Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación

Ilustraciones, tablas

Autores:
Narváez Legarda, Maira Alejandra
Tipo de recurso:
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/80080
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/80080
https://repositorio.unal.edu.co/
Palabra clave:
620 - Ingeniería y operaciones afines
Escoria de plomo secundario
Estabilización
Solidificación
Vitrificación
Residuos peligrosos
Secondary lead slag
Stabilization
Solidification
Vitrification
Hazardous waste
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_dae3b3cce1e6e1c2c6e9e83163c932fd
oai_identifier_str oai:repositorio.unal.edu.co:unal/80080
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación
dc.title.translated.eng.fl_str_mv Reduction of the hazardousness of a secondary lead slag through a vitrification process
title Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación
spellingShingle Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación
620 - Ingeniería y operaciones afines
Escoria de plomo secundario
Estabilización
Solidificación
Vitrificación
Residuos peligrosos
Secondary lead slag
Stabilization
Solidification
Vitrification
Hazardous waste
title_short Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación
title_full Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación
title_fullStr Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación
title_full_unstemmed Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación
title_sort Reducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificación
dc.creator.fl_str_mv Narváez Legarda, Maira Alejandra
dc.contributor.advisor.none.fl_str_mv Torres Agredo, Janneth
dc.contributor.author.none.fl_str_mv Narváez Legarda, Maira Alejandra
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación: Materiales y Medio Ambiente (GIMMA)
dc.subject.ddc.spa.fl_str_mv 620 - Ingeniería y operaciones afines
topic 620 - Ingeniería y operaciones afines
Escoria de plomo secundario
Estabilización
Solidificación
Vitrificación
Residuos peligrosos
Secondary lead slag
Stabilization
Solidification
Vitrification
Hazardous waste
dc.subject.proposal.spa.fl_str_mv Escoria de plomo secundario
Estabilización
Solidificación
Vitrificación
Residuos peligrosos
dc.subject.proposal.eng.fl_str_mv Secondary lead slag
Stabilization
Solidification
Vitrification
Hazardous waste
description Ilustraciones, tablas
publishDate 2020
dc.date.issued.none.fl_str_mv 2020
dc.date.accessioned.none.fl_str_mv 2021-09-02T15:40:52Z
dc.date.available.none.fl_str_mv 2021-09-02T15:40:52Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/80080
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/80080
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Abdelghany, A. M., Elbatal, F. H., Elbatal, H. A., & EzzElDin, F. M. (2014). Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation - A comparative study. Journal of Molecular Structure, 1074, 503-510. https://doi.org/10.1016/j.molstruc.2014.06.011
AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). (2003). Standard Test Method for Microindentation Hardness of Materials (E - 384). Recuperado de https://www.astm.org/Standards/E384
Arancibia, J. R. H., Alfonso, P., García-Valles, M., Martínez, S., Parcerisa, D., Canet, C., & Romero, F. M. (2013). Obtención de vidrio a partir de residuos de la minería del estaño en Bolivia. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 52(3), 143-150. https://doi.org/10.3989/cyv.192013
Avancini, T. G., Souza, M. T., de Oliveira, A. P. N., Arcaro, S., & Alves, A. K. (2019). Magnetic properties of magnetite-based nano-glass-ceramics obtained from a Fe-rich scale and borosilicate glass wastes. Ceramics International, 45(4), 4360-4367. https://doi.org/10.1016/j.ceramint.2018.11.111
Baino, F., & Ferraris, M. (2019). Production and characterization of ceramic foams derived from vitrified bottom ashes. Materials Letters, 236, 281-284. https://doi.org/10.1016/j.matlet.2018.10.122
Bandow, N., Gartiser, S., Ilvonen, O., & Schoknecht, U. (2018, diciembre 1). Evaluation of the impact of construction products on the environment by leaching of possibly hazardous substances. Environmental Sciences Europe. Springer Verlag. https://doi.org/10.1186/s12302-018-0144-2
Barbieri, L., Corradi Bonamartini, A., & Lancellotti, I. (2000). Alkaline and alkaline-earth silicate glasses and glass-ceramics from municipal and industrial wastes. Journal of the European Ceramic Society, 20(14-15), 2477-2483. https://doi.org/10.1016/S0955-2219(00)00124-2
Barbieria, L., Lancellotti, I., Manfredini, T., Queralt, I., Rincon, J., & Romero, M. (1999). Design, obtainment and properties of glasses and glass–ceramics from coal fly ash. Fuel, 78(2)
Barlet, M., Delaye, J. M., Charpentier, T., Gennisson, M., Bonamy, D., Rouxel, T., & Rountree, C. L. (2015). Hardness and toughness of sodium borosilicate glasses via Vickers’s indentations. Journal of Non-Crystalline Solids, 417-418, 66-79. https://doi.org/10.1016/j.jnoncrysol.2015.02.005
Belostotsky, V. (2007). Defect model for the mixed mobile ion effect. Journal of Non-Crystalline Solids, 353(11-12), 1078-1090. https://doi.org/10.1016/j.jnoncrysol.2006.12.027
Benoit, M., Ispas, S., & Tuckerman, M. E. (2001). Structural properties of molten silicates from ab initio molecular-dynamics simulations: comparison between Typeset using REVT E X 1
Bernardo, E., Scarinci, G., & Colombo, P. (2012). Vitrification waste vitrification of Waste Waste and Reuse waste-derived glass reuse of Waste-Derived Glass waste-derived glass. En Encyclopedia of Sustainability Science and Technology (pp. 11581-11613). Springer New York. https://doi.org/10.1007/978-1-4419-0851-3_96
Binhussain, M. A., Marangoni, M., Bernardo, E., & Colombo, P. (2014). Sintered and glazed glass-ceramics from natural and waste raw materials. Ceramics International, 40(2), 3543-3551. https://doi.org/10.1016/j.ceramint.2013.09.074
Castells, X. E. (2009). Reciclaje de residuos industriales. (Ediciones Diaz de Santos, Ed.)
CCA. (2016). Manejo ambientalmente adecuado de baterías de plomo-ácido usadas en América del Norte: directrices técnicas. Montreal: Comsión para la Cooperación Ambiental. Recuperado de http://www3.cec.org/islandora/en/item/11665-environmentally-sound-management-spent-lead-acid-batteries-in-north-america
Chen, C., Xie, W., Li, X., Yang, Q., Zhong, Z., Chen, X., … Zhong, Y. (2015). Solidification/Stabilization of Pb and Zn in tailing waste using cement, fly ash and quick lime. Envron.Chem., 34, 1553,1560
Chinnam, R. K., Francis, A. A., Will, J., Bernardo, E., & Boccaccini, A. R. (2013). Review. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. Journal of Non-Crystalline Solids, 365(1), 63-74. https://doi.org/10.1016/j.jnoncrysol.2012.12.006
Chou, I. C., Wang, Y. F., Chang, C. P., Wang, C. T., & Kuo, Y. M. (2011). Effect of NaOH on the vitrification process of waste Ni-Cr sludge. Journal of Hazardous Materials, 185(2-3), 1522-1527. https://doi.org/10.1016/j.jhazmat.2010.10.079
Colombo, P., Brusatin, G., Bernardo, E., & Scarinci, G. (2003). Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Current Opinion in Solid State and Materials Science, 7(3), 225-239. https://doi.org/10.1016/j.cossms.2003.08.002
Conde, C. S. (1968). La Espectroscopia Infrarroja en el campo del vidrio. En Conferencia pronunciada en la I Reunión Técnica de la Sección de Vidrio. Sociedad Española de Cerámica. Madrid
Çoruh, S., & Ergun, O. N. (2006). Leaching characteristics of copper flotation waste before and after vitrification. Journal of Environmental Management, 81(4), 333-338. https://doi.org/10.1016/j.jenvman.2005.11.006
Coya, B., Marañon, E., & Sastre, H. (2000). Ecotoxicity assessment of slag generated in the process of recycling lead from waste batteries. Resources, Conservation and Recycling, 29, 291-300
Dantas, N. O., Ayta, W. E. F., Silva, A. C. A., Cano, N. F., Silva, S. W., & Morais, P. C. (2011a). Effect of Fe2O3 concentration on the structure of the SiO2-Na2O-Al2O3-B2O 3 glass system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 81(1), 140-143. https://doi.org/10.1016/j.saa.2011.05.074
Dantas, N. O., Ayta, W. E. F., Silva, A. C. A., Cano, N. F., Silva, S. W., & Morais, P. C. (2011b). Effect of Fe2O3 concentration on the structure of the SiO2-Na2O-Al2O3-B2O 3 glass system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 81(1), 140-143. https://doi.org/10.1016/j.saa.2011.05.074
De’an Pan, S. G. Zhang, H. B. Bao, B. Guo, B. L. (2015). Method for preparing hedenbergite glass ceramics by using lead slag
De Angelis, G., Medici, F., Montereali, M. R., & Pietrelli, L. (2002). Reuse of residues arising from lead batteries recycle : a feasibility study. Waste Management, 22, 925-930
Deng, A., & Tikalsky, P. J. (2008). Geotechnical and leaching properties of flowable fill incorporating waste foundry sand. Waste Management, 28(11), 2161-2170. https://doi.org/10.1016/j.wasman.2007.09.018
ElBatal, H. A., Hassaan, M. Y., Fanny, M. A., & Ibrahim, M. M. (2017). ‘Optical and FT Infrared Absorption Spectra of Soda Lime Silicate Glasses Containing nano Fe2O3 and Effects of Gamma Irradiation. Silicon, 9(4), 511-517. https://doi.org/10.1007/s12633-014-9262-7
Ellis, T. W., & Mirza, A. H. (2010). The refining of secondary lead for use in advanced lead-acid batteries. Journal of Power Sources, 195(14), 4525-4529. https://doi.org/10.1016/j.jpowsour.2009.12.118
Environmental Protection Agency (EPA). (1992). Handbook Vitrification Technologies for Treatment of Hazardous and Radioactive Waste
Eremyashev, V. E., Osipov, A. A., & Osipova, L. M. (2011). Borosilicate glass structure with rare-earth-metal cations substituted for sodium cations. Glass and Ceramics (English translation of Steklo i Keramika), 68(7-8), 205-208. https://doi.org/10.1007/s10717-011-9353-5
Ettler, V., & Johan, Z. (2014). 12years of leaching of contaminants from Pb smelter slags: Geochemical/mineralogical controls and slag recycling potential. Applied Geochemistry, 40, 97-103. https://doi.org/10.1016/j.apgeochem.2013.11.001
European Waste Catalogue(EWC). (2000). Recuperado de http://www.epa.ie
Fan, W., Liu, B., Luo, X., Yang, J., Guo, B., & Zhang, S.-G. (2019). Production of glass–ceramics using Municipal solid waste incineration fly ash. Rare Metals, 38(3)
Forero Cardenas, B. (2016). VITRIFICACIÓN DE LOS CONTENIDOS INTERNOS DE PILAS DESECHADAS DEL TIPO Li-ION: UNA OPCIÓN DE RECICLAJE. Universidad Industrial de Santander. Recuperado de http://tangara.uis.edu.co/biblioweb/tesis/2016/165533.pdf
Forte, F., Horckmans, L., Broos, K., Kim, E., Kukurugya, F., & Binnemans, K. (2017). Closed-loop solvometallurgical process for recovery of lead from iron-rich secondary lead smelter residues. RSC Advances, 7(79), 49999-50005. https://doi.org/10.1039/c7ra09150h
Frost, & Sullivan. (2019). Global Waste Recycling and Circular Economy Market Outlook, 2019. Recuperado 8 de agosto de 2020, de https://www.researchandmarkets.com/reports/4790940/global-waste-recycling-and-circular-economy?utm_source=CI&utm_medium=PressRelease&utm_code=t3ct42&utm_campaign=1271936+-+Global+Waste+Recycling+and+Circular+Economy+Markets+2019%3A+Opportunities+in+Effect
Gao, J., Dong, C., Zhao, Y., Hu, X., Qin, W., Wang, X., … Zhang, X. (2020). Vitrification of municipal solid waste incineration fly ash with B2O3 as a fluxing agent. Waste Management, 102, 932-938. https://doi.org/10.1016/j.wasman.2019.12.012
Garibaldi, L. A., Oddi, F. J., Aristimuño, F. J., & Behnisch, A. N. (2019). Modelos estadísticos en lenguaje R. Editorial UNRN, 264
Gomes, G. M. F., Mendes, T. F., & Wada, K. (2011). Reduction in toxicity and generation of slag in secondary lead process. Journal of Cleaner Production, 19(9-10), 1096-1103. https://doi.org/10.1016/j.jclepro.2011.01.006
Gomes, V., De Borba, C. D. G., & Riella, H. G. (2002). Production and characterization of glass ceramics from steelwork slag. Journal of Materials Science, 37(12), 2581-2585. https://doi.org/10.1023/A:1015468329645
Gougar, M. L. D., Scheetz, B. E., & Roy, D. M. (1996). Ettringite and C-S-H portland cement phases for waste ion immobilization: A review. Waste Management. Elsevier Science Inc. https://doi.org/10.1016/S0956-053X(96)00072-4
Gulson, B. L., Mizon, K. J., Davis, J. D., Palmer, J. M., & Vimpani, G. (2004). Identification of sources of lead in children in a primary zinc-lead smelter environment. Environmental Health Perspectives, 112(1), 52-60. https://doi.org/10.1289/ehp.6465
Guzmán-Carrillo, H. R., Pérez, J. M., Aguilar Reyes, E. A., & Romero, M. (2018). Coal fly ash and steel slag valorisation throughout a vitrification process. International Journal of Environmental Science and Technology, 15(8). https://doi.org/10.1007/s13762-017-1542-5
Hreglich, S., Falcone, R., Nassetti, G., & Gattelli, G. (2008). Inertisation of slags from the treatment of end of life automotive batteries and their reuse in the production of heavy clay products with soundproofing properties. Glass Technology-European Journal of Glass Science and Technology Part A, 49(6), 313-316
Hühn, C., Wondraczek, L., & Sierka, M. (2015). Dynamics of ultrathin gold layers on vitreous silica probed by density functional theory. Physical Chemistry Chemical Physics, 17(41), 27488-27496. https://doi.org/10.1039/c5cp04803f
Ibrahim, S., Gomaa, M. M., & Darwish, H. (2014). Influence of Fe2O3 on the physical, structural and electrical properties of sodium lead borate glasses. Journal of Advanced Ceramics, 3(2), 155-164. https://doi.org/10.1007/s40145-014-0107-z
IDEAM. (2018). Informe Nacional de Residuos o Desechos Peligrosos en Colombia 2017. Bogotá. Recuperado de http://documentacion.ideam.gov.co/openbiblio/bvirtual/023849/Informe_RESPEL_2017.pdf
Iloh, P., Fanourakis, G., Ogra, A., Iloh, P., Fanourakis, G., & Ogra, A. (2019). Evaluation of Physical and Chemical Properties of South African Waste Foundry Sand (WFS) for Concrete Use. Sustainability, 11(1), 193. https://doi.org/10.3390/su11010193
Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). Resolución No. 0062, Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligrosos en el país (2005). Colombia
Instituto de Investigaciones Tecnológicas. (1980). IIT tecnologia, Números 123-124 . Bogotá, Colombia. Recuperado de https://books.google.com.co/books?id=ZDoqAQAAIAAJ&q=area+superficial+incrementa+con+menor+tamaño+de+particula&dq=area+superficial+incrementa+con+menor+tamaño+de+particula&hl=es&sa=X&ved=2ahUKEwj44t-qhejuAhXoRDABHQriCaQQ6AEwA3oECAkQAg
INTERGLAD. (2009). International glass database
International Lead Association. (2012). Lead Uses - Statistics. Recuperado 2 de abril de 2019, de https://www.ila-lead.org/lead-facts/lead-uses--statistics
Iwaszko, J., Zajemska, M., Zawada, A., Szwaja, S., & Poskart, A. (2020). Vitrification of environmentally harmful by-products from biomass torrefaction process. Journal of Cleaner Production, 249, 119427. https://doi.org/10.1016/j.jclepro.2019.119427
Karamanov, A., Aloisi, M., & Pelino, M. (2007). Vitrification of copper flotation waste. Journal of Hazardous Materials, 140(1-2), 333-339. https://doi.org/10.1016/j.jhazmat.2006.09.040
Karamberi, A., & Moutsatsou, A. (2006). Vitrification of lignite fly ash and metal slags for the production of glass and glass ceramics. China Particuology, 4(5), 250-253. https://doi.org/10.1016/S1672-2515(07)60269-3
Karmakar, B. (2017). Functional glasses ad glass-ceramics from solid waste materials. En Functional Glasses and Glass-Ceramics (pp. 295-315). https://doi.org/10.1016/B978-0-12-805056-9.00009-X
Kavouras, P., Kaimakamis, G., Ioannidis, T. A., Kehagias, T., Komninou, P., Kokkou, S., … Karakostas, T. (2003). Vitrification of lead-rich solid ashes from incineration of hazardous industrial wastes. Waste Management, 23(4), 361-371. https://doi.org/10.1016/S0956-053X(02)00153-8
Khater, G. A. (2002). The use of Saudi slag for the production of glass-ceramic materials. Ceramics International, 28(1), 59-67
Kim, E., Horckmans, L., Spooren, J., Vrancken, K. C., Quaghebeur, M., & Broos, K. (2020). Selective leaching of Pb , Cu , Ni and Zn from secondary lead smelting residues. Hydrometallurgy, 169(2017), 372-381. https://doi.org/10.1016/j.hydromet.2017.02.027
Kim, Eunyoung, Horckmans, L., Spooren, J., Broos, K., Vrancken, K. C., & Quaghebeur, M. (2017). Recycling of a secondary lead smelting matte by selective citrate leaching of valuable metals and simultaneous recovery of hematite as a secondary resource. Hydrometallurgy, 169(2017), 290-296. https://doi.org/10.1016/j.hydromet.2017.02.007
Kim, Eunyoung, Roosen, J., Horckmans, L., Spooren, J., Broos, K., Binnemans, K., … Quaghebeur, M. (2017). Process development for hydrometallurgical recovery of valuable metals from sulfide-rich residue generated in a secondary lead smelter. Hydrometallurgy, 169(April 2017), 589-598. https://doi.org/10.1016/j.hydromet.2017.04.002
Kirkham, R. R., Tyler, S. W., & Gee, G. W. (1985). Analysis of leachate production in closed hazardous waste landfills. Recuperado de https://www.researchgate.net/publication/236570168_Analysis_of_leachate_production_in_closed_hazardous_waste_landfills
Kreusch, M. A., Ponte, M. J. J. S., Ponte, H. A., Kaminari, N. M. S., Marino, C. E. B., & Mymrin, V. (2007). Technological improvements in automotive battery recycling. Resources, Conservation and Recycling, 52(2), 368-380. https://doi.org/10.1016/j.resconrec.2007.05.004
Kuehl, R. O. (2001). Diseño de experimentos. Technometrics (2a ed., Vol. 43). https://doi.org/10.1198/tech.2001.s589
Kukurugya, F., Rahfeld, A., Möckel, R., Nielsen, P., Horckmans, L., Spooren, J., & Broos, K. (2018). Recovery of iron and lead from a secondary lead smelter matte by magnetic separation. Minerals Engineering, 122(February), 17-25. https://doi.org/10.1016/j.mineng.2018.03.030
Kumpiene, J., Nordmark, D., Hamberg, R., Carabante, I., Simanavičienė, R., & Aksamitauskas, V. Č. (2016). Leaching of arsenic, copper and chromium from thermally treated soil. Journal of Environmental Management, 183, 460-466. https://doi.org/10.1016/j.jenvman.2016.08.080
Kuo, Y.-M. (2014). Role of sodium ions in the vitrification process: Glass matrix modification, slag structure depolymerization, and influence of metal immobilization. Journal of the Air & Waste Management Association, 64(7), 774-784. https://doi.org/10.1080/10962247.2014.884026
Kuo, Y. M., Wang, J. W., & Tsai, C. H. (2007). Encapsulation behaviors of metals in slags containing various amorphous volume fractions. Journal of the Air and Waste Management Association, 57(7), 820-827. https://doi.org/10.3155/1047-3289.57.7.820
Lassin, A., Piantone, P., Burnol, A., Bodénan, F., Chateau, L., Lerouge, C., … Bailly, L. (2007). Reactivity of waste generated during lead recycling: An integrated study. Journal of Hazardous Materials, 139(3), 430-437. https://doi.org/10.1016/j.jhazmat.2006.02.055
Lei, C., Yan, B., Chen, T., & Xiao, X.-M. (2017). Recovery of metals from the roasted lead-zinc tailings by magnetizing roasting followed by magnetic separation. Journal of Cleaner Production, 158, 73-80. https://doi.org/10.1016/j.jclepro.2017.04.164
Lewis, A. E., & Hugo, A. (2000). Characterization and batch testing of a secondary lead slag. J. South African Inst. Min. Metall., 100(6), 365-370. Recuperado de http://www.scopus.com/inward/record.url?eid=2-s2.0-0348201961&partnerID=tZOtx3y1
Li, M., Liu, J., & Han, W. (2016, abril 3). Recycling and management of waste lead-acid batteries: A mini-review. Waste Management and Research. SAGE Publications Ltd. https://doi.org/10.1177/0734242X16633773
Li, Y., Yang, S., Taskinen, P., He, J., Chen, Y., Tang, C., & Jokilaakso, A. (2019). Recycling of Spent Lead-Acid Battery for Lead Extraction with Sulfur Conservation. JOM, 1-9. https://doi.org/10.1007/s11837-019-03885-y
Liu, M., Iizuka, A., & Shibata, E. (2019). Effect of Temperature on Phase Transformation and Leaching Behavior of Acid Mine Drainage Sludge. MATERIALS TRANSACTIONS, 60(1), 61-67. https://doi.org/10.2320/MATERTRANS.M-M2018848
Madaleno, M. (2018). Environmental Pollution, Waste Generation and Human Health. Biomedical Journal of Scientific & Technical Research, 8(4), 71-73. https://doi.org/10.26717/bjstr.2018.08.001671
Malki, M., Echegut, P., Bessada, C., & Nuta, I. (2005). Structure and properties of glasses obtained by recycling of secondary lead from acid plants. Glass Technology, 46(4), 305-310
Ministerio de Ambiente Vivienda y Desarrollo Sostenible. (2005). Politica ambiental para la gestión integral de residuos o desechos peligrosos. Recuperado de http://www.ideam.gov.co/documents/51310/526371/POLITICA+AMBIENTAL+PARA+LA+GESTION+INTEGRAL+DE+RESPEL.pdf/fb42059d-77ec-423b-8306-960dee6bb9c6
Ministerio de Ambiente Vivienda y Desarrollo Territorial. Decreto 4741, Por el cual se reglamenta parcialmente la prevención y manejo de los residuos o desechos peligrosos generados en el marco de la gestión integral (2005). Colombia
Naik;, T. R., Singh;, S. S., & Ramme, B. W. (2001). Performance and Leaching Assessment of Flowable Slurry. Transportation Research Record: Journal of the Transportation Research Board, (April), 359-368
Narváez, M. A., Mosquera, L. F., & Torres Agredo, J. (2020). Evaluación de las características de un residuo de la industria del vidrio para encapsular materiales peligrosos. Revista UIS Ingenierías, 19(2), 43-50. https://doi.org/10.18273/revuin.v19n2-2020005
Pan, D., Li, L., Tian, X., Wu, Y., Cheng, N., & Yu, H. (2019). A review on lead slag generation, characteristics, and utilization. Resources, Conservation and Recycling, 146(August 2018), 140-155. https://doi.org/10.1016/j.resconrec.2019.03.036
Pan, D., Li, L., Wu, Y., Liu, T., & Yu, H. (2018). Characteristics and properties of glass-ceramics using lead fuming slag. Journal of Cleaner Production, 175, 251-256. https://doi.org/10.1016/j.jclepro.2017.12.030
Pan, J., Zhang, C., Sun, Y., Wang, Z., & Yang, Y. (2012). A new process of lead recovery from waste lead-acid batteries by electrolysis of alkaline lead oxide solution. Electrochemistry Communications, 19(1), 70-72. https://doi.org/10.1016/j.elecom.2012.03.028
Papamarkou, S., Christopoulos, D., Tsakiridis, P. E., Bartzas, G., & Tsakalakis, K. (2018). Vitrified medical wastes bottom ash in cement clinkerization. Microstructural, hydration and leaching characteristics. Science of the Total Environment, 635. https://doi.org/10.1016/j.scitotenv.2018.04.178
Park, Y. J., & Heo, J. (2002). Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling. Ceramics International, 28(6), 689-694. https://doi.org/10.1016/S0272-8842(02)00030-5
Pavelka, C., Loehr, R. C., & Haikola, B. (1993). Hazardous waste landfill leachate characteristics. Waste Management, 13(8), 573-580. https://doi.org/10.1016/0956-053X(93)90017-Q
Pelino, M. (2000). Recycling of zinc-hydrometallurgy wastes in glass and glass ceramic materials. Waste Management, 20(7), 561-568. https://doi.org/10.1016/S0956-053X(00)00002-7
Pelino, M., Karamanov, A., Pisciella, P., Crisucci, S., & Zonetti, D. (2002). Vitrification of electric arc furnace dusts. Waste Management, 22(8), 945-949. https://doi.org/10.1016/S0956-053X(02)00080-6
Penpolcharoen, M. (2005). Utilization of secondary lead slag as construction material. Cement and Concrete Research, 35(6), 1050-1055. https://doi.org/10.1016/j.cemconres.2004.11.001
Prengaman, R. D., & Mirza, A. H. (2017). Recycling concepts for lead-acid batteries. En Lead-Acid Batteries for Future Automobiles (pp. 575-598). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63700-0.00020-9
Ravindran, R., Hassan, S., Williams, G., Jaiswal, A., Ravindran, R., Hassan, S. S., … Jaiswal, A. K. (2018). A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering, 5(4), 93. https://doi.org/10.3390/bioengineering5040093
RESOLUCION No. 0062 del Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). RESOLUCION No. 0062 (2007). Colombia
Rincón, J. M., & Romero, M. (1996). Glass-ceramics as building materials. Materiales de Construccion, 1996(242-243), 91-106. https://doi.org/10.3989/mc.1996.v46.i242-243.532
Rodrigues, P., Silvestre, J. D., Flores-Colen, I., Viegas, C. A., De Brito, J., Kurad, R., … Zhao, Q. (2017). Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials. https://doi.org/10.3390/ma10060649
Romero, M., & Rincón, J. M. (2002). Preparation and properties of high iron oxide content glasses obtained from industrial wastes. Journal of the European Ceramic Society, 18(2), 153-160. https://doi.org/10.1016/s0955-2219(97)00102-7
Saenz, F. (2006). Estudio preliminar del proceso de vitrificación de residuos peligrosos por vía térmica. Universidad de los Andes
Saikia, N., Borah, R. R., Konwar, K., & Vandecastelee, C. (2018). pH dependent leachings of some trace metals and metalloid species from lead smelter slag and their fate in natural geochemical environment. Groundwater for Sustainable Development, 7, 348-358. https://doi.org/10.1016/j.gsd.2018.01.009
Sánchez Torres, Luís Darío Sánchez, A., Galvis, G., & Latorre, J. (2007). Filtración en Múltiples Etapas. Documento de Revisión Técnica 15. IRC - Centro Internacional de Agua y Saneamiento
Scannell, G., Laille, D., Célarié, F., Huang, L., & Rouxel, T. (2017). Interaction between deformation and crack initiation under vickers indentation in Na 2 O-TiO 2 -SiO 2 glasses. Frontiers in Materials, 4. https://doi.org/10.3389/fmats.2017.00006
Seignez, N., Gauthier, A., Bulteel, D., Damidot, D., & Potdevin, J.-L. (2008). Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions. Applied Geochemistry, 23(12), 3699-3711. https://doi.org/10.1016/j.apgeochem.2008.09.009
Singh, J., Laurenti, R., Sinha, R., & Frostell, B. (2014). Progress and challenges to the global waste management system. Waste Management and Research, 32(9), 800-812. https://doi.org/10.1177/0734242X14537868
Smaniotto, A., Antunes, A., Filho, I. do N., Venquiaruto, L. D., de Oliveira, D., Mossi, A., … Dallago, R. (2009). Qualitative lead extraction from recycled lead-acid batteries slag. Journal of Hazardous Materials, 172(2-3), 1677-1680. https://doi.org/10.1016/j.jhazmat.2009.07.026
Sørensen, M. A., Bender Koch, C., Stackpoole, M. M., Bordia, R. K., Benjamin, M. M., & Christensen, T. H. (2000). Effects of Thermal Treatment on Mineralogy and Heavy Metal Behavior in Iron Oxide Stabilized Air Pollution Control Residues, 34(21), 4620-4627. https://doi.org/10.1021/es0009830
Stabile, P., Bello, M., Petrelli, M., Paris, E., & Carroll, M. R. (2019). Vitrification treatment of municipal solid waste bottom ash. Waste Management, 95, 250-258. https://doi.org/10.1016/j.wasman.2019.06.021
Štulović, M., Radovanović, D., Kamberović, Ž., Korać, M., & Anđić, Z. (2019). Assessment of Leaching Characteristics of Solidified Products Containing Secondary Alkaline Lead Slag. International Journal of Environmental Research and Public Health, 16(11), 2005. https://doi.org/10.3390/ijerph16112005
Tian, X., Wu, Y., Gong, Y., & Zuo, T. (2015). The lead-acid battery industry in China: Outlook for production and recycling. Waste Management and Research, 33(11), 986-994. https://doi.org/10.1177/0734242X15602363
Tibet, Y., & Çoruh, S. (2017). Immobilisation and leaching performance of lead-acid batteries smelting slag using natural and waste materials. Global Nest Journal, 19(4), 562-573
Tsakalou, C., Papamarkou, S., Tsakiridis, P. E., Bartzas, G., & Tsakalakis, K. (2018). Characterization and leachability evaluation of medical wastes incineration fly and bottom ashes and their vitrification outgrowths. Journal of Environmental Chemical Engineering, 6(1). https://doi.org/10.1016/j.jece.2017.12.012
U.S. Environmental Protection Agency (EPA). (2009). Hazardous Waste Characteristics: A User-Friendly Reference Document. Recuperado de http://www.epa.gov/epawaste/wyl/stateprograms.htm
United States Environmental Protection Agency (US EPA), Test Method 1311: The Toxicity Characteristic Leaching Procedure. (1992)
Valderrama, D. M. A., Cuaspud, J. A. G., Roether, J. A., & Boccaccini, A. R. (2019). Development and characterization of glass-ceramics from combinations of slag, fly ash, and glass cullet without adding nucleating agents. Materials, 12(12). https://doi.org/10.3390/ma12122032
Xiao, Y., Oorsprong, M., Yang, Y., & Voncken, J. H. L. (2008). Vitrification of bottom ash from a municipal solid waste incinerator. Waste Management, 28(6), 1020-1026. https://doi.org/10.1016/j.wasman.2007.02.034
Yang, Y., Xiao, Y., Voncken, J. H. L., & Wilson, N. (2008). Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator. Journal of Hazardous Materials, 154(1-3), 871-879. https://doi.org/10.1016/j.jhazmat.2007.10.116
Zhao, Z. wen, Chai, L. yuan, Peng, B., Liang, Y. jie, He, Y., & Yan, Z. hao. (2017). Arsenic vitrification by copper slag based glass: Mechanism and stability studies. Journal of Non-Crystalline Solids, 466-467, 21-28. https://doi.org/10.1016/j.jnoncrysol.2017.03.039
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 79 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería y Administración
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/80080/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/80080/2/1113529656.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/80080/3/1113529656.2020.pdf.jpg
bitstream.checksum.fl_str_mv cccfe52f796b7c63423298c2d3365fc6
034e860d3214b05ab3f080eabaff9ac1
429f226b543866a4aa694c3d8d24f39e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089545148268544
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Torres Agredo, Janneth893540b17667537fb86dfa9cdbd11dd5Narváez Legarda, Maira Alejandra18634134a136c31e187b99746eb2b7feGrupo de Investigación: Materiales y Medio Ambiente (GIMMA)2021-09-02T15:40:52Z2021-09-02T15:40:52Z2020https://repositorio.unal.edu.co/handle/unal/80080Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasA partir de la problemática de generación y disposición inadecuada de residuos peligrosos, han surgido varios métodos de Estabilización/Solidificación entre los que se encuentra, la vitrificación; este método permite convertir un residuo peligroso en un vitrificado (vidrio), con menor o nula peligrosidad. Una empresa colombiana recupera plomo de baterías usadas de plomo-ácido, mediante fundición secundaria, donde se generan aproximadamente 500 toneladas mensuales de escoria de plomo secundario, residuo catalogado como peligroso por su contenido de metales lixiviables. El objetivo de este estudio fue reducir la peligrosidad de este residuo mediante el proceso de vitrificación, con el fin de facilitar su manejo y/o disposición. Para el desarrollo del estudio, inicialmente se caracterizó el residuo de interés, seguidamente, se llevó a cabo el proceso de vitrificación a nivel laboratorio, donde una mezcla de escoria, arena y carbonato de sodio (Na2CO3), se sometieron a 1000, 1100 y 1200ºC, durante 2 horas. A partir del proceso de vitrificación se encontró que a 1200ºC, se obtuvieron algunos vitrificados homogéneos y mayoritariamente amorfos, sin embargo, en algunas formulaciones se presentaron separaciones cristalinas. Según el análisis ambiental, el proceso de vitrificación fue efectivo, ya que se presentó una reducción significativa en la lixiviación de plomo, cumpliendo con los límites regulados. Además, se obtuvieron valores de dureza Vickers similares a los reportados para vidrios y vidrios cerámicos. Por consiguiente, este estudio aporta a la continuación de investigaciones en Colombia, sobre la aplicación de esta técnica de inertización de residuos peligrosos, especialmente los que se generan en gran cantidad como las escorias de fundición, de tal manera que se logre aprovechar el producto obtenido en diferentes aplicaciones, entre ellas, la industria de la construcción (Texto tomado de la fuente).Beginning with the problem of hazardous waste generation and inappropriate disposal, several methods of Stabilization/Solidification have emerged, among which is, vitrification; this method makes it possible to convert a hazardous waste into a vitrified product (glass), with less or no danger. A Colombian company recovers lead from used lead-acid batteries through secondary smelting, where approximately 500 tons of secondary lead slag are generated per month, which is classified as hazardous due to its leachable metal content. The objective of this study was to reduce the danger of this waste through the vitrification process, in order to facilitate its handling and/or disposal. To perform the study, the residue of interest was initially characterized, then vitrification process was carried out at laboratory scale , where a mixture of slag, sand and sodium carbonate (Na2CO3), were subjected to 1000, 1100 and 1200ºC, for 2 hours. As a result of the vitrification process, it was found that at 1200ºC it was possible to obtain some homogeneous and mostly amorphous vitrification, however in some formulations crystalline separations occurred. According to the environmental analysis, the vitrification process was effective, as there was a significant reduction in lead leaching, complying with the regulated limits. Finally, Vickers hardness values similar to those reported for glass and ceramic glasses were obtained. Consequently, this study contributes to the continuation of research in Colombia on the application of this technique of inertisation of hazardous waste, especially waste generated in large quantities such as foundry slag, in such a way that the product obtained can be used in different applications, including the construction industry.MaestríaMagíster en Ingeniería AmbientalA partir de la problemática de generación y disposición inadecuada de residuos peligrosos, han surgido varios métodos de Estabilización/Solidificación entre los que se encuentra, la vitrificación; este método permite convertir un residuo peligroso en un vitrificado (vidrio), con menor o nula peligrosidad. Inicialmente se caracterizó el residuo de interés, seguidamente, se llevó a cabo el proceso de vitrificación a nivel laboratorio, donde una mezcla de escoria, arena y carbonato de sodio (Na2CO3), se sometieron a 1000, 1100 y 1200ºC, durante 2 horasAprovechamiento de residuos industriales79 páginasapplication/pdfspaUniversidad Nacional de ColombiaPalmira - Ingeniería y Administración - Maestría en Ingeniería - Ingeniería AmbientalFacultad de Ingeniería y AdministraciónUniversidad Nacional de Colombia - Sede Palmira620 - Ingeniería y operaciones afinesEscoria de plomo secundarioEstabilizaciónSolidificaciónVitrificaciónResiduos peligrososSecondary lead slagStabilizationSolidificationVitrificationHazardous wasteReducción de la peligrosidad de una escoria de plomo secundario mediante un proceso de vitrificaciónReduction of the hazardousness of a secondary lead slag through a vitrification processTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TMAbdelghany, A. M., Elbatal, F. H., Elbatal, H. A., & EzzElDin, F. M. (2014). Optical and FTIR structural studies of CoO-doped sodium borate, sodium silicate and sodium phosphate glasses and effects of gamma irradiation - A comparative study. Journal of Molecular Structure, 1074, 503-510. https://doi.org/10.1016/j.molstruc.2014.06.011AMERICAN SOCIETY FOR TESTING AND MATERIALS (ASTM). (2003). Standard Test Method for Microindentation Hardness of Materials (E - 384). Recuperado de https://www.astm.org/Standards/E384Arancibia, J. R. H., Alfonso, P., García-Valles, M., Martínez, S., Parcerisa, D., Canet, C., & Romero, F. M. (2013). Obtención de vidrio a partir de residuos de la minería del estaño en Bolivia. Boletin de la Sociedad Espanola de Ceramica y Vidrio, 52(3), 143-150. https://doi.org/10.3989/cyv.192013Avancini, T. G., Souza, M. T., de Oliveira, A. P. N., Arcaro, S., & Alves, A. K. (2019). Magnetic properties of magnetite-based nano-glass-ceramics obtained from a Fe-rich scale and borosilicate glass wastes. Ceramics International, 45(4), 4360-4367. https://doi.org/10.1016/j.ceramint.2018.11.111Baino, F., & Ferraris, M. (2019). Production and characterization of ceramic foams derived from vitrified bottom ashes. Materials Letters, 236, 281-284. https://doi.org/10.1016/j.matlet.2018.10.122Bandow, N., Gartiser, S., Ilvonen, O., & Schoknecht, U. (2018, diciembre 1). Evaluation of the impact of construction products on the environment by leaching of possibly hazardous substances. Environmental Sciences Europe. Springer Verlag. https://doi.org/10.1186/s12302-018-0144-2Barbieri, L., Corradi Bonamartini, A., & Lancellotti, I. (2000). Alkaline and alkaline-earth silicate glasses and glass-ceramics from municipal and industrial wastes. Journal of the European Ceramic Society, 20(14-15), 2477-2483. https://doi.org/10.1016/S0955-2219(00)00124-2Barbieria, L., Lancellotti, I., Manfredini, T., Queralt, I., Rincon, J., & Romero, M. (1999). Design, obtainment and properties of glasses and glass–ceramics from coal fly ash. Fuel, 78(2)Barlet, M., Delaye, J. M., Charpentier, T., Gennisson, M., Bonamy, D., Rouxel, T., & Rountree, C. L. (2015). Hardness and toughness of sodium borosilicate glasses via Vickers’s indentations. Journal of Non-Crystalline Solids, 417-418, 66-79. https://doi.org/10.1016/j.jnoncrysol.2015.02.005Belostotsky, V. (2007). Defect model for the mixed mobile ion effect. Journal of Non-Crystalline Solids, 353(11-12), 1078-1090. https://doi.org/10.1016/j.jnoncrysol.2006.12.027Benoit, M., Ispas, S., & Tuckerman, M. E. (2001). Structural properties of molten silicates from ab initio molecular-dynamics simulations: comparison between Typeset using REVT E X 1Bernardo, E., Scarinci, G., & Colombo, P. (2012). Vitrification waste vitrification of Waste Waste and Reuse waste-derived glass reuse of Waste-Derived Glass waste-derived glass. En Encyclopedia of Sustainability Science and Technology (pp. 11581-11613). Springer New York. https://doi.org/10.1007/978-1-4419-0851-3_96Binhussain, M. A., Marangoni, M., Bernardo, E., & Colombo, P. (2014). Sintered and glazed glass-ceramics from natural and waste raw materials. Ceramics International, 40(2), 3543-3551. https://doi.org/10.1016/j.ceramint.2013.09.074Castells, X. E. (2009). Reciclaje de residuos industriales. (Ediciones Diaz de Santos, Ed.)CCA. (2016). Manejo ambientalmente adecuado de baterías de plomo-ácido usadas en América del Norte: directrices técnicas. Montreal: Comsión para la Cooperación Ambiental. Recuperado de http://www3.cec.org/islandora/en/item/11665-environmentally-sound-management-spent-lead-acid-batteries-in-north-americaChen, C., Xie, W., Li, X., Yang, Q., Zhong, Z., Chen, X., … Zhong, Y. (2015). Solidification/Stabilization of Pb and Zn in tailing waste using cement, fly ash and quick lime. Envron.Chem., 34, 1553,1560Chinnam, R. K., Francis, A. A., Will, J., Bernardo, E., & Boccaccini, A. R. (2013). Review. Functional glasses and glass-ceramics derived from iron rich waste and combination of industrial residues. Journal of Non-Crystalline Solids, 365(1), 63-74. https://doi.org/10.1016/j.jnoncrysol.2012.12.006Chou, I. C., Wang, Y. F., Chang, C. P., Wang, C. T., & Kuo, Y. M. (2011). Effect of NaOH on the vitrification process of waste Ni-Cr sludge. Journal of Hazardous Materials, 185(2-3), 1522-1527. https://doi.org/10.1016/j.jhazmat.2010.10.079Colombo, P., Brusatin, G., Bernardo, E., & Scarinci, G. (2003). Inertization and reuse of waste materials by vitrification and fabrication of glass-based products. Current Opinion in Solid State and Materials Science, 7(3), 225-239. https://doi.org/10.1016/j.cossms.2003.08.002Conde, C. S. (1968). La Espectroscopia Infrarroja en el campo del vidrio. En Conferencia pronunciada en la I Reunión Técnica de la Sección de Vidrio. Sociedad Española de Cerámica. MadridÇoruh, S., & Ergun, O. N. (2006). Leaching characteristics of copper flotation waste before and after vitrification. Journal of Environmental Management, 81(4), 333-338. https://doi.org/10.1016/j.jenvman.2005.11.006Coya, B., Marañon, E., & Sastre, H. (2000). Ecotoxicity assessment of slag generated in the process of recycling lead from waste batteries. Resources, Conservation and Recycling, 29, 291-300Dantas, N. O., Ayta, W. E. F., Silva, A. C. A., Cano, N. F., Silva, S. W., & Morais, P. C. (2011a). Effect of Fe2O3 concentration on the structure of the SiO2-Na2O-Al2O3-B2O 3 glass system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 81(1), 140-143. https://doi.org/10.1016/j.saa.2011.05.074Dantas, N. O., Ayta, W. E. F., Silva, A. C. A., Cano, N. F., Silva, S. W., & Morais, P. C. (2011b). Effect of Fe2O3 concentration on the structure of the SiO2-Na2O-Al2O3-B2O 3 glass system. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 81(1), 140-143. https://doi.org/10.1016/j.saa.2011.05.074De’an Pan, S. G. Zhang, H. B. Bao, B. Guo, B. L. (2015). Method for preparing hedenbergite glass ceramics by using lead slagDe Angelis, G., Medici, F., Montereali, M. R., & Pietrelli, L. (2002). Reuse of residues arising from lead batteries recycle : a feasibility study. Waste Management, 22, 925-930Deng, A., & Tikalsky, P. J. (2008). Geotechnical and leaching properties of flowable fill incorporating waste foundry sand. Waste Management, 28(11), 2161-2170. https://doi.org/10.1016/j.wasman.2007.09.018ElBatal, H. A., Hassaan, M. Y., Fanny, M. A., & Ibrahim, M. M. (2017). ‘Optical and FT Infrared Absorption Spectra of Soda Lime Silicate Glasses Containing nano Fe2O3 and Effects of Gamma Irradiation. Silicon, 9(4), 511-517. https://doi.org/10.1007/s12633-014-9262-7Ellis, T. W., & Mirza, A. H. (2010). The refining of secondary lead for use in advanced lead-acid batteries. Journal of Power Sources, 195(14), 4525-4529. https://doi.org/10.1016/j.jpowsour.2009.12.118Environmental Protection Agency (EPA). (1992). Handbook Vitrification Technologies for Treatment of Hazardous and Radioactive WasteEremyashev, V. E., Osipov, A. A., & Osipova, L. M. (2011). Borosilicate glass structure with rare-earth-metal cations substituted for sodium cations. Glass and Ceramics (English translation of Steklo i Keramika), 68(7-8), 205-208. https://doi.org/10.1007/s10717-011-9353-5Ettler, V., & Johan, Z. (2014). 12years of leaching of contaminants from Pb smelter slags: Geochemical/mineralogical controls and slag recycling potential. Applied Geochemistry, 40, 97-103. https://doi.org/10.1016/j.apgeochem.2013.11.001European Waste Catalogue(EWC). (2000). Recuperado de http://www.epa.ieFan, W., Liu, B., Luo, X., Yang, J., Guo, B., & Zhang, S.-G. (2019). Production of glass–ceramics using Municipal solid waste incineration fly ash. Rare Metals, 38(3)Forero Cardenas, B. (2016). VITRIFICACIÓN DE LOS CONTENIDOS INTERNOS DE PILAS DESECHADAS DEL TIPO Li-ION: UNA OPCIÓN DE RECICLAJE. Universidad Industrial de Santander. Recuperado de http://tangara.uis.edu.co/biblioweb/tesis/2016/165533.pdfForte, F., Horckmans, L., Broos, K., Kim, E., Kukurugya, F., & Binnemans, K. (2017). Closed-loop solvometallurgical process for recovery of lead from iron-rich secondary lead smelter residues. RSC Advances, 7(79), 49999-50005. https://doi.org/10.1039/c7ra09150hFrost, & Sullivan. (2019). Global Waste Recycling and Circular Economy Market Outlook, 2019. Recuperado 8 de agosto de 2020, de https://www.researchandmarkets.com/reports/4790940/global-waste-recycling-and-circular-economy?utm_source=CI&utm_medium=PressRelease&utm_code=t3ct42&utm_campaign=1271936+-+Global+Waste+Recycling+and+Circular+Economy+Markets+2019%3A+Opportunities+in+EffectGao, J., Dong, C., Zhao, Y., Hu, X., Qin, W., Wang, X., … Zhang, X. (2020). Vitrification of municipal solid waste incineration fly ash with B2O3 as a fluxing agent. Waste Management, 102, 932-938. https://doi.org/10.1016/j.wasman.2019.12.012Garibaldi, L. A., Oddi, F. J., Aristimuño, F. J., & Behnisch, A. N. (2019). Modelos estadísticos en lenguaje R. Editorial UNRN, 264Gomes, G. M. F., Mendes, T. F., & Wada, K. (2011). Reduction in toxicity and generation of slag in secondary lead process. Journal of Cleaner Production, 19(9-10), 1096-1103. https://doi.org/10.1016/j.jclepro.2011.01.006Gomes, V., De Borba, C. D. G., & Riella, H. G. (2002). Production and characterization of glass ceramics from steelwork slag. Journal of Materials Science, 37(12), 2581-2585. https://doi.org/10.1023/A:1015468329645Gougar, M. L. D., Scheetz, B. E., & Roy, D. M. (1996). Ettringite and C-S-H portland cement phases for waste ion immobilization: A review. Waste Management. Elsevier Science Inc. https://doi.org/10.1016/S0956-053X(96)00072-4Gulson, B. L., Mizon, K. J., Davis, J. D., Palmer, J. M., & Vimpani, G. (2004). Identification of sources of lead in children in a primary zinc-lead smelter environment. Environmental Health Perspectives, 112(1), 52-60. https://doi.org/10.1289/ehp.6465Guzmán-Carrillo, H. R., Pérez, J. M., Aguilar Reyes, E. A., & Romero, M. (2018). Coal fly ash and steel slag valorisation throughout a vitrification process. International Journal of Environmental Science and Technology, 15(8). https://doi.org/10.1007/s13762-017-1542-5Hreglich, S., Falcone, R., Nassetti, G., & Gattelli, G. (2008). Inertisation of slags from the treatment of end of life automotive batteries and their reuse in the production of heavy clay products with soundproofing properties. Glass Technology-European Journal of Glass Science and Technology Part A, 49(6), 313-316Hühn, C., Wondraczek, L., & Sierka, M. (2015). Dynamics of ultrathin gold layers on vitreous silica probed by density functional theory. Physical Chemistry Chemical Physics, 17(41), 27488-27496. https://doi.org/10.1039/c5cp04803fIbrahim, S., Gomaa, M. M., & Darwish, H. (2014). Influence of Fe2O3 on the physical, structural and electrical properties of sodium lead borate glasses. Journal of Advanced Ceramics, 3(2), 155-164. https://doi.org/10.1007/s40145-014-0107-zIDEAM. (2018). Informe Nacional de Residuos o Desechos Peligrosos en Colombia 2017. Bogotá. Recuperado de http://documentacion.ideam.gov.co/openbiblio/bvirtual/023849/Informe_RESPEL_2017.pdfIloh, P., Fanourakis, G., Ogra, A., Iloh, P., Fanourakis, G., & Ogra, A. (2019). Evaluation of Physical and Chemical Properties of South African Waste Foundry Sand (WFS) for Concrete Use. Sustainability, 11(1), 193. https://doi.org/10.3390/su11010193Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). Resolución No. 0062, Por la cual se adoptan los protocolos de muestreo y análisis de laboratorio para la caracterización fisicoquímica de los residuos o desechos peligrosos en el país (2005). ColombiaInstituto de Investigaciones Tecnológicas. (1980). IIT tecnologia, Números 123-124 . Bogotá, Colombia. Recuperado de https://books.google.com.co/books?id=ZDoqAQAAIAAJ&q=area+superficial+incrementa+con+menor+tamaño+de+particula&dq=area+superficial+incrementa+con+menor+tamaño+de+particula&hl=es&sa=X&ved=2ahUKEwj44t-qhejuAhXoRDABHQriCaQQ6AEwA3oECAkQAgINTERGLAD. (2009). International glass databaseInternational Lead Association. (2012). Lead Uses - Statistics. Recuperado 2 de abril de 2019, de https://www.ila-lead.org/lead-facts/lead-uses--statisticsIwaszko, J., Zajemska, M., Zawada, A., Szwaja, S., & Poskart, A. (2020). Vitrification of environmentally harmful by-products from biomass torrefaction process. Journal of Cleaner Production, 249, 119427. https://doi.org/10.1016/j.jclepro.2019.119427Karamanov, A., Aloisi, M., & Pelino, M. (2007). Vitrification of copper flotation waste. Journal of Hazardous Materials, 140(1-2), 333-339. https://doi.org/10.1016/j.jhazmat.2006.09.040Karamberi, A., & Moutsatsou, A. (2006). Vitrification of lignite fly ash and metal slags for the production of glass and glass ceramics. China Particuology, 4(5), 250-253. https://doi.org/10.1016/S1672-2515(07)60269-3Karmakar, B. (2017). Functional glasses ad glass-ceramics from solid waste materials. En Functional Glasses and Glass-Ceramics (pp. 295-315). https://doi.org/10.1016/B978-0-12-805056-9.00009-XKavouras, P., Kaimakamis, G., Ioannidis, T. A., Kehagias, T., Komninou, P., Kokkou, S., … Karakostas, T. (2003). Vitrification of lead-rich solid ashes from incineration of hazardous industrial wastes. Waste Management, 23(4), 361-371. https://doi.org/10.1016/S0956-053X(02)00153-8Khater, G. A. (2002). The use of Saudi slag for the production of glass-ceramic materials. Ceramics International, 28(1), 59-67Kim, E., Horckmans, L., Spooren, J., Vrancken, K. C., Quaghebeur, M., & Broos, K. (2020). Selective leaching of Pb , Cu , Ni and Zn from secondary lead smelting residues. Hydrometallurgy, 169(2017), 372-381. https://doi.org/10.1016/j.hydromet.2017.02.027Kim, Eunyoung, Horckmans, L., Spooren, J., Broos, K., Vrancken, K. C., & Quaghebeur, M. (2017). Recycling of a secondary lead smelting matte by selective citrate leaching of valuable metals and simultaneous recovery of hematite as a secondary resource. Hydrometallurgy, 169(2017), 290-296. https://doi.org/10.1016/j.hydromet.2017.02.007Kim, Eunyoung, Roosen, J., Horckmans, L., Spooren, J., Broos, K., Binnemans, K., … Quaghebeur, M. (2017). Process development for hydrometallurgical recovery of valuable metals from sulfide-rich residue generated in a secondary lead smelter. Hydrometallurgy, 169(April 2017), 589-598. https://doi.org/10.1016/j.hydromet.2017.04.002Kirkham, R. R., Tyler, S. W., & Gee, G. W. (1985). Analysis of leachate production in closed hazardous waste landfills. Recuperado de https://www.researchgate.net/publication/236570168_Analysis_of_leachate_production_in_closed_hazardous_waste_landfillsKreusch, M. A., Ponte, M. J. J. S., Ponte, H. A., Kaminari, N. M. S., Marino, C. E. B., & Mymrin, V. (2007). Technological improvements in automotive battery recycling. Resources, Conservation and Recycling, 52(2), 368-380. https://doi.org/10.1016/j.resconrec.2007.05.004Kuehl, R. O. (2001). Diseño de experimentos. Technometrics (2a ed., Vol. 43). https://doi.org/10.1198/tech.2001.s589Kukurugya, F., Rahfeld, A., Möckel, R., Nielsen, P., Horckmans, L., Spooren, J., & Broos, K. (2018). Recovery of iron and lead from a secondary lead smelter matte by magnetic separation. Minerals Engineering, 122(February), 17-25. https://doi.org/10.1016/j.mineng.2018.03.030Kumpiene, J., Nordmark, D., Hamberg, R., Carabante, I., Simanavičienė, R., & Aksamitauskas, V. Č. (2016). Leaching of arsenic, copper and chromium from thermally treated soil. Journal of Environmental Management, 183, 460-466. https://doi.org/10.1016/j.jenvman.2016.08.080Kuo, Y.-M. (2014). Role of sodium ions in the vitrification process: Glass matrix modification, slag structure depolymerization, and influence of metal immobilization. Journal of the Air & Waste Management Association, 64(7), 774-784. https://doi.org/10.1080/10962247.2014.884026Kuo, Y. M., Wang, J. W., & Tsai, C. H. (2007). Encapsulation behaviors of metals in slags containing various amorphous volume fractions. Journal of the Air and Waste Management Association, 57(7), 820-827. https://doi.org/10.3155/1047-3289.57.7.820Lassin, A., Piantone, P., Burnol, A., Bodénan, F., Chateau, L., Lerouge, C., … Bailly, L. (2007). Reactivity of waste generated during lead recycling: An integrated study. Journal of Hazardous Materials, 139(3), 430-437. https://doi.org/10.1016/j.jhazmat.2006.02.055Lei, C., Yan, B., Chen, T., & Xiao, X.-M. (2017). Recovery of metals from the roasted lead-zinc tailings by magnetizing roasting followed by magnetic separation. Journal of Cleaner Production, 158, 73-80. https://doi.org/10.1016/j.jclepro.2017.04.164Lewis, A. E., & Hugo, A. (2000). Characterization and batch testing of a secondary lead slag. J. South African Inst. Min. Metall., 100(6), 365-370. Recuperado de http://www.scopus.com/inward/record.url?eid=2-s2.0-0348201961&partnerID=tZOtx3y1Li, M., Liu, J., & Han, W. (2016, abril 3). Recycling and management of waste lead-acid batteries: A mini-review. Waste Management and Research. SAGE Publications Ltd. https://doi.org/10.1177/0734242X16633773Li, Y., Yang, S., Taskinen, P., He, J., Chen, Y., Tang, C., & Jokilaakso, A. (2019). Recycling of Spent Lead-Acid Battery for Lead Extraction with Sulfur Conservation. JOM, 1-9. https://doi.org/10.1007/s11837-019-03885-yLiu, M., Iizuka, A., & Shibata, E. (2019). Effect of Temperature on Phase Transformation and Leaching Behavior of Acid Mine Drainage Sludge. MATERIALS TRANSACTIONS, 60(1), 61-67. https://doi.org/10.2320/MATERTRANS.M-M2018848Madaleno, M. (2018). Environmental Pollution, Waste Generation and Human Health. Biomedical Journal of Scientific & Technical Research, 8(4), 71-73. https://doi.org/10.26717/bjstr.2018.08.001671Malki, M., Echegut, P., Bessada, C., & Nuta, I. (2005). Structure and properties of glasses obtained by recycling of secondary lead from acid plants. Glass Technology, 46(4), 305-310Ministerio de Ambiente Vivienda y Desarrollo Sostenible. (2005). Politica ambiental para la gestión integral de residuos o desechos peligrosos. Recuperado de http://www.ideam.gov.co/documents/51310/526371/POLITICA+AMBIENTAL+PARA+LA+GESTION+INTEGRAL+DE+RESPEL.pdf/fb42059d-77ec-423b-8306-960dee6bb9c6Ministerio de Ambiente Vivienda y Desarrollo Territorial. Decreto 4741, Por el cual se reglamenta parcialmente la prevención y manejo de los residuos o desechos peligrosos generados en el marco de la gestión integral (2005). ColombiaNaik;, T. R., Singh;, S. S., & Ramme, B. W. (2001). Performance and Leaching Assessment of Flowable Slurry. Transportation Research Record: Journal of the Transportation Research Board, (April), 359-368Narváez, M. A., Mosquera, L. F., & Torres Agredo, J. (2020). Evaluación de las características de un residuo de la industria del vidrio para encapsular materiales peligrosos. Revista UIS Ingenierías, 19(2), 43-50. https://doi.org/10.18273/revuin.v19n2-2020005Pan, D., Li, L., Tian, X., Wu, Y., Cheng, N., & Yu, H. (2019). A review on lead slag generation, characteristics, and utilization. Resources, Conservation and Recycling, 146(August 2018), 140-155. https://doi.org/10.1016/j.resconrec.2019.03.036Pan, D., Li, L., Wu, Y., Liu, T., & Yu, H. (2018). Characteristics and properties of glass-ceramics using lead fuming slag. Journal of Cleaner Production, 175, 251-256. https://doi.org/10.1016/j.jclepro.2017.12.030Pan, J., Zhang, C., Sun, Y., Wang, Z., & Yang, Y. (2012). A new process of lead recovery from waste lead-acid batteries by electrolysis of alkaline lead oxide solution. Electrochemistry Communications, 19(1), 70-72. https://doi.org/10.1016/j.elecom.2012.03.028Papamarkou, S., Christopoulos, D., Tsakiridis, P. E., Bartzas, G., & Tsakalakis, K. (2018). Vitrified medical wastes bottom ash in cement clinkerization. Microstructural, hydration and leaching characteristics. Science of the Total Environment, 635. https://doi.org/10.1016/j.scitotenv.2018.04.178Park, Y. J., & Heo, J. (2002). Conversion to glass-ceramics from glasses made by MSW incinerator fly ash for recycling. Ceramics International, 28(6), 689-694. https://doi.org/10.1016/S0272-8842(02)00030-5Pavelka, C., Loehr, R. C., & Haikola, B. (1993). Hazardous waste landfill leachate characteristics. Waste Management, 13(8), 573-580. https://doi.org/10.1016/0956-053X(93)90017-QPelino, M. (2000). Recycling of zinc-hydrometallurgy wastes in glass and glass ceramic materials. Waste Management, 20(7), 561-568. https://doi.org/10.1016/S0956-053X(00)00002-7Pelino, M., Karamanov, A., Pisciella, P., Crisucci, S., & Zonetti, D. (2002). Vitrification of electric arc furnace dusts. Waste Management, 22(8), 945-949. https://doi.org/10.1016/S0956-053X(02)00080-6Penpolcharoen, M. (2005). Utilization of secondary lead slag as construction material. Cement and Concrete Research, 35(6), 1050-1055. https://doi.org/10.1016/j.cemconres.2004.11.001Prengaman, R. D., & Mirza, A. H. (2017). Recycling concepts for lead-acid batteries. En Lead-Acid Batteries for Future Automobiles (pp. 575-598). Elsevier B.V. https://doi.org/10.1016/B978-0-444-63700-0.00020-9Ravindran, R., Hassan, S., Williams, G., Jaiswal, A., Ravindran, R., Hassan, S. S., … Jaiswal, A. K. (2018). A Review on Bioconversion of Agro-Industrial Wastes to Industrially Important Enzymes. Bioengineering, 5(4), 93. https://doi.org/10.3390/bioengineering5040093RESOLUCION No. 0062 del Instituto de Hidrología Meteorología y Estudios Ambientales (IDEAM). RESOLUCION No. 0062 (2007). ColombiaRincón, J. M., & Romero, M. (1996). Glass-ceramics as building materials. Materiales de Construccion, 1996(242-243), 91-106. https://doi.org/10.3989/mc.1996.v46.i242-243.532Rodrigues, P., Silvestre, J. D., Flores-Colen, I., Viegas, C. A., De Brito, J., Kurad, R., … Zhao, Q. (2017). Methodology for the Assessment of the Ecotoxicological Potential of Construction Materials. https://doi.org/10.3390/ma10060649Romero, M., & Rincón, J. M. (2002). Preparation and properties of high iron oxide content glasses obtained from industrial wastes. Journal of the European Ceramic Society, 18(2), 153-160. https://doi.org/10.1016/s0955-2219(97)00102-7Saenz, F. (2006). Estudio preliminar del proceso de vitrificación de residuos peligrosos por vía térmica. Universidad de los AndesSaikia, N., Borah, R. R., Konwar, K., & Vandecastelee, C. (2018). pH dependent leachings of some trace metals and metalloid species from lead smelter slag and their fate in natural geochemical environment. Groundwater for Sustainable Development, 7, 348-358. https://doi.org/10.1016/j.gsd.2018.01.009Sánchez Torres, Luís Darío Sánchez, A., Galvis, G., & Latorre, J. (2007). Filtración en Múltiples Etapas. Documento de Revisión Técnica 15. IRC - Centro Internacional de Agua y SaneamientoScannell, G., Laille, D., Célarié, F., Huang, L., & Rouxel, T. (2017). Interaction between deformation and crack initiation under vickers indentation in Na 2 O-TiO 2 -SiO 2 glasses. Frontiers in Materials, 4. https://doi.org/10.3389/fmats.2017.00006Seignez, N., Gauthier, A., Bulteel, D., Damidot, D., & Potdevin, J.-L. (2008). Leaching of lead metallurgical slags and pollutant mobility far from equilibrium conditions. Applied Geochemistry, 23(12), 3699-3711. https://doi.org/10.1016/j.apgeochem.2008.09.009Singh, J., Laurenti, R., Sinha, R., & Frostell, B. (2014). Progress and challenges to the global waste management system. Waste Management and Research, 32(9), 800-812. https://doi.org/10.1177/0734242X14537868Smaniotto, A., Antunes, A., Filho, I. do N., Venquiaruto, L. D., de Oliveira, D., Mossi, A., … Dallago, R. (2009). Qualitative lead extraction from recycled lead-acid batteries slag. Journal of Hazardous Materials, 172(2-3), 1677-1680. https://doi.org/10.1016/j.jhazmat.2009.07.026Sørensen, M. A., Bender Koch, C., Stackpoole, M. M., Bordia, R. K., Benjamin, M. M., & Christensen, T. H. (2000). Effects of Thermal Treatment on Mineralogy and Heavy Metal Behavior in Iron Oxide Stabilized Air Pollution Control Residues, 34(21), 4620-4627. https://doi.org/10.1021/es0009830Stabile, P., Bello, M., Petrelli, M., Paris, E., & Carroll, M. R. (2019). Vitrification treatment of municipal solid waste bottom ash. Waste Management, 95, 250-258. https://doi.org/10.1016/j.wasman.2019.06.021Štulović, M., Radovanović, D., Kamberović, Ž., Korać, M., & Anđić, Z. (2019). Assessment of Leaching Characteristics of Solidified Products Containing Secondary Alkaline Lead Slag. International Journal of Environmental Research and Public Health, 16(11), 2005. https://doi.org/10.3390/ijerph16112005Tian, X., Wu, Y., Gong, Y., & Zuo, T. (2015). The lead-acid battery industry in China: Outlook for production and recycling. Waste Management and Research, 33(11), 986-994. https://doi.org/10.1177/0734242X15602363Tibet, Y., & Çoruh, S. (2017). Immobilisation and leaching performance of lead-acid batteries smelting slag using natural and waste materials. Global Nest Journal, 19(4), 562-573Tsakalou, C., Papamarkou, S., Tsakiridis, P. E., Bartzas, G., & Tsakalakis, K. (2018). Characterization and leachability evaluation of medical wastes incineration fly and bottom ashes and their vitrification outgrowths. Journal of Environmental Chemical Engineering, 6(1). https://doi.org/10.1016/j.jece.2017.12.012U.S. Environmental Protection Agency (EPA). (2009). Hazardous Waste Characteristics: A User-Friendly Reference Document. Recuperado de http://www.epa.gov/epawaste/wyl/stateprograms.htmUnited States Environmental Protection Agency (US EPA), Test Method 1311: The Toxicity Characteristic Leaching Procedure. (1992)Valderrama, D. M. A., Cuaspud, J. A. G., Roether, J. A., & Boccaccini, A. R. (2019). Development and characterization of glass-ceramics from combinations of slag, fly ash, and glass cullet without adding nucleating agents. Materials, 12(12). https://doi.org/10.3390/ma12122032Xiao, Y., Oorsprong, M., Yang, Y., & Voncken, J. H. L. (2008). Vitrification of bottom ash from a municipal solid waste incinerator. Waste Management, 28(6), 1020-1026. https://doi.org/10.1016/j.wasman.2007.02.034Yang, Y., Xiao, Y., Voncken, J. H. L., & Wilson, N. (2008). Thermal treatment and vitrification of boiler ash from a municipal solid waste incinerator. Journal of Hazardous Materials, 154(1-3), 871-879. https://doi.org/10.1016/j.jhazmat.2007.10.116Zhao, Z. wen, Chai, L. yuan, Peng, B., Liang, Y. jie, He, Y., & Yan, Z. hao. (2017). Arsenic vitrification by copper slag based glass: Mechanism and stability studies. Journal of Non-Crystalline Solids, 466-467, 21-28. https://doi.org/10.1016/j.jnoncrysol.2017.03.039Estudio preliminar de inertización de una escoria de plomo secundario a través de un proceso de vitrificaciónLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80080/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1113529656.2020.pdf1113529656.2020.pdfapplication/pdf1761848https://repositorio.unal.edu.co/bitstream/unal/80080/2/1113529656.2020.pdf034e860d3214b05ab3f080eabaff9ac1MD52THUMBNAIL1113529656.2020.pdf.jpg1113529656.2020.pdf.jpgGenerated Thumbnailimage/jpeg4758https://repositorio.unal.edu.co/bitstream/unal/80080/3/1113529656.2020.pdf.jpg429f226b543866a4aa694c3d8d24f39eMD53unal/80080oai:repositorio.unal.edu.co:unal/800802023-07-24 23:03:39.79Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg==