Evaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petrolera

ilustraciones, fotografías a color, gráficas

Autores:
Cubillos Oñate, Andrea Carolina
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/82446
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/82446
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Proyecto de desarrollo económico
Protección del medio ambiente
Ingeniería ambiental
Economic development projects
Environmental protection
Environmental engineering
Industria petrolera
Electrocoagulación
Ánodo en aluminio
Tratamiento de agua residual
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_daff43efd01e4d55fe20cdeb496b8c8c
oai_identifier_str oai:repositorio.unal.edu.co:unal/82446
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Evaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petrolera
dc.title.translated.eng.fl_str_mv Evaluation of a semi pilot scale electrocoagulation system for the treatment of synthetic wastewater from the petroleum industry
title Evaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petrolera
spellingShingle Evaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petrolera
620 - Ingeniería y operaciones afines
Proyecto de desarrollo económico
Protección del medio ambiente
Ingeniería ambiental
Economic development projects
Environmental protection
Environmental engineering
Industria petrolera
Electrocoagulación
Ánodo en aluminio
Tratamiento de agua residual
title_short Evaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petrolera
title_full Evaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petrolera
title_fullStr Evaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petrolera
title_full_unstemmed Evaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petrolera
title_sort Evaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petrolera
dc.creator.fl_str_mv Cubillos Oñate, Andrea Carolina
dc.contributor.advisor.none.fl_str_mv Ramirez Franco, Jose Herney
dc.contributor.author.none.fl_str_mv Cubillos Oñate, Andrea Carolina
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Materiales, Catálisis y Medio Ambiente
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Proyecto de desarrollo económico
Protección del medio ambiente
Ingeniería ambiental
Economic development projects
Environmental protection
Environmental engineering
Industria petrolera
Electrocoagulación
Ánodo en aluminio
Tratamiento de agua residual
dc.subject.lemb.spa.fl_str_mv Proyecto de desarrollo económico
Protección del medio ambiente
Ingeniería ambiental
dc.subject.lemb.eng.fl_str_mv Economic development projects
Environmental protection
Environmental engineering
dc.subject.proposal.spa.fl_str_mv Industria petrolera
Electrocoagulación
Ánodo en aluminio
Tratamiento de agua residual
description ilustraciones, fotografías a color, gráficas
publishDate 2022
dc.date.accessioned.none.fl_str_mv 2022-10-25T14:10:20Z
dc.date.available.none.fl_str_mv 2022-10-25T14:10:20Z
dc.date.issued.none.fl_str_mv 2022-10-21
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Other
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/82446
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/82446
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv RedCol
LaReferencia
dc.relation.references.spa.fl_str_mv Abdel-Shafy, H. I., Mansour, M. S. M., & El-Toony, M. M. (2020). Integrated treatment for oil free petroleum produced water using novel resin composite followed by microfiltration. Separation and Purification Technology, 234(September 2019), 116058. https://doi.org/10.1016/j.seppur.2019.116058
Abdulkareem, L., Kareem, H., & Alaa, N. (2021). Materials Today : Proceedings Petroleum and oily wastewater treatment methods : A mini review. Materials Today: Proceedings, 10–13. https://doi.org/10.1016/j.matpr.2021.08.340
Abubakar, I. R., & Mu’azu, N. D. (2022). Household attitudes toward wastewater recycling in Saudi Arabia. Utilities Policy, 76(October 2021), 101372. https://doi.org/10.1016/j.jup.2022.101372
Ahmad, T., Guria, C., & Mandal, A. (2020). A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. Journal of Water Process Engineering, 36(February), 101289. https://doi.org/10.1016/j.jwpe.2020.101289
Akansha, J., Nidheesh, P. V., Gopinath, A., Anupama, K. V., & Suresh Kumar, M. (2020). Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere, 253, 126652. https://doi.org/10.1016/j.chemosphere.2020.126652
Al-Kaabi, M. A., Zouari, N., Da’na, D. A., & Al-Ghouti, M. A. (2021). Adsorptive batch and biological treatments of produced water: Recent progresses, challenges, and potentials. Journal of Environmental Management, 290(February), 112527. https://doi.org/10.1016/j.jenvman.2021.112527
Al-Mur, B. A., Pugazhendi, A., & Jamal, M. T. (2021). Application of integrated extremophilic (halo-alkalo-thermophilic) bacterial consortium in the degradation of petroleum hydrocarbons and treatment of petroleum refinery wastewater under extreme condition. Journal of Hazardous Materials, 413(February), 125351. https://doi.org/10.1016/j.jhazmat.2021.125351
Al-Qodah, Z., & Al-Shannag, M. (2019). On the Performance of Free Radicals Combined Electrocoagulation Treatment Processes. Separation and Purification Reviews, 48(2), 143–158. https://doi.org/10.1080/15422119.2018.1459700
AlJaberi, F. Y., Ahmed, S. A., & Makki, H. F. (2020). Electrocoagulation treatment of high saline oily wastewater: evaluation and optimization. Heliyon, 6(6), e03988. https://doi.org/10.1016/j.heliyon.2020.e03988
Aljuboury, D. A. D. A., Palaniandy, P., Abdul Aziz, H. B., & Feroz, S. (2017). Treatment of petroleum wastewater by conventional and new technologies - A review. Global Nest Journal, 19(3), 439–452. https://doi.org/10.30955/gnj.002239
Alkurdi, S. S., & Abbar, A. H. (2020). Removal of COD from Petroleum refinery Wastewater by Electro-Coagulation Process Using SS/Al electrodes. IOP Conference Series: Materials Science and Engineering, 870(1). https://doi.org/10.1088/1757-899X/870/1/012052
Almukdad, A., Hafiz, M. A., Yasir, A. T., Alfahel, R., & Hawari, A. H. (2021). Unlocking the application potential of electrocoagulation process through hybrid processes. Journal of Water Process Engineering, 40(January), 101956. https://doi.org/10.1016/j.jwpe.2021.101956
American public health association. (2017). Standard Methods for the examination of water and wastewater. In Encyclopedia of Forensic Sciences: Second Edition. https://doi.org/10.1016/B978-0-12-382165-2.00237-3
Ammar, S. H., & Akbar, A. S. (2018). Oilfield produced water treatment in internal-loop airlift reactor using electrocoagulation/flotation technique. Chinese Journal of Chemical Engineering, 26(4), 879–885. https://doi.org/10.1016/j.cjche.2017.07.020
Ammar, S. H., Ismail, N. N., Ali, A. D., & Abbas, W. M. (2019). Electrocoagulation technique for refinery wastewater treatment in an internal loop split-plate airlift reactor. Journal of Environmental Chemical Engineering, 7(6), 103489. https://doi.org/10.1016/j.jece.2019.103489
An, C., Huang, G., Yao, Y., & Zhao, S. (2017). Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Science of the Total Environment, 579, 537–556. https://doi.org/10.1016/j.scitotenv.2016.11.062
Andía, Y. (2000). Tratamiento de agua coagulación y floculación. Sedapal, 1–44. http://www.sedapal.com.pe/c/document_library/get_file?uuid=2792d3e3-59b7-4b9e-ae55-56209841d9b8&groupId=10154
Ani, I. J., Akpan, U. G., Olutoye, M. A., & Hameed, B. H. (2018). Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. Journal of Cleaner Production, 205, 930–954. https://doi.org/10.1016/j.jclepro.2018.08.189
Arturi, T. S., Seijas, C. J., & Bianchi, G. L. (2019). A comparative study on the treatment of gelatin production plant wastewater using electrocoagulation and chemical coagulation. Heliyon, 5(5), e01738. https://doi.org/10.1016/j.heliyon.2019.e01738
Azizov, I., Dudek, M., & Øye, G. (2021). Emulsions in porous media from the perspective of produced water re-injection – A review. Journal of Petroleum Science and Engineering, 206(May). https://doi.org/10.1016/j.petrol.2021.109057
Bensadok, K., El Hanafi, N., & Lapicque, F. (2011). Electrochemical treatment of dairy effluent using combined Al and Ti/Pt electrodes system. Desalination, 280(1–3), 244–251. https://doi.org/10.1016/j.desal.2011.07.006
Bhagawan, D., Poodari, S., Golla, S., Himabindu, V., & Vidyavathi, S. (2016). Treatment of the petroleum refinery wastewater using combined electrochemical methods. Desalination and Water Treatment, 57(8), 3387–3394. https://doi.org/10.1080/19443994.2014.987175
Blanco, D. (2019). Realización de un proceso electroquímico posterior a un proceso de oxidación avanzada para la remoción de fenol.
Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., & Dizge, N. (2020). Combined natural/chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37(May), 101521. https://doi.org/10.1016/j.jwpe.2020.101521
Cabrera, J., Irfan, M., Dai, Y., Zhang, P., Zong, Y., & Liu, X. (2021). Bioelectrochemical system as an innovative technology for treatment of produced water from oil and gas industry: A review. Chemosphere, 285(June), 131428. https://doi.org/10.1016/j.chemosphere.2021.131428
Camacho Triana, J. L. (2020). Evaluación del manejo del agua en la extracción y producción de hidrocarburos con miras a la definición de alternativas de tratamiento y reúso. https://repositorio.unal.edu.co/handle/unal/78636%0A
Changmai, M., Das, P. P., Mondal, P., Pasawan, M., Sinha, A., Biswas, P., Sarkar, S., & Purkait, M. K. (2022). Hybrid electrocoagulation–microfiltration technique for treatment of nanofiltration rejected steel industry effluent. International Journal of Environmental Analytical Chemistry, 102(1), 62–83. https://doi.org/10.1080/03067319.2020.1715381
Chavalparit, O., & Ongwandee, M. (2009). Optimizing electrocoagulation process for the treatment of biodiesel wastewater using response surface methodology. Journal of Environmental Sciences, 21(11), 1491–1496. https://doi.org/10.1016/S1001-0742(08)62445-6
Chen, g. C., Huang, X., Prakash, P., Chilekar, S., & Franks, R. (2021). Produced water desalination using high temperature membranes. Desalination, 513(December 2020), 115144. https://doi.org/10.1016/j.desal.2021.115144
Coelho, A., Castro, A. V., Dezotti, M., & Sant’Anna, G. L. (2006). Treatment of petroleum refinery sourwater by advanced oxidation processes. Journal of Hazardous Materials, 137(1), 178–184. https://doi.org/10.1016/j.jhazmat.2006.01.051
Coha, M., Farinelli, G., Tiraferri, A., Minella, M., & Vione, D. (2021). Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs. Chemical Engineering Journal, 414(September 2020), 128668. https://doi.org/10.1016/j.cej.2021.128668
Combatt, M. P. M., Amorim, W. C. S., Brito, E. M. d. S., Cupertino, A. F., Mendonça, R. C. S., & Pereira, H. A. (2020). Design of parallel plate electrocoagulation reactors supplied by photovoltaic system applied to water treatment. Computers and Electronics in Agriculture, 177(August 2018), 105676. https://doi.org/10.1016/j.compag.2020.105676
Costa, T. C., Hendges, L. T., Temochko, B., Mazur, L. P., Marinho, B. A., Weschenfelder, S. E., Florido, P. L., da Silva, A., Ulson de Souza, A. A., & Guelli Ulson de Souza, S. M. A. (2022). Evaluation of the technical and environmental feasibility of adsorption process to remove water soluble organics from produced water: A review. Journal of Petroleum Science and Engineering, 208(April 2021). https://doi.org/10.1016/j.petrol.2021.109360
Da Silva, J. R. P., Merçon, F., da Silva, L. F., Andrade Cerqueira, A., Braz Ximango, P., & da Costa Marques, M. R. (2015). Evaluation of electrocoagulation as pre-treatment of oil emulsions, followed by reverse osmosis. Journal of Water Process Engineering, 8, 126–135. https://doi.org/10.1016/j.jwpe.2015.09.009
Damaraju, M., Bhattacharyya, D., Panda, T. K., & Kurilla, K. K. (2020). Marigold wastewater treatment in a lab-scale and a field-scale continuous bipolar-mode electrocoagulation system. Journal of Cleaner Production, 245, 118693. https://doi.org/10.1016/j.jclepro.2019.118693
Dardor, D., Al Maas, M., Minier-Matar, J., Janson, A., Abdel-Wahab, A., Shon, H. K., & Adham, S. (2021). Evaluation of pretreatment and membrane configuration for pressure-retarded osmosis application to produced water from the petroleum industry. Desalination, 516(June), 115219. https://doi.org/10.1016/j.desal.2021.115219
Das, P. P., Sharma, M., & Purkait, M. K. (2022). Recent progress on electrocoagulation process for wastewater treatment : A review. Separation and Purification Technology, 292(March), 121058. https://doi.org/10.1016/j.seppur.2022.121058
Dincer, A. R., Karakaya, N., Gunes, E., & Gunes, Y. (2008). Removal of COD from oil recovery industry wastewater by the advanced oxidation processes (AOP) based on H2O2. Global Nest Journal, 10(1), 31–38. https://doi.org/10.30955/gnj.000479
Edwan Kardena, Q. H. (2015). Petroleum Oil and Gas Industry Waste Treatment; Common Practice in Indonesia. Journal of Petroleum & Environmental Biotechnology, 06(05). https://doi.org/10.4172/2157-7463.1000241
El-Ashtoukhy, E. S. Z., El-Taweel, Y. A., Abdelwahab, O., & Nassef, E. M. (2013). Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. International Journal of Electrochemical Science, 8(1), 1534–1550
El-Hosiny, F. I., Selim, K. A., Khalek, M. A. A., & Osama, I. (2017). Produced Water Treatment Using a New Designed Electroflotation Cell. International Journal of Research in Industrial Engineering , 6(4), 328–338. https://doi.org/10.22105/riej.2017.100959.1022
El-Naas, M. H., Al-Zuhair, S., Al-Lobaney, A., & Makhlouf, S. (2009). Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. Journal of Environmental Management, 91(1), 180–185. https://doi.org/10.1016/j.jenvman.2009.08.003
El-Naas, M. H., Alhaija, M. A., & Al-Zuhair, S. (2014). Evaluation of a three-step process for the treatment of petroleum refinery wastewater. Journal of Environmental Chemical Engineering, 2(1), 56–62. https://doi.org/10.1016/j.jece.2013.11.024
Emamjomeh, M. M., & Sivakumar, M. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), 1663–1679. https://doi.org/10.1016/j.jenvman.2008.12.011
Ezechi, E. H., Isa, M. H., Muda, K., & Kutty, S. R. M. (2020). A comparative evaluation of two electrode systems on continuous electrocoagulation of boron from produced water and mass transfer resistance. Journal of Water Process Engineering, 34(October 2019), 101133. https://doi.org/10.1016/j.jwpe.2020.101133
Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2–3), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044
Farinelli, G., Coha, M., Minella, M., Fabbri, D., Pazzi, M., Vione, D., & Tiraferri, A. (2021). Evaluation of Fenton and modified Fenton oxidation coupled with membrane distillation for produced water treatment: Benefits, challenges, and effluent toxicity. Science of the Total Environment, 796, 148953. https://doi.org/10.1016/j.scitotenv.2021.148953
Garcia-Segura, S., Eiband, M. M. S. G., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267–299. https://doi.org/10.1016/j.jelechem.2017.07.047
Giwa, S. O., Giwa, A., Zeybek, Z., & Hapoglu, H. (2013). Electrocoagulation Treatment of Petroleum Refinery Wastewater: Optimization through RSM. International Journal of Engineering Research & Technology, 2(8), 606–615
Gomes, J. A. G., Daida, P., Kesmez, M., Weir, M., Moreno, H., Parga, J. R., Irwin, G., McWhinney, H., Grady, T., Peterson, E., & Cocke, D. L. (2007). Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. Journal of Hazardous Materials, 139(2), 220–231. https://doi.org/10.1016/j.jhazmat.2005.11.108
Gong, C., Ren, X., Han, J., Wu, Y., Gou, Y., Zhang, Z., & He, P. (2022). Toxicity reduction of reverse osmosis concentrates from petrochemical wastewater by electrocoagulation and Fered-Fenton treatments. Chemosphere, 286(P1), 131582. https://doi.org/10.1016/j.chemosphere.2021.131582
Gutiérrez, H., & Salazar, R. (2008). Análisis y diseño de experimentos (P. Roig & L. Campa (Eds.); 2nd ed.)
Halim, N. S. A., Wirzal, M. D. H., Hizam, S. M., Bilad, M. R., Nordin, N. A. H. M., Sambudi, N. S., Putra, Z. A., & Yusoff, A. R. M. (2021). Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 9(1), 104613. https://doi.org/10.1016/j.jece.2020.104613
Hansen, H. K., Peña, S. F., Gutiérrez, C., Lazo, A., Lazo, P., & Ottosen, L. M. (2019). Selenium removal from petroleum refinery wastewater using an electrocoagulation technique. Journal of Hazardous Materials, 364(September 2018), 78–81. https://doi.org/10.1016/j.jhazmat.2018.09.090
Haq, I., & Kalamdhad, A. S. (2021). Phytotoxicity and cyto-genotoxicity evaluation of organic and inorganic pollutants containing petroleum refinery wastewater using plant bioassay. Environmental Technology and Innovation, 23, 101651. https://doi.org/10.1016/j.eti.2021.101651
Harleman, D., & Murcott, S. (2001). An innovative approach to urban wastewater treatment in the developing world. Water 21, 44–48. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.608.8908&rep=rep1&type=pdf
Hernández-Francisco, E., Peral, J., & Blanco-Jerez, L. M. (2017). Removal of phenolic compounds from oil refinery wastewater by electrocoagulation and Fenton/photo-Fenton processes. Journal of Water Process Engineering, 19(February), 96–100. https://doi.org/10.1016/j.jwpe.2017.07.010
Hu, R., Liu, Y., Zhu, G., Chen, C., Hantoko, D., & Yan, M. (2022). COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption. Journal of Water Process Engineering, 45(October 2021), 102462. https://doi.org/10.1016/j.jwpe.2021.102462
Hussein, T. K., & Jasim, N. A. (2021). A comparison study between chemical coagulation and electro-coagulation processes for the treatment of wastewater containing reactive blue dye. Materials Today: Proceedings, 42, 1946–1950. https://doi.org/10.1016/j.matpr.2020.12.240
ICONTEC. (1996). Norma técnica colombiana 3903: Agua. Procedimiento Para El Método De Jarras En La Coagulación-Floculación Del Agua. Norma Tecnica Colombiana, 11.
IDEAM. (2018). Evaluación Nacional del Agua 2018. In Cartilla ENA 2018
Idusuyi, N., Ajide, O. O., Abu, R., Okewole, O. A., & Ibiyemi, O. O. (2022). Low cost electrocoagulation process for treatment of contaminated water using aluminium electrodes from recycled cans. Materials Today: Proceedings, 56, 1712–1716. https://doi.org/10.1016/j.matpr.2021.10.352
Ighilahriz, K., Ahmed, M. T., Djelal, H., & Maachi, R. (2014). Electrocoagulation and electro-oxidation treatment for the leachate of oil-drilling mud. Desalination and Water Treatment, 52(31–33), 5833–5839. https://doi.org/10.1080/19443994.2013.811113
Igunnu, E. T., & Chen, G. Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049
Ingelsson, M., Yasri, N., & Roberts, E. P. L. (2020). Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—a review. Water Research, 187, 116433. https://doi.org/10.1016/j.watres.2020.116433
Izquierdo, C. J., Canizares, P., Rodrigo, M. A., Leclerc, J. P., Valentin, G., & Lapicque, F. (2010). Effect of the nature of the supporting electrolyte on the treatment of soluble oils by electrocoagulation. Desalination, 255(1–3), 15–20. https://doi.org/10.1016/j.desal.2010.01.022
Jafarinejad, S., & Jiang, S. C. (2019). Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters. Journal of Environmental Chemical Engineering, 7(5), 103326. https://doi.org/10.1016/j.jece.2019.103326
Jafarzadeh, M. T., Nikkhoo, Y., Khoshgard, A., & Aslani, R. (2011). Treatment of Petrochemical Effluent by Electrocoagulation Method. 21–23
Jain, M., Majumder, A., Ghosal, P. S., & Gupta, A. K. (2020). A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. Journal of Environmental Management, 272(May), 111057. https://doi.org/10.1016/j.jenvman.2020.111057
Jain, P., Srikanth, S., Kumar, M., Sarma, P. M., Singh, M. P., & Lal, B. (2016). Bio-electro catalytic treatment of petroleum produced water: Influence of cathode potential upliftment. Bioresource Technology, 219, 652–658. https://doi.org/10.1016/j.biortech.2016.08.048
Karray, F., Aloui, F., Jemli, M., Mhiri, N., Loukil, S., Bouhdida, R., Mouha, N., & Sayadi, S. (2020). Pilot-scale petroleum refinery wastewaters treatment systems: Performance and microbial communities’ analysis. Process Safety and Environmental Protection, 141, 73–82. https://doi.org/10.1016/j.psep.2020.05.022
Keramati, M., & Ayati, B. (2019). Petroleum wastewater treatment using a combination of electrocoagulation and photocatalytic process with immobilized ZnO nanoparticles on concrete surface. Process Safety and Environmental Protection, 126, 356–365. https://doi.org/10.1016/j.psep.2019.04.019
Keyikoglu, R., Can, O. T., Aygun, A., & Tek, A. (2019). Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process. Colloids and Interface Science Communications, 33(July), 100210. https://doi.org/10.1016/j.colcom.2019.100210
Khalifa, O., Banat, F., Srinivasakannan, C., Radjenovic, J., & Hasan, S. W. (2020). Performance tests and removal mechanisms of aerated electrocoagulation in the treatment of oily wastewater. Journal of Water Process Engineering, 36(February), 101290. https://doi.org/10.1016/j.jwpe.2020.101290
Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent - A review. Journal of Environmental Management, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043
Kim, E., Yulisa, A., Kim, S., & Hwang, S. (2020). Monitoring microbial community structure and variations in a full-scale petroleum refinery wastewater treatment plant. Bioresource Technology, 306(March), 123178. https://doi.org/10.1016/j.biortech.2020.123178
Klemz, A. C., Weschenfelder, S. E., Lima de Carvalho Neto, S., Pascoal Damas, M. S., Toledo Viviani, J. C., Mazur, L. P., Marinho, B. A., Pereira, L. dos S., da Silva, A., Borges Valle, J. A., de Souza, A. A. U., & Selene, S. M. A. (2021). Oilfield produced water treatment by liquid-liquid extraction: A review. Journal of Petroleum Science and Engineering, 199(November 2020). https://doi.org/10.1016/j.petrol.2020.108282
Kumari, V., Yadav, A., Haq, I., Kumar, S., Bharagava, R. N., Singh, S. K., & Raj, A. (2016). Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. Journal of Environmental Management, 183, 204–211. https://doi.org/10.1016/j.jenvman.2016.08.017
Kuyukina, M. S., Krivoruchko, A. V., & Ivshina, I. B. (2020). Advanced bioreactor treatments of hydrocarbon-containing wastewater. Applied Sciences (Switzerland), 10(3), 1–19. https://doi.org/10.3390/app10030831
Lacasa, E., Cotillas, S., Saez, C., Lobato, J., Cañizares, P., & Rodrigo, M. A. (2019). Environmental applications of electrochemical technology. What is needed to enable full-scale applications? Current Opinion in Electrochemistry, 16, 149–156. https://doi.org/10.1016/j.coelec.2019.07.002
Lee, D. W., Lee, H., Kwon, B. O., Khim, J. S., Yim, U. H., Kim, B. S., & Kim, J. J. (2018). Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environmental Pollution, 241, 254–264. https://doi.org/10.1016/j.envpol.2018.05.070
Li, T., Yu, Z., Yang, T., Xu, G., Guan, Y., & Guo, C. (2021). Modified Fe3O4 magnetic nanoparticles for COD removal in oil field produced water and regeneration. Environmental Technology and Innovation, 23(30), 101630. https://doi.org/10.1016/j.eti.2021.101630
Liu, F., Zhang, Z., Wang, Z., Li, X., Dai, X., Wang, L., Wang, X., Yuan, Z., Zhang, J., Chen, M., & Wang, S. (2019). Experimental study on treatment of tertiary oil recovery wastewater by electrocoagulation. Chemical Engineering and Processing - Process Intensification, 144(May), 107640. https://doi.org/10.1016/j.cep.2019.107640
Liu, H., Zhao, Z., & Qu, J. (2010). Electrochemistry for the environment. In C. Comninellis & G. Chen (Eds.), Electrochemistry for the environment (Springer S, pp. 245–262). https://doi.org/10.1007/978-0-387-68318-8
Liu, Yiqian, Li, Y., Lu, H., Pan, Z., Dai, P., Sun, G., & Yang, Q. (2021). A full-scale process for produced water treatment on offshore oilfield: Reduction of organic pollutants dominated by hydrocarbons. Journal of Cleaner Production, 296, 126511. https://doi.org/10.1016/j.jclepro.2021.126511
Liu, Yue, Lin, R., Man, Y., & Ren, J. (2019). Recent developments of hydrogen production from sewage sludge by biological and thermochemical process. International Journal of Hydrogen Energy, 44(36), 19676–19697. https://doi.org/10.1016/j.ijhydene.2019.06.044
Lopera Lopez, F. (2019). Proceso de coagulación en el tratamiento de aguas residuales de una heladería:Eficiencia de diferentes coagulantes de origen inorgánico. Angewandte Chemie International Edition, 6(11), 951–952
Lu, J., Zhang, P., & Li, J. (2021). Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal. Journal of Environmental Management, 296(July), 113259. https://doi.org/10.1016/j.jenvman.2021.113259
Luo, X., Gong, H., He, Z., Zhang, P., & He, L. (2021). Recent advances in applications of power ultrasound for petroleum industry. Ultrasonics Sonochemistry, 70(August 2020), 105337. https://doi.org/10.1016/j.ultsonch.2020.105337
Lusinier, N., Seyssiecq, I., Sambusiti, C., Jacob, M., Lesage, N., & Roche, N. (2021). A comparative study of conventional activated sludge and fixed bed hybrid biological reactor for oilfield produced water treatment: Influence of hydraulic retention time. Chemical Engineering Journal, 420(P2), 127611. https://doi.org/10.1016/j.cej.2020.127611
Madhavan, M. A., & Antony, S. P. (2021). Effect of polarity shift on the performance of electrocoagulation process for the treatment of produced water. Chemosphere, 263. https://doi.org/10.1016/j.chemosphere.2020.128052
Madrona, G. S., Scapim, M. R. S., Tonon, L. A. C., Reis, M. H. M., Paraiso, C. M., & Bergamasco, R. (2017). Use of Moringa oleifera in a combined coagulation-filtration process for water treatment. Chemical Engineering Transactions, 57(2016), 1195–1200. https://doi.org/10.3303/CET1757200
Mamelkina, M. (2020). Treatment of mining waters by electrocoagulation. https://lutpub.lut.fi/bitstream/handle/10024/160650/Maria Mamelkina A4.pdf?isAllowed=y&sequence=1
Manilal, A. M., Soloman, P. A., & Basha, C. A. (2020). Removal of Oil and Grease from Produced Water Using Electrocoagulation. Journal of Hazardous, Toxic, and Radioactive Waste, 24(1), 04019023. https://doi.org/10.1061/(asce)hz.2153-5515.0000463
Martín-Domínguez, A., Rivera-Huerta, M. L., Pérez-Castrejón, S., Garrido-Hoyos, S. E., Villegas-Mendoza, I. E., Gelover-Santiago, S. L., Drogui, P., & Buelna, G. (2018). Chromium removal from drinking water by redox-assisted coagulation: Chemical versus electrocoagulation. Separation and Purification Technology, 200(September 2017), 266–272. https://doi.org/10.1016/j.seppur.2018.02.014
Mijaylova, P. (2011). Water Management in the Petroleum Refining Industry. Water Conservation. https://doi.org/10.5772/31018
Montgomery, D. C. (2020). Design and Analysis of Experiments-Wiley (2020).pdf (J. Brady (Ed.); 10th ed.)
Motta, A., Borges, C., Esquerre, K., & Kiperstok, A. (2014). Oil Produced Water treatment for oil removal by an integration of coalescer bed and microfiltration membrane processes. Journal of Membrane Science, 469, 371–378. https://doi.org/10.1016/j.memsci.2014.06.051
Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032
Nasrullah, M., Ansar, S., Krishnan, S., Singh, L., Peera, S. G., & Zularisam, A. W. (2022). Electrocoagulation treatment of raw palm oil mill effluent: Optimization process using high current application. Chemosphere, 299(October 2021), 134387. https://doi.org/10.1016/j.chemosphere.2022.134387
Nasrullah, M., Singh, L., Krishnan, S., Sakinah, M., Mahapatra, D. M., & Zularisam, A. W. (2020). Electrocoagulation treatment of raw palm oil mill effluent: Effect of operating parameters on floc growth and structure. Journal of Water Process Engineering, 33. https://doi.org/10.1016/j.jwpe.2019.101114
Nasrullah, M., Zularisam, A. W., Krishnan, S., Sakinah, M., Singh, L., & Fen, Y. W. (2019). High performance electrocoagulation process in treating palm oil mill effluent using high current intensity application. Chinese Journal of Chemical Engineering, 27(1), 208–217. https://doi.org/10.1016/j.cjche.2018.07.021
Nasution, M. A., Yaakob, Z., Ali, E., Lan, N. B., & Abdullah, S. R. S. (2013). A comparative study using aluminum and iron electrodes for the electrocoagulation of palm oil mill effluent to reduce its polluting nature and hydrogen production simultaneously. Pakistan Journal of Zoology, 45(2), 331–337
Negarestani, M., Motamedi, M., Kashtiaray, A., Khadir, A., & Sillanpää, M. (2020). Simultaneous removal of acetaminophen and ibuprofen from underground water by an electrocoagulation unit: Operational parameters and kinetics. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/j.gsd.2020.100474
Nicholas, E. R., & Cath, T. Y. (2021). Evaluation of sequencing batch bioreactor followed by media filtration for organic carbon and nitrogen removal in produced water. Journal of Water Process Engineering, 40(November 2020), 101863. https://doi.org/10.1016/j.jwpe.2020.101863
Nigri, E. M., Santos, A. L. A., & Rocha, S. D. F. (2020). Removal of organic compounds, calcium and strontium from petroleum industry effluent by simultaneous electrocoagulation and adsorption. Journal of Water Process Engineering, 37(June), 101442. https://doi.org/10.1016/j.jwpe.2020.101442
Padmaja, K., Cherukuri, J., & Anji Reddy, M. (2020). A comparative study of the efficiency of chemical coagulation and electrocoagulation methods in the treatment of pharmaceutical effluent. Journal of Water Process Engineering, 34(August 2019), 101153. https://doi.org/10.1016/j.jwpe.2020.101153
Patel, K., & Patel, M. (2020). Improving bioremediation process of petroleum wastewater using biosurfactants producing Stenotrophomonas sp. S1VKR-26 and assessment of phytotoxicity. Bioresource Technology, 315(May), 123861. https://doi.org/10.1016/j.biortech.2020.123861
Pichtel, J. (2020). Oil and Gas Production Wastewater: Soil Contamination and Pollution Prevention. Prime Archives in Environmental Research, 2016. https://doi.org/10.37247/paenvr.1.2020.10
Qaderi, F., Sayahzadeh, A. H., & Azizi, M. (2018). Efficiency optimization of petroleum wastewater treatment by using of serial moving bed biofilm reactors. Journal of Cleaner Production, 192, 665–677. https://doi.org/10.1016/j.jclepro.2018.04.257
Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., & Olaniyan, O. (2020). Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 44(1), 40–51. https://doi.org/10.1111/1477-8947.12187
Rahman, N. A., Tomiran, N. A., & Hashim, A. H. (2020). Batch electrocoagulation treatment of peat water in Sarawak with galvanized iron electrodes. Materials Science Forum, 997 MSF, 127–138. https://doi.org/10.4028/www.scientific.net/MSF.997.127
Ratman, I., Kusworo, T. D., Utomo, D. P., Azizah, D. A., & Ayodyasena, W. A. (2020). Petroleum Refinery Wastewater Treatment using Three Steps Modified Nanohybrid Membrane Coupled with Ozonation as Integrated Pre-treatment. Journal of Environmental Chemical Engineering, 8(4), 103978. https://doi.org/10.1016/j.jece.2020.103978
Saber, A., Hasheminejad, H., Taebi, A., & Ghaffari, G. (2014). Optimization of Fenton-based treatment of petroleum refinery wastewater with scrap iron using response surface methodology. Applied Water Science, 4(3), 283–290. https://doi.org/10.1007/s13201-013-0144-8
Sahu, O., Mazumdar, B., & Chaudhari, P. K. (2014). Treatment of wastewater by electrocoagulation: A review. Environmental Science and Pollution Research, 21(4), 2397–2413. https://doi.org/10.1007/s11356-013-2208-6
Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22(June), 154–169. https://doi.org/10.1016/j.coelec.2020.05.009
Shahriari, T., Karbassi, A. R., & Reyhani, M. (2019). Treatment of oil refinery wastewater by electrocoagulation–flocculation (Case Study: Shazand Oil Refinery of Arak). International Journal of Environmental Science and Technology, 16(8), 4159–4166. https://doi.org/10.1007/s13762-018-1810-z
Sharma, G., Choi, J., Shon, H. K., & Phuntsho, S. (2011). Solar-powered electrocoagulation system for water and wastewater treatment. Desalination and Water Treatment, 32(1–3), 381–388. https://doi.org/10.5004/dwt.2011.2756
Shokri, A., & Fard, M. S. (2022). A critical review in electrocoagulation technology applied for oil removal in industrial wastewater. Chemosphere, 288(P2), 132355. https://doi.org/10.1016/j.chemosphere.2021.132355
Singh, B., & Kumar, P. (2020). Pre-treatment of petroleum refinery wastewater by coagulation and flocculation using mixed coagulant: Optimization of process parameters using response surface methodology (RSM). Journal of Water Process Engineering, 36(April), 101317. https://doi.org/10.1016/j.jwpe.2020.101317
Speight, J. . (2015). Production, Subsea and Deepwater Oil and Gas Science and Technology. Gulf Professional Publishing. https://doi.org/10.1016/B978-1-85617-558-6/00006-4
Stewart, M., & Arnold, K. (2009). Produced Water Treating Systems. Emulsions and Oil Treating Equipment, 107–211. https://doi.org/10.1016/b978-0-7506-8970-0.00003-7
Sudharsan, J., Agarwal, M., & Kudapa, V. K. (2020). Nanotechnology for a green - Proficient disposal of oilfield produced water. Materials Today: Proceedings, 46, 3341–3345. https://doi.org/10.1016/j.matpr.2020.11.475
SUN, L., WU, X., ZHOU, W., LI, X., & HAN, P. (2018). Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield, NE China. Petroleum Exploration and Development, 45(4), 673–684. https://doi.org/10.1016/S1876-3804(18)30071-5
Sun, Y., Liu, Y., Chen, J., Huang, Y., Lu, H., Yuan, W., Yang, Q., Hu, J., Yu, B., Wang, D., Xu, W., & Wang, H. (2021). Physical pretreatment of petroleum refinery wastewater instead of chemicals addition for collaborative removal of oil and suspended solids. Journal of Cleaner Production, 278, 123821. https://doi.org/10.1016/j.jclepro.2020.123821
Tahreen, A., Jami, M. S., & Ali, F. (2020). Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering, 37(May), 101440. https://doi.org/10.1016/j.jwpe.2020.101440
Tak, B. yul, Tak, B. sik, Kim, Y. ju, Park, Y. jin, Yoon, Y. hun, & Min, G. ho. (2015). Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box-Behnken design (BBD). Journal of Industrial and Engineering Chemistry, 28, 307–315. https://doi.org/10.1016/j.jiec.2015.03.008
Tanzim, F., Subeshan, B., & Asmatulu, R. (2022). Improving the saline water evaporation rates using highly conductive carbonaceous materials under infrared light for improved freshwater production. Desalination, 531(December 2021), 115710. https://doi.org/10.1016/j.desal.2022.115710
Tchobanoglus, G., Burton, F., & Stensel, H. D. (2003). Wastewater Engineering. In Notes and Queries (Vol. 179, Issue 18, p. 1878). Mc Graw Hill. https://doi.org/10.1093/nq/179.18.317-a
Tejada tovar, C. nahir, Villabona Ortíz, A., & Contreras Amaya, R. (2021). Electrocoagulation as an Alternative for the Removal of Chromium (VI) in Solution. Tecnura, 25(68), 28–42. https://doi.org/10.14483/22487638.17088
Tirado, L., Gökkuş, Ö., Brillas, E., & Sirés, I. (2018). Treatment of cheese whey wastewater by combined electrochemical processes. Journal of Applied Electrochemistry, 48(12), 1307–1319. https://doi.org/10.1007/s10800-018-1218-y
Tounsi, H., Chaabane, T., Omine, K., Sivasankar, V., Sano, H., Hecini, M., & Darchen, A. (2022). Journal of Water Process Engineering Electrocoagulation in the dual application on the simultaneous removal of fluoride and nitrate anions through respective adsorption / reduction processes and modelling of continuous process. Journal of Water Process Engineering, 46(January), 102584. https://doi.org/10.1016/j.jwpe.2022.102584
Treviño-Reséndez, J. de J., Medel, A., & Meas, Y. (2021). Electrochemical technologies for treating petroleum industry wastewater. Current Opinion in Electrochemistry, 27, 100690. https://doi.org/10.1016/j.coelec.2021.100690
Ulucan, K., Kabuk, H. A., Ilhan, F., & Kurt, U. (2014). Electrocoagulation process application in bilge water treatment using response surface methodology. International Journal of Electrochemical Science, 9(5), 2316–2326.
UNESCO. (2021). The United Nations World Water Development Report. In Water Politics. UNESCO. https://doi.org/10.4324/9780429453571-2
UPME, U. de P. M.-E. (2022). Informe de proyección de Demanda de Energéticos.
Vásquez-Lavín, F., Vargas O, L., Hernández, J. I., & Ponce Oliva, R. D. (2020). Water demand in the Chilean manufacturing industry: Analysis of the economic value of water and demand elasticities. Water Resources and Economics, 32(May 2018). https://doi.org/10.1016/j.wre.2020.100159
Vepsäläinen, M., & Sillanpää, M. (2020a). Advanced water treatment: Electrochemical methods (M. Sillanpää (Ed.)). Susan Dennis.
Vepsäläinen, M., & Sillanpää, M. (2020b). Electrocoagulation in the treatment of industrial waters and wastewaters. In Advanced Water Treatment: Electrochemical Methods. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819227-6.00001-2
Yavuz, Y., & Ögütveren, B. (2018). Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes. Journal of Environmental Management, 207, 151–158. https://doi.org/10.1016/j.jenvman.2017.11.034
Yavuz, Yusuf, Koparal, A. S., & Öǧütveren, Ü. B. (2010). Treatment of petroleum refinery wastewater by electrochemical methods. Desalination, 258(1–3), 201–205. https://doi.org/10.1016/j.desal.2010.03.013
Yu, L., Han, M., & He, F. (2017). A review of treating oily wastewater. Arabian Journal of Chemistry, 10, S1913–S1922. https://doi.org/10.1016/j.arabjc.2013.07.020
Zaied, B. K., Rashid, M., Nasrullah, M., Zularisam, A. W., Pant, D., & Singh, L. (2020). A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of the Total Environment, 726, 138095. https://doi.org/10.1016/j.scitotenv.2020.138095
Zaied, M., & Bellakhal, N. (2009). Electrocoagulation treatment of black liquor from paper industry. Journal of Hazardous Materials, 163(2–3), 995–1000. https://doi.org/10.1016/j.jhazmat.2008.07.115
Zerbatto, M., Carrera, E., Eliggi, M., Modini, L., Vaira, S., Noseda, J., & Abramovich, B. (2009). Cloruro férrico para la coagulación optimizada y remoción de enteroparasitos en agua. Asociación de Universidades. Grupo Montevideo. Augm _Domus, 1, 18–26. https://revistas.unlp.edu.ar/domus/article/view/73
Zhao, S., Huang, G., Cheng, G., Wang, Y., & Fu, H. (2014). Hardness, COD and turbidity removals from produced water by electrocoagulation pretreatment prior to reverse osmosis membranes. Desalination, 344, 454–462. https://doi.org/10.1016/j.desal.2014.04.014
Zheng, T. (2017). Treatment of oilfield produced water with electrocoagulation: Improving the process performance by using pulse current. Journal of Water Reuse and Desalination, 7(3), 378–386. https://doi.org/10.2166/wrd.2016.113
Zhou, M., Oturan, M. A., & Sires, I. (2018). Electro- Fenton: New Trends and Scale-Up.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xxii, 118 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisher.department.spa.fl_str_mv Departamento de Ingeniería Química y Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/82446/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/82446/2/Tesis%20de%20maestr%c3%ada_AC.pdf
https://repositorio.unal.edu.co/bitstream/unal/82446/3/Tesis%20de%20maestr%c3%ada_AC.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
cbb75c16b4c258252feb43ec3283b9f1
c7925c6ca31e6e8bde75c8525f2b691c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090052646469632
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramirez Franco, Jose Herney4f428de6cfc93f502b145a0c4f6e63dd600Cubillos Oñate, Andrea Carolina0533babe67ff252416a80e192e061c1dGrupo de Investigación en Materiales, Catálisis y Medio Ambiente2022-10-25T14:10:20Z2022-10-25T14:10:20Z2022-10-21https://repositorio.unal.edu.co/handle/unal/82446Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a color, gráficasEn el presente estudio, se implementó y evaluó un sistema de electrocoagulación a escala semipiloto para el tratamiento de agua residual sintética de la industria petrolera. Para alcanzar este objetivo, la investigación se dividió en dos fases. En la primera fase los experimentos fueron realizados a escala laboratorio, la metodología utilizada consistió en variar solo un parámetro al tiempo mientras los otros se mantienen constantes. En esta, se analizaron los parámetros: tiempo de electrocoagulación o tiempo de residencia en el reactor, densidad de corriente, pH inicial y conductividad. En la segunda fase, se realizó el diseño conceptual, montaje e implementación de la unidad de electrocoagulación escala semipiloto, que operara en modo continuo y Batch. Con base a los resultados obtenidos en la primera fase y en algunos ensayos preliminares, se realizó un diseño estadístico de experimentos, usando la metodología de superficie de respuesta (llamado RSM por sus siglas en inglés) con el fin de encontrar las condiciones óptimas de operación. Los resultados obtenidos indican que el incremento del tiempo de electrocoagulación y densidad de corriente, mejoran la remoción de los contaminantes, mientras que la conductividad no la afecta significativamente. Cuando el pH inicial del agua es menor a 5, el proceso de electrocoagulación no es tan efectivo, el pH óptimo en este caso, se encuentra en un intervalo amplio (5-8). Finalmente, los resultados obtenidos mostraron que el proceso de electrocoagulación es efectivo en la reducción de grasas y aceites (O&G), turbidez, demanda química de oxígeno (DQO) y sólidos suspendidos totales (SST), alcanzando remociones mayores al 95% en todos los casos. (Texto tomado de la fuente)In the present study, a semi-pilot scale electrocoagulation system for the treatment of synthetic wastewater from the oil industry was implemented and evaluated. To achieve this objective, the research was divided into two phases. In the first phase, the experiments were carried out at laboratory scale, the methodology used consisted of varying only one parameter over time while the others were kept constant. In this phase, the following parameters were analyzed: electrolysis time or residence time in the reactor, current density, initial pH, and conductivity. In the second phase, the conceptual design, assembly, and implementation of the semi-pilot scale electrocoagulation unit, operating in continuous and batch mode, was carried out. Based on the results obtained in the first phase and in some preliminary tests, a statistical design of experiments was carried out, using the response surface methodology (RSM) to find the optimum operating conditions. The results obtained indicate that increasing the electrolysis time and current density improves the removal of contaminants, while the conductivity does not affect it significantly. When the initial pH of the water is lower than 5, the electrocoagulation process is not as effective; the optimum pH, in this case, is in a wide range (5-8). Finally, the results showed that the electrocoagulation process is effective in the reduction of oil and grease (O&G), turbidity, chemical oxygen demand (COD), and total suspended solids (TSS), reaching removals greater than 95% in all casesMaestríaMagíster en Ingeniería - Ingeniería AmbientalMedio ambientexxii, 118 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería AmbientalDepartamento de Ingeniería Química y AmbientalFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá620 - Ingeniería y operaciones afinesProyecto de desarrollo económicoProtección del medio ambienteIngeniería ambientalEconomic development projectsEnvironmental protectionEnvironmental engineeringIndustria petroleraElectrocoagulaciónÁnodo en aluminioTratamiento de agua residualEvaluación de un sistema de electrocoagulación escala semipiloto para el tratamiento del agua residual sintética de la industria petroleraEvaluation of a semi pilot scale electrocoagulation system for the treatment of synthetic wastewater from the petroleum industryTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionOtherhttp://purl.org/redcol/resource_type/TMRedColLaReferenciaAbdel-Shafy, H. I., Mansour, M. S. M., & El-Toony, M. M. (2020). Integrated treatment for oil free petroleum produced water using novel resin composite followed by microfiltration. Separation and Purification Technology, 234(September 2019), 116058. https://doi.org/10.1016/j.seppur.2019.116058Abdulkareem, L., Kareem, H., & Alaa, N. (2021). Materials Today : Proceedings Petroleum and oily wastewater treatment methods : A mini review. Materials Today: Proceedings, 10–13. https://doi.org/10.1016/j.matpr.2021.08.340Abubakar, I. R., & Mu’azu, N. D. (2022). Household attitudes toward wastewater recycling in Saudi Arabia. Utilities Policy, 76(October 2021), 101372. https://doi.org/10.1016/j.jup.2022.101372Ahmad, T., Guria, C., & Mandal, A. (2020). A review of oily wastewater treatment using ultrafiltration membrane: A parametric study to enhance the membrane performance. Journal of Water Process Engineering, 36(February), 101289. https://doi.org/10.1016/j.jwpe.2020.101289Akansha, J., Nidheesh, P. V., Gopinath, A., Anupama, K. V., & Suresh Kumar, M. (2020). Treatment of dairy industry wastewater by combined aerated electrocoagulation and phytoremediation process. Chemosphere, 253, 126652. https://doi.org/10.1016/j.chemosphere.2020.126652Al-Kaabi, M. A., Zouari, N., Da’na, D. A., & Al-Ghouti, M. A. (2021). Adsorptive batch and biological treatments of produced water: Recent progresses, challenges, and potentials. Journal of Environmental Management, 290(February), 112527. https://doi.org/10.1016/j.jenvman.2021.112527Al-Mur, B. A., Pugazhendi, A., & Jamal, M. T. (2021). Application of integrated extremophilic (halo-alkalo-thermophilic) bacterial consortium in the degradation of petroleum hydrocarbons and treatment of petroleum refinery wastewater under extreme condition. Journal of Hazardous Materials, 413(February), 125351. https://doi.org/10.1016/j.jhazmat.2021.125351Al-Qodah, Z., & Al-Shannag, M. (2019). On the Performance of Free Radicals Combined Electrocoagulation Treatment Processes. Separation and Purification Reviews, 48(2), 143–158. https://doi.org/10.1080/15422119.2018.1459700AlJaberi, F. Y., Ahmed, S. A., & Makki, H. F. (2020). Electrocoagulation treatment of high saline oily wastewater: evaluation and optimization. Heliyon, 6(6), e03988. https://doi.org/10.1016/j.heliyon.2020.e03988Aljuboury, D. A. D. A., Palaniandy, P., Abdul Aziz, H. B., & Feroz, S. (2017). Treatment of petroleum wastewater by conventional and new technologies - A review. Global Nest Journal, 19(3), 439–452. https://doi.org/10.30955/gnj.002239Alkurdi, S. S., & Abbar, A. H. (2020). Removal of COD from Petroleum refinery Wastewater by Electro-Coagulation Process Using SS/Al electrodes. IOP Conference Series: Materials Science and Engineering, 870(1). https://doi.org/10.1088/1757-899X/870/1/012052Almukdad, A., Hafiz, M. A., Yasir, A. T., Alfahel, R., & Hawari, A. H. (2021). Unlocking the application potential of electrocoagulation process through hybrid processes. Journal of Water Process Engineering, 40(January), 101956. https://doi.org/10.1016/j.jwpe.2021.101956American public health association. (2017). Standard Methods for the examination of water and wastewater. In Encyclopedia of Forensic Sciences: Second Edition. https://doi.org/10.1016/B978-0-12-382165-2.00237-3Ammar, S. H., & Akbar, A. S. (2018). Oilfield produced water treatment in internal-loop airlift reactor using electrocoagulation/flotation technique. Chinese Journal of Chemical Engineering, 26(4), 879–885. https://doi.org/10.1016/j.cjche.2017.07.020Ammar, S. H., Ismail, N. N., Ali, A. D., & Abbas, W. M. (2019). Electrocoagulation technique for refinery wastewater treatment in an internal loop split-plate airlift reactor. Journal of Environmental Chemical Engineering, 7(6), 103489. https://doi.org/10.1016/j.jece.2019.103489An, C., Huang, G., Yao, Y., & Zhao, S. (2017). Emerging usage of electrocoagulation technology for oil removal from wastewater: A review. Science of the Total Environment, 579, 537–556. https://doi.org/10.1016/j.scitotenv.2016.11.062Andía, Y. (2000). Tratamiento de agua coagulación y floculación. Sedapal, 1–44. http://www.sedapal.com.pe/c/document_library/get_file?uuid=2792d3e3-59b7-4b9e-ae55-56209841d9b8&groupId=10154Ani, I. J., Akpan, U. G., Olutoye, M. A., & Hameed, B. H. (2018). Photocatalytic degradation of pollutants in petroleum refinery wastewater by TiO2- and ZnO-based photocatalysts: Recent development. Journal of Cleaner Production, 205, 930–954. https://doi.org/10.1016/j.jclepro.2018.08.189Arturi, T. S., Seijas, C. J., & Bianchi, G. L. (2019). A comparative study on the treatment of gelatin production plant wastewater using electrocoagulation and chemical coagulation. Heliyon, 5(5), e01738. https://doi.org/10.1016/j.heliyon.2019.e01738Azizov, I., Dudek, M., & Øye, G. (2021). Emulsions in porous media from the perspective of produced water re-injection – A review. Journal of Petroleum Science and Engineering, 206(May). https://doi.org/10.1016/j.petrol.2021.109057Bensadok, K., El Hanafi, N., & Lapicque, F. (2011). Electrochemical treatment of dairy effluent using combined Al and Ti/Pt electrodes system. Desalination, 280(1–3), 244–251. https://doi.org/10.1016/j.desal.2011.07.006Bhagawan, D., Poodari, S., Golla, S., Himabindu, V., & Vidyavathi, S. (2016). Treatment of the petroleum refinery wastewater using combined electrochemical methods. Desalination and Water Treatment, 57(8), 3387–3394. https://doi.org/10.1080/19443994.2014.987175Blanco, D. (2019). Realización de un proceso electroquímico posterior a un proceso de oxidación avanzada para la remoción de fenol.Bouchareb, R., Derbal, K., Özay, Y., Bilici, Z., & Dizge, N. (2020). Combined natural/chemical coagulation and membrane filtration for wood processing wastewater treatment. Journal of Water Process Engineering, 37(May), 101521. https://doi.org/10.1016/j.jwpe.2020.101521Cabrera, J., Irfan, M., Dai, Y., Zhang, P., Zong, Y., & Liu, X. (2021). Bioelectrochemical system as an innovative technology for treatment of produced water from oil and gas industry: A review. Chemosphere, 285(June), 131428. https://doi.org/10.1016/j.chemosphere.2021.131428Camacho Triana, J. L. (2020). Evaluación del manejo del agua en la extracción y producción de hidrocarburos con miras a la definición de alternativas de tratamiento y reúso. https://repositorio.unal.edu.co/handle/unal/78636%0AChangmai, M., Das, P. P., Mondal, P., Pasawan, M., Sinha, A., Biswas, P., Sarkar, S., & Purkait, M. K. (2022). Hybrid electrocoagulation–microfiltration technique for treatment of nanofiltration rejected steel industry effluent. International Journal of Environmental Analytical Chemistry, 102(1), 62–83. https://doi.org/10.1080/03067319.2020.1715381Chavalparit, O., & Ongwandee, M. (2009). Optimizing electrocoagulation process for the treatment of biodiesel wastewater using response surface methodology. Journal of Environmental Sciences, 21(11), 1491–1496. https://doi.org/10.1016/S1001-0742(08)62445-6Chen, g. C., Huang, X., Prakash, P., Chilekar, S., & Franks, R. (2021). Produced water desalination using high temperature membranes. Desalination, 513(December 2020), 115144. https://doi.org/10.1016/j.desal.2021.115144Coelho, A., Castro, A. V., Dezotti, M., & Sant’Anna, G. L. (2006). Treatment of petroleum refinery sourwater by advanced oxidation processes. Journal of Hazardous Materials, 137(1), 178–184. https://doi.org/10.1016/j.jhazmat.2006.01.051Coha, M., Farinelli, G., Tiraferri, A., Minella, M., & Vione, D. (2021). Advanced oxidation processes in the removal of organic substances from produced water: Potential, configurations, and research needs. Chemical Engineering Journal, 414(September 2020), 128668. https://doi.org/10.1016/j.cej.2021.128668Combatt, M. P. M., Amorim, W. C. S., Brito, E. M. d. S., Cupertino, A. F., Mendonça, R. C. S., & Pereira, H. A. (2020). Design of parallel plate electrocoagulation reactors supplied by photovoltaic system applied to water treatment. Computers and Electronics in Agriculture, 177(August 2018), 105676. https://doi.org/10.1016/j.compag.2020.105676Costa, T. C., Hendges, L. T., Temochko, B., Mazur, L. P., Marinho, B. A., Weschenfelder, S. E., Florido, P. L., da Silva, A., Ulson de Souza, A. A., & Guelli Ulson de Souza, S. M. A. (2022). Evaluation of the technical and environmental feasibility of adsorption process to remove water soluble organics from produced water: A review. Journal of Petroleum Science and Engineering, 208(April 2021). https://doi.org/10.1016/j.petrol.2021.109360Da Silva, J. R. P., Merçon, F., da Silva, L. F., Andrade Cerqueira, A., Braz Ximango, P., & da Costa Marques, M. R. (2015). Evaluation of electrocoagulation as pre-treatment of oil emulsions, followed by reverse osmosis. Journal of Water Process Engineering, 8, 126–135. https://doi.org/10.1016/j.jwpe.2015.09.009Damaraju, M., Bhattacharyya, D., Panda, T. K., & Kurilla, K. K. (2020). Marigold wastewater treatment in a lab-scale and a field-scale continuous bipolar-mode electrocoagulation system. Journal of Cleaner Production, 245, 118693. https://doi.org/10.1016/j.jclepro.2019.118693Dardor, D., Al Maas, M., Minier-Matar, J., Janson, A., Abdel-Wahab, A., Shon, H. K., & Adham, S. (2021). Evaluation of pretreatment and membrane configuration for pressure-retarded osmosis application to produced water from the petroleum industry. Desalination, 516(June), 115219. https://doi.org/10.1016/j.desal.2021.115219Das, P. P., Sharma, M., & Purkait, M. K. (2022). Recent progress on electrocoagulation process for wastewater treatment : A review. Separation and Purification Technology, 292(March), 121058. https://doi.org/10.1016/j.seppur.2022.121058Dincer, A. R., Karakaya, N., Gunes, E., & Gunes, Y. (2008). Removal of COD from oil recovery industry wastewater by the advanced oxidation processes (AOP) based on H2O2. Global Nest Journal, 10(1), 31–38. https://doi.org/10.30955/gnj.000479Edwan Kardena, Q. H. (2015). Petroleum Oil and Gas Industry Waste Treatment; Common Practice in Indonesia. Journal of Petroleum & Environmental Biotechnology, 06(05). https://doi.org/10.4172/2157-7463.1000241El-Ashtoukhy, E. S. Z., El-Taweel, Y. A., Abdelwahab, O., & Nassef, E. M. (2013). Treatment of petrochemical wastewater containing phenolic compounds by electrocoagulation using a fixed bed electrochemical reactor. International Journal of Electrochemical Science, 8(1), 1534–1550El-Hosiny, F. I., Selim, K. A., Khalek, M. A. A., & Osama, I. (2017). Produced Water Treatment Using a New Designed Electroflotation Cell. International Journal of Research in Industrial Engineering , 6(4), 328–338. https://doi.org/10.22105/riej.2017.100959.1022El-Naas, M. H., Al-Zuhair, S., Al-Lobaney, A., & Makhlouf, S. (2009). Assessment of electrocoagulation for the treatment of petroleum refinery wastewater. Journal of Environmental Management, 91(1), 180–185. https://doi.org/10.1016/j.jenvman.2009.08.003El-Naas, M. H., Alhaija, M. A., & Al-Zuhair, S. (2014). Evaluation of a three-step process for the treatment of petroleum refinery wastewater. Journal of Environmental Chemical Engineering, 2(1), 56–62. https://doi.org/10.1016/j.jece.2013.11.024Emamjomeh, M. M., & Sivakumar, M. (2009). Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Journal of Environmental Management, 90(5), 1663–1679. https://doi.org/10.1016/j.jenvman.2008.12.011Ezechi, E. H., Isa, M. H., Muda, K., & Kutty, S. R. M. (2020). A comparative evaluation of two electrode systems on continuous electrocoagulation of boron from produced water and mass transfer resistance. Journal of Water Process Engineering, 34(October 2019), 101133. https://doi.org/10.1016/j.jwpe.2020.101133Fakhru’l-Razi, A., Pendashteh, A., Abdullah, L. C., Biak, D. R. A., Madaeni, S. S., & Abidin, Z. Z. (2009). Review of technologies for oil and gas produced water treatment. Journal of Hazardous Materials, 170(2–3), 530–551. https://doi.org/10.1016/j.jhazmat.2009.05.044Farinelli, G., Coha, M., Minella, M., Fabbri, D., Pazzi, M., Vione, D., & Tiraferri, A. (2021). Evaluation of Fenton and modified Fenton oxidation coupled with membrane distillation for produced water treatment: Benefits, challenges, and effluent toxicity. Science of the Total Environment, 796, 148953. https://doi.org/10.1016/j.scitotenv.2021.148953Garcia-Segura, S., Eiband, M. M. S. G., de Melo, J. V., & Martínez-Huitle, C. A. (2017). Electrocoagulation and advanced electrocoagulation processes: A general review about the fundamentals, emerging applications and its association with other technologies. Journal of Electroanalytical Chemistry, 801, 267–299. https://doi.org/10.1016/j.jelechem.2017.07.047Giwa, S. O., Giwa, A., Zeybek, Z., & Hapoglu, H. (2013). Electrocoagulation Treatment of Petroleum Refinery Wastewater: Optimization through RSM. International Journal of Engineering Research & Technology, 2(8), 606–615Gomes, J. A. G., Daida, P., Kesmez, M., Weir, M., Moreno, H., Parga, J. R., Irwin, G., McWhinney, H., Grady, T., Peterson, E., & Cocke, D. L. (2007). Arsenic removal by electrocoagulation using combined Al-Fe electrode system and characterization of products. Journal of Hazardous Materials, 139(2), 220–231. https://doi.org/10.1016/j.jhazmat.2005.11.108Gong, C., Ren, X., Han, J., Wu, Y., Gou, Y., Zhang, Z., & He, P. (2022). Toxicity reduction of reverse osmosis concentrates from petrochemical wastewater by electrocoagulation and Fered-Fenton treatments. Chemosphere, 286(P1), 131582. https://doi.org/10.1016/j.chemosphere.2021.131582Gutiérrez, H., & Salazar, R. (2008). Análisis y diseño de experimentos (P. Roig & L. Campa (Eds.); 2nd ed.)Halim, N. S. A., Wirzal, M. D. H., Hizam, S. M., Bilad, M. R., Nordin, N. A. H. M., Sambudi, N. S., Putra, Z. A., & Yusoff, A. R. M. (2021). Recent Development on Electrospun Nanofiber Membrane for Produced Water Treatment: A review. Journal of Environmental Chemical Engineering, 9(1), 104613. https://doi.org/10.1016/j.jece.2020.104613Hansen, H. K., Peña, S. F., Gutiérrez, C., Lazo, A., Lazo, P., & Ottosen, L. M. (2019). Selenium removal from petroleum refinery wastewater using an electrocoagulation technique. Journal of Hazardous Materials, 364(September 2018), 78–81. https://doi.org/10.1016/j.jhazmat.2018.09.090Haq, I., & Kalamdhad, A. S. (2021). Phytotoxicity and cyto-genotoxicity evaluation of organic and inorganic pollutants containing petroleum refinery wastewater using plant bioassay. Environmental Technology and Innovation, 23, 101651. https://doi.org/10.1016/j.eti.2021.101651Harleman, D., & Murcott, S. (2001). An innovative approach to urban wastewater treatment in the developing world. Water 21, 44–48. https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.608.8908&rep=rep1&type=pdfHernández-Francisco, E., Peral, J., & Blanco-Jerez, L. M. (2017). Removal of phenolic compounds from oil refinery wastewater by electrocoagulation and Fenton/photo-Fenton processes. Journal of Water Process Engineering, 19(February), 96–100. https://doi.org/10.1016/j.jwpe.2017.07.010Hu, R., Liu, Y., Zhu, G., Chen, C., Hantoko, D., & Yan, M. (2022). COD removal of wastewater from hydrothermal carbonization of food waste: Using coagulation combined activated carbon adsorption. Journal of Water Process Engineering, 45(October 2021), 102462. https://doi.org/10.1016/j.jwpe.2021.102462Hussein, T. K., & Jasim, N. A. (2021). A comparison study between chemical coagulation and electro-coagulation processes for the treatment of wastewater containing reactive blue dye. Materials Today: Proceedings, 42, 1946–1950. https://doi.org/10.1016/j.matpr.2020.12.240ICONTEC. (1996). Norma técnica colombiana 3903: Agua. Procedimiento Para El Método De Jarras En La Coagulación-Floculación Del Agua. Norma Tecnica Colombiana, 11.IDEAM. (2018). Evaluación Nacional del Agua 2018. In Cartilla ENA 2018Idusuyi, N., Ajide, O. O., Abu, R., Okewole, O. A., & Ibiyemi, O. O. (2022). Low cost electrocoagulation process for treatment of contaminated water using aluminium electrodes from recycled cans. Materials Today: Proceedings, 56, 1712–1716. https://doi.org/10.1016/j.matpr.2021.10.352Ighilahriz, K., Ahmed, M. T., Djelal, H., & Maachi, R. (2014). Electrocoagulation and electro-oxidation treatment for the leachate of oil-drilling mud. Desalination and Water Treatment, 52(31–33), 5833–5839. https://doi.org/10.1080/19443994.2013.811113Igunnu, E. T., & Chen, G. Z. (2014). Produced water treatment technologies. International Journal of Low-Carbon Technologies, 9(3), 157–177. https://doi.org/10.1093/ijlct/cts049Ingelsson, M., Yasri, N., & Roberts, E. P. L. (2020). Electrode passivation, faradaic efficiency, and performance enhancement strategies in electrocoagulation—a review. Water Research, 187, 116433. https://doi.org/10.1016/j.watres.2020.116433Izquierdo, C. J., Canizares, P., Rodrigo, M. A., Leclerc, J. P., Valentin, G., & Lapicque, F. (2010). Effect of the nature of the supporting electrolyte on the treatment of soluble oils by electrocoagulation. Desalination, 255(1–3), 15–20. https://doi.org/10.1016/j.desal.2010.01.022Jafarinejad, S., & Jiang, S. C. (2019). Current technologies and future directions for treating petroleum refineries and petrochemical plants (PRPP) wastewaters. Journal of Environmental Chemical Engineering, 7(5), 103326. https://doi.org/10.1016/j.jece.2019.103326Jafarzadeh, M. T., Nikkhoo, Y., Khoshgard, A., & Aslani, R. (2011). Treatment of Petrochemical Effluent by Electrocoagulation Method. 21–23Jain, M., Majumder, A., Ghosal, P. S., & Gupta, A. K. (2020). A review on treatment of petroleum refinery and petrochemical plant wastewater: A special emphasis on constructed wetlands. Journal of Environmental Management, 272(May), 111057. https://doi.org/10.1016/j.jenvman.2020.111057Jain, P., Srikanth, S., Kumar, M., Sarma, P. M., Singh, M. P., & Lal, B. (2016). Bio-electro catalytic treatment of petroleum produced water: Influence of cathode potential upliftment. Bioresource Technology, 219, 652–658. https://doi.org/10.1016/j.biortech.2016.08.048Karray, F., Aloui, F., Jemli, M., Mhiri, N., Loukil, S., Bouhdida, R., Mouha, N., & Sayadi, S. (2020). Pilot-scale petroleum refinery wastewaters treatment systems: Performance and microbial communities’ analysis. Process Safety and Environmental Protection, 141, 73–82. https://doi.org/10.1016/j.psep.2020.05.022Keramati, M., & Ayati, B. (2019). Petroleum wastewater treatment using a combination of electrocoagulation and photocatalytic process with immobilized ZnO nanoparticles on concrete surface. Process Safety and Environmental Protection, 126, 356–365. https://doi.org/10.1016/j.psep.2019.04.019Keyikoglu, R., Can, O. T., Aygun, A., & Tek, A. (2019). Comparison of the effects of various supporting electrolytes on the treatment of a dye solution by electrocoagulation process. Colloids and Interface Science Communications, 33(July), 100210. https://doi.org/10.1016/j.colcom.2019.100210Khalifa, O., Banat, F., Srinivasakannan, C., Radjenovic, J., & Hasan, S. W. (2020). Performance tests and removal mechanisms of aerated electrocoagulation in the treatment of oily wastewater. Journal of Water Process Engineering, 36(February), 101290. https://doi.org/10.1016/j.jwpe.2020.101290Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent - A review. Journal of Environmental Management, 128, 949–963. https://doi.org/10.1016/j.jenvman.2013.06.043Kim, E., Yulisa, A., Kim, S., & Hwang, S. (2020). Monitoring microbial community structure and variations in a full-scale petroleum refinery wastewater treatment plant. Bioresource Technology, 306(March), 123178. https://doi.org/10.1016/j.biortech.2020.123178Klemz, A. C., Weschenfelder, S. E., Lima de Carvalho Neto, S., Pascoal Damas, M. S., Toledo Viviani, J. C., Mazur, L. P., Marinho, B. A., Pereira, L. dos S., da Silva, A., Borges Valle, J. A., de Souza, A. A. U., & Selene, S. M. A. (2021). Oilfield produced water treatment by liquid-liquid extraction: A review. Journal of Petroleum Science and Engineering, 199(November 2020). https://doi.org/10.1016/j.petrol.2020.108282Kumari, V., Yadav, A., Haq, I., Kumar, S., Bharagava, R. N., Singh, S. K., & Raj, A. (2016). Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. Journal of Environmental Management, 183, 204–211. https://doi.org/10.1016/j.jenvman.2016.08.017Kuyukina, M. S., Krivoruchko, A. V., & Ivshina, I. B. (2020). Advanced bioreactor treatments of hydrocarbon-containing wastewater. Applied Sciences (Switzerland), 10(3), 1–19. https://doi.org/10.3390/app10030831Lacasa, E., Cotillas, S., Saez, C., Lobato, J., Cañizares, P., & Rodrigo, M. A. (2019). Environmental applications of electrochemical technology. What is needed to enable full-scale applications? Current Opinion in Electrochemistry, 16, 149–156. https://doi.org/10.1016/j.coelec.2019.07.002Lee, D. W., Lee, H., Kwon, B. O., Khim, J. S., Yim, U. H., Kim, B. S., & Kim, J. J. (2018). Biosurfactant-assisted bioremediation of crude oil by indigenous bacteria isolated from Taean beach sediment. Environmental Pollution, 241, 254–264. https://doi.org/10.1016/j.envpol.2018.05.070Li, T., Yu, Z., Yang, T., Xu, G., Guan, Y., & Guo, C. (2021). Modified Fe3O4 magnetic nanoparticles for COD removal in oil field produced water and regeneration. Environmental Technology and Innovation, 23(30), 101630. https://doi.org/10.1016/j.eti.2021.101630Liu, F., Zhang, Z., Wang, Z., Li, X., Dai, X., Wang, L., Wang, X., Yuan, Z., Zhang, J., Chen, M., & Wang, S. (2019). Experimental study on treatment of tertiary oil recovery wastewater by electrocoagulation. Chemical Engineering and Processing - Process Intensification, 144(May), 107640. https://doi.org/10.1016/j.cep.2019.107640Liu, H., Zhao, Z., & Qu, J. (2010). Electrochemistry for the environment. In C. Comninellis & G. Chen (Eds.), Electrochemistry for the environment (Springer S, pp. 245–262). https://doi.org/10.1007/978-0-387-68318-8Liu, Yiqian, Li, Y., Lu, H., Pan, Z., Dai, P., Sun, G., & Yang, Q. (2021). A full-scale process for produced water treatment on offshore oilfield: Reduction of organic pollutants dominated by hydrocarbons. Journal of Cleaner Production, 296, 126511. https://doi.org/10.1016/j.jclepro.2021.126511Liu, Yue, Lin, R., Man, Y., & Ren, J. (2019). Recent developments of hydrogen production from sewage sludge by biological and thermochemical process. International Journal of Hydrogen Energy, 44(36), 19676–19697. https://doi.org/10.1016/j.ijhydene.2019.06.044Lopera Lopez, F. (2019). Proceso de coagulación en el tratamiento de aguas residuales de una heladería:Eficiencia de diferentes coagulantes de origen inorgánico. Angewandte Chemie International Edition, 6(11), 951–952Lu, J., Zhang, P., & Li, J. (2021). Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal. Journal of Environmental Management, 296(July), 113259. https://doi.org/10.1016/j.jenvman.2021.113259Luo, X., Gong, H., He, Z., Zhang, P., & He, L. (2021). Recent advances in applications of power ultrasound for petroleum industry. Ultrasonics Sonochemistry, 70(August 2020), 105337. https://doi.org/10.1016/j.ultsonch.2020.105337Lusinier, N., Seyssiecq, I., Sambusiti, C., Jacob, M., Lesage, N., & Roche, N. (2021). A comparative study of conventional activated sludge and fixed bed hybrid biological reactor for oilfield produced water treatment: Influence of hydraulic retention time. Chemical Engineering Journal, 420(P2), 127611. https://doi.org/10.1016/j.cej.2020.127611Madhavan, M. A., & Antony, S. P. (2021). Effect of polarity shift on the performance of electrocoagulation process for the treatment of produced water. Chemosphere, 263. https://doi.org/10.1016/j.chemosphere.2020.128052Madrona, G. S., Scapim, M. R. S., Tonon, L. A. C., Reis, M. H. M., Paraiso, C. M., & Bergamasco, R. (2017). Use of Moringa oleifera in a combined coagulation-filtration process for water treatment. Chemical Engineering Transactions, 57(2016), 1195–1200. https://doi.org/10.3303/CET1757200Mamelkina, M. (2020). Treatment of mining waters by electrocoagulation. https://lutpub.lut.fi/bitstream/handle/10024/160650/Maria Mamelkina A4.pdf?isAllowed=y&sequence=1Manilal, A. M., Soloman, P. A., & Basha, C. A. (2020). Removal of Oil and Grease from Produced Water Using Electrocoagulation. Journal of Hazardous, Toxic, and Radioactive Waste, 24(1), 04019023. https://doi.org/10.1061/(asce)hz.2153-5515.0000463Martín-Domínguez, A., Rivera-Huerta, M. L., Pérez-Castrejón, S., Garrido-Hoyos, S. E., Villegas-Mendoza, I. E., Gelover-Santiago, S. L., Drogui, P., & Buelna, G. (2018). Chromium removal from drinking water by redox-assisted coagulation: Chemical versus electrocoagulation. Separation and Purification Technology, 200(September 2017), 266–272. https://doi.org/10.1016/j.seppur.2018.02.014Mijaylova, P. (2011). Water Management in the Petroleum Refining Industry. Water Conservation. https://doi.org/10.5772/31018Montgomery, D. C. (2020). Design and Analysis of Experiments-Wiley (2020).pdf (J. Brady (Ed.); 10th ed.)Motta, A., Borges, C., Esquerre, K., & Kiperstok, A. (2014). Oil Produced Water treatment for oil removal by an integration of coalescer bed and microfiltration membrane processes. Journal of Membrane Science, 469, 371–378. https://doi.org/10.1016/j.memsci.2014.06.051Moussa, D. T., El-Naas, M. H., Nasser, M., & Al-Marri, M. J. (2017). A comprehensive review of electrocoagulation for water treatment: Potentials and challenges. Journal of Environmental Management, 186, 24–41. https://doi.org/10.1016/j.jenvman.2016.10.032Nasrullah, M., Ansar, S., Krishnan, S., Singh, L., Peera, S. G., & Zularisam, A. W. (2022). Electrocoagulation treatment of raw palm oil mill effluent: Optimization process using high current application. Chemosphere, 299(October 2021), 134387. https://doi.org/10.1016/j.chemosphere.2022.134387Nasrullah, M., Singh, L., Krishnan, S., Sakinah, M., Mahapatra, D. M., & Zularisam, A. W. (2020). Electrocoagulation treatment of raw palm oil mill effluent: Effect of operating parameters on floc growth and structure. Journal of Water Process Engineering, 33. https://doi.org/10.1016/j.jwpe.2019.101114Nasrullah, M., Zularisam, A. W., Krishnan, S., Sakinah, M., Singh, L., & Fen, Y. W. (2019). High performance electrocoagulation process in treating palm oil mill effluent using high current intensity application. Chinese Journal of Chemical Engineering, 27(1), 208–217. https://doi.org/10.1016/j.cjche.2018.07.021Nasution, M. A., Yaakob, Z., Ali, E., Lan, N. B., & Abdullah, S. R. S. (2013). A comparative study using aluminum and iron electrodes for the electrocoagulation of palm oil mill effluent to reduce its polluting nature and hydrogen production simultaneously. Pakistan Journal of Zoology, 45(2), 331–337Negarestani, M., Motamedi, M., Kashtiaray, A., Khadir, A., & Sillanpää, M. (2020). Simultaneous removal of acetaminophen and ibuprofen from underground water by an electrocoagulation unit: Operational parameters and kinetics. Groundwater for Sustainable Development, 11. https://doi.org/10.1016/j.gsd.2020.100474Nicholas, E. R., & Cath, T. Y. (2021). Evaluation of sequencing batch bioreactor followed by media filtration for organic carbon and nitrogen removal in produced water. Journal of Water Process Engineering, 40(November 2020), 101863. https://doi.org/10.1016/j.jwpe.2020.101863Nigri, E. M., Santos, A. L. A., & Rocha, S. D. F. (2020). Removal of organic compounds, calcium and strontium from petroleum industry effluent by simultaneous electrocoagulation and adsorption. Journal of Water Process Engineering, 37(June), 101442. https://doi.org/10.1016/j.jwpe.2020.101442Padmaja, K., Cherukuri, J., & Anji Reddy, M. (2020). A comparative study of the efficiency of chemical coagulation and electrocoagulation methods in the treatment of pharmaceutical effluent. Journal of Water Process Engineering, 34(August 2019), 101153. https://doi.org/10.1016/j.jwpe.2020.101153Patel, K., & Patel, M. (2020). Improving bioremediation process of petroleum wastewater using biosurfactants producing Stenotrophomonas sp. S1VKR-26 and assessment of phytotoxicity. Bioresource Technology, 315(May), 123861. https://doi.org/10.1016/j.biortech.2020.123861Pichtel, J. (2020). Oil and Gas Production Wastewater: Soil Contamination and Pollution Prevention. Prime Archives in Environmental Research, 2016. https://doi.org/10.37247/paenvr.1.2020.10Qaderi, F., Sayahzadeh, A. H., & Azizi, M. (2018). Efficiency optimization of petroleum wastewater treatment by using of serial moving bed biofilm reactors. Journal of Cleaner Production, 192, 665–677. https://doi.org/10.1016/j.jclepro.2018.04.257Qadir, M., Drechsel, P., Jiménez Cisneros, B., Kim, Y., Pramanik, A., Mehta, P., & Olaniyan, O. (2020). Global and regional potential of wastewater as a water, nutrient and energy source. Natural Resources Forum, 44(1), 40–51. https://doi.org/10.1111/1477-8947.12187Rahman, N. A., Tomiran, N. A., & Hashim, A. H. (2020). Batch electrocoagulation treatment of peat water in Sarawak with galvanized iron electrodes. Materials Science Forum, 997 MSF, 127–138. https://doi.org/10.4028/www.scientific.net/MSF.997.127Ratman, I., Kusworo, T. D., Utomo, D. P., Azizah, D. A., & Ayodyasena, W. A. (2020). Petroleum Refinery Wastewater Treatment using Three Steps Modified Nanohybrid Membrane Coupled with Ozonation as Integrated Pre-treatment. Journal of Environmental Chemical Engineering, 8(4), 103978. https://doi.org/10.1016/j.jece.2020.103978Saber, A., Hasheminejad, H., Taebi, A., & Ghaffari, G. (2014). Optimization of Fenton-based treatment of petroleum refinery wastewater with scrap iron using response surface methodology. Applied Water Science, 4(3), 283–290. https://doi.org/10.1007/s13201-013-0144-8Sahu, O., Mazumdar, B., & Chaudhari, P. K. (2014). Treatment of wastewater by electrocoagulation: A review. Environmental Science and Pollution Research, 21(4), 2397–2413. https://doi.org/10.1007/s11356-013-2208-6Shahedi, A., Darban, A. K., Taghipour, F., & Jamshidi-Zanjani, A. (2020). A review on industrial wastewater treatment via electrocoagulation processes. Current Opinion in Electrochemistry, 22(June), 154–169. https://doi.org/10.1016/j.coelec.2020.05.009Shahriari, T., Karbassi, A. R., & Reyhani, M. (2019). Treatment of oil refinery wastewater by electrocoagulation–flocculation (Case Study: Shazand Oil Refinery of Arak). International Journal of Environmental Science and Technology, 16(8), 4159–4166. https://doi.org/10.1007/s13762-018-1810-zSharma, G., Choi, J., Shon, H. K., & Phuntsho, S. (2011). Solar-powered electrocoagulation system for water and wastewater treatment. Desalination and Water Treatment, 32(1–3), 381–388. https://doi.org/10.5004/dwt.2011.2756Shokri, A., & Fard, M. S. (2022). A critical review in electrocoagulation technology applied for oil removal in industrial wastewater. Chemosphere, 288(P2), 132355. https://doi.org/10.1016/j.chemosphere.2021.132355Singh, B., & Kumar, P. (2020). Pre-treatment of petroleum refinery wastewater by coagulation and flocculation using mixed coagulant: Optimization of process parameters using response surface methodology (RSM). Journal of Water Process Engineering, 36(April), 101317. https://doi.org/10.1016/j.jwpe.2020.101317Speight, J. . (2015). Production, Subsea and Deepwater Oil and Gas Science and Technology. Gulf Professional Publishing. https://doi.org/10.1016/B978-1-85617-558-6/00006-4Stewart, M., & Arnold, K. (2009). Produced Water Treating Systems. Emulsions and Oil Treating Equipment, 107–211. https://doi.org/10.1016/b978-0-7506-8970-0.00003-7Sudharsan, J., Agarwal, M., & Kudapa, V. K. (2020). Nanotechnology for a green - Proficient disposal of oilfield produced water. Materials Today: Proceedings, 46, 3341–3345. https://doi.org/10.1016/j.matpr.2020.11.475SUN, L., WU, X., ZHOU, W., LI, X., & HAN, P. (2018). Technologies of enhancing oil recovery by chemical flooding in Daqing Oilfield, NE China. Petroleum Exploration and Development, 45(4), 673–684. https://doi.org/10.1016/S1876-3804(18)30071-5Sun, Y., Liu, Y., Chen, J., Huang, Y., Lu, H., Yuan, W., Yang, Q., Hu, J., Yu, B., Wang, D., Xu, W., & Wang, H. (2021). Physical pretreatment of petroleum refinery wastewater instead of chemicals addition for collaborative removal of oil and suspended solids. Journal of Cleaner Production, 278, 123821. https://doi.org/10.1016/j.jclepro.2020.123821Tahreen, A., Jami, M. S., & Ali, F. (2020). Role of electrocoagulation in wastewater treatment: A developmental review. Journal of Water Process Engineering, 37(May), 101440. https://doi.org/10.1016/j.jwpe.2020.101440Tak, B. yul, Tak, B. sik, Kim, Y. ju, Park, Y. jin, Yoon, Y. hun, & Min, G. ho. (2015). Optimization of color and COD removal from livestock wastewater by electrocoagulation process: Application of Box-Behnken design (BBD). Journal of Industrial and Engineering Chemistry, 28, 307–315. https://doi.org/10.1016/j.jiec.2015.03.008Tanzim, F., Subeshan, B., & Asmatulu, R. (2022). Improving the saline water evaporation rates using highly conductive carbonaceous materials under infrared light for improved freshwater production. Desalination, 531(December 2021), 115710. https://doi.org/10.1016/j.desal.2022.115710Tchobanoglus, G., Burton, F., & Stensel, H. D. (2003). Wastewater Engineering. In Notes and Queries (Vol. 179, Issue 18, p. 1878). Mc Graw Hill. https://doi.org/10.1093/nq/179.18.317-aTejada tovar, C. nahir, Villabona Ortíz, A., & Contreras Amaya, R. (2021). Electrocoagulation as an Alternative for the Removal of Chromium (VI) in Solution. Tecnura, 25(68), 28–42. https://doi.org/10.14483/22487638.17088Tirado, L., Gökkuş, Ö., Brillas, E., & Sirés, I. (2018). Treatment of cheese whey wastewater by combined electrochemical processes. Journal of Applied Electrochemistry, 48(12), 1307–1319. https://doi.org/10.1007/s10800-018-1218-yTounsi, H., Chaabane, T., Omine, K., Sivasankar, V., Sano, H., Hecini, M., & Darchen, A. (2022). Journal of Water Process Engineering Electrocoagulation in the dual application on the simultaneous removal of fluoride and nitrate anions through respective adsorption / reduction processes and modelling of continuous process. Journal of Water Process Engineering, 46(January), 102584. https://doi.org/10.1016/j.jwpe.2022.102584Treviño-Reséndez, J. de J., Medel, A., & Meas, Y. (2021). Electrochemical technologies for treating petroleum industry wastewater. Current Opinion in Electrochemistry, 27, 100690. https://doi.org/10.1016/j.coelec.2021.100690Ulucan, K., Kabuk, H. A., Ilhan, F., & Kurt, U. (2014). Electrocoagulation process application in bilge water treatment using response surface methodology. International Journal of Electrochemical Science, 9(5), 2316–2326.UNESCO. (2021). The United Nations World Water Development Report. In Water Politics. UNESCO. https://doi.org/10.4324/9780429453571-2UPME, U. de P. M.-E. (2022). Informe de proyección de Demanda de Energéticos.Vásquez-Lavín, F., Vargas O, L., Hernández, J. I., & Ponce Oliva, R. D. (2020). Water demand in the Chilean manufacturing industry: Analysis of the economic value of water and demand elasticities. Water Resources and Economics, 32(May 2018). https://doi.org/10.1016/j.wre.2020.100159Vepsäläinen, M., & Sillanpää, M. (2020a). Advanced water treatment: Electrochemical methods (M. Sillanpää (Ed.)). Susan Dennis.Vepsäläinen, M., & Sillanpää, M. (2020b). Electrocoagulation in the treatment of industrial waters and wastewaters. In Advanced Water Treatment: Electrochemical Methods. Elsevier Inc. https://doi.org/10.1016/B978-0-12-819227-6.00001-2Yavuz, Y., & Ögütveren, B. (2018). Treatment of industrial estate wastewater by the application of electrocoagulation process using iron electrodes. Journal of Environmental Management, 207, 151–158. https://doi.org/10.1016/j.jenvman.2017.11.034Yavuz, Yusuf, Koparal, A. S., & Öǧütveren, Ü. B. (2010). Treatment of petroleum refinery wastewater by electrochemical methods. Desalination, 258(1–3), 201–205. https://doi.org/10.1016/j.desal.2010.03.013Yu, L., Han, M., & He, F. (2017). A review of treating oily wastewater. Arabian Journal of Chemistry, 10, S1913–S1922. https://doi.org/10.1016/j.arabjc.2013.07.020Zaied, B. K., Rashid, M., Nasrullah, M., Zularisam, A. W., Pant, D., & Singh, L. (2020). A comprehensive review on contaminants removal from pharmaceutical wastewater by electrocoagulation process. Science of the Total Environment, 726, 138095. https://doi.org/10.1016/j.scitotenv.2020.138095Zaied, M., & Bellakhal, N. (2009). Electrocoagulation treatment of black liquor from paper industry. Journal of Hazardous Materials, 163(2–3), 995–1000. https://doi.org/10.1016/j.jhazmat.2008.07.115Zerbatto, M., Carrera, E., Eliggi, M., Modini, L., Vaira, S., Noseda, J., & Abramovich, B. (2009). Cloruro férrico para la coagulación optimizada y remoción de enteroparasitos en agua. Asociación de Universidades. Grupo Montevideo. Augm _Domus, 1, 18–26. https://revistas.unlp.edu.ar/domus/article/view/73Zhao, S., Huang, G., Cheng, G., Wang, Y., & Fu, H. (2014). Hardness, COD and turbidity removals from produced water by electrocoagulation pretreatment prior to reverse osmosis membranes. Desalination, 344, 454–462. https://doi.org/10.1016/j.desal.2014.04.014Zheng, T. (2017). Treatment of oilfield produced water with electrocoagulation: Improving the process performance by using pulse current. Journal of Water Reuse and Desalination, 7(3), 378–386. https://doi.org/10.2166/wrd.2016.113Zhou, M., Oturan, M. A., & Sires, I. (2018). Electro- Fenton: New Trends and Scale-Up.Proyecto MEGIA, "Modelo multiEscala de Gestión Integral del Agua con análisis de incertidumbre de la información para la realización de la evaluación ambiental estratégica (eae) del subsector de hidrocarburos en el Valle Medio del Magdalena"InvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/82446/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINALTesis de maestría_AC.pdfTesis de maestría_AC.pdfTesis de Maestría en Ingeniería Ambientalapplication/pdf5504399https://repositorio.unal.edu.co/bitstream/unal/82446/2/Tesis%20de%20maestr%c3%ada_AC.pdfcbb75c16b4c258252feb43ec3283b9f1MD52THUMBNAILTesis de maestría_AC.pdf.jpgTesis de maestría_AC.pdf.jpgGenerated Thumbnailimage/jpeg5558https://repositorio.unal.edu.co/bitstream/unal/82446/3/Tesis%20de%20maestr%c3%ada_AC.pdf.jpgc7925c6ca31e6e8bde75c8525f2b691cMD53unal/82446oai:repositorio.unal.edu.co:unal/824462023-08-10 23:03:41.738Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=