. Dolan, Introduction to modern liquid chromatography. John Wiley & Sons, 2011.
[27] R. Sapkal, S. Shinde, M. Mahadik, V. Mohite, T. Waghmode, S. Govindwar, K. Rajpure, and C. Bhosale, “Photoelectrocatalytic decolorization and degradation of textile effluent using zno thin films,” Journal of photochemistry and photobiology B: biology, vol. 114, pp. 102–107, 2012.
[28] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in queous solutions,” Journal of materials chemistry, vol. 12, no. 12, pp. 3773–3778, 2002.
[29] M. Skompska and K. Zarebska, “Electrodeposition of zno nanorod arrays on transparent conducting substrates–a review,” Electrochimica Acta, vol. 127, pp. 467–488, 2014.
[30] D. Franchi and Z. Amara, “Applications of sensitized semiconductors as heterogeneous visible-light photocatalysts in organic synthesis,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 41, pp. 15405–15429, 2020.
[31] H. Karakurt and O. E. Kartal, “Investigation of photocatalytic activity of tio2 nanotubes synthesized by hydrothermal method,” Chemical Engineering Communications, pp. 1–21, 2022.
[32] N. C. Dias, J. P. Bassin, G. L. Sant’Anna Jr, and M. Dezotti, “Ozonation of the dye reactive red 239 and biodegradation of ozonation products in a moving-bed biofilm reactor: revealing reaction products and degradation pathways,” International Biodeterioration & Biodegradation, vol. 144, p. 104742, 2019.
[33] Y. Shen, Q. Xu, R. Wei, J. Ma, and Y. Wang, “Mechanism and dynamic study of reactive red x-3b dye degradation by ultrasonic-assisted ozone oxidation process,” Ultrasonics Sonochemistry, vol. 38, pp. 681–692, 2017.
[34] D. P. Norton, Y. Heo, M. Ivill, K. Ip, S. Pearton, M. F. Chisholm, and T. Steiner, “Zno: growth, doping & processing,” Materials today, vol. 7, no. 6, pp. 34–40, 2004.
[35] V. F. Lvovich, Impedance spectroscopy: applications to electrochemical and dielectric phenomena. John Wiley & Sons, 2012.
[36] C. A. Basha, R. Saravanathamizhan, P. Manokaran, T. Kannadasan, and C. W. Lee, “Photoelectrocatalytic oxidation of textile dye effluent: Modeling using response surface methodology,” Industrial & engineering chemistry research, vol. 51, no. 7, pp. 2846– 2854, 2012.
[37] L. Petersen, M. Heynen, and F. Pellicciotti, “Freshwater resources: Past, present, future,” International Encyclopedia of Geography, pp. 1–12, 2019.
[38] S. De Gisi, G. Lofrano, M. Grassi, and M. Notarnicola, “Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review,” Sustainable Materials and Technologies, vol. 9, pp. 10–40, 2016.
[39] S. De Souza, J. Madellin-Azuara, N. Burley, J. R. Lund, and R. E. Howitt, “Guidelines for preparing economic analysis for water recycling projects,” Center of Watershed Sciences, University of California, Davis, 2011.
[40] S. Sen, S. Raut, P. Bandyopadhyay, and S. Raut, “Fungal decolouration and degradation of azo dyes: a review. fungal biol rev,” 2016.
[41] Z. Aksu and G. Karabayır, “Comparison of biosorption properties of different kinds of fungi for the removal of gryfalan black rl metal-complex dye,” Bioresource Technology, vol. 99, no. 16, pp. 7730–7741, 2008.
[42] C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, “A critical review on textile wastewater treatments: possible approaches,” Journal of environmental management, vol. 182, pp. 351–366, 2016.
[43] P. Zaruma, J. Proal, I. C. Hernández, and H. I. Salas, “Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: una breve revisión,” Revista de la Facultad de Ciencias Químicas, no. 19, pp. 38–47, 2018.
[44] R. O. A. de Lima, A. P. Bazo, D. M. F. Salvadori, C. M. Rech, D. de Palma Oliveira, and G. de Aragão Umbuzeiro, “Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 626, no. 1-2, pp. 53– 60, 2007.
[45] C. López, M. Moreira, G. Feijoo, and J. Lema, “Tecnologías para el tratamiento de efluentes de industrias textiles,” Afinidad, vol. 64, no. 531, pp. 561–573, 2007.
[46] J. C. Cardoso, G. G. Bessegato, and M. V. B. Zanoni, “Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization,” Water research, vol. 98, pp. 39–46, 2016.
[47] C. Enric Brillasa, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. an updated review,” Applied Catalysis B: Environmental, pp. 166–167, 2015.
[48] J. Fu, Y. Zhao, X. Xue, W. Li, and A. Babatunde, “Multivariate-parameter optimization of acid blue-7 wastewater treatment by ti/tio2 photoelectrocatalysis via the box–behnken design,” Desalination, vol. 243, no. 1-3, pp. 42–51, 2009.
[49] Y. Xie and X. Li, “Interactive oxidation of photoelectrocatalysis and electro-fenton for azo dye degradation using tio2–ti mesh and reticulated vitreous carbon electrodes,” Materials Chemistry and Physics, vol. 95, no. 1, pp. 39–50, 2006.
[50] C. Byrne, G. Subramanian, and S. C. Pillai, “Recent advances in photocatalysis for environmental applications,” Journal of environmental chemical engineering, vol. 6, no. 3, pp. 3531–3555, 2018.
[51] Y. Hou, X. Li, Q. Zhao, G. Chen, and C. L. Raston, “Role of hydroxyl radicals and mechanism of escherichia coli inactivation on ag/agbr/tio2 nanotube array electrode under visible light irradiation,” Environmental science & technology, vol. 46, no. 7, pp. 4042–4050, 2012.
[52] X. Zheng, D. Li, X. Li, L. Yu, P. Wang, X. Zhang, J. Fang, Y. Shao, and Y. Zheng, “Photoelectrocatalytic degradation of rhodamine b on tio 2 photonic crystals,” Physical Chemistry Chemical Physics, vol. 16, no. 29, pp. 15299–15306, 2014.
[53] J. Wang and H. Chen, “Catalytic ozonation for water and wastewater treatment: recent advances and perspective,” Science of the Total Environment, vol. 704, p. 135249, 2020.
[54] E. Brillas, “A review on the photoelectro-fenton process as efficient electrochemical advanced oxidation for wastewater remediation. treatment with uv light, sunlight, and coupling with conventional and other photo-assisted advanced technologies,” Chemosphere, vol. 250, p. 126198, 2020.
[55] N. Bravo-Yumi, P. Espinoza-Montero, A. Picos-Benítez, R. Navarro-Mendoza, E. Brillas, and J. M. Peralta-Hernández, “Synthesis and characterization of sb2o5-doped ti/sno2-iro2 anodes toward efficient degradation tannery dyes by in situ generated oxidizing species,” Electrochimica Acta, vol. 358, p. 136904, 2020.
[56] S. Shinde, C. Bhosale, and K. Rajpure, “Hydroxyl radical’s role in the remediation of wastewater,” Journal of Photochemistry and Photobiology B: Biology, vol. 116, pp. 66– 74, 2012.
[57] P. Alulema-Pullupaxi, P. J. Espinoza-Montero, C. Sigcha-Pallo, R. Vargas, L. Fernandez, J. M. Peralta-Hernandez, and J. Paz, “Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review,” Chemosphere, vol. 281, p. 130821, 2021.
[58] C. A. Martínez-Huitle and L. S. Andrade, “Electrocatalysis in wastewater treatment: recent mechanism advances,” Quimica Nova, vol. 34, pp. 850–858, 2011.
[59] P. J. Espinoza-Montero, C. Vega-Verduga, P. Alulema-Pullupaxi, L. Fernández, and J. L. Paz, “Technologies employed in the treatment of water contaminated with glyphosate: A review,” Molecules, vol. 25, no. 23, p. 5550, 2020.
[60] F. C. Moreira, R. A. Boaventura, E. Brillas, and V. J. Vilar, “Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters,” Applied Catalysis B: Environmental, vol. 202, pp. 217–261, 2017.
[61] M. Sillanpää and M. Shestakova, “Emerging and combined electrochemical methods,” Electrochemical water treatment methods: Fundamentals, methods and full scale Applications, pp. 131–225, 2017.
[62] S. Garcia-Segura and E. Brillas, “Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 31, pp. 1–35, 2017.
[63] M. G. Peleyeju and O. A. Arotiba, “Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater,” Environmental Science: Water Research & Technology, vol. 4, no. 10, pp. 1389–1411, 2018.
[64] J. Li, Y. Li, Z. Xiong, G. Yao, and B. Lai, “The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review,” Chinese Chemical Letters, vol. 30, no. 12, pp. 2139–2146, 2019.
[65] G. G. Bessegato, J. C. De Souza, J. C. Cardoso, and M. V. B. Zanoni, “Assessment of several advanced oxidation processes applied in the treatment of environmental concern constituents from a real hair dye wastewater,” Journal of Environmental Chemical Engineering, vol. 6, no. 2, pp. 2794–2802, 2018.
[66] P. Alulema-Pullupaxi, L. Fernández, A. Debut, C. P. Santacruz, W. Villacis, C. Fierro, and P. J. Espinoza-Montero, “Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (tio2/bdd) as a photoanode,” Chemosphere, vol. 278, p. 130488, 2021.
[67] M. Pirsaheb, H. Hoseini, and V. Abtin, “Photoelectrocatalytic degradation of humic acid and disinfection over ni tio2-ni/ac-ptfe electrode under natural sunlight irradiation: Modeling, optimization and reaction pathway,” Journal of the Taiwan Institute of Chemical Engineers, vol. 118, pp. 204–214, 2021.
[68] L. Cheng, T. Jiang, K. Yan, J. Gong, and J. Zhang, “A dual-cathode photoelectrocatalysis-electroenzymatic catalysis system by coupling bivo4 photoanode with hemin/cu and carbon cloth cathodes for degradation of tetracycline,” Electrochimica Acta, vol. 298, pp. 561–569, 2019.
[69] A. Huda, P. Suman, L. Torquato, B. F. Silva, C. Handoko, F. Gulo, M. Zanoni, and M. Orlandi, “Visible light-driven photoelectrocatalytic degradation of acid yellow 17 using sn3o4 flower-like thin films supported on ti substrate (sn3o4/tio2/ti),” Journal of Photochemistry and Photobiology A: Chemistry, vol. 376, pp. 196–205, 2019.
[70] P. Mazierski, A. F. Borzyszkowska, P. Wilczewska, A. Bia lk-Bieli´nska, A. ZaleskaMedynska, E. M. Siedlecka, and A. Pieczyńska, “Removal of 5-fluorouracil by solardriven photoelectrocatalytic oxidation using ti/tio2 (nt) photoelectrodes,” Water research, vol. 157, pp. 610–620, 2019.
[71] A. Naseri, M. Samadi, N. M. Mahmoodi, A. Pourjavadi, H. Mehdipour, and A. Z. Moshfegh, “Tuning composition of electrospun zno/cuo nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants,” The Journal of Physical Chemistry C, vol. 121, no. 6, pp. 3327–3338, 2017.
[72] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical reviews, vol. 95, no. 1, pp. 69– 96, 1995.
[73] S.-B. Ghaffari, M.-H. Sarrafzadeh, Z. Fakhroueian, S. Shahriari, and M. R. Khorramizadeh, “Functionalization of zno nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: Synthesis, characterization, and anticancer assessment,” Materials Science and Engineering: C, vol. 79, pp. 465–472, 2017.
[74] M. Sharma, K. Ojha, A. Ganguly, and A. K. Ganguli, “Ag 3 po 4 nanoparticle decorated on sio 2 spheres for efficient visible light photocatalysis,” New Journal of Chemistry, vol. 39, no. 12, pp. 9242–9248, 2015.
[75] S.-L. Chiam, S.-Y. Pung, and F.-Y. Yeoh, “Recent developments in mno2-based photocatalysts for organic dye removal: a review,” Environmental Science and Pollution Research, vol. 27, no. 6, pp. 5759–5778, 2020.
[76] A. Khan, Synthesis, characterization and luminescence properties of zinc oxide nanostructures. Ohio University, 2006.
[77] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and Morkoc, “A comprehensive review of zno materials and devices,” Journal of applied physics, vol. 98, no. 4, p. 11, 2005.
[78] Q. Deng, X. Duan, D. H. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, and G. Wang, “Ag nanoparticle decorated nanoporous zno microrods and their enhanced photocatalytic activities,” ACS Applied Materials & Interfaces, vol. 4, no. 11, pp. 6030–6037, 2012.
[79] T. Welderfael, M. Pattabi, R. M. Pattabi, et al., “Photocatalytic activity of ag-n codoped zno nanorods under visible and solar light irradiations for mb degradation,” Journal of Water Process Engineering, vol. 14, pp. 117–123, 2016.
[80] O. Bechambi, M. Chalbi, W. Najjar, and S. Sayadi, “Photocatalytic activity of zno doped with ag on the degradation of endocrine disrupting under uv irradiation and the investigation of its antibacterial activity,” Applied Surface Science, vol. 347, pp. 414– 420, 2015.
[81] S. Singh, R. Sharma, and B. R. Mehta, “Enhanced surface area, high zn interstitial defects and band gap reduction in n-doped zno nanosheets coupled with bivo4 leads to improved photocatalytic performance,” Applied Surface Science, vol. 411, pp. 321–330, 2017.
[82] W. Ebeling, H. Reinholz, and G. Röpke, “Equation of state of hydrogen, helium, and solar plasmas,” Contributions to Plasma Physics, vol. 61, no. 10, p. e202100085, 2021.
[83] A. H. Smets, K. Jäger, O. Isabella, R. A. Swaaij, and M. Zeman, Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems. UIT Cambridge, 2015.
[84] J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes. Wiley New York, 1980.
[85] F. E. Checa and O. E. De La Cruz, “Potencial natural para el desarrollo fotovoltaico en Colombia,” Libros Editorial UNIMAR, 2015.
[86] “Características de la radiación solar - IDEAM. url = http://www.ideam.gov.co/web/tiempo-y-clima/caracteristicas-de-la-radiacion-solar.”
[87] I. A. Martínez Nicolás ´ et al., “Instrumentación y caracterización de disipadores térmicos,” 2015.
[88] G. L. Miessler and D. A. Tarr, Solutions Manual, Inorganic Chemistry. Prentice Hall, 1999.
[89] D. Shriver and P. Atkins, “Bioinorganic chemistry,” Inorganic Chemistry. 3rd Edition. USA: Oxford University Press, 1999.
[90] S. Tripathi, R. Kaur, and M. Rani, “Oxide nanomaterials and their applications as a memristor,” Solid State Phenomena, vol. 222, pp. 67–97, 2015.
[91] X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chemical reviews, vol. 107, no. 7, pp. 2891–2959, 2007.
[92] R. Asahi, Y. Taga, W. Mannstadt, and A. J. Freeman, “Electronic and optical properties of anatase tio 2,” Physical Review B, vol. 61, no. 11, p. 7459, 2000.
[93] J. Zhang, B. Tian, L. Wang, M. Xing, and J. Lei, Photocatalysis: fundamentals, materials and applications, vol. 100. Springer, 2018.
[94] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chemical reviews, vol. 110, no. 11, pp. 6446–6473, 2010.
[95] L. Peter, “Kinetics and mechanisms of light-driven reactions at semiconductor electrodes: Principles and techniques,” Photoelectrochemical Water Splitting: Materials, Processes and Architectures, vol. 9, pp. 19–51, 2013.
[96] L. M. Peter, “Semiconductor electrochemistry,” in Photoelectrochemical Solar Fuel Production, pp. 3–40, Springer, 2016.
[97] R. Van de Krol, M. Grätzel, et al., Photoelectrochemical hydrogen production, vol. 90. Springer, 2012.
[98] J. Rodriguez, R. J. Candal, J. Solís, W. Estrada, and M. Blesa, “El fotocatalizador: síntesis, propiedades y limitaciones,” Solar Safe Water, vol. 9, pp. 135–152, 2005.
[99] S. R. Morrison and S. Morrison, Electrochemistry at semiconductor and oxidized metal electrodes, vol. 126. Springer, 1980.
[100] L.-J. Guo, J.-W. Luo, T. He, S.-H. Wei, and S.-S. Li, “Photocorrosion-limited maximum efficiency of solar photoelectrochemical water splitting,” Physical Review Applied, vol. 10, no. 6, p. 064059, 2018.
[101] L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” The Journal of chemical physics, vol. 80, no. 9, pp. 4403–4409, 1984.
[102] B. Enright and D. Fitzmaurice, “Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film,” The Journal of Physical Chemistry, vol. 100, no. 3, pp. 1027–1035, 1996.
[103] K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, and W.-F. Hsieh, “Band gap variation of size-controlled zno quantum dots synthesized by sol–gel method,” Chemical Physics Letters, vol. 409, no. 4-6, pp. 208–211, 2005.
[104] F. I. Khan, T. Husain, and R. Hejazi, “An overview and analysis of site remediation technologies,” Journal of environmental management, vol. 71, no. 2, pp. 95–122, 2004.
[105] A. T. Yeung and Y.-Y. Gu, “A review on techniques to enhance electrochemical remediation of contaminated soils,” Journal of hazardous materials, vol. 195, pp. 11–29, 2011.
[106] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” nature, vol. 238, no. 5358, pp. 37–38, 1972.
[107] I. Ganesh, P. C. Sekhar, G. Padmanabham, and G. Sundararajan, “Influence of lidoping on structural characteristics and photocatalytic activity of zno nano-powder formed in a novel solution pyro-hydrolysis route,” Applied surface science, vol. 259, pp. 524–537, 2012.
[108] D. S. Bhatkhande, V. G. Pangarkar, and A. A. C. M. Beenackers, “Photocatalytic degradation for environmental applications–a review,” Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, vol. 77, no. 1, pp. 102–116, 2002.
[109] G. G. Bessegato, T. T. Guaraldo, J. F. de Brito, M. F. Brugnera, and M. V. B. Zanoni, “Achievements and trends in photoelectrocatalysis: from environmental to energy applications,” Electrocatalysis, vol. 6, no. 5, pp. 415–441, 2015.
[110] E. Zarei and R. Ojani, “Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review,” Journal of Solid State Electrochemistry, vol. 21, no. 2, pp. 305–336, 2017.
[111] C. J. Lin, S.-J. Liao, L.-C. Kao, and S. Y. H. Liou, “Photoelectrocatalytic activity of a hydrothermally grown branched zno nanorod-array electrode for paracetamol degradation,” Journal of hazardous materials, vol. 291, pp. 9–17, 2015.
[112] E. A. S. Dimapilis, C.-S. Hsu, R. M. O. Mendoza, and M.-C. Lu, “Zinc oxide nanoparticles for water disinfection,” Sustainable Environment Research, vol. 28, no. 2, pp. 47–56, 2018.
[113] V. Sharma, M. Prasad, P. Ilaiyaraja, C. Sudakar, and S. Jadkar, “Electrodeposition of highly porous zno nanostructures with hydrothermal amination for efficient photoelectrochemical activity,” international journal of hydrogen energy, vol. 44, no. 23, pp. 11459–11471, 2019.
[114] J. Jiang, Z. Mu, H. Xing, Q. Wu, X. Yue, and Y. Lin, “Insights into the synergetic effect for enhanced uv/visible-light activated photodegradation activity via cu-zno photocatalyst,” Applied Surface Science, vol. 478, pp. 1037–1045, 2019.
[115] M. Salem, I. Massoudi, S. Akir, Y. Litaiem, M. Gaidi, and K. Khirouni, “Photoelectrochemical and opto-electronic properties tuning of zno films: Effect of cu doping content,” Journal of Alloys and Compounds, vol. 722, pp. 313–320, 2017.
[116] Y. DU Hongchu, S. HUANG, J. LI, Y. ZHU, L. SHEN, L. GUO, N. BAO, and K. YANAGISAWA, “A new reaction to zno nanoparticles,” J. Appl. Phys, vol. 88, p. 2152, 2000.
[117] V. Oskoei, M. Dehghani, S. Nazmara, B. Heibati, M. Asif, I. Tyagi, S. Agarwal, and V. K. Gupta, “Removal of humic acid from aqueous solution using uv/zno nanophotocatalysis and adsorption,” Journal of Molecular Liquids, vol. 213, pp. 374–380, 2016.
[118] M. B. Ali, F. Barka-Bouaifel, B. Sieber, H. Elhouichet, A. Addad, L. Boussekey, M. Férid, and R. Boukherroub, “Preparation and characterization of ni-doped zno–sno2 nanocomposites: application in photocatalysis,” Superlattices and Microstructures, vol. 91, pp. 225–237, 2016.
[119] R. Mohammed, M. E. M. Ali, E. Gomaa, and M. Mohsen, “Green zno nanorod material for dye degradation and detoxification of pharmaceutical wastes in water,” Journal of Environmental Chemical Engineering, vol. 8, no. 5, p. 104295, 2020.
[120] K. Qi, B. Cheng, J. Yu, and W. Ho, “Review on the improvement of the photocatalytic and antibacterial activities of zno,” Journal of Alloys and Compounds, vol. 727, pp. 792–820, 2017.
[121] M. Mapa and C. S. Gopinath, “Combustion synthesis of triangular and multifunctional zno1- x n x (x ≤ 0.15) materials,” Chemistry of Materials, vol. 21, no. 2, pp. 351–359, 2009.
[122] N. Salah, A. Hameed, M. Aslam, M. S. Abdel-Wahab, S. S. Babkair, and F. Bahabri, “Flow controlled fabrication of n doped zno thin films and estimation of their performance for sunlight photocatalytic decontamination of water,” Chemical Engineering Journal, vol. 291, pp. 115–127, 2016.
[123] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, and A. Z. Moshfegh, “Recent progress on doped zno nanostructures for visible-light photocatalysis,” Thin Solid Films, vol. 605, pp. 2–19, 2016.
[124] V. Mote, Y. Purushotham, and B. Dole, “Structural, morphological, physical and dielectric properties of mn doped zno nanocrystals synthesized by sol–gel method,” Materials & Design, vol. 96, pp. 99–105, 2016.
[125] S¸. S¸. Türkyilmaz, N. Güy, and M. Ozacar, “Photocatalytic efficiencies of ni, mn, fe and ag doped zno nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between zno and metals,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 341, pp. 39–50, 2017.
[126] Y. Yu, “Ag-doped zno nanorods synthesized on porous si electrode using a facile electrochemical approach for removal of methylene blue from wastewater,” INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, vol. 16, no. 2, 2021.
[127] Y. Liu, W. Gao, C. Zhang, L. Zhang, and Y. Zhi, “In situ formation of ag/zno heterostructure arrays during synergistic photocatalytic process for sers and photocatalysis,” Journal of the Taiwan Institute of Chemical Engineers, vol. 88, pp. 277–285, 2018.
[128] G. A. Cerrón-Calle, A. J. Aranda-Aguirre, C. Luyo, S. Garcia-Segura, and H. Alarcón, “Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of zno nanorods decorated with ag nanoparticles,” Chemosphere, vol. 219, pp. 296–304, 2019.
[129] H. H. Mohamed and D. W. Bahnemann, “The role of electron transfer in photocatalysis: Fact and fictions,” Applied Catalysis B: Environmental, vol. 128, pp. 91–104, 2012.
[130] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai, “Visible light activation of tio2 photocatalysts: Advances in theory and experiments,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 25, pp. 1–29, 2015.
[131] C. Jaramillo-Páez, J. A. Navío, M. Hidalgo, and M. Macías, “High uv-photocatalytic activity of zno and ag/zno synthesized by a facile method,” Catalysis Today, vol. 284, pp. 121–128, 2017.
[132] A. A. Ismail, D. W. Bahnemann, and S. A. Al-Sayari, “Synthesis and photocatalytic properties of nanocrystalline au, pd and pt photodeposited onto mesoporous ruo2-tio2 nanocomposites,” Applied Catalysis A: General, vol. 431, pp. 62–68, 2012.
[133] H. O. Tugaoen, S. Garcia-Segura, K. Hristovski, and P. Westerhoff, “Challenges in photocatalytic reduction of nitrate as a water treatment technology,” Science of the total environment, vol. 599, pp. 1524–1551, 2017.
[134] P. Christensen and A. Hamnet, Techniques and mechanisms in electrochemistry. Springer Science & Business Media, 2007.
[135] D. K. Gosser, Cyclic voltammetry: simulation and analysis of reaction mechanisms, vol. 43. VCH New York, 1993.
[136] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A practical beginner’s guide to cyclic voltammetry,” Journal of chemical education, vol. 95, no. 2, pp. 197–206, 2018.
[137] P. T. Kissinger and W. R. Heineman, “Cyclic voltammetry,” Journal of chemical education, vol. 60, no. 9, p. 702, 1983.
[138] A. Lasia, Electrochemical impedance spectroscopy and its applications. Springer, 2002.
[139] M. E. Orazem and B. Tribollet, “Electrochemical impedance spectroscopy,” New Jersey, vol. 1, pp. 383–389, 2008.
[140] K. Uosaki and H. Kita, “Response to¸comment on’effects of the helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the mott-schottky plot’”[j. electrochem. soc., 130, 895],” Journal of The Electrochemical Society, vol. 131, no. 10, pp. 2452–2454, 1984.
[141] R. De Gryse, W. Gomes, F. Cardon, and J. Vennik, “On the interpretation of mottschottky plots determined at semiconductor/electrolyte systems,” Journal of the Electrochemical Society, vol. 122, no. 5, p. 711, 1975.
[142] D. C. Grahame, “The electrical double layer and the theory of electrocapillarity.,” Chemical reviews, vol. 41, no. 3, pp. 441–501, 1947.
[143] N. E. Wisdom and N. Hackerman, “Surface studies on passive iron,” Journal of The Electrochemical Society, vol. 110, no. 4, p. 318, 1963.
[144] H. Gerischer, “Neglected problems in the ph dependence of the flatband potential of semiconducting oxides and semiconductors covered with oxide layers,” Electrochimica acta, vol. 34, no. 8, pp. 1005–1009, 1989.
[145] J. V. Pleskov, Y. Y. Gurevich, and P. Bartlett, Semiconductor photoelectrochemistry. Springer, 1986.
[146] N. Sato, Electrochemistry at metal and semiconductor electrodes. Elsevier, 1998.
[147] H.-H. Perkampus, UV-VIS Spectroscopy and its Applications. Springer Science & Business Media, 2013.
[148] P. Kubelka and F. Munk, “An article on optics of paint layers,” Z. Tech. Phys, vol. 12, no. 593-601, pp. 259–274, 1931.
[149] F. Galindo-Hernández, R. Gómez, G. del Angel, and C. Guzmán, “Hydrolysis catalyst ´ effect on the textural and structural properties of sol-gel mixed oxides tio2-ceo2,” Journal of Ceramic Processing Research, vol. 9, no. 6, pp. 616–623, 2008.
[150] A. Murphy, “Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting,” Solar Energy Materials and Solar Cells, vol. 91, no. 14, pp. 1326–1337, 2007.
[151] L. Yang and B. Kruse, “Revised kubelka–munk theory. i. theory and application,” JOSA A, vol. 21, no. 10, pp. 1933–1941, 2004.
[152] L. Yang, B. Kruse, and S. J. Miklavcic, “Revised kubelka–munk theory. ii. unified framework for homogeneous and inhomogeneous optical media,” JOSA A, vol. 21, no. 10, pp. 1942–1952, 2004.
[153] L. Yang and S. J. Miklavcic, “Revised kubelka–munk theory. iii. a general theory of light propagation in scattering and absorptive media,” JOSA A, vol. 22, no. 9, pp. 1866–1873, 2005.
[154] A. A. Kokhanovsky, “Physical interpretation and accuracy of the kubelka–munk theory,” journal of physics d: applied physics, vol. 40, no. 7, p. 2210, 2007.
[155] P. Edström, “Examination of the revised kubelka-munk theory: considerations of modeling strategies,” JOSA A, vol. 24, no. 2, pp. 548–556, 2007.
[156] L. Yang, S. J. Miklavcic, and B. Kruse, “Qualifying the arguments used in the derivation of the revised kubelka-munk theory: reply,” JOSA A, vol. 24, no. 2, pp. 557–560, 2007.
[157] W. Friedrich, P. Knipping, and M. Laue, “Interferenzerscheinungen bei roentgenstrahlen,” Annalen der Physik, vol. 346, no. 10, pp. 971–988, 1913.
[158] J. R. Connolly, “Introduction to x-ray powder diffraction,” European Physical Society of Journal, vol. 4, p. p400, 2007.
[159] G. Brown, Crystal structures of clay minerals and their X-ray identification, vol. 5. The Mineralogical Society of Great Britain and Ireland, 1982.
[160] A. Broers, “Recent advances in sem with lanthanum hexaboride cathodes,” Scanning Electron Microscopyll974 (Eds. Johari 0, Corvin I). IITRI, Chicago I, pp. 10–18, 1974.
[161] J. Pawley, “The development of field-emission scanning electron microscopy for imaging biological surfaces,” SCANNING-NEW YORK AND BADEN BADEN THEN MAHWAH-, vol. 19, pp. 324–336, 1997.
[162] D. C. Joy and J. B. Pawley, “High-resolution scanning electron microscopy,” Ultramicroscopy, vol. 47, no. 1-3, pp. 80–100, 1992.
[163] V. R. Meyer, Practical high-performance liquid chromatography. John Wiley & Sons, 2013.
[164] A. J. Martin and R. L. Synge, “A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. application to the micro-determination of the higher monoamino-acids in proteins,” Biochemical Journal, vol. 35, no. 12, p. 1358, 1941.
[165] D. Yaseen and M. Scholz, “Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review,” International journal of environmental science and technology, vol. 16, pp. 1193–1226, 2019.
[166] A. Ahmad, S. H. Mohd-Setapar, C. S. Chuong, A. Khatoon, W. A. Wani, R. Kumar, and M. Rafatullah, “Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater,” RSC advances, vol. 5, no. 39, pp. 30801–30818, 2015.
[167] J. Chakraborty, “Waste-water problem in textile industry,” Fundamentals and practices in colouration of textiles, pp. 381–408, 2010.
[168] W. S. Koe, J. W. Lee, W. C. Chong, Y. L. Pang, and L. C. Sim, “An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane,” Environmental Science and Pollution Research, vol. 27, pp. 2522–2565, 2020.
[169] P. Sathishkumar, R. V. Mangalaraja, and S. Anandan, “Review on the recent improvements in sonochemical and combined sonochemical oxidation processes–a powerful tool for destruction of environmental contaminants,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 426–454, 2016.
[170] G. Matafonova and V. Batoev, “Review on low-and high-frequency sonolytic, sonophotolytic and sonophotochemical processes for inactivating pathogenic microorganisms in aqueous media,” Water Research, vol. 166, p. 115085, 2019.
[171] A. Saravanan, V. Deivayanai, P. S. Kumar, G. Rangasamy, R. Hemavathy, T. Harshana, N. Gayathri, and A. Krishnapandi, “A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook,” Chemosphere, p. 136524, 2022.
[172] L. K. Weavers, “Sonolytic ozonation for the remediation of hazardous pollutants,” Advances in Sonochemistry Theme issue–Ultrasound in Environmental Protection. TJ Mason and A. Tiehm (eds), Elsevier, vol. 6, pp. 111–140, 2001.
[173] S. Merouani and O. Hamdaoui, “Sonolytic ozonation for water treatment: efficiency, recent developments, and challenges,” Current opinion in Green and sustainable chemistry, vol. 18, pp. 98–108, 2019.
[174] J. Sanz, J. I. Lombraña, and A. De Luis, “Estado del arte en la oxidación avanzada a efluentes industriales: nuevos desarrollos y futuras tendencias,” Afinidad, vol. 70, no. 561, 2013.
[175] S. Arzate, S. Pfister, C. Oberschelp, and J. A. Sánchez-Pérez, “Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant,” Science of the Total Environment, vol. 694, p. 133572, 2019.
[176] K. Szymánski, A. W. Morawski, and S. Mozia, “Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid uv/h2o2–ultrafiltration system,” Chemical Engineering and Processing-Process Intensification, vol. 125, pp. 318–324, 2018.
[177] O. Iglesias, M. J. Rivero, A. M. Urtiaga, and I. Ortiz, “Membrane-based photocatalytic systems for process intensification,” Chemical Engineering Journal, vol. 305, pp. 136– 148, 2016.
[178] T. L. Villarreal, R. Gómez, M. Neumann-Spallart, N. Alonso-Vante, and P. Salvador, “Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer. i. photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination,” The Journal of Physical Chemistry B, vol. 108, no. 39, pp. 15172–15181, 2004.
[179] A. S. Ozen, V. Aviyente, and R. A. Klein, “Modeling the oxidative degradation of ¨ azo dyes: a density functional theory study,” The Journal of Physical Chemistry A, vol. 107, no. 24, pp. 4898–4907, 2003.
[180] R. Shukla and G. Madras, “Cyclic reaction network modeling for the kinetics of photoelectrocatalytic degradation,” Journal of Environmental Chemical Engineering, vol. 2, no. 2, pp. 780–787, 2014.
[181] J. C. Cardoso, N. Lucchiari, and M. V. B. Zanoni, “Bubble annular photoeletrocatalytic reactor with tio2 nanotubes arrays applied in the textile wastewater,” Journal of Environmental Chemical Engineering, vol. 3, no. 2, pp. 1177–1184, 2015.
[182] A. Ait hssi, E. Amaterz, N. Labchir, L. Atourki, I. Y. Bouderbala, A. Elfanaoui, A. Benlhachemi, A. Ihlal, and K. Bouabid, “Electrodeposited zno nanorods as efficient photoanodes for the degradation of rhodamine b,” physica status solidi (a), vol. 217, no. 17, p. 2000349, 2020.
[183] T. J. Park, R. C. Pawar, S. Kang, and C. S. Lee, “Ultra-thin coating of gc 3 n 4 on an aligned zno nanorod film for rapid charge separation and improved photodegradation performance,” RSC advances, vol. 6, no. 92, pp. 89944–89952, 2016.
[184] K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. R. Kumar, “Effective shell wall thickness of vertically aligned zno-zns core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Applied Catalysis B: Environmental, vol. 237, pp. 128–139, 2018.
[185] Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, and S. M. Rezaei Darvishi, “Zno photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using s-doped zno nanoparticles under visible light radiation,” Industrial & Engineering Chemistry Research, vol. 59, no. 36, pp. 15894–15911, 2020.
[186] J. Fan, T. Li, and H. Heng, “Hydrothermal growth of zno nanoflowers and their photocatalyst application,” Bulletin of Materials Science, vol. 39, pp. 19–26, 2016.
[187] Q. Zhou, J. Z. Wen, P. Zhao, and W. A. Anderson, “Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst,” Nanomaterials, vol. 7, no. 1, p. 9, 2017.
[188] P. Samadipakchin, H. R. Mortaheb, and A. Zolfaghari, “Zno nanotubes: Preparation and photocatalytic performance evaluation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 337, pp. 91–99, 2017.
[189] S. M. Saleh, “Zno nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 211, pp. 141–147, 2019.
[190] H. Deng, F. Xu, B. Cheng, J. Yu, and W. Ho, “Photocatalytic co2 reduction of c/zno nanofibers enhanced by an ni-nis cocatalyst,” Nanoscale, vol. 12, no. 13, pp. 7206–7213, 2020.
[191] R. B. Rajput, R. Shaikh, J. Sawant, and R. B. Kale, “Recent developments in zno based heterostructures as photoelectrocatalysts for wastewater treatment: a review,” Environmental Advances, p. 100264, 2022.
[192] N. Shimpi, Y. Rane, D. Shende, S. Gosavi, and P. Ahirrao, “Synthesis of rod-like zno nanostructure: Study of its physical properties and visible-light driven photocatalytic activity,” Optik, vol. 217, p. 164916, 2020.
[193] R. Suryavanshi, S. Mohite, A. Bagade, and K. Rajpure, “Photoelectrocatalytic activity of spray deposited fe2o3/zno photoelectrode for degradation of salicylic acid and methyl orange dye under solar radiation,” Materials Science and Engineering: B, vol. 248, p. 114386, 2019.
[194] M. Pirhashemi, A. Habibi-Yangjeh, and S. R. Pouran, “Review on the criteria anticipated for the fabrication of highly efficient zno-based visible-light-driven photocatalysts,” Journal of industrial and engineering chemistry, vol. 62, pp. 1–25, 2018.
[195] M. A. Mohd Adnan, N. M. Julkapli, and S. B. Abd Hamid, “Review on zno hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation,” Reviews in Inorganic Chemistry, vol. 36, no. 2, pp. 77–104, 2016.
[196] N. Al Abass, T. Qahtan, M. Gondal, R. Moqbel, and A. Bubshait, “Laser-assisted synthesis of zno/znse hybrid nanostructured films for enhanced solar-light induced water splitting and water decontamination,” International Journal of Hydrogen Energy, vol. 45, no. 43, pp. 22938–22949, 2020.
[197] K. A. Adegoke, M. Iqbal, H. Louis, and O. S. Bello, “Synthesis, characterization and application of cds/zno nanorod heterostructure for the photodegradation of rhodamine b dye,” Materials Science for Energy Technologies, vol. 2, no. 2, pp. 329–336, 2019.
[198] R. Suryavanshi, S. Mohite, A. Bagade, S. Shaikh, J. Thorat, and K. Rajpure, “Nanocrystalline immobilised zno photocatalyst for degradation of benzoic acid and methyl blue dye,” Materials Research Bulletin, vol. 101, pp. 324–333, 2018.
[199] J. Zhao, S. Ge, D. Pan, Y. Pan, V. Murugadoss, R. Li, W. Xie, Y. Lu, T. Wu, E. K. Wujcik, et al., “Microwave hydrothermal synthesis of in2o3-zno nanocomposites and their enhanced photoelectrochemical properties,” Journal of the Electrochemical Society, vol. 166, no. 5, pp. H3074–H3083, 2019.
[200] B. O. Orimolade and O. A. Arotiba, “An exfoliated graphite-bismuth vanadate composite photoanode for the photoelectrochemical degradation of acid orange 7 dye,” Electrocatalysis, vol. 10, pp. 429–435, 2019.
[201] B. O. Orimolade, B. A. Koiki, B. N. Zwane, G. M. Peleyeju, N. Mabuba, and O. A. Arotiba, “Interrogating solar photoelectrocatalysis on an exfoliated graphite–bivo 4/zno composite electrode towards water treatment,” RSC advances, vol. 9, no. 29, pp. 16586– 16595, 2019.
[202] J. P. Moura, R. Y. Reis, A. E. Lima, R. S. Santos, and G. E. Luz Jr, “Improved photoelectrocatalytic properties of zno/cuwo4 heterojunction film for rhb degradation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 401, p. 112778, 2020.
[203] A. P. P. d. Rosa, R. P. Cavalcante, T. F. d. Silva, F. Gozzi, C. Byrne, E. McGlynn, G. A. Casagrande, S. C. d. Oliveira, and A. M. Junior, “Photoelectrocatalytic degradation of methylene blue using zno nanorods fabricated on silicon substrates,” Journal of Nanoscience and Nanotechnology, vol. 20, no. 2, pp. 1177–1188, 2020.
[204] R. Y. Reis, A. E. Lima, M. J. Costa, J. F. Cruz-Filho, J. P. Moura, R. S. Santos, and G. E. Luz Jr, “Enhanced photoelectrocatalytic performance of zno films doped with n2 by a facile electrochemical method,” Surfaces and Interfaces, vol. 21, p. 100675, 2020.
[205] Y. Shao, K. Feng, J. Guo, R. Zhang, S. He, X. Wei, Y. Lin, Z. Ye, and K. Chen, “Study on the electronic structure and enhanced photoelectrocatalytic performance of ruxzn1-xo/ti electrodes,” 2021.
[206] A. Chennah, E. Amaterz, A. Taoufyq, B. Bakiz, Y. Kadmi, L. Bazzi, F. Guinneton, J. Gavarri, and A. Benlhachemi, “Photoelectrocatalytic degradation of rhodamine b pollutant with a novel zinc phosphate photoanode,” Process Safety and Environmental Protection, vol. 148, pp. 200–209, 2021.
[207] J. Zheng, Y. Zhang, C. Jing, H. Zhang, Q. Shao, and R. Ge, “A visible-light active pn heterojunction zno/co3o4 composites supported on ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue,” Advanced Composites and Hybrid Materials, vol. 5, no. 3, pp. 2406–2420, 2022.
[208] Y.-C. Liang and C.-H. Huang, “Microstructure-dependent photoelectrocatalytic activity of heterogeneous zno–zns nanosheets,” Nanotechnology Reviews, vol. 11, no. 1, pp. 1248–1262, 2022.
[209] A. Aziz, Z. Memon, and A. Bhutto, “Efficient photocatalytic degradation of industrial wastewater dye by grewia asiatica mediated zinc oxide nanoparticles,” Optik, vol. 272, p. 170352, 2023.
[210] Y. Zhang, X. Xiong, Y. Han, X. Zhang, F. Shen, S. Deng, H. Xiao, X. Yang, G. Yang, and H. Peng, “Photoelectrocatalytic degradation of recalcitrant organic pollutants using tio2 film electrodes: an overview,” Chemosphere, vol. 88, no. 2, pp. 145–154, 2012.
[211] M. N. Chong, B. Jin, C. W. Chow, and C. Saint, “Recent developments in photocatalytic water treatment technology: a review,” Water research, vol. 44, no. 10, pp. 2997– 3027, 2010.
[212] T. An, Y. Xiong, G. Li, C. Zha, and X. Zhu, “Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 152, no. 1-3, pp. 155–165, 2002.
[213] H. Selcuk, J. J. Sene, and M. A. Anderson, “Photoelectrocatalytic humic acid degradation kinetics and effect of ph, applied potential and inorganic ions,” Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, vol. 78, no. 9, pp. 979–984, 2003.
[214] A. Assabane, Y. A. Ichou, H. Tahiri, C. Guillard, and J.-M. Herrmann, “Photocatalytic degradation of polycarboxylic benzoic acids in uv-irradiated aqueous suspensions of titania.: Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1, 2, 4-benzene tricarboxylic acid),” Applied Catalysis B: Environmental, vol. 24, no. 2, pp. 71–87, 2000.
[215] J. Harper, P. Christensen, T. Egerton, and K. Scott, “Mass transport characterization of a novel gas sparged photoelectrochemical reactor,” Journal of applied electrochemistry, vol. 31, pp. 267–273, 2001.
[216] K. Mehrotra, G. S. Yablonsky, and A. K. Ray, “Macro kinetic studies for photocatalytic degradation of benzoic acid in immobilized systems,” Chemosphere, vol. 60, no. 10, pp. 1427–1436, 2005.
[217] Y. Wang, M. Zu, X. Zhou, H. Lin, F. Peng, and S. Zhang, “Designing efficient tio2- based photoelectrocatalysis systems for chemical engineering and sensing,” Chemical Engineering Journal, vol. 381, p. 122605, 2020.
[218] S. M. Jacobm and J. S. Dranoff, “Light intensity profiles in a perfectly mixed photoreactor,” AIChE Journal, vol. 16, no. 3, pp. 359–363, 1970.
[219] I. T. Cameron and K. Hangos, Process modelling and model analysis. Elsevier, 2001.
[220] H. Alvarez, L. Gómez, and H. Botero, “Abstracciones macroscópicas de la fenomenología para el modelado de procesos,” in XXVII Congreso Interamericano y colombiano de Ingeniería Química, pp. 6–8, 2014.
[221] M. Tian, G. Wu, B. Adams, J. Wen, and A. Chen, “Kinetics of photoelectrocatalytic degradation of nitrophenols on nanostructured tio2 electrodes,” The Journal of Physical Chemistry C, vol. 112, no. 3, pp. 825–831, 2008.
[222] D. Monllor-Satoca, “Fotoelectroquímica de electrodos semiconductores nanocristalinos: proceso de transferencia de carga y estrategias de mejora de la fotoactividad,” 2010.
[223] I. Mora-Sero, T. L. Villarreal, J. Bisquert, A. Pitarch, R. Gomez, and P. Salvador, ´ “Photoelectrochemical behavior of nanostructured tio2 thin-film electrodes in contact with aqueous electrolytes containing dissolved pollutants: A model for distinguishing between direct and indirect interfacial hole transfer from photocurrent measurements,” The Journal of Physical Chemistry B, vol. 109, no. 8, pp. 3371–3380, 2005.
[224] M. Hepel and S. Hazelton, “Photoelectrocatalytic degradation of diazo dyes on nanostructured wo3 electrodes,” Electrochimica Acta, vol. 50, no. 25-26, pp. 5278–5291, 2005.
[225] N. San, A. Hatipoğlu, G. Koçtürk, and Z. Çınar, “Photocatalytic degradation of 4-nitrophenol in aqueous tio2 suspensions: theoretical prediction of the intermediates,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 146, no. 3, pp. 189–197, 2002.
[226] M. Tian, B. Adams, J. Wen, R. M. Asmussen, and A. Chen, “Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays,” Electrochimica Acta, vol. 54, no. 14, pp. 3799–3805, 2009.
[227] S. Liu, X. Jiang, G. I. Waterhouse, Z.-M. Zhang, and L.-m. Yu, “Efficient photoelectrocatalytic degradation of azo-dyes over polypyrrole/titanium oxide/reduced graphene oxide electrodes under visible light: Performance evaluation and mechanism insights,” Chemosphere, vol. 288, p. 132509, 2022.
[228] H. Chen, J. Ye, Z. Chao, K. Zhu, H. Yang, Z. Xu, et al., “Oxygen-doped protonated c3n4 nanosheet as particle electrode and photocatalyst to degrade dye by photoelectrocatalytic oxidation process,” Separation and Purification Technology, p. 123405, 2023.
[229] O. M. Alfano, M. I. Cabrera, and A. E. Cassano, “Photocatalytic reactions involving hydroxyl radical attack,” Journal of Catalysis, vol. 172, no. 2, pp. 370–379, 1997.
[230] A. E. Cassano and O. M. Alfano, “Reaction engineering of heterogeneous photocatalytic reactors,” Zeitschrift für Physikalische Chemie, vol. 1, no. 1, pp. 237–252, 1998.
[231] N. J. Peill and M. R. Hoffmann, “Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis,” Environmental science & technology, vol. 32, no. 3, pp. 398–404, 1998.
[232] X. Li, F. Li, C. Fan, and Y. Sun, “Photoelectrocatalytic degradation of humic acid in aqueous solution using a ti/tio2 mesh photoelectrode,” Water Research, vol. 36, no. 9, pp. 2215–2224, 2002.
[233] V. Goetz, J. Cambon, D. Sacco, and G. Plantard, “Modeling aqueous heterogeneous photocatalytic degradation of organic pollutants with immobilized tio2,” Chemical Engineering and Processing: Process Intensification, vol. 48, no. 1, pp. 532–537, 2009.
[234] H.-L. Liu and Y.-R. Chiou, “Optimal decolorization efficiency of reactive red 239 by uv/tio2 photocatalytic process coupled with response surface methodology,” Chemical Engineering Journal, vol. 112, no. 1-3, pp. 173–179, 2005.
[235] H.-L. Liu and Y.-R. Chiou, “Optimal decolorization efficiency of reactive red 239 by uv/zno photocatalytic process,” Journal of the Chinese Institute of Chemical Engineers, vol. 37, no. 3, pp. 289–298, 2006.
[236] L. Atourki, M. Ouafi, K. Abouabassi, A. Elfanaoui, A. Ihlal, K. Bouabid, et al., “Electrodeposition of oriented zno nanorods by two-steps potentiostatic electrolysis: Effect of seed layer time,” Solid State Sciences, vol. 104, p. 106207, 2020.
[237] M. Wang, Y. Zhou, Y. Zhang, S. H. Hahn, and E. J. Kim, “From zn (oh) 2 to zno: a study on the mechanism of phase transformation,” CrystEngComm, vol. 13, no. 20, pp. 6024–6026, 2011.
[238] A. Aranda, R. Landers, P. Carnelli, R. Candal, H. Alarcon, and J. Rodríguez, “Influence of silver electrochemically deposited onto zinc oxide seed nanoparticles on the photoelectrochemical performance of zinc oxide nanorod films,” Nanomaterials and Nanotechnology, vol. 9, p. 1847980419844363, 2019.
[239] T. S. Tlemcani, C. Justeau, K. Nadaud, G. Poulin-Vittrant, and D. Alquier, “Deposition time and annealing effects of zno seed layer on enhancing vertical alignment of piezoelectric zno nanowires,” Chemosensors, vol. 7, no. 1, p. 7, 2019.
[240] W.-Y. Kim, S.-W. Kim, D.-H. Yoo, E. J. Kim, and S. H. Hahn, “Annealing effect of zno seed layer on enhancing photocatalytic activity of zno/tio2 nanostructure,” International Journal of Photoenergy, vol. 2013, 2013.
[241] J. Chung, J. Lee, and S. Lim, “Annealing effects of zno nanorods on dye-sensitized solar cell efficiency,” Physica B: Condensed Matter, vol. 405, no. 11, pp. 2593–2598, 2010.
[242] R. Gottesman, I. Peracchi, J. L. Gerke, R. Irani, F. F. Abdi, and R. van de Krol, “Shining a hot light on emerging photoabsorber materials: The power of rapid radiative heating in developing oxide thin-film photoelectrodes,” ACS Energy Letters, vol. 7, no. 1, pp. 514–522, 2022.
[243] G. He, B. Huang, Z. Lin, W. Yang, Q. He, and L. Li, “Morphology transition of zno nanorod arrays synthesized by a two-step aqueous solution method,” Crystals, vol. 8, no. 4, p. 152, 2018.
[244] J. Xie, P. Li, Y. Li, Y. Wang, and Y. Wei, “Morphology control of zno particles via aqueous solution route at low temperature,” Materials Chemistry and Physics, vol. 114, no. 2-3, pp. 943–947, 2009.
[245] W. Feng, B. Wang, P. Huang, X. Wang, J. Yu, and C. Wang, “Wet chemistry synthesis of zno crystals with hexamethylenetetramine (hmta): Understanding the role of hmta in the formation of zno crystals,” Materials Science in Semiconductor Processing, vol. 41, pp. 462–469, 2016.
[246] R. A. Reichle, K. G. McCurdy, and L. G. Hepler, “Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5–75 c,” Canadian Journal of Chemistry, vol. 53, no. 24, pp. 3841–3845, 1975.
[247] A. F. Abdulrahman, S. M. Ahmed, and M. A. Almessiere, “Effect of the growth time on the optical properties of zno nanorods grown by low temperature method.,” Digest Journal of Nanomaterials & Biostructures (DJNB), vol. 12, no. 4, 2017.
[248] Y. Yang, S. Ciampi, M. H. Choudhury, and J. J. Gooding, “Light activated electrochemistry: light intensity and ph dependence on electrochemical performance of anthraquinone derivatized silicon,” The Journal of Physical Chemistry C, vol. 120, no. 5, pp. 2874–2882, 2016.
[249] J. E. L. Santos, D. C. de Moura, D. R. da Silva, M. Panizza, and C. A. Martínez-Huitle, “Application of tio 2-nanotubes/pbo 2 as an anode for the electrochemical elimination of acid red 1 dye,” Journal of Solid State Electrochemistry, vol. 23, pp. 351–360, 2019.
[250] L. Labiadh, A. Barbucci, G. Cerisola, A. Gadri, S. Ammar, and M. Panizza, “Role of anode material on the electrochemical oxidation of methyl orange,” Journal of Solid State Electrochemistry, vol. 19, pp. 3177–3183, 2015.
[251] M. Panizza and G. Cerisola, “Electrocatalytic materials for the electrochemical oxidation of synthetic dyes,” Applied Catalysis B: Environmental, vol. 75, no. 1-2, pp. 95– 101, 2007.
[252] C. Comninellis, “Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment,” Electrochimica Acta, vol. 39, no. 11-12, pp. 1857–1862, 1994.
[253] K. Wang, Y. Liu, K. Kawashima, X. Yang, X. Yin, F. Zhan, M. Liu, X. Qiu, W. Li, C. B. Mullins, et al., “Modulating charge transfer efficiency of hematite photoanode with hybrid dual-metal–organic frameworks for boosting photoelectrochemical water oxidation,” Advanced Science, vol. 7, no. 23, p. 2002563, 2020.
[254] S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of zno nanostructures by an electrochemically active biofilm,” Nanoscale, vol. 5, no. 19, pp. 9238–9246, 2013.
[255] H. Pan, S. Zhu, X. Lou, L. Mao, J. Lin, F. Tian, and D. Zhang, “Graphene-based photocatalysts for oxygen evolution from water,” RSC advances, vol. 5, no. 9, pp. 6543– 6552, 2015.
[256] D. Kaur, A. Bharti, T. Sharma, and C. Madhu, “Dielectric properties of zno-based nanocomposites and their potential applications,” International Journal of Optics, vol. 2021, pp. 1–20, 2021.
[257] S. Sagadevan, K. Pal, Z. Z. Chowdhury, and M. E. Hoque, “Structural, dielectric and optical investigation of chemically synthesized ag-doped zno nanoparticles composites,” Journal of Sol-Gel Science and Technology, vol. 83, pp. 394–404, 2017.
[258] S. Marković, I. S. Simatović, S. Ahmetović, L. Veselinović, S. Stojadinović, V. Rac, S. D. Skapin, D. B. Bogdanović, I. J. ˇ Castvan, and D. Uskoković, “Surfactant-assisted ˇ microwave processing of zno particles: a simple way for designing the surface-to-bulk defect ratio and improving photo (electro) catalytic properties,” RSC advances, vol. 9, no. 30, pp. 17165–17178, 2019.
[259] L. Xu, Q. Chen, and D. Xu, “Hierarchical zno nanostructures obtained by electrodeposition,” The Journal of Physical Chemistry C, vol. 111, no. 31, pp. 11560–11565, 2007
[260] M. Sima, E. Vasile, and M. Sima, “Preparation of nanostructured zno nanorods in a hydrothermal–electrochemical process,” Thin Solid Films, vol. 520, no. 14, pp. 4632– 4636, 2012.
[261] D.-H. Lee, K.-H. Park, S. Kim, and S. Y. Lee, “Effect of ag doping on the performance of zno thin film transistor,” Thin Solid Films, vol. 520, no. 3, pp. 1160–1164, 2011.
[262] C. Karunakaran, V. Rajeswari, and P. Gomathisankar, “Combustion synthesis of zno and ag-doped zno and their bactericidal and photocatalytic activities,” Superlattices and Microstructures, vol. 50, no. 3, pp. 234–241, 2011.
[263] Y. Jin, Q. Cui, K. Wang, J. Hao, Q. Wang, and J. Zhang, “Investigation of photoluminescence in undoped and ag-doped zno flowerlike nanocrystals,” Journal of Applied Physics, vol. 109, no. 5, p. 053521, 2011.
[264] Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, and W. Yu, “Ag nanoparticle embedded-zno nanorods synthesized via a photochemical method and its gas-sensing properties,” Sensors and Actuators B: Chemical, vol. 143, no. 2, pp. 635–640, 2010.
[265] W. Y. Teoh, J. A. Scott, and R. Amal, “Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors,” The Journal of Physical Chemistry Letters, vol. 3, no. 5, pp. 629–639, 2012.
[266] M. Karyaoui, A. Mhamdi, H. Kaouach, A. Labidi, A. Boukhachem, K. Boubaker, M. Amlouk, and R. Chtourou, “Some physical investigations on silver-doped zno sprayed thin films,” Materials Science in Semiconductor Processing, vol. 30, pp. 255–262, 2015.
[267] V. Khomchenko, T. Kryshtab, A. Savin, L. Zavyalova, N. Roshchina, V. Rodionov, O. Lytvyn, V. Kushnirenko, V. Khachatryan, and J. Andraca-Adame, “Fabrication and properties of zno: Cu and zno: Ag thin films,” Superlattices and Microstructures, vol. 42, no. 1-6, pp. 94–98, 2007.
[268] U. Seetawan, S. Jugsujinda, T. Seetawan, C. Euvananont, C. Junin, C. Thanachayanont, P. Chainaronk, and V. Amornkitbamrung, “Effect of annealing temperature on the crystallography, particle size and thermopower of bulk zno,” Solid state sciences, vol. 13, no. 8, pp. 1599–1603, 2011.
[269] B. Jing, C. Chow, C. Saint, et al., “Recent developments in photocatalytic water treatment technology.,” Water Research, vol. 44, no. 10, pp. 2997–3027, 2010.
[270] Y. Yang, I. Wyatt, D. Travis, and M. Bahorsky, “Decolorization of dyes using uv/h2 o2 photochemical oxidation.,” Textile Chemist & Colorist, vol. 30, no. 4, 1998.
[271] K. Vasanth Kumar, K. Porkodi, and A. Selvaganapathi, “Constrain in solving langmuir–hinshelwood kinetic expression for the photocatalytic degradation of auramine o aqueous solutions by zno catalyst,” Dyes and Pigments, vol. 75, no. 1, pp. 246–249, 2007.
[272] H. Fogler, Essentials of Chemical Reaction Engineering. Prentice-Hall international series in the physical and chemical engineering sciences, Prentice Hall, 2011.
[273] S. Horikoshi and H. Hidaka, “Non-degradable triazine substrates of atrazine and cyanuric acid hydrothermally and in supercritical water under the uv-illuminated photocatalytic cooperation,” Chemosphere, vol. 51, no. 2, pp. 139–142, 2003.
[274] G. Zhang, E. M. Wurtzler, X. He, M. N. Nadagouda, K. O’Shea, S. M. El-Sheikh, A. A. Ismail, D. Wendell, and D. D. Dionysiou, “Identification of tio2 photocatalytic destruction byproducts and reaction pathway of cylindrospermopsin,” Applied Catalysis B: Environmental, vol. 163, pp. 591–598, 2015.
[275] K. Zhou, X.-Y. Hu, B.-Y. Chen, C.-C. Hsueh, Q. Zhang, J. Wang, Y.-J. Lin, and C.-T. Chang, “Synthesized tio2/zsm-5 composites used for the photocatalytic degradation of azo dye: intermediates, reaction pathway, mechanism and bio-toxicity,” Applied Surface Science, vol. 383, pp. 300–309, 2016.
[276] D. Shahidi, R. Roy, and A. Azzouz, “Advances in catalytic oxidation of organic pollutants–prospects for thorough mineralization by natural clay catalysts,” Applied Catalysis B: Environmental, vol. 174, pp. 277–292, 2015.
[277] P. A. Soares, R. Souza, J. Soler, T. F. Silva, S. M. G. U. Souza, R. A. Boaventura, and V. J. Vilar, “Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes,” Separation and Purification Technology, vol. 172, pp. 450–462, 2017.
[278] J. A. Oliveira, A. E. Nogueira, M. C. Gonçalves, E. C. Paris, C. Ribeiro, G. Y. Poirier, and T. R. Giraldi, “Photoactivity of n-doped zno nanoparticles in oxidative and reductive reactions,” Applied Surface Science, vol. 433, pp. 879–886, 2018.
[279] P. Gu, X. Wang, T. Li, and H. Meng, “Investigation of defects in n-doped zno powders prepared by a facile solvothermal method and their uv photocatalytic properties,” Materials Research Bulletin, vol. 48, no. 11, pp. 4699–4703, 2013.
[280] D. Chakraborty, S. Kaleemulla, N. M. Rao, K. Subbaravamma, and G. V. Rao, “Structural and optical properties of ito and cu doped ito thin films,” in AIP Conference Proceedings, vol. 1942, p. 120002, AIP Publishing LLC, 2018.
[281] D. Zhang, J. Gong, J. Ma, G. Han, and Z. Tong, “A facile method for synthesis of n-doped zno mesoporous nanospheres and enhanced photocatalytic activity,” Dalton Transactions, vol. 42, no. 47, pp. 16556–16561, 2013.
[282] W.-M. Cho, Y.-J. Lin, C.-J. Liu, L.-R. Chen, Y.-T. Shih, and P. Chen, “Luminescence behavior and compensation effect of n-doped zno films deposited by rf magnetron sputtering under various gas-flow ratios of o2/n2,” Journal of luminescence, vol. 145, pp. 884–887, 2014.
[283] H. Gutiérrez, R. De La Vara, et al., “Análisis y diseño de experimentos,” México DF: McGraw-Hill Interamericana, 2008.
[284] M. O’Kane and Ossila, “What is a solar simulator?,” 2023.
[285] I. Dincer and Y. Bicer, “3.17 photonic energy production,” 2018.
[286] E. López-Fraguas, J. M. Sánchez-Pena, and R. Vergaz, “A low-cost led-based solar simulator,” IEEE transactions on instrumentation and measurement, vol. 68, no. 12, pp. 4913–4923, 2019.
[287] S.-Y. Chan, T.-H. Yang, and Y.-N. Chang, “Design of electronic ballast for shortarc xenon lamp with interleaved half-wave rectifier,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5102–5112, 2015.
[288] M. Rehmet, “Xenon lamps,” in Technisch-wissenschaftliche Abhandlungen der OsramGesellschaft, pp. 113–123, Springer, 1986.
[289] R. R. D. Center, “Reference solar spectral irradiance: Astm g-173,” National Renewable Energy Laboratory, Golden, CO, accessed July, vol. 21, p. 2018, 2009.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 183 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería - Ingeniería Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85284/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/85284/2/98773905.2023.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
4702012a0647d3761e512971be8884d3
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886093228867584
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Sánchez Sáenz, Carlos Ignacio7f47d9c15e91a70dd6b3fae47c6e13f3Salazar Hoyos, Luis Danielf474303dae4124472a2c30ca599afeba600Grupo de Ingenieria Electroquímica GriequiSalazar Hoyos, Lis Daniel [0000-0003-2635-028X]0000-0003-2635-028X2024-01-15T18:09:08Z2024-01-15T18:09:08Z2023https://repositorio.unal.edu.co/handle/unal/85284Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesEsta tesis de maestría tuvo como objetivo general desarrollar un modelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 (RR239) mediante un semiconductor basado en óxido de zinc decorado con plata ZnO/Ag, para su aplicación en la remediación de efluentes textiles. Se realizó la síntesis de nanobarras de ZnO/Ag con la técnica de electrodeposición y posterior crecimiento químico. Se utilizaron técnicas electroquímicas y espectroscopia UV-Vis de reflectancia difusa para la estimación del ancho de banda prohibido, y la estructura de bandas del semiconductor. Mediante FE-SEM se verifico la morfología del semiconductor corroborando que si se logró la síntesis de nanobarras, con longitudes de $\sim$ 565 y 664 nm para el ZnO y ZnO/Ag respectivamente. Con DRX se estimó el tamaño del cristalito de 22,4 nm para el ZnO prístino y 36,9 nm para el ZnO/Ag}, se estimó también los planos preferenciales (100), (002) y (101) típicos de la fase hexagonal tipo wurtzita del ZnO. Por UPLC-MS/MS-QTOF se evidenció la ruptura del enlace azoico y la degradación a productos más simples, permitiendo elucidar un mecanismo de reacción. Se encontró que la degradación del colorante rojo reactivo 239 (RR239) mediante el semiconductor de ZnO/Ag sigue una cinética de segundo orden, esta cinética desarrollada está en función de la intensidad de luz UV a 365nm y el flujo de oxígeno. Los resultados muestran la eficiencia de la eliminación de COT y sugieren que es factible aplicar la oxidación fotocatalítica de compuestos orgánicos usando fotoelectrocatálisis basados en ZnO/Ag. (texto tomado de la fuente)This master's thesis had as its general objective the development of a kinetic model for the photoelectrocatalytic degradation of reactive red 239 dye (RR239) using a semiconductor based on zinc oxide decorated with silver (ZnO/Ag), for its application in the remediation of textile effluents. The synthesis of ZnO/Ag nanorods was carried out using electrodeposition and subsequent chemical growth techniques. Electrochemical techniques and diffuse reflectance UV-Vis spectroscopy were used to estimate the band gap and band structure of the semiconductor. The morphology of the semiconductor was verified by FE-SEM, confirming the successful synthesis of nanorods with lengths of approximately 565 and 664 nm for ZnO and ZnO/Ag, respectively. The crystallite size was estimated by XRD to be 22.4 nm for pristine ZnO and 36.9 nm for ZnO/Ag, and the preferred planes (100), (002), and (101) typical of the hexagonal wurtzite phase of ZnO were also estimated. UPLC-MS/MS-QTOF was used to demonstrate the cleavage of the azo bond and the degradation to simpler products, allowing for the elucidation of a reaction mechanism. It was found that the degradation of RR239 dye using ZnO/Ag semiconductor follows a second-order kinetics, which is dependent on the UV light intensity at 365 nm and the flow of oxygen. The results demonstrate the efficiency of COD removal and suggest that photodegradation of organic compounds using ZnO/Ag-based photoelectrocatalysis is feasible.MaestríaMagíster en Ingeniería - Ingeniería QuímicaElectroquímicaÁrea curricular de Ingeniería Química e Ingeniería de Petróleos183 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Ingeniería QuímicaFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín500 - Ciencias naturales y matemáticas::507 - Educación, investigación, temas relacionados510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales600 - Tecnología (Ciencias aplicadas)::607 - Educación, investigación, temas relacionados620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingeniería660 - Ingeniería química::667 - Tecnología de la limpieza, del color, del revestimiento y relacionadasElectroquímicaFotoelectrocatálisisNanobarras de ZnORojo reactivo 239CinéticaVía y mecanismos de degradaciónPhotoelectrocatalysisZnO nanorodsReactive Red 239KineticsDegradation pathway and mechanismsTeoría cinéticaModelo cinético para la degradación fotoelectrocatalítica del tinte rojo reactivo 239 en aguas textiles mediante óxido de zinc nanoestructuradoKinetic model for the photoelectrocatalytic degradation of reactive red dye 239 in textile waters using nanostructured zinc oxideTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TM[1] F. Henao, J. P. Viteri, Y. Rodríguez, J. Gomez, and I. Dyner, “Annual and interannual complementarities of renewable energy sources in Colombia,” Renewable and Sustainable Energy Reviews, vol. 134, p. 110318, 2020.[2] J. F. Conte, Perfeccionamiento del modelo ionosférico la plata (lpim). PhD thesis, Universidad Nacional de La Plata, 2015.[3] D. Serrato, R. Nieto-Aguilar, and A. Aguilera-Méndez, “Efectos negativos de la radiación ionizante empleada en diagnóstico odontológico,” Investigación y Ciencia, vol. 26, no. 74, pp. 81–87, 2018.[4] C. Hu, “Modern semiconductor devices for integrated circuits.[chenming c., hu ],”Chapter, vol. 4, pp. 89–156, 2009.[5] J. Schneider, D. Bahnemann, J. Ye, G. L. Puma, and D. D. Dionysiou, Photocatalysis: fundamentals and perspectives. Royal Society of Chemistry, 2016.[6] R. Beranek, “(photo) electrochemical methods for the determination of the band edge positions of tio2-based nanomaterials,” Advances in Physical Chemistry, vol. 2011, 2011.[7] T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. materials-related aspects,” International journal of hydrogen energy, vol. 27, no. 10, pp. 991–1022, 2002.[8] R. v. d. Krol, “Principles of photoelectrochemical cells,” in Photoelectrochemical hydrogen production, pp. 13–67, Springer, 2012.[9] S. Bermúdez, “Degradación fotoelectrocatalítica de colorante azoico rojo reactivo 239, en aguas contaminadas de la industria textil,” 2022.[10] C. Jiang, S. J. Moniz, A. Wang, T. Zhang, and J. Tang, “Photoelectrochemical devices for solar water splitting–materials and challenges,” Chemical Society Reviews, vol. 46, no. 15, pp. 4645–4660, 2017.[11] J. Cui, “Zinc oxide nanowires,” Materials Characterization, vol. 64, pp. 43–52, 2012.[12] S. Wang, J. Zhang, O. Gharbi, V. Vivier, M. Gao, and M. E. Orazem, “Electrochemical impedance spectroscopy,” Nature Reviews Methods Primers, vol. 1, no. 1, p. 41, 2021.[13] A. Hankin, F. E. Bedoya-Lora, J. C. Alexander, A. Regoutz, and G. H. Kelsall, “Flat band potential determination: avoiding the pitfalls,” Journal of Materials Chemistry A, vol. 7, no. 45, pp. 26162–26176, 2019.[14] Z. Chen, H. Dinh, and E. Miller, “Photoelectrochemical water splitting: standards, experimental methods, and protocols, 2013,” Springer. doi, vol. 10, pp. 978–1.[15] Z. Chen, T. F. Jaramillo, T. G. Deutsch, A. Kleiman-Shwarsctein, A. J. Forman, N. Gaillard, R. Garland, K. Takanabe, C. Heske, M. Sunkara, et al., “Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols,” Journal of Materials Research, vol. 25, no. 1, pp. 3–16, 2010.[16] I. Cristina, C. Cuéllar, J. Ricardo, V. Cabra, M. Angel González Curbelo, D. Angélica, ´ V. Martínez, and E. R. Valencia, APLICACIONES Y GENERALIDADES DE UN ESPECTROFOTOMETRO UV-VIS UV-1800 DE SHIMADZU ´ .[17] E. I. Ltd., “Blog fluorescence spectroscopy: Measuring fluorescence from a sample.”[18] R. López and R. Gómez, “Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial tio 2: a comparative study,” Journal of sol-gel science and technology, vol. 61, pp. 1–7, 2012.[19] A. E. Morales, E. S. Mora, and U. Pal, “Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures,” Revista mexicana de física, vol. 53, no. 5, pp. 18–22, 2007.[20] A. A. Bunaciu, E. G. UdriS¸Tioiu, and H. Y. Aboul-Enein, “X-ray diffraction: instrumentation and applications,” Critical reviews in analytical chemistry, vol. 45, no. 4, pp. 289–299, 2015.[21] N. Das, S. Biswas, and P. E. Sokol, “The photovoltaic performance of zno nanorods in bulk heterojunction solar cells,” Journal of Renewable and Sustainable Energy, vol. 3, no. 3, p. 033105, 2011.[22] R. C. H. Cik, C. T. Foo, and A. F. O. Nor, “Field emission scanning electron microscope (fesem) facility in bti,” 2015.[23] R. S. Prabhu, R. Priyanka, M. Vijay, and G. R. K. Vikashini, “Field emission scanning electron microscopy (fesem) with a very big future in pharmaceutical research,” Research Article — Pharmaceutical Sciences — OA Journal — MCI Approved — Index Copernicus, vol. 11, pp. 2321–3272, 2021.[24] S. Mandizadeh, F. Soofivand, S. Bagheri, and M. Salavati-Niasari, “Srcrxfe12-xo19 nanoceramics as an effective catalyst for desulfurization of liquid fuels: Green sol-gel synthesis, characterization, magnetic and optical properties,” PloS one, vol. 12, no. 5, p. e0162891, 2017.[25] ThermoScientific, “Data sheet apreo 2 sem,” 2020.[26] L. R. Snyder, J. J. Kirkland, and J. W. Dolan, Introduction to modern liquid chromatography. John Wiley & Sons, 2011.[27] R. Sapkal, S. Shinde, M. Mahadik, V. Mohite, T. Waghmode, S. Govindwar, K. Rajpure, and C. Bhosale, “Photoelectrocatalytic decolorization and degradation of textile effluent using zno thin films,” Journal of photochemistry and photobiology B: biology, vol. 114, pp. 102–107, 2012.[28] S. Yamabi and H. Imai, “Growth conditions for wurtzite zinc oxide films in queous solutions,” Journal of materials chemistry, vol. 12, no. 12, pp. 3773–3778, 2002.[29] M. Skompska and K. Zarebska, “Electrodeposition of zno nanorod arrays on transparent conducting substrates–a review,” Electrochimica Acta, vol. 127, pp. 467–488, 2014.[30] D. Franchi and Z. Amara, “Applications of sensitized semiconductors as heterogeneous visible-light photocatalysts in organic synthesis,” ACS Sustainable Chemistry & Engineering, vol. 8, no. 41, pp. 15405–15429, 2020.[31] H. Karakurt and O. E. Kartal, “Investigation of photocatalytic activity of tio2 nanotubes synthesized by hydrothermal method,” Chemical Engineering Communications, pp. 1–21, 2022.[32] N. C. Dias, J. P. Bassin, G. L. Sant’Anna Jr, and M. Dezotti, “Ozonation of the dye reactive red 239 and biodegradation of ozonation products in a moving-bed biofilm reactor: revealing reaction products and degradation pathways,” International Biodeterioration & Biodegradation, vol. 144, p. 104742, 2019.[33] Y. Shen, Q. Xu, R. Wei, J. Ma, and Y. Wang, “Mechanism and dynamic study of reactive red x-3b dye degradation by ultrasonic-assisted ozone oxidation process,” Ultrasonics Sonochemistry, vol. 38, pp. 681–692, 2017.[34] D. P. Norton, Y. Heo, M. Ivill, K. Ip, S. Pearton, M. F. Chisholm, and T. Steiner, “Zno: growth, doping & processing,” Materials today, vol. 7, no. 6, pp. 34–40, 2004.[35] V. F. Lvovich, Impedance spectroscopy: applications to electrochemical and dielectric phenomena. John Wiley & Sons, 2012.[36] C. A. Basha, R. Saravanathamizhan, P. Manokaran, T. Kannadasan, and C. W. Lee, “Photoelectrocatalytic oxidation of textile dye effluent: Modeling using response surface methodology,” Industrial & engineering chemistry research, vol. 51, no. 7, pp. 2846– 2854, 2012.[37] L. Petersen, M. Heynen, and F. Pellicciotti, “Freshwater resources: Past, present, future,” International Encyclopedia of Geography, pp. 1–12, 2019.[38] S. De Gisi, G. Lofrano, M. Grassi, and M. Notarnicola, “Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: a review,” Sustainable Materials and Technologies, vol. 9, pp. 10–40, 2016.[39] S. De Souza, J. Madellin-Azuara, N. Burley, J. R. Lund, and R. E. Howitt, “Guidelines for preparing economic analysis for water recycling projects,” Center of Watershed Sciences, University of California, Davis, 2011.[40] S. Sen, S. Raut, P. Bandyopadhyay, and S. Raut, “Fungal decolouration and degradation of azo dyes: a review. fungal biol rev,” 2016.[41] Z. Aksu and G. Karabayır, “Comparison of biosorption properties of different kinds of fungi for the removal of gryfalan black rl metal-complex dye,” Bioresource Technology, vol. 99, no. 16, pp. 7730–7741, 2008.[42] C. R. Holkar, A. J. Jadhav, D. V. Pinjari, N. M. Mahamuni, and A. B. Pandit, “A critical review on textile wastewater treatments: possible approaches,” Journal of environmental management, vol. 182, pp. 351–366, 2016.[43] P. Zaruma, J. Proal, I. C. Hernández, and H. I. Salas, “Los colorantes textiles industriales y tratamientos óptimos de sus efluentes de agua residual: una breve revisión,” Revista de la Facultad de Ciencias Químicas, no. 19, pp. 38–47, 2018.[44] R. O. A. de Lima, A. P. Bazo, D. M. F. Salvadori, C. M. Rech, D. de Palma Oliveira, and G. de Aragão Umbuzeiro, “Mutagenic and carcinogenic potential of a textile azo dye processing plant effluent that impacts a drinking water source,” Mutation Research/Genetic Toxicology and Environmental Mutagenesis, vol. 626, no. 1-2, pp. 53– 60, 2007.[45] C. López, M. Moreira, G. Feijoo, and J. Lema, “Tecnologías para el tratamiento de efluentes de industrias textiles,” Afinidad, vol. 64, no. 531, pp. 561–573, 2007.[46] J. C. Cardoso, G. G. Bessegato, and M. V. B. Zanoni, “Efficiency comparison of ozonation, photolysis, photocatalysis and photoelectrocatalysis methods in real textile wastewater decolorization,” Water research, vol. 98, pp. 39–46, 2016.[47] C. Enric Brillasa, “Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. an updated review,” Applied Catalysis B: Environmental, pp. 166–167, 2015.[48] J. Fu, Y. Zhao, X. Xue, W. Li, and A. Babatunde, “Multivariate-parameter optimization of acid blue-7 wastewater treatment by ti/tio2 photoelectrocatalysis via the box–behnken design,” Desalination, vol. 243, no. 1-3, pp. 42–51, 2009.[49] Y. Xie and X. Li, “Interactive oxidation of photoelectrocatalysis and electro-fenton for azo dye degradation using tio2–ti mesh and reticulated vitreous carbon electrodes,” Materials Chemistry and Physics, vol. 95, no. 1, pp. 39–50, 2006.[50] C. Byrne, G. Subramanian, and S. C. Pillai, “Recent advances in photocatalysis for environmental applications,” Journal of environmental chemical engineering, vol. 6, no. 3, pp. 3531–3555, 2018.[51] Y. Hou, X. Li, Q. Zhao, G. Chen, and C. L. Raston, “Role of hydroxyl radicals and mechanism of escherichia coli inactivation on ag/agbr/tio2 nanotube array electrode under visible light irradiation,” Environmental science & technology, vol. 46, no. 7, pp. 4042–4050, 2012.[52] X. Zheng, D. Li, X. Li, L. Yu, P. Wang, X. Zhang, J. Fang, Y. Shao, and Y. Zheng, “Photoelectrocatalytic degradation of rhodamine b on tio 2 photonic crystals,” Physical Chemistry Chemical Physics, vol. 16, no. 29, pp. 15299–15306, 2014.[53] J. Wang and H. Chen, “Catalytic ozonation for water and wastewater treatment: recent advances and perspective,” Science of the Total Environment, vol. 704, p. 135249, 2020.[54] E. Brillas, “A review on the photoelectro-fenton process as efficient electrochemical advanced oxidation for wastewater remediation. treatment with uv light, sunlight, and coupling with conventional and other photo-assisted advanced technologies,” Chemosphere, vol. 250, p. 126198, 2020.[55] N. Bravo-Yumi, P. Espinoza-Montero, A. Picos-Benítez, R. Navarro-Mendoza, E. Brillas, and J. M. Peralta-Hernández, “Synthesis and characterization of sb2o5-doped ti/sno2-iro2 anodes toward efficient degradation tannery dyes by in situ generated oxidizing species,” Electrochimica Acta, vol. 358, p. 136904, 2020.[56] S. Shinde, C. Bhosale, and K. Rajpure, “Hydroxyl radical’s role in the remediation of wastewater,” Journal of Photochemistry and Photobiology B: Biology, vol. 116, pp. 66– 74, 2012.[57] P. Alulema-Pullupaxi, P. J. Espinoza-Montero, C. Sigcha-Pallo, R. Vargas, L. Fernandez, J. M. Peralta-Hernandez, and J. Paz, “Fundamentals and applications of photoelectrocatalysis as an efficient process to remove pollutants from water: A review,” Chemosphere, vol. 281, p. 130821, 2021.[58] C. A. Martínez-Huitle and L. S. Andrade, “Electrocatalysis in wastewater treatment: recent mechanism advances,” Quimica Nova, vol. 34, pp. 850–858, 2011.[59] P. J. Espinoza-Montero, C. Vega-Verduga, P. Alulema-Pullupaxi, L. Fernández, and J. L. Paz, “Technologies employed in the treatment of water contaminated with glyphosate: A review,” Molecules, vol. 25, no. 23, p. 5550, 2020.[60] F. C. Moreira, R. A. Boaventura, E. Brillas, and V. J. Vilar, “Electrochemical advanced oxidation processes: a review on their application to synthetic and real wastewaters,” Applied Catalysis B: Environmental, vol. 202, pp. 217–261, 2017.[61] M. Sillanpää and M. Shestakova, “Emerging and combined electrochemical methods,” Electrochemical water treatment methods: Fundamentals, methods and full scale Applications, pp. 131–225, 2017.[62] S. Garcia-Segura and E. Brillas, “Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 31, pp. 1–35, 2017.[63] M. G. Peleyeju and O. A. Arotiba, “Recent trend in visible-light photoelectrocatalytic systems for degradation of organic contaminants in water/wastewater,” Environmental Science: Water Research & Technology, vol. 4, no. 10, pp. 1389–1411, 2018.[64] J. Li, Y. Li, Z. Xiong, G. Yao, and B. Lai, “The electrochemical advanced oxidation processes coupling of oxidants for organic pollutants degradation: a mini-review,” Chinese Chemical Letters, vol. 30, no. 12, pp. 2139–2146, 2019.[65] G. G. Bessegato, J. C. De Souza, J. C. Cardoso, and M. V. B. Zanoni, “Assessment of several advanced oxidation processes applied in the treatment of environmental concern constituents from a real hair dye wastewater,” Journal of Environmental Chemical Engineering, vol. 6, no. 2, pp. 2794–2802, 2018.[66] P. Alulema-Pullupaxi, L. Fernández, A. Debut, C. P. Santacruz, W. Villacis, C. Fierro, and P. J. Espinoza-Montero, “Photoelectrocatalytic degradation of glyphosate on titanium dioxide synthesized by sol-gel/spin-coating on boron doped diamond (tio2/bdd) as a photoanode,” Chemosphere, vol. 278, p. 130488, 2021.[67] M. Pirsaheb, H. Hoseini, and V. Abtin, “Photoelectrocatalytic degradation of humic acid and disinfection over ni tio2-ni/ac-ptfe electrode under natural sunlight irradiation: Modeling, optimization and reaction pathway,” Journal of the Taiwan Institute of Chemical Engineers, vol. 118, pp. 204–214, 2021.[68] L. Cheng, T. Jiang, K. Yan, J. Gong, and J. Zhang, “A dual-cathode photoelectrocatalysis-electroenzymatic catalysis system by coupling bivo4 photoanode with hemin/cu and carbon cloth cathodes for degradation of tetracycline,” Electrochimica Acta, vol. 298, pp. 561–569, 2019.[69] A. Huda, P. Suman, L. Torquato, B. F. Silva, C. Handoko, F. Gulo, M. Zanoni, and M. Orlandi, “Visible light-driven photoelectrocatalytic degradation of acid yellow 17 using sn3o4 flower-like thin films supported on ti substrate (sn3o4/tio2/ti),” Journal of Photochemistry and Photobiology A: Chemistry, vol. 376, pp. 196–205, 2019.[70] P. Mazierski, A. F. Borzyszkowska, P. Wilczewska, A. Bia lk-Bieli´nska, A. ZaleskaMedynska, E. M. Siedlecka, and A. Pieczyńska, “Removal of 5-fluorouracil by solardriven photoelectrocatalytic oxidation using ti/tio2 (nt) photoelectrodes,” Water research, vol. 157, pp. 610–620, 2019.[71] A. Naseri, M. Samadi, N. M. Mahmoodi, A. Pourjavadi, H. Mehdipour, and A. Z. Moshfegh, “Tuning composition of electrospun zno/cuo nanofibers: toward controllable and efficient solar photocatalytic degradation of organic pollutants,” The Journal of Physical Chemistry C, vol. 121, no. 6, pp. 3327–3338, 2017.[72] M. R. Hoffmann, S. T. Martin, W. Choi, and D. W. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chemical reviews, vol. 95, no. 1, pp. 69– 96, 1995.[73] S.-B. Ghaffari, M.-H. Sarrafzadeh, Z. Fakhroueian, S. Shahriari, and M. R. Khorramizadeh, “Functionalization of zno nanoparticles by 3-mercaptopropionic acid for aqueous curcumin delivery: Synthesis, characterization, and anticancer assessment,” Materials Science and Engineering: C, vol. 79, pp. 465–472, 2017.[74] M. Sharma, K. Ojha, A. Ganguly, and A. K. Ganguli, “Ag 3 po 4 nanoparticle decorated on sio 2 spheres for efficient visible light photocatalysis,” New Journal of Chemistry, vol. 39, no. 12, pp. 9242–9248, 2015.[75] S.-L. Chiam, S.-Y. Pung, and F.-Y. Yeoh, “Recent developments in mno2-based photocatalysts for organic dye removal: a review,” Environmental Science and Pollution Research, vol. 27, no. 6, pp. 5759–5778, 2020.[76] A. Khan, Synthesis, characterization and luminescence properties of zinc oxide nanostructures. Ohio University, 2006.[77] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Dogan, V. Avrutin, S.-J. Cho, and Morkoc, “A comprehensive review of zno materials and devices,” Journal of applied physics, vol. 98, no. 4, p. 11, 2005.[78] Q. Deng, X. Duan, D. H. Ng, H. Tang, Y. Yang, M. Kong, Z. Wu, W. Cai, and G. Wang, “Ag nanoparticle decorated nanoporous zno microrods and their enhanced photocatalytic activities,” ACS Applied Materials & Interfaces, vol. 4, no. 11, pp. 6030–6037, 2012.[79] T. Welderfael, M. Pattabi, R. M. Pattabi, et al., “Photocatalytic activity of ag-n codoped zno nanorods under visible and solar light irradiations for mb degradation,” Journal of Water Process Engineering, vol. 14, pp. 117–123, 2016.[80] O. Bechambi, M. Chalbi, W. Najjar, and S. Sayadi, “Photocatalytic activity of zno doped with ag on the degradation of endocrine disrupting under uv irradiation and the investigation of its antibacterial activity,” Applied Surface Science, vol. 347, pp. 414– 420, 2015.[81] S. Singh, R. Sharma, and B. R. Mehta, “Enhanced surface area, high zn interstitial defects and band gap reduction in n-doped zno nanosheets coupled with bivo4 leads to improved photocatalytic performance,” Applied Surface Science, vol. 411, pp. 321–330, 2017.[82] W. Ebeling, H. Reinholz, and G. Röpke, “Equation of state of hydrogen, helium, and solar plasmas,” Contributions to Plasma Physics, vol. 61, no. 10, p. e202100085, 2021.[83] A. H. Smets, K. Jäger, O. Isabella, R. A. Swaaij, and M. Zeman, Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems. UIT Cambridge, 2015.[84] J. A. Duffie and W. A. Beckman, Solar engineering of thermal processes. Wiley New York, 1980.[85] F. E. Checa and O. E. De La Cruz, “Potencial natural para el desarrollo fotovoltaico en Colombia,” Libros Editorial UNIMAR, 2015.[86] “Características de la radiación solar - IDEAM. url = http://www.ideam.gov.co/web/tiempo-y-clima/caracteristicas-de-la-radiacion-solar.”[87] I. A. Martínez Nicolás ´ et al., “Instrumentación y caracterización de disipadores térmicos,” 2015.[88] G. L. Miessler and D. A. Tarr, Solutions Manual, Inorganic Chemistry. Prentice Hall, 1999.[89] D. Shriver and P. Atkins, “Bioinorganic chemistry,” Inorganic Chemistry. 3rd Edition. USA: Oxford University Press, 1999.[90] S. Tripathi, R. Kaur, and M. Rani, “Oxide nanomaterials and their applications as a memristor,” Solid State Phenomena, vol. 222, pp. 67–97, 2015.[91] X. Chen and S. S. Mao, “Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications,” Chemical reviews, vol. 107, no. 7, pp. 2891–2959, 2007.[92] R. Asahi, Y. Taga, W. Mannstadt, and A. J. Freeman, “Electronic and optical properties of anatase tio 2,” Physical Review B, vol. 61, no. 11, p. 7459, 2000.[93] J. Zhang, B. Tian, L. Wang, M. Xing, and J. Lei, Photocatalysis: fundamentals, materials and applications, vol. 100. Springer, 2018.[94] M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar water splitting cells,” Chemical reviews, vol. 110, no. 11, pp. 6446–6473, 2010.[95] L. Peter, “Kinetics and mechanisms of light-driven reactions at semiconductor electrodes: Principles and techniques,” Photoelectrochemical Water Splitting: Materials, Processes and Architectures, vol. 9, pp. 19–51, 2013.[96] L. M. Peter, “Semiconductor electrochemistry,” in Photoelectrochemical Solar Fuel Production, pp. 3–40, Springer, 2016.[97] R. Van de Krol, M. Grätzel, et al., Photoelectrochemical hydrogen production, vol. 90. Springer, 2012.[98] J. Rodriguez, R. J. Candal, J. Solís, W. Estrada, and M. Blesa, “El fotocatalizador: síntesis, propiedades y limitaciones,” Solar Safe Water, vol. 9, pp. 135–152, 2005.[99] S. R. Morrison and S. Morrison, Electrochemistry at semiconductor and oxidized metal electrodes, vol. 126. Springer, 1980.[100] L.-J. Guo, J.-W. Luo, T. He, S.-H. Wei, and S.-S. Li, “Photocorrosion-limited maximum efficiency of solar photoelectrochemical water splitting,” Physical Review Applied, vol. 10, no. 6, p. 064059, 2018.[101] L. E. Brus, “Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state,” The Journal of chemical physics, vol. 80, no. 9, pp. 4403–4409, 1984.[102] B. Enright and D. Fitzmaurice, “Spectroscopic determination of electron and hole effective masses in a nanocrystalline semiconductor film,” The Journal of Physical Chemistry, vol. 100, no. 3, pp. 1027–1035, 1996.[103] K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, and W.-F. Hsieh, “Band gap variation of size-controlled zno quantum dots synthesized by sol–gel method,” Chemical Physics Letters, vol. 409, no. 4-6, pp. 208–211, 2005.[104] F. I. Khan, T. Husain, and R. Hejazi, “An overview and analysis of site remediation technologies,” Journal of environmental management, vol. 71, no. 2, pp. 95–122, 2004.[105] A. T. Yeung and Y.-Y. Gu, “A review on techniques to enhance electrochemical remediation of contaminated soils,” Journal of hazardous materials, vol. 195, pp. 11–29, 2011.[106] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” nature, vol. 238, no. 5358, pp. 37–38, 1972.[107] I. Ganesh, P. C. Sekhar, G. Padmanabham, and G. Sundararajan, “Influence of lidoping on structural characteristics and photocatalytic activity of zno nano-powder formed in a novel solution pyro-hydrolysis route,” Applied surface science, vol. 259, pp. 524–537, 2012.[108] D. S. Bhatkhande, V. G. Pangarkar, and A. A. C. M. Beenackers, “Photocatalytic degradation for environmental applications–a review,” Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, vol. 77, no. 1, pp. 102–116, 2002.[109] G. G. Bessegato, T. T. Guaraldo, J. F. de Brito, M. F. Brugnera, and M. V. B. Zanoni, “Achievements and trends in photoelectrocatalysis: from environmental to energy applications,” Electrocatalysis, vol. 6, no. 5, pp. 415–441, 2015.[110] E. Zarei and R. Ojani, “Fundamentals and some applications of photoelectrocatalysis and effective factors on its efficiency: a review,” Journal of Solid State Electrochemistry, vol. 21, no. 2, pp. 305–336, 2017.[111] C. J. Lin, S.-J. Liao, L.-C. Kao, and S. Y. H. Liou, “Photoelectrocatalytic activity of a hydrothermally grown branched zno nanorod-array electrode for paracetamol degradation,” Journal of hazardous materials, vol. 291, pp. 9–17, 2015.[112] E. A. S. Dimapilis, C.-S. Hsu, R. M. O. Mendoza, and M.-C. Lu, “Zinc oxide nanoparticles for water disinfection,” Sustainable Environment Research, vol. 28, no. 2, pp. 47–56, 2018.[113] V. Sharma, M. Prasad, P. Ilaiyaraja, C. Sudakar, and S. Jadkar, “Electrodeposition of highly porous zno nanostructures with hydrothermal amination for efficient photoelectrochemical activity,” international journal of hydrogen energy, vol. 44, no. 23, pp. 11459–11471, 2019.[114] J. Jiang, Z. Mu, H. Xing, Q. Wu, X. Yue, and Y. Lin, “Insights into the synergetic effect for enhanced uv/visible-light activated photodegradation activity via cu-zno photocatalyst,” Applied Surface Science, vol. 478, pp. 1037–1045, 2019.[115] M. Salem, I. Massoudi, S. Akir, Y. Litaiem, M. Gaidi, and K. Khirouni, “Photoelectrochemical and opto-electronic properties tuning of zno films: Effect of cu doping content,” Journal of Alloys and Compounds, vol. 722, pp. 313–320, 2017.[116] Y. DU Hongchu, S. HUANG, J. LI, Y. ZHU, L. SHEN, L. GUO, N. BAO, and K. YANAGISAWA, “A new reaction to zno nanoparticles,” J. Appl. Phys, vol. 88, p. 2152, 2000.[117] V. Oskoei, M. Dehghani, S. Nazmara, B. Heibati, M. Asif, I. Tyagi, S. Agarwal, and V. K. Gupta, “Removal of humic acid from aqueous solution using uv/zno nanophotocatalysis and adsorption,” Journal of Molecular Liquids, vol. 213, pp. 374–380, 2016.[118] M. B. Ali, F. Barka-Bouaifel, B. Sieber, H. Elhouichet, A. Addad, L. Boussekey, M. Férid, and R. Boukherroub, “Preparation and characterization of ni-doped zno–sno2 nanocomposites: application in photocatalysis,” Superlattices and Microstructures, vol. 91, pp. 225–237, 2016.[119] R. Mohammed, M. E. M. Ali, E. Gomaa, and M. Mohsen, “Green zno nanorod material for dye degradation and detoxification of pharmaceutical wastes in water,” Journal of Environmental Chemical Engineering, vol. 8, no. 5, p. 104295, 2020.[120] K. Qi, B. Cheng, J. Yu, and W. Ho, “Review on the improvement of the photocatalytic and antibacterial activities of zno,” Journal of Alloys and Compounds, vol. 727, pp. 792–820, 2017.[121] M. Mapa and C. S. Gopinath, “Combustion synthesis of triangular and multifunctional zno1- x n x (x ≤ 0.15) materials,” Chemistry of Materials, vol. 21, no. 2, pp. 351–359, 2009.[122] N. Salah, A. Hameed, M. Aslam, M. S. Abdel-Wahab, S. S. Babkair, and F. Bahabri, “Flow controlled fabrication of n doped zno thin films and estimation of their performance for sunlight photocatalytic decontamination of water,” Chemical Engineering Journal, vol. 291, pp. 115–127, 2016.[123] M. Samadi, M. Zirak, A. Naseri, E. Khorashadizade, and A. Z. Moshfegh, “Recent progress on doped zno nanostructures for visible-light photocatalysis,” Thin Solid Films, vol. 605, pp. 2–19, 2016.[124] V. Mote, Y. Purushotham, and B. Dole, “Structural, morphological, physical and dielectric properties of mn doped zno nanocrystals synthesized by sol–gel method,” Materials & Design, vol. 96, pp. 99–105, 2016.[125] S¸. S¸. Türkyilmaz, N. Güy, and M. Ozacar, “Photocatalytic efficiencies of ni, mn, fe and ag doped zno nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between zno and metals,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 341, pp. 39–50, 2017.[126] Y. Yu, “Ag-doped zno nanorods synthesized on porous si electrode using a facile electrochemical approach for removal of methylene blue from wastewater,” INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, vol. 16, no. 2, 2021.[127] Y. Liu, W. Gao, C. Zhang, L. Zhang, and Y. Zhi, “In situ formation of ag/zno heterostructure arrays during synergistic photocatalytic process for sers and photocatalysis,” Journal of the Taiwan Institute of Chemical Engineers, vol. 88, pp. 277–285, 2018.[128] G. A. Cerrón-Calle, A. J. Aranda-Aguirre, C. Luyo, S. Garcia-Segura, and H. Alarcón, “Photoelectrocatalytic decolorization of azo dyes with nano-composite oxide layers of zno nanorods decorated with ag nanoparticles,” Chemosphere, vol. 219, pp. 296–304, 2019.[129] H. H. Mohamed and D. W. Bahnemann, “The role of electron transfer in photocatalysis: Fact and fictions,” Applied Catalysis B: Environmental, vol. 128, pp. 91–104, 2012.[130] V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai, “Visible light activation of tio2 photocatalysts: Advances in theory and experiments,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, vol. 25, pp. 1–29, 2015.[131] C. Jaramillo-Páez, J. A. Navío, M. Hidalgo, and M. Macías, “High uv-photocatalytic activity of zno and ag/zno synthesized by a facile method,” Catalysis Today, vol. 284, pp. 121–128, 2017.[132] A. A. Ismail, D. W. Bahnemann, and S. A. Al-Sayari, “Synthesis and photocatalytic properties of nanocrystalline au, pd and pt photodeposited onto mesoporous ruo2-tio2 nanocomposites,” Applied Catalysis A: General, vol. 431, pp. 62–68, 2012.[133] H. O. Tugaoen, S. Garcia-Segura, K. Hristovski, and P. Westerhoff, “Challenges in photocatalytic reduction of nitrate as a water treatment technology,” Science of the total environment, vol. 599, pp. 1524–1551, 2017.[134] P. Christensen and A. Hamnet, Techniques and mechanisms in electrochemistry. Springer Science & Business Media, 2007.[135] D. K. Gosser, Cyclic voltammetry: simulation and analysis of reaction mechanisms, vol. 43. VCH New York, 1993.[136] N. Elgrishi, K. J. Rountree, B. D. McCarthy, E. S. Rountree, T. T. Eisenhart, and J. L. Dempsey, “A practical beginner’s guide to cyclic voltammetry,” Journal of chemical education, vol. 95, no. 2, pp. 197–206, 2018.[137] P. T. Kissinger and W. R. Heineman, “Cyclic voltammetry,” Journal of chemical education, vol. 60, no. 9, p. 702, 1983.[138] A. Lasia, Electrochemical impedance spectroscopy and its applications. Springer, 2002.[139] M. E. Orazem and B. Tribollet, “Electrochemical impedance spectroscopy,” New Jersey, vol. 1, pp. 383–389, 2008.[140] K. Uosaki and H. Kita, “Response to¸comment on’effects of the helmholtz layer capacitance on the potential distribution at semiconductor/electrolyte interface and the linearity of the mott-schottky plot’”[j. electrochem. soc., 130, 895],” Journal of The Electrochemical Society, vol. 131, no. 10, pp. 2452–2454, 1984.[141] R. De Gryse, W. Gomes, F. Cardon, and J. Vennik, “On the interpretation of mottschottky plots determined at semiconductor/electrolyte systems,” Journal of the Electrochemical Society, vol. 122, no. 5, p. 711, 1975.[142] D. C. Grahame, “The electrical double layer and the theory of electrocapillarity.,” Chemical reviews, vol. 41, no. 3, pp. 441–501, 1947.[143] N. E. Wisdom and N. Hackerman, “Surface studies on passive iron,” Journal of The Electrochemical Society, vol. 110, no. 4, p. 318, 1963.[144] H. Gerischer, “Neglected problems in the ph dependence of the flatband potential of semiconducting oxides and semiconductors covered with oxide layers,” Electrochimica acta, vol. 34, no. 8, pp. 1005–1009, 1989.[145] J. V. Pleskov, Y. Y. Gurevich, and P. Bartlett, Semiconductor photoelectrochemistry. Springer, 1986.[146] N. Sato, Electrochemistry at metal and semiconductor electrodes. Elsevier, 1998.[147] H.-H. Perkampus, UV-VIS Spectroscopy and its Applications. Springer Science & Business Media, 2013.[148] P. Kubelka and F. Munk, “An article on optics of paint layers,” Z. Tech. Phys, vol. 12, no. 593-601, pp. 259–274, 1931.[149] F. Galindo-Hernández, R. Gómez, G. del Angel, and C. Guzmán, “Hydrolysis catalyst ´ effect on the textural and structural properties of sol-gel mixed oxides tio2-ceo2,” Journal of Ceramic Processing Research, vol. 9, no. 6, pp. 616–623, 2008.[150] A. Murphy, “Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting,” Solar Energy Materials and Solar Cells, vol. 91, no. 14, pp. 1326–1337, 2007.[151] L. Yang and B. Kruse, “Revised kubelka–munk theory. i. theory and application,” JOSA A, vol. 21, no. 10, pp. 1933–1941, 2004.[152] L. Yang, B. Kruse, and S. J. Miklavcic, “Revised kubelka–munk theory. ii. unified framework for homogeneous and inhomogeneous optical media,” JOSA A, vol. 21, no. 10, pp. 1942–1952, 2004.[153] L. Yang and S. J. Miklavcic, “Revised kubelka–munk theory. iii. a general theory of light propagation in scattering and absorptive media,” JOSA A, vol. 22, no. 9, pp. 1866–1873, 2005.[154] A. A. Kokhanovsky, “Physical interpretation and accuracy of the kubelka–munk theory,” journal of physics d: applied physics, vol. 40, no. 7, p. 2210, 2007.[155] P. Edström, “Examination of the revised kubelka-munk theory: considerations of modeling strategies,” JOSA A, vol. 24, no. 2, pp. 548–556, 2007.[156] L. Yang, S. J. Miklavcic, and B. Kruse, “Qualifying the arguments used in the derivation of the revised kubelka-munk theory: reply,” JOSA A, vol. 24, no. 2, pp. 557–560, 2007.[157] W. Friedrich, P. Knipping, and M. Laue, “Interferenzerscheinungen bei roentgenstrahlen,” Annalen der Physik, vol. 346, no. 10, pp. 971–988, 1913.[158] J. R. Connolly, “Introduction to x-ray powder diffraction,” European Physical Society of Journal, vol. 4, p. p400, 2007.[159] G. Brown, Crystal structures of clay minerals and their X-ray identification, vol. 5. The Mineralogical Society of Great Britain and Ireland, 1982.[160] A. Broers, “Recent advances in sem with lanthanum hexaboride cathodes,” Scanning Electron Microscopyll974 (Eds. Johari 0, Corvin I). IITRI, Chicago I, pp. 10–18, 1974.[161] J. Pawley, “The development of field-emission scanning electron microscopy for imaging biological surfaces,” SCANNING-NEW YORK AND BADEN BADEN THEN MAHWAH-, vol. 19, pp. 324–336, 1997.[162] D. C. Joy and J. B. Pawley, “High-resolution scanning electron microscopy,” Ultramicroscopy, vol. 47, no. 1-3, pp. 80–100, 1992.[163] V. R. Meyer, Practical high-performance liquid chromatography. John Wiley & Sons, 2013.[164] A. J. Martin and R. L. Synge, “A new form of chromatogram employing two liquid phases: A theory of chromatography. 2. application to the micro-determination of the higher monoamino-acids in proteins,” Biochemical Journal, vol. 35, no. 12, p. 1358, 1941.[165] D. Yaseen and M. Scholz, “Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review,” International journal of environmental science and technology, vol. 16, pp. 1193–1226, 2019.[166] A. Ahmad, S. H. Mohd-Setapar, C. S. Chuong, A. Khatoon, W. A. Wani, R. Kumar, and M. Rafatullah, “Recent advances in new generation dye removal technologies: novel search for approaches to reprocess wastewater,” RSC advances, vol. 5, no. 39, pp. 30801–30818, 2015.[167] J. Chakraborty, “Waste-water problem in textile industry,” Fundamentals and practices in colouration of textiles, pp. 381–408, 2010.[168] W. S. Koe, J. W. Lee, W. C. Chong, Y. L. Pang, and L. C. Sim, “An overview of photocatalytic degradation: photocatalysts, mechanisms, and development of photocatalytic membrane,” Environmental Science and Pollution Research, vol. 27, pp. 2522–2565, 2020.[169] P. Sathishkumar, R. V. Mangalaraja, and S. Anandan, “Review on the recent improvements in sonochemical and combined sonochemical oxidation processes–a powerful tool for destruction of environmental contaminants,” Renewable and Sustainable Energy Reviews, vol. 55, pp. 426–454, 2016.[170] G. Matafonova and V. Batoev, “Review on low-and high-frequency sonolytic, sonophotolytic and sonophotochemical processes for inactivating pathogenic microorganisms in aqueous media,” Water Research, vol. 166, p. 115085, 2019.[171] A. Saravanan, V. Deivayanai, P. S. Kumar, G. Rangasamy, R. Hemavathy, T. Harshana, N. Gayathri, and A. Krishnapandi, “A detailed review on advanced oxidation process in treatment of wastewater: Mechanism, challenges and future outlook,” Chemosphere, p. 136524, 2022.[172] L. K. Weavers, “Sonolytic ozonation for the remediation of hazardous pollutants,” Advances in Sonochemistry Theme issue–Ultrasound in Environmental Protection. TJ Mason and A. Tiehm (eds), Elsevier, vol. 6, pp. 111–140, 2001.[173] S. Merouani and O. Hamdaoui, “Sonolytic ozonation for water treatment: efficiency, recent developments, and challenges,” Current opinion in Green and sustainable chemistry, vol. 18, pp. 98–108, 2019.[174] J. Sanz, J. I. Lombraña, and A. De Luis, “Estado del arte en la oxidación avanzada a efluentes industriales: nuevos desarrollos y futuras tendencias,” Afinidad, vol. 70, no. 561, 2013.[175] S. Arzate, S. Pfister, C. Oberschelp, and J. A. Sánchez-Pérez, “Environmental impacts of an advanced oxidation process as tertiary treatment in a wastewater treatment plant,” Science of the Total Environment, vol. 694, p. 133572, 2019.[176] K. Szymánski, A. W. Morawski, and S. Mozia, “Effectiveness of treatment of secondary effluent from a municipal wastewater treatment plant in a photocatalytic membrane reactor and hybrid uv/h2o2–ultrafiltration system,” Chemical Engineering and Processing-Process Intensification, vol. 125, pp. 318–324, 2018.[177] O. Iglesias, M. J. Rivero, A. M. Urtiaga, and I. Ortiz, “Membrane-based photocatalytic systems for process intensification,” Chemical Engineering Journal, vol. 305, pp. 136– 148, 2016.[178] T. L. Villarreal, R. Gómez, M. Neumann-Spallart, N. Alonso-Vante, and P. Salvador, “Semiconductor photooxidation of pollutants dissolved in water: A kinetic model for distinguishing between direct and indirect interfacial hole transfer. i. photoelectrochemical experiments with polycrystalline anatase electrodes under current doubling and absence of recombination,” The Journal of Physical Chemistry B, vol. 108, no. 39, pp. 15172–15181, 2004.[179] A. S. Ozen, V. Aviyente, and R. A. Klein, “Modeling the oxidative degradation of ¨ azo dyes: a density functional theory study,” The Journal of Physical Chemistry A, vol. 107, no. 24, pp. 4898–4907, 2003.[180] R. Shukla and G. Madras, “Cyclic reaction network modeling for the kinetics of photoelectrocatalytic degradation,” Journal of Environmental Chemical Engineering, vol. 2, no. 2, pp. 780–787, 2014.[181] J. C. Cardoso, N. Lucchiari, and M. V. B. Zanoni, “Bubble annular photoeletrocatalytic reactor with tio2 nanotubes arrays applied in the textile wastewater,” Journal of Environmental Chemical Engineering, vol. 3, no. 2, pp. 1177–1184, 2015.[182] A. Ait hssi, E. Amaterz, N. Labchir, L. Atourki, I. Y. Bouderbala, A. Elfanaoui, A. Benlhachemi, A. Ihlal, and K. Bouabid, “Electrodeposited zno nanorods as efficient photoanodes for the degradation of rhodamine b,” physica status solidi (a), vol. 217, no. 17, p. 2000349, 2020.[183] T. J. Park, R. C. Pawar, S. Kang, and C. S. Lee, “Ultra-thin coating of gc 3 n 4 on an aligned zno nanorod film for rapid charge separation and improved photodegradation performance,” RSC advances, vol. 6, no. 92, pp. 89944–89952, 2016.[184] K. S. Ranjith, R. B. Castillo, M. Sillanpaa, and R. T. R. Kumar, “Effective shell wall thickness of vertically aligned zno-zns core-shell nanorod arrays on visible photocatalytic and photo sensing properties,” Applied Catalysis B: Environmental, vol. 237, pp. 128–139, 2018.[185] Z. Mirzaeifard, Z. Shariatinia, M. Jourshabani, and S. M. Rezaei Darvishi, “Zno photocatalyst revisited: effective photocatalytic degradation of emerging contaminants using s-doped zno nanoparticles under visible light radiation,” Industrial & Engineering Chemistry Research, vol. 59, no. 36, pp. 15894–15911, 2020.[186] J. Fan, T. Li, and H. Heng, “Hydrothermal growth of zno nanoflowers and their photocatalyst application,” Bulletin of Materials Science, vol. 39, pp. 19–26, 2016.[187] Q. Zhou, J. Z. Wen, P. Zhao, and W. A. Anderson, “Synthesis of vertically-aligned zinc oxide nanowires and their application as a photocatalyst,” Nanomaterials, vol. 7, no. 1, p. 9, 2017.[188] P. Samadipakchin, H. R. Mortaheb, and A. Zolfaghari, “Zno nanotubes: Preparation and photocatalytic performance evaluation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 337, pp. 91–99, 2017.[189] S. M. Saleh, “Zno nanospheres based simple hydrothermal route for photocatalytic degradation of azo dye,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, vol. 211, pp. 141–147, 2019.[190] H. Deng, F. Xu, B. Cheng, J. Yu, and W. Ho, “Photocatalytic co2 reduction of c/zno nanofibers enhanced by an ni-nis cocatalyst,” Nanoscale, vol. 12, no. 13, pp. 7206–7213, 2020.[191] R. B. Rajput, R. Shaikh, J. Sawant, and R. B. Kale, “Recent developments in zno based heterostructures as photoelectrocatalysts for wastewater treatment: a review,” Environmental Advances, p. 100264, 2022.[192] N. Shimpi, Y. Rane, D. Shende, S. Gosavi, and P. Ahirrao, “Synthesis of rod-like zno nanostructure: Study of its physical properties and visible-light driven photocatalytic activity,” Optik, vol. 217, p. 164916, 2020.[193] R. Suryavanshi, S. Mohite, A. Bagade, and K. Rajpure, “Photoelectrocatalytic activity of spray deposited fe2o3/zno photoelectrode for degradation of salicylic acid and methyl orange dye under solar radiation,” Materials Science and Engineering: B, vol. 248, p. 114386, 2019.[194] M. Pirhashemi, A. Habibi-Yangjeh, and S. R. Pouran, “Review on the criteria anticipated for the fabrication of highly efficient zno-based visible-light-driven photocatalysts,” Journal of industrial and engineering chemistry, vol. 62, pp. 1–25, 2018.[195] M. A. Mohd Adnan, N. M. Julkapli, and S. B. Abd Hamid, “Review on zno hybrid photocatalyst: impact on photocatalytic activities of water pollutant degradation,” Reviews in Inorganic Chemistry, vol. 36, no. 2, pp. 77–104, 2016.[196] N. Al Abass, T. Qahtan, M. Gondal, R. Moqbel, and A. Bubshait, “Laser-assisted synthesis of zno/znse hybrid nanostructured films for enhanced solar-light induced water splitting and water decontamination,” International Journal of Hydrogen Energy, vol. 45, no. 43, pp. 22938–22949, 2020.[197] K. A. Adegoke, M. Iqbal, H. Louis, and O. S. Bello, “Synthesis, characterization and application of cds/zno nanorod heterostructure for the photodegradation of rhodamine b dye,” Materials Science for Energy Technologies, vol. 2, no. 2, pp. 329–336, 2019.[198] R. Suryavanshi, S. Mohite, A. Bagade, S. Shaikh, J. Thorat, and K. Rajpure, “Nanocrystalline immobilised zno photocatalyst for degradation of benzoic acid and methyl blue dye,” Materials Research Bulletin, vol. 101, pp. 324–333, 2018.[199] J. Zhao, S. Ge, D. Pan, Y. Pan, V. Murugadoss, R. Li, W. Xie, Y. Lu, T. Wu, E. K. Wujcik, et al., “Microwave hydrothermal synthesis of in2o3-zno nanocomposites and their enhanced photoelectrochemical properties,” Journal of the Electrochemical Society, vol. 166, no. 5, pp. H3074–H3083, 2019.[200] B. O. Orimolade and O. A. Arotiba, “An exfoliated graphite-bismuth vanadate composite photoanode for the photoelectrochemical degradation of acid orange 7 dye,” Electrocatalysis, vol. 10, pp. 429–435, 2019.[201] B. O. Orimolade, B. A. Koiki, B. N. Zwane, G. M. Peleyeju, N. Mabuba, and O. A. Arotiba, “Interrogating solar photoelectrocatalysis on an exfoliated graphite–bivo 4/zno composite electrode towards water treatment,” RSC advances, vol. 9, no. 29, pp. 16586– 16595, 2019.[202] J. P. Moura, R. Y. Reis, A. E. Lima, R. S. Santos, and G. E. Luz Jr, “Improved photoelectrocatalytic properties of zno/cuwo4 heterojunction film for rhb degradation,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 401, p. 112778, 2020.[203] A. P. P. d. Rosa, R. P. Cavalcante, T. F. d. Silva, F. Gozzi, C. Byrne, E. McGlynn, G. A. Casagrande, S. C. d. Oliveira, and A. M. Junior, “Photoelectrocatalytic degradation of methylene blue using zno nanorods fabricated on silicon substrates,” Journal of Nanoscience and Nanotechnology, vol. 20, no. 2, pp. 1177–1188, 2020.[204] R. Y. Reis, A. E. Lima, M. J. Costa, J. F. Cruz-Filho, J. P. Moura, R. S. Santos, and G. E. Luz Jr, “Enhanced photoelectrocatalytic performance of zno films doped with n2 by a facile electrochemical method,” Surfaces and Interfaces, vol. 21, p. 100675, 2020.[205] Y. Shao, K. Feng, J. Guo, R. Zhang, S. He, X. Wei, Y. Lin, Z. Ye, and K. Chen, “Study on the electronic structure and enhanced photoelectrocatalytic performance of ruxzn1-xo/ti electrodes,” 2021.[206] A. Chennah, E. Amaterz, A. Taoufyq, B. Bakiz, Y. Kadmi, L. Bazzi, F. Guinneton, J. Gavarri, and A. Benlhachemi, “Photoelectrocatalytic degradation of rhodamine b pollutant with a novel zinc phosphate photoanode,” Process Safety and Environmental Protection, vol. 148, pp. 200–209, 2021.[207] J. Zheng, Y. Zhang, C. Jing, H. Zhang, Q. Shao, and R. Ge, “A visible-light active pn heterojunction zno/co3o4 composites supported on ni foam as photoanode for enhanced photoelectrocatalytic removal of methylene blue,” Advanced Composites and Hybrid Materials, vol. 5, no. 3, pp. 2406–2420, 2022.[208] Y.-C. Liang and C.-H. Huang, “Microstructure-dependent photoelectrocatalytic activity of heterogeneous zno–zns nanosheets,” Nanotechnology Reviews, vol. 11, no. 1, pp. 1248–1262, 2022.[209] A. Aziz, Z. Memon, and A. Bhutto, “Efficient photocatalytic degradation of industrial wastewater dye by grewia asiatica mediated zinc oxide nanoparticles,” Optik, vol. 272, p. 170352, 2023.[210] Y. Zhang, X. Xiong, Y. Han, X. Zhang, F. Shen, S. Deng, H. Xiao, X. Yang, G. Yang, and H. Peng, “Photoelectrocatalytic degradation of recalcitrant organic pollutants using tio2 film electrodes: an overview,” Chemosphere, vol. 88, no. 2, pp. 145–154, 2012.[211] M. N. Chong, B. Jin, C. W. Chow, and C. Saint, “Recent developments in photocatalytic water treatment technology: a review,” Water research, vol. 44, no. 10, pp. 2997– 3027, 2010.[212] T. An, Y. Xiong, G. Li, C. Zha, and X. Zhu, “Synergetic effect in degradation of formic acid using a new photoelectrochemical reactor,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 152, no. 1-3, pp. 155–165, 2002.[213] H. Selcuk, J. J. Sene, and M. A. Anderson, “Photoelectrocatalytic humic acid degradation kinetics and effect of ph, applied potential and inorganic ions,” Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, vol. 78, no. 9, pp. 979–984, 2003.[214] A. Assabane, Y. A. Ichou, H. Tahiri, C. Guillard, and J.-M. Herrmann, “Photocatalytic degradation of polycarboxylic benzoic acids in uv-irradiated aqueous suspensions of titania.: Identification of intermediates and reaction pathway of the photomineralization of trimellitic acid (1, 2, 4-benzene tricarboxylic acid),” Applied Catalysis B: Environmental, vol. 24, no. 2, pp. 71–87, 2000.[215] J. Harper, P. Christensen, T. Egerton, and K. Scott, “Mass transport characterization of a novel gas sparged photoelectrochemical reactor,” Journal of applied electrochemistry, vol. 31, pp. 267–273, 2001.[216] K. Mehrotra, G. S. Yablonsky, and A. K. Ray, “Macro kinetic studies for photocatalytic degradation of benzoic acid in immobilized systems,” Chemosphere, vol. 60, no. 10, pp. 1427–1436, 2005.[217] Y. Wang, M. Zu, X. Zhou, H. Lin, F. Peng, and S. Zhang, “Designing efficient tio2- based photoelectrocatalysis systems for chemical engineering and sensing,” Chemical Engineering Journal, vol. 381, p. 122605, 2020.[218] S. M. Jacobm and J. S. Dranoff, “Light intensity profiles in a perfectly mixed photoreactor,” AIChE Journal, vol. 16, no. 3, pp. 359–363, 1970.[219] I. T. Cameron and K. Hangos, Process modelling and model analysis. Elsevier, 2001.[220] H. Alvarez, L. Gómez, and H. Botero, “Abstracciones macroscópicas de la fenomenología para el modelado de procesos,” in XXVII Congreso Interamericano y colombiano de Ingeniería Química, pp. 6–8, 2014.[221] M. Tian, G. Wu, B. Adams, J. Wen, and A. Chen, “Kinetics of photoelectrocatalytic degradation of nitrophenols on nanostructured tio2 electrodes,” The Journal of Physical Chemistry C, vol. 112, no. 3, pp. 825–831, 2008.[222] D. Monllor-Satoca, “Fotoelectroquímica de electrodos semiconductores nanocristalinos: proceso de transferencia de carga y estrategias de mejora de la fotoactividad,” 2010.[223] I. Mora-Sero, T. L. Villarreal, J. Bisquert, A. Pitarch, R. Gomez, and P. Salvador, ´ “Photoelectrochemical behavior of nanostructured tio2 thin-film electrodes in contact with aqueous electrolytes containing dissolved pollutants: A model for distinguishing between direct and indirect interfacial hole transfer from photocurrent measurements,” The Journal of Physical Chemistry B, vol. 109, no. 8, pp. 3371–3380, 2005.[224] M. Hepel and S. Hazelton, “Photoelectrocatalytic degradation of diazo dyes on nanostructured wo3 electrodes,” Electrochimica Acta, vol. 50, no. 25-26, pp. 5278–5291, 2005.[225] N. San, A. Hatipoğlu, G. Koçtürk, and Z. Çınar, “Photocatalytic degradation of 4-nitrophenol in aqueous tio2 suspensions: theoretical prediction of the intermediates,” Journal of Photochemistry and Photobiology A: Chemistry, vol. 146, no. 3, pp. 189–197, 2002.[226] M. Tian, B. Adams, J. Wen, R. M. Asmussen, and A. Chen, “Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays,” Electrochimica Acta, vol. 54, no. 14, pp. 3799–3805, 2009.[227] S. Liu, X. Jiang, G. I. Waterhouse, Z.-M. Zhang, and L.-m. Yu, “Efficient photoelectrocatalytic degradation of azo-dyes over polypyrrole/titanium oxide/reduced graphene oxide electrodes under visible light: Performance evaluation and mechanism insights,” Chemosphere, vol. 288, p. 132509, 2022.[228] H. Chen, J. Ye, Z. Chao, K. Zhu, H. Yang, Z. Xu, et al., “Oxygen-doped protonated c3n4 nanosheet as particle electrode and photocatalyst to degrade dye by photoelectrocatalytic oxidation process,” Separation and Purification Technology, p. 123405, 2023.[229] O. M. Alfano, M. I. Cabrera, and A. E. Cassano, “Photocatalytic reactions involving hydroxyl radical attack,” Journal of Catalysis, vol. 172, no. 2, pp. 370–379, 1997.[230] A. E. Cassano and O. M. Alfano, “Reaction engineering of heterogeneous photocatalytic reactors,” Zeitschrift für Physikalische Chemie, vol. 1, no. 1, pp. 237–252, 1998.[231] N. J. Peill and M. R. Hoffmann, “Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis,” Environmental science & technology, vol. 32, no. 3, pp. 398–404, 1998.[232] X. Li, F. Li, C. Fan, and Y. Sun, “Photoelectrocatalytic degradation of humic acid in aqueous solution using a ti/tio2 mesh photoelectrode,” Water Research, vol. 36, no. 9, pp. 2215–2224, 2002.[233] V. Goetz, J. Cambon, D. Sacco, and G. Plantard, “Modeling aqueous heterogeneous photocatalytic degradation of organic pollutants with immobilized tio2,” Chemical Engineering and Processing: Process Intensification, vol. 48, no. 1, pp. 532–537, 2009.[234] H.-L. Liu and Y.-R. Chiou, “Optimal decolorization efficiency of reactive red 239 by uv/tio2 photocatalytic process coupled with response surface methodology,” Chemical Engineering Journal, vol. 112, no. 1-3, pp. 173–179, 2005.[235] H.-L. Liu and Y.-R. Chiou, “Optimal decolorization efficiency of reactive red 239 by uv/zno photocatalytic process,” Journal of the Chinese Institute of Chemical Engineers, vol. 37, no. 3, pp. 289–298, 2006.[236] L. Atourki, M. Ouafi, K. Abouabassi, A. Elfanaoui, A. Ihlal, K. Bouabid, et al., “Electrodeposition of oriented zno nanorods by two-steps potentiostatic electrolysis: Effect of seed layer time,” Solid State Sciences, vol. 104, p. 106207, 2020.[237] M. Wang, Y. Zhou, Y. Zhang, S. H. Hahn, and E. J. Kim, “From zn (oh) 2 to zno: a study on the mechanism of phase transformation,” CrystEngComm, vol. 13, no. 20, pp. 6024–6026, 2011.[238] A. Aranda, R. Landers, P. Carnelli, R. Candal, H. Alarcon, and J. Rodríguez, “Influence of silver electrochemically deposited onto zinc oxide seed nanoparticles on the photoelectrochemical performance of zinc oxide nanorod films,” Nanomaterials and Nanotechnology, vol. 9, p. 1847980419844363, 2019.[239] T. S. Tlemcani, C. Justeau, K. Nadaud, G. Poulin-Vittrant, and D. Alquier, “Deposition time and annealing effects of zno seed layer on enhancing vertical alignment of piezoelectric zno nanowires,” Chemosensors, vol. 7, no. 1, p. 7, 2019.[240] W.-Y. Kim, S.-W. Kim, D.-H. Yoo, E. J. Kim, and S. H. Hahn, “Annealing effect of zno seed layer on enhancing photocatalytic activity of zno/tio2 nanostructure,” International Journal of Photoenergy, vol. 2013, 2013.[241] J. Chung, J. Lee, and S. Lim, “Annealing effects of zno nanorods on dye-sensitized solar cell efficiency,” Physica B: Condensed Matter, vol. 405, no. 11, pp. 2593–2598, 2010.[242] R. Gottesman, I. Peracchi, J. L. Gerke, R. Irani, F. F. Abdi, and R. van de Krol, “Shining a hot light on emerging photoabsorber materials: The power of rapid radiative heating in developing oxide thin-film photoelectrodes,” ACS Energy Letters, vol. 7, no. 1, pp. 514–522, 2022.[243] G. He, B. Huang, Z. Lin, W. Yang, Q. He, and L. Li, “Morphology transition of zno nanorod arrays synthesized by a two-step aqueous solution method,” Crystals, vol. 8, no. 4, p. 152, 2018.[244] J. Xie, P. Li, Y. Li, Y. Wang, and Y. Wei, “Morphology control of zno particles via aqueous solution route at low temperature,” Materials Chemistry and Physics, vol. 114, no. 2-3, pp. 943–947, 2009.[245] W. Feng, B. Wang, P. Huang, X. Wang, J. Yu, and C. Wang, “Wet chemistry synthesis of zno crystals with hexamethylenetetramine (hmta): Understanding the role of hmta in the formation of zno crystals,” Materials Science in Semiconductor Processing, vol. 41, pp. 462–469, 2016.[246] R. A. Reichle, K. G. McCurdy, and L. G. Hepler, “Zinc hydroxide: solubility product and hydroxy-complex stability constants from 12.5–75 c,” Canadian Journal of Chemistry, vol. 53, no. 24, pp. 3841–3845, 1975.[247] A. F. Abdulrahman, S. M. Ahmed, and M. A. Almessiere, “Effect of the growth time on the optical properties of zno nanorods grown by low temperature method.,” Digest Journal of Nanomaterials & Biostructures (DJNB), vol. 12, no. 4, 2017.[248] Y. Yang, S. Ciampi, M. H. Choudhury, and J. J. Gooding, “Light activated electrochemistry: light intensity and ph dependence on electrochemical performance of anthraquinone derivatized silicon,” The Journal of Physical Chemistry C, vol. 120, no. 5, pp. 2874–2882, 2016.[249] J. E. L. Santos, D. C. de Moura, D. R. da Silva, M. Panizza, and C. A. Martínez-Huitle, “Application of tio 2-nanotubes/pbo 2 as an anode for the electrochemical elimination of acid red 1 dye,” Journal of Solid State Electrochemistry, vol. 23, pp. 351–360, 2019.[250] L. Labiadh, A. Barbucci, G. Cerisola, A. Gadri, S. Ammar, and M. Panizza, “Role of anode material on the electrochemical oxidation of methyl orange,” Journal of Solid State Electrochemistry, vol. 19, pp. 3177–3183, 2015.[251] M. Panizza and G. Cerisola, “Electrocatalytic materials for the electrochemical oxidation of synthetic dyes,” Applied Catalysis B: Environmental, vol. 75, no. 1-2, pp. 95– 101, 2007.[252] C. Comninellis, “Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment,” Electrochimica Acta, vol. 39, no. 11-12, pp. 1857–1862, 1994.[253] K. Wang, Y. Liu, K. Kawashima, X. Yang, X. Yin, F. Zhan, M. Liu, X. Qiu, W. Li, C. B. Mullins, et al., “Modulating charge transfer efficiency of hematite photoanode with hybrid dual-metal–organic frameworks for boosting photoelectrochemical water oxidation,” Advanced Science, vol. 7, no. 23, p. 2002563, 2020.[254] S. A. Ansari, M. M. Khan, S. Kalathil, A. Nisar, J. Lee, and M. H. Cho, “Oxygen vacancy induced band gap narrowing of zno nanostructures by an electrochemically active biofilm,” Nanoscale, vol. 5, no. 19, pp. 9238–9246, 2013.[255] H. Pan, S. Zhu, X. Lou, L. Mao, J. Lin, F. Tian, and D. Zhang, “Graphene-based photocatalysts for oxygen evolution from water,” RSC advances, vol. 5, no. 9, pp. 6543– 6552, 2015.[256] D. Kaur, A. Bharti, T. Sharma, and C. Madhu, “Dielectric properties of zno-based nanocomposites and their potential applications,” International Journal of Optics, vol. 2021, pp. 1–20, 2021.[257] S. Sagadevan, K. Pal, Z. Z. Chowdhury, and M. E. Hoque, “Structural, dielectric and optical investigation of chemically synthesized ag-doped zno nanoparticles composites,” Journal of Sol-Gel Science and Technology, vol. 83, pp. 394–404, 2017.[258] S. Marković, I. S. Simatović, S. Ahmetović, L. Veselinović, S. Stojadinović, V. Rac, S. D. Skapin, D. B. Bogdanović, I. J. ˇ Castvan, and D. Uskoković, “Surfactant-assisted ˇ microwave processing of zno particles: a simple way for designing the surface-to-bulk defect ratio and improving photo (electro) catalytic properties,” RSC advances, vol. 9, no. 30, pp. 17165–17178, 2019.[259] L. Xu, Q. Chen, and D. Xu, “Hierarchical zno nanostructures obtained by electrodeposition,” The Journal of Physical Chemistry C, vol. 111, no. 31, pp. 11560–11565, 2007[260] M. Sima, E. Vasile, and M. Sima, “Preparation of nanostructured zno nanorods in a hydrothermal–electrochemical process,” Thin Solid Films, vol. 520, no. 14, pp. 4632– 4636, 2012.[261] D.-H. Lee, K.-H. Park, S. Kim, and S. Y. Lee, “Effect of ag doping on the performance of zno thin film transistor,” Thin Solid Films, vol. 520, no. 3, pp. 1160–1164, 2011.[262] C. Karunakaran, V. Rajeswari, and P. Gomathisankar, “Combustion synthesis of zno and ag-doped zno and their bactericidal and photocatalytic activities,” Superlattices and Microstructures, vol. 50, no. 3, pp. 234–241, 2011.[263] Y. Jin, Q. Cui, K. Wang, J. Hao, Q. Wang, and J. Zhang, “Investigation of photoluminescence in undoped and ag-doped zno flowerlike nanocrystals,” Journal of Applied Physics, vol. 109, no. 5, p. 053521, 2011.[264] Q. Xiang, G. Meng, Y. Zhang, J. Xu, P. Xu, Q. Pan, and W. Yu, “Ag nanoparticle embedded-zno nanorods synthesized via a photochemical method and its gas-sensing properties,” Sensors and Actuators B: Chemical, vol. 143, no. 2, pp. 635–640, 2010.[265] W. Y. Teoh, J. A. Scott, and R. Amal, “Progress in heterogeneous photocatalysis: from classical radical chemistry to engineering nanomaterials and solar reactors,” The Journal of Physical Chemistry Letters, vol. 3, no. 5, pp. 629–639, 2012.[266] M. Karyaoui, A. Mhamdi, H. Kaouach, A. Labidi, A. Boukhachem, K. Boubaker, M. Amlouk, and R. Chtourou, “Some physical investigations on silver-doped zno sprayed thin films,” Materials Science in Semiconductor Processing, vol. 30, pp. 255–262, 2015.[267] V. Khomchenko, T. Kryshtab, A. Savin, L. Zavyalova, N. Roshchina, V. Rodionov, O. Lytvyn, V. Kushnirenko, V. Khachatryan, and J. Andraca-Adame, “Fabrication and properties of zno: Cu and zno: Ag thin films,” Superlattices and Microstructures, vol. 42, no. 1-6, pp. 94–98, 2007.[268] U. Seetawan, S. Jugsujinda, T. Seetawan, C. Euvananont, C. Junin, C. Thanachayanont, P. Chainaronk, and V. Amornkitbamrung, “Effect of annealing temperature on the crystallography, particle size and thermopower of bulk zno,” Solid state sciences, vol. 13, no. 8, pp. 1599–1603, 2011.[269] B. Jing, C. Chow, C. Saint, et al., “Recent developments in photocatalytic water treatment technology.,” Water Research, vol. 44, no. 10, pp. 2997–3027, 2010.[270] Y. Yang, I. Wyatt, D. Travis, and M. Bahorsky, “Decolorization of dyes using uv/h2 o2 photochemical oxidation.,” Textile Chemist & Colorist, vol. 30, no. 4, 1998.[271] K. Vasanth Kumar, K. Porkodi, and A. Selvaganapathi, “Constrain in solving langmuir–hinshelwood kinetic expression for the photocatalytic degradation of auramine o aqueous solutions by zno catalyst,” Dyes and Pigments, vol. 75, no. 1, pp. 246–249, 2007.[272] H. Fogler, Essentials of Chemical Reaction Engineering. Prentice-Hall international series in the physical and chemical engineering sciences, Prentice Hall, 2011.[273] S. Horikoshi and H. Hidaka, “Non-degradable triazine substrates of atrazine and cyanuric acid hydrothermally and in supercritical water under the uv-illuminated photocatalytic cooperation,” Chemosphere, vol. 51, no. 2, pp. 139–142, 2003.[274] G. Zhang, E. M. Wurtzler, X. He, M. N. Nadagouda, K. O’Shea, S. M. El-Sheikh, A. A. Ismail, D. Wendell, and D. D. Dionysiou, “Identification of tio2 photocatalytic destruction byproducts and reaction pathway of cylindrospermopsin,” Applied Catalysis B: Environmental, vol. 163, pp. 591–598, 2015.[275] K. Zhou, X.-Y. Hu, B.-Y. Chen, C.-C. Hsueh, Q. Zhang, J. Wang, Y.-J. Lin, and C.-T. Chang, “Synthesized tio2/zsm-5 composites used for the photocatalytic degradation of azo dye: intermediates, reaction pathway, mechanism and bio-toxicity,” Applied Surface Science, vol. 383, pp. 300–309, 2016.[276] D. Shahidi, R. Roy, and A. Azzouz, “Advances in catalytic oxidation of organic pollutants–prospects for thorough mineralization by natural clay catalysts,” Applied Catalysis B: Environmental, vol. 174, pp. 277–292, 2015.[277] P. A. Soares, R. Souza, J. Soler, T. F. Silva, S. M. G. U. Souza, R. A. Boaventura, and V. J. Vilar, “Remediation of a synthetic textile wastewater from polyester-cotton dyeing combining biological and photochemical oxidation processes,” Separation and Purification Technology, vol. 172, pp. 450–462, 2017.[278] J. A. Oliveira, A. E. Nogueira, M. C. Gonçalves, E. C. Paris, C. Ribeiro, G. Y. Poirier, and T. R. Giraldi, “Photoactivity of n-doped zno nanoparticles in oxidative and reductive reactions,” Applied Surface Science, vol. 433, pp. 879–886, 2018.[279] P. Gu, X. Wang, T. Li, and H. Meng, “Investigation of defects in n-doped zno powders prepared by a facile solvothermal method and their uv photocatalytic properties,” Materials Research Bulletin, vol. 48, no. 11, pp. 4699–4703, 2013.[280] D. Chakraborty, S. Kaleemulla, N. M. Rao, K. Subbaravamma, and G. V. Rao, “Structural and optical properties of ito and cu doped ito thin films,” in AIP Conference Proceedings, vol. 1942, p. 120002, AIP Publishing LLC, 2018.[281] D. Zhang, J. Gong, J. Ma, G. Han, and Z. Tong, “A facile method for synthesis of n-doped zno mesoporous nanospheres and enhanced photocatalytic activity,” Dalton Transactions, vol. 42, no. 47, pp. 16556–16561, 2013.[282] W.-M. Cho, Y.-J. Lin, C.-J. Liu, L.-R. Chen, Y.-T. Shih, and P. Chen, “Luminescence behavior and compensation effect of n-doped zno films deposited by rf magnetron sputtering under various gas-flow ratios of o2/n2,” Journal of luminescence, vol. 145, pp. 884–887, 2014.[283] H. Gutiérrez, R. De La Vara, et al., “Análisis y diseño de experimentos,” México DF: McGraw-Hill Interamericana, 2008.[284] M. O’Kane and Ossila, “What is a solar simulator?,” 2023.[285] I. Dincer and Y. Bicer, “3.17 photonic energy production,” 2018.[286] E. López-Fraguas, J. M. Sánchez-Pena, and R. Vergaz, “A low-cost led-based solar simulator,” IEEE transactions on instrumentation and measurement, vol. 68, no. 12, pp. 4913–4923, 2019.[287] S.-Y. Chan, T.-H. Yang, and Y.-N. Chang, “Design of electronic ballast for shortarc xenon lamp with interleaved half-wave rectifier,” IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5102–5112, 2015.[288] M. Rehmet, “Xenon lamps,” in Technisch-wissenschaftliche Abhandlungen der OsramGesellschaft, pp. 113–123, Springer, 1986.[289] R. R. D. Center, “Reference solar spectral irradiance: Astm g-173,” National Renewable Energy Laboratory, Golden, CO, accessed July, vol. 21, p. 2018, 2009.Proyecto 467C-03/19-24 de la Universidad Pontificia Bolivariana - Medellín y la Universidad Nacional de Colombia – Medellín - MINCIENCIAS (Proyecto 64478) - Optimización de una celda fotoelectrocatalítica para la degradación de contaminantes persistentes basado en modelos fisicoquímicos: aplicación a colorantes en aguas residualesMinisterio de Ciencia, Tecnología e Innovación de Colombia – MINCIENCIASEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85284/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL98773905.2023.pdf98773905.2023.pdfTesis de Maestría en Ingeniería Químicaapplication/pdf37969825https://repositorio.unal.edu.co/bitstream/unal/85284/2/98773905.2023.pdf4702012a0647d3761e512971be8884d3MD52unal/85284oai:repositorio.unal.edu.co:unal/852842024-01-15 13:09:10.57Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=