Numerical quenching solutions of localized semilinear parabolic equation

This paper concerns the study of the numerical approximationfor the following initial-boundary value problem:ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),u(-l; t) = 0; u(l; t) = 0; t in (0; T),u(x; 0) = u0(x) and gt;= 0; x in (-l; l),where p and gt; 1, l = 1/2 and E and gt; 0....

Full description

Autores:
Nabongo, Diabate
Boni, Théodore
Tipo de recurso:
Article of journal
Fecha de publicación:
2007
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73616
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73616
http://bdigital.unal.edu.co/38092/
Palabra clave:
Semidiscretizations
localized semilinear parabolic equation
semidiscrete quenching time
convergence.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_db70d15c3b719bba49e2c64bba36a7bf
oai_identifier_str oai:repositorio.unal.edu.co:unal/73616
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nabongo, Diabatee9b07392-0cbd-4364-b7c5-0d1f1d829b0a300Boni, Théodoreb9d3a2ee-4f2a-4c81-bc1d-a7add202ae9b3002019-07-03T16:35:43Z2019-07-03T16:35:43Z2007https://repositorio.unal.edu.co/handle/unal/73616http://bdigital.unal.edu.co/38092/This paper concerns the study of the numerical approximationfor the following initial-boundary value problem:ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),u(-l; t) = 0; u(l; t) = 0; t in (0; T),u(x; 0) = u0(x) and gt;= 0; x in (-l; l),where p and gt; 1, l = 1/2 and E and gt; 0. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem quenches in a nite time and estimate its semidiscrete quenching time. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally,we give some numerical experiments to illustrate our analysis.application/pdfspaBoletín de Matemáticashttp://revistas.unal.edu.co/index.php/bolma/article/view/40463Universidad Nacional de Colombia Revistas electrónicas UN Boletín de MatemáticasBoletín de MatemáticasBoletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 2357-6529 0120-0380Nabongo, Diabate and Boni, Théodore (2007) Numerical quenching solutions of localized semilinear parabolic equation. Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 2357-6529 0120-0380 .Numerical quenching solutions of localized semilinear parabolic equationArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTSemidiscretizationslocalized semilinear parabolic equationsemidiscrete quenching timeconvergence.ORIGINAL40463-181985-1-PB.pdfapplication/pdf212303https://repositorio.unal.edu.co/bitstream/unal/73616/1/40463-181985-1-PB.pdf8abb1d103be4b4583af6c053f9dedddaMD51THUMBNAIL40463-181985-1-PB.pdf.jpg40463-181985-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg4239https://repositorio.unal.edu.co/bitstream/unal/73616/2/40463-181985-1-PB.pdf.jpgc5e93b27ef8d97556d95bbe32f1ab181MD52unal/73616oai:repositorio.unal.edu.co:unal/736162023-06-29 23:04:07.507Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Numerical quenching solutions of localized semilinear parabolic equation
title Numerical quenching solutions of localized semilinear parabolic equation
spellingShingle Numerical quenching solutions of localized semilinear parabolic equation
Semidiscretizations
localized semilinear parabolic equation
semidiscrete quenching time
convergence.
title_short Numerical quenching solutions of localized semilinear parabolic equation
title_full Numerical quenching solutions of localized semilinear parabolic equation
title_fullStr Numerical quenching solutions of localized semilinear parabolic equation
title_full_unstemmed Numerical quenching solutions of localized semilinear parabolic equation
title_sort Numerical quenching solutions of localized semilinear parabolic equation
dc.creator.fl_str_mv Nabongo, Diabate
Boni, Théodore
dc.contributor.author.spa.fl_str_mv Nabongo, Diabate
Boni, Théodore
dc.subject.proposal.spa.fl_str_mv Semidiscretizations
localized semilinear parabolic equation
semidiscrete quenching time
convergence.
topic Semidiscretizations
localized semilinear parabolic equation
semidiscrete quenching time
convergence.
description This paper concerns the study of the numerical approximationfor the following initial-boundary value problem:ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),u(-l; t) = 0; u(l; t) = 0; t in (0; T),u(x; 0) = u0(x) and gt;= 0; x in (-l; l),where p and gt; 1, l = 1/2 and E and gt; 0. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem quenches in a nite time and estimate its semidiscrete quenching time. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally,we give some numerical experiments to illustrate our analysis.
publishDate 2007
dc.date.issued.spa.fl_str_mv 2007
dc.date.accessioned.spa.fl_str_mv 2019-07-03T16:35:43Z
dc.date.available.spa.fl_str_mv 2019-07-03T16:35:43Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/73616
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/38092/
url https://repositorio.unal.edu.co/handle/unal/73616
http://bdigital.unal.edu.co/38092/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/bolma/article/view/40463
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Boletín de Matemáticas
Boletín de Matemáticas
dc.relation.ispartofseries.none.fl_str_mv Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 2357-6529 0120-0380
dc.relation.references.spa.fl_str_mv Nabongo, Diabate and Boni, Théodore (2007) Numerical quenching solutions of localized semilinear parabolic equation. Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 Boletín de Matemáticas; Vol. 14, núm. 2 (2007); 92-109 2357-6529 0120-0380 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Boletín de Matemáticas
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/73616/1/40463-181985-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/73616/2/40463-181985-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv 8abb1d103be4b4583af6c053f9deddda
c5e93b27ef8d97556d95bbe32f1ab181
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090051559096320