Numerical quenching solutions of localized semilinear parabolic equation

This paper concerns the study of the numerical approximationfor the following initial-boundary value problem:ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),u(-l; t) = 0; u(l; t) = 0; t in (0; T),u(x; 0) = u0(x) and gt;= 0; x in (-l; l),where p and gt; 1, l = 1/2 and E and gt; 0....

Full description

Autores:
Nabongo, Diabate
Boni, Théodore
Tipo de recurso:
Article of journal
Fecha de publicación:
2007
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/73616
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/73616
http://bdigital.unal.edu.co/38092/
Palabra clave:
Semidiscretizations
localized semilinear parabolic equation
semidiscrete quenching time
convergence.
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:This paper concerns the study of the numerical approximationfor the following initial-boundary value problem:ut(x; t) = uxx(x; t) + E(1 - u(0; t))-p; (x; t) 2 (-l; l) x (0; T),u(-l; t) = 0; u(l; t) = 0; t in (0; T),u(x; 0) = u0(x) and gt;= 0; x in (-l; l),where p and gt; 1, l = 1/2 and E and gt; 0. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem quenches in a nite time and estimate its semidiscrete quenching time. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally,we give some numerical experiments to illustrate our analysis.