Numerical quenching solutions of localized semilinear parabolic equation
This paper concerns the study of the numerical approximationfor the following initial-boundary value problem:ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),u(-l; t) = 0; u(l; t) = 0; t in (0; T),u(x; 0) = u0(x) and gt;= 0; x in (-l; l),where p and gt; 1, l = 1/2 and E and gt; 0....
- Autores:
-
Nabongo, Diabate
Boni, Théodore
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2007
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/73616
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/73616
http://bdigital.unal.edu.co/38092/
- Palabra clave:
- Semidiscretizations
localized semilinear parabolic equation
semidiscrete quenching time
convergence.
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_db70d15c3b719bba49e2c64bba36a7bf |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/73616 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nabongo, Diabatee9b07392-0cbd-4364-b7c5-0d1f1d829b0a300Boni, Théodoreb9d3a2ee-4f2a-4c81-bc1d-a7add202ae9b3002019-07-03T16:35:43Z2019-07-03T16:35:43Z2007https://repositorio.unal.edu.co/handle/unal/73616http://bdigital.unal.edu.co/38092/This paper concerns the study of the numerical approximationfor the following initial-boundary value problem:ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),u(-l; t) = 0; u(l; t) = 0; t in (0; T),u(x; 0) = u0(x) and gt;= 0; x in (-l; l),where p and gt; 1, l = 1/2 and E and gt; 0. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem quenches in a nite time and estimate its semidiscrete quenching time. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally,we give some numerical experiments to illustrate our analysis.application/pdfspaBoletín de Matemáticashttp://revistas.unal.edu.co/index.php/bolma/article/view/40463Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasBoletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 2357-6529 0120-0380Nabongo, Diabate and Boni, Théodore (2007) Numerical quenching solutions of localized semilinear parabolic equation. Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 2357-6529 0120-0380 .Numerical quenching solutions of localized semilinear parabolic equationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTSemidiscretizationslocalized semilinear parabolic equationsemidiscrete quenching timeconvergence.ORIGINAL40463-181985-1-PB.pdfapplication/pdf212303https://repositorio.unal.edu.co/bitstream/unal/73616/1/40463-181985-1-PB.pdf8abb1d103be4b4583af6c053f9dedddaMD51THUMBNAIL40463-181985-1-PB.pdf.jpg40463-181985-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4239https://repositorio.unal.edu.co/bitstream/unal/73616/2/40463-181985-1-PB.pdf.jpgc5e93b27ef8d97556d95bbe32f1ab181MD52unal/73616oai:repositorio.unal.edu.co:unal/736162023-06-29 23:04:07.507Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Numerical quenching solutions of localized semilinear parabolic equation |
title |
Numerical quenching solutions of localized semilinear parabolic equation |
spellingShingle |
Numerical quenching solutions of localized semilinear parabolic equation Semidiscretizations localized semilinear parabolic equation semidiscrete quenching time convergence. |
title_short |
Numerical quenching solutions of localized semilinear parabolic equation |
title_full |
Numerical quenching solutions of localized semilinear parabolic equation |
title_fullStr |
Numerical quenching solutions of localized semilinear parabolic equation |
title_full_unstemmed |
Numerical quenching solutions of localized semilinear parabolic equation |
title_sort |
Numerical quenching solutions of localized semilinear parabolic equation |
dc.creator.fl_str_mv |
Nabongo, Diabate Boni, Théodore |
dc.contributor.author.spa.fl_str_mv |
Nabongo, Diabate Boni, Théodore |
dc.subject.proposal.spa.fl_str_mv |
Semidiscretizations localized semilinear parabolic equation semidiscrete quenching time convergence. |
topic |
Semidiscretizations localized semilinear parabolic equation semidiscrete quenching time convergence. |
description |
This paper concerns the study of the numerical approximationfor the following initial-boundary value problem:ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),u(-l; t) = 0; u(l; t) = 0; t in (0; T),u(x; 0) = u0(x) and gt;= 0; x in (-l; l),where p and gt; 1, l = 1/2 and E and gt; 0. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem quenches in a nite time and estimate its semidiscrete quenching time. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally,we give some numerical experiments to illustrate our analysis. |
publishDate |
2007 |
dc.date.issued.spa.fl_str_mv |
2007 |
dc.date.accessioned.spa.fl_str_mv |
2019-07-03T16:35:43Z |
dc.date.available.spa.fl_str_mv |
2019-07-03T16:35:43Z |
dc.type.spa.fl_str_mv |
Artículo de revista |
dc.type.coar.fl_str_mv |
http://purl.org/coar/resource_type/c_2df8fbb1 |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/article |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_6501 |
dc.type.coarversion.spa.fl_str_mv |
http://purl.org/coar/version/c_970fb48d4fbd8a85 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/ART |
format |
http://purl.org/coar/resource_type/c_6501 |
status_str |
publishedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/73616 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/38092/ |
url |
https://repositorio.unal.edu.co/handle/unal/73616 http://bdigital.unal.edu.co/38092/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.spa.fl_str_mv |
http://revistas.unal.edu.co/index.php/bolma/article/view/40463 |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas Boletín de Matemáticas |
dc.relation.ispartofseries.none.fl_str_mv |
Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 2357-6529 0120-0380 |
dc.relation.references.spa.fl_str_mv |
Nabongo, Diabate and Boni, Théodore (2007) Numerical quenching solutions of localized semilinear parabolic equation. Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 2357-6529 0120-0380 . |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Boletín de Matemáticas |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/73616/1/40463-181985-1-PB.pdf https://repositorio.unal.edu.co/bitstream/unal/73616/2/40463-181985-1-PB.pdf.jpg |
bitstream.checksum.fl_str_mv |
8abb1d103be4b4583af6c053f9deddda c5e93b27ef8d97556d95bbe32f1ab181 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090051559096320 |