Stabilization of the Homotopy Groups of the Moduli Spaces of k-Higgs Bundles

The work of Hausel proves that the Bialynicki-Birula stratification of the moduli space of rank two Higgs bundles coincides with its Shatz stratification. He uses that to estimate some homotopy groups of the moduli spaces of k-Higgs bundles of rank two. Unfortunately, those two stratifications do no...

Full description

Autores:
Zúñiga-Rojas, Ronald A.
Tipo de recurso:
Article of journal
Fecha de publicación:
2018
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/66421
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/66421
http://bdigital.unal.edu.co/67449/
Palabra clave:
51 Matemáticas / Mathematics
Moduli of Higgs Bundles
Variations of Hodge Structures
Vector Bundles
Moduli de Fibrados de Higgs
Variaciones de Estructuras de Hodge
Fibrados Vectoriales
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:The work of Hausel proves that the Bialynicki-Birula stratification of the moduli space of rank two Higgs bundles coincides with its Shatz stratification. He uses that to estimate some homotopy groups of the moduli spaces of k-Higgs bundles of rank two. Unfortunately, those two stratifications do not coincide in general. Here, the objective is to present a different proof of the stabilization of the homotopy groups of Mk(2, d), and generalize it to Mk(3, d), the moduli spaces of k-Higgs bundles of degree d, and ranks two and three respectively, over a compact Riemann surface X, using the results from the works of Hausel and Thaddeus, among other tools.