Geoestadística en datos circulares

ilustraciones, diagramas

Autores:
Niño Chaparro, Alejandro
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86169
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86169
https://repositorio.unal.edu.co/
Palabra clave:
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Datos circulares
Geoestadística no estacionaria
Pulimento de medianas
Redes neuronales
Kriging circular
Circular kriging
Nonstationary geostatistics
Neural networks
Median polish
Directional data
geoestadística
geoprocesamiento
red neuronal artificial
geostatistics
geoprocessing
artificial neural network
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_da9f94dbda21079425cafa41592bf25a
oai_identifier_str oai:repositorio.unal.edu.co:unal/86169
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Geoestadística en datos circulares
dc.title.translated.eng.fl_str_mv Geostatistics in circular data
title Geoestadística en datos circulares
spellingShingle Geoestadística en datos circulares
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Datos circulares
Geoestadística no estacionaria
Pulimento de medianas
Redes neuronales
Kriging circular
Circular kriging
Nonstationary geostatistics
Neural networks
Median polish
Directional data
geoestadística
geoprocesamiento
red neuronal artificial
geostatistics
geoprocessing
artificial neural network
title_short Geoestadística en datos circulares
title_full Geoestadística en datos circulares
title_fullStr Geoestadística en datos circulares
title_full_unstemmed Geoestadística en datos circulares
title_sort Geoestadística en datos circulares
dc.creator.fl_str_mv Niño Chaparro, Alejandro
dc.contributor.advisor.spa.fl_str_mv Giraldo Henao, Ramón
dc.contributor.author.spa.fl_str_mv Niño Chaparro, Alejandro
dc.subject.ddc.spa.fl_str_mv 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
topic 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Datos circulares
Geoestadística no estacionaria
Pulimento de medianas
Redes neuronales
Kriging circular
Circular kriging
Nonstationary geostatistics
Neural networks
Median polish
Directional data
geoestadística
geoprocesamiento
red neuronal artificial
geostatistics
geoprocessing
artificial neural network
dc.subject.proposal.spa.fl_str_mv Datos circulares
Geoestadística no estacionaria
Pulimento de medianas
Redes neuronales
dc.subject.proposal.eng.fl_str_mv Kriging circular
Circular kriging
Nonstationary geostatistics
Neural networks
Median polish
Directional data
dc.subject.wikidata.spa.fl_str_mv geoestadística
geoprocesamiento
red neuronal artificial
dc.subject.wikidata.eng.fl_str_mv geostatistics
geoprocessing
artificial neural network
description ilustraciones, diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-05-27T22:58:41Z
dc.date.available.none.fl_str_mv 2024-05-27T22:58:41Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86169
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86169
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Albawi, S.; Mohammed, T.; Al-Zawi, S: Understanding of a convolutional neural network. En: 2017 international conference on engineering and technology (ICET) Ieee, 2017, p. 1–6.
Arroyo, L: Estudio de la variabilidad espacio-temporal de la precipitación, el viento y la humedad en la región del Urabá antioqueño a través de resultados de WRF. (2023).
Atkinson, P.; Lloyd, C: geoENV VII–geostatistics for environmental applications. Vol. 16. Springer Science & Business Media, 2010.
Breckling, J: The analysis of directional time series applications to wind speed and direction. Springer, 1989.
Breckling, J: The analysis of directional time series: applications to wind speed and direction. Vol. 61. Springer Science & Business Media, 2012.
Carrat, F.; Valleron, A: Epidemiologic mapping using the “kriging” method: application to an influenza-like epidemic in France. En: American journal of epidemiology 135 (1992), Nr. 11, p. 1293–1300.
Carrera, J.; Alcolea, A.; Medina, A.; Hidalgo, J.; Slooten, L: Inverse problem in hydrogeology. En: Hydrogeology Journal 13 (2005), p. 206–222.
Coble, K.; Mishra, A.; Ferrell, S.; Griffin, T: Big data in agriculture: A challenge for the future. En: Applied Economic Perspectives and Policy 40 (2018), Nr. 1, p. 79–96.
Cressie, N: Geostatistical analysis of spatial data. En: Spatial statistics and digital image analysis 1991 (1991), p. 87–108.
Cressie, N: Statistics for spatial data. John Wiley & Sons, 2015.
Cuador-Gil, J.; Quintero-Silverio, A: Simulación condicional de variables regionalizadas y su aplicación al comportamiento de la porosidad efectiva en un yacimiento fracturado-poroso. En: Boletín de la Sociedad Geológica Mexicana 54 (2001), Nr. 1, p. 19–27.
Demyanov, V.; Kanevsky, M.; Chernov, S.; Savelieva, E.; Timonin, V: Neural network residual kriging application for climatic data. En: Journal of Geographic Information and Decision Analysis 2 (1998), Nr. 2, p. 215–232.
Dowd, P.; Sarac, C: A neural network approach to geostatistical simulation. En: Mathematical Geology 26 (1994), p. 491–503.
Emery, X.; Séguret, S: Geostatistics for the Mining Industry: Applications to Porphyry Copper Deposits. CRC Press, 2020.
Eslava, J: Climatología y diversidad climática de Colombia. En: Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 18 (1993), Nr. 71, p. 507–538.
Fernholz, L: Von Mises calculus for statistical functionals. Vol. 19. Springer Science & Business Media, 2012.
Gill, J.; Hangartner, D: Circular data in political science and how to handle it. En: Political Analysis 18 (2010), Nr. 3, p. 316–336.
Grancher, D.; Bar-Hen, A.; Paris, R.; Lavigne, F.; Brunstein, D: Spatial interpolation of circular data: application to tsunami of December 2004. En: Advances and Applications in Statistics 30 (2012), Nr. 1, p. 19–29.
Gribov, A.; Krivoruchko, K: Empirical Bayesian kriging implementation and usage. En: Science of the Total Environment 722 (2020), p. 137290.
Handcock, M.; Wallis, J: An approach to statistical spatial-temporal modeling of meteorological fields. En: Journal of the American Statistical Association 89 (1994), Nr. 426, p. 368–378.
Jona, L.; Santoro, M.; Mastrantonio, G: CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data. En: Journal of Statistical Computation and Simulation 90 (2020), Nr. 7, p. 1315–1345.
Kanevski, M.; Maignan, M: Analysis and modelling of spatial environmental data. Vol. 6501. EPFL press, 2004.
Kanevski, M.; Timonin, V.; Pozdnukhov, A: Machine learning for spatial environmental data: theory, applications, and software. EPFL press, 2009.
Kovacs-Győri, A.; Ristea, A.; Havas, C.; Mehaffy, M.; Hochmair, H.; Resch, B.; Juhasz, L.; Lehner, A.; Ramasubramanian, L.; Blaschke, T: Opportunities and challenges of geospatial analysis for promoting urban livability in the era of big data and machine learning. En: ISPRS International Journal of Geo-Information 9 (2020), Nr. 12, p. 752.
Lamamra, A.; Neguritsa, D.; Mazari, M: Geostatistical modeling by the Ordinary Kriging in the estimation of mineral resources on the Kieselguhr mine, Algeria. En: IOP Conference Series: Earth and Environmental Science Vol. 362 IOP Publishing, 2019, p. 012051.
Langevin, P: Magnétisme et théorie des électrons. En: Ann. chim. et phys. (1905), Nr. 8, p. 203.
Lantuéjoul, C: Geostatistical simulation: models and algorithms. Springer Science & Business Media, 2001 (1139).
Mardia, K.; Jupp, P: Directional statistics. Wiley, 2000.
Martínez, F: Modelización de la función de covarianza en procesos espacio-temporales: análisis y aplicaciones. Universitat de Valencia (Spain), 2008.
Martínez, W.; Melo, C.; Melo, O: Median polish kriging for space–time analysis of precipitation. En: Spatial statistics 19 (2017), p. 1–20.
Matías, J.; Vaamonde, A.; Taboada, J.; González-Manteiga, W: Comparison of kriging and neural networks with application to the exploitation of a slate mine. En: Mathematical geology 36 (2004), p. 463–486.
McNeill, L: Interpolation and smoothing of mapped circular data. En: South African Statistical Journal 27 (1993), Nr. 1, p. 23–49.
Morphet, W: Simulation, kriging, and visualization of circular-spatial data. Utah State University, 2009.
Oliver, A.; Webster, R: A tutorial guide to geostatistics: Computing and modelling variograms and kriging. En: Catena 113 (2014), p. 56–69.
Oliver, M.; Webster, R: Basic steps in geostatistics: The Variogram and Kriging. Springer, 2015.
Padarian, J.; Pérez-Quezada, J.; Seguel, O: Modelling the distribution of organic carbon in the soils of Chile. En: Proceeding of the fifth global workshop on digital soil mapping, Digital Soil assessments and beyond, Sydney, 2012, p. 329–333.
Pewsey, A.; Neuhäuser, M.; Ruxton, G: Circular statistics in R. OUP Oxford, 2013.
Playfair, W: Playfair’s commercial and political atlas and statistical breviary. Cambridge University Press, 2005.
Rao, T: Spatial statistics and spatio-temporal data. En: Journal of Time Series Analysis 34 (2013), Nr. 2, p. 280–280.
Rodriguez-Rubio, E.; Stuardo, J: Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. En: Journal of Earth System Science 111 (2002), p. 227–236.
Rueda, J.; Rodríguez, E.; Ortiz, J: Caracterización espacio temporal del campo de vientos superficiales del Pacífico colombiano y el Golfo de Panamá a partir de sensores remotos y datos in situ. (2007).
Sareen, K.; Panigrahi, B.; Shikhola, T.; Sharma, R: An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction. En: Energy 278 (2023), p. 127799.
Seber, G.; Wild, J: Nonlinear Regression. 2003.
Seo, Y.; Kim, S.; Singh, V: Estimating spatial precipitation using regression kriging and artificial neural network residual kriging (RKNNRK) hybrid approach. En: Water Resources Management 29 (2015), p. 2189–2204.
Sparks, A: nasapower: a NASA POWER global meteorology, surface solar energy, and climatology data client for R. En: Journal of Open Source Software 3 (2018), Nr. 30, p. 1035.
Stein, M: Interpolation of Spatial Data: Some theory for Kriging. Springer, 2013.
Surjotedjo, H.; Widyaningsih, Y.; Nurrohmah, S: Median polish kriging model for circular-spatial data. En: Empowering Science and Mathematics for Global Competitiveness. CRC Press, 2019, p. 377–385.
Wackernagel, H: Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, 2003.
Wang, L.; Wong, P.; Shibli, S: Modelling porosity distribution in the A’nan Oilfield: Use of geological quantification, neural networks and geostatistics. En: SPE International Oil and Gas Conference and Exhibition in China SPE, 1998, p. SPE–48884.
Webster, R.; Oliver, M: Geostatistics for environmental scientists. John Wiley & Sons, 2007.
Weisstein, E: Bessel function of the first kind. En: https://mathworld.wolfram.com/ (2002).
Xiao, L.; Zhang, Y: Zhang neural network versus gradient neural network for solving time-varying linear inequalities. En: IEEE transactions on neural networks 22 (2011), Nr. 10, p. 1676–1684.
Yan, Q.; Wan, Z.; Yang, C: Flight Load Calculation Using Neural Network Residual Kriging. En: Aerospace 10 (2023), Nr. 7, p. 599.
Zakeri, F.; Mariethoz, G: A review of geostatistical simulation models applied to satellite remote sensing: Methods and applications. En: Remote Sensing of Environment 259 (2021), p. 112381.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv ix, 58 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Estadística
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86169/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86169/4/1052410318.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86169/5/1052410318.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f9926f580c092b1f51863fbece8c6936
92b1a656f9efe1f6463c45785e23fe69
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090209603616768
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Henao, Ramón69cdaf318604c2b37e003603d498f429Niño Chaparro, Alejandro243a8557ddbe3ca6d94be796a5549ec52024-05-27T22:58:41Z2024-05-27T22:58:41Z2023https://repositorio.unal.edu.co/handle/unal/86169Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasSe propone una nueva metodología en el contexto de geostadística no estacionaria que permite hacer predicción de datos circulares empleando kriging circular residual cuando la tendencia espacial es modelada a través de redes neuronales. Usando datos simulados y reales (tomados del proyecto NASA power) se hace comparación de la técnica propuesta con pulimento de medianas. Los resultados indican que la estrategia considerada mejora las predicciones. (Texto tomado de la fuente).We propose a new methodology in the context of nonstationary geostatistics that allows the prediction of circular data using residual circular kriging when the spatial trend is modeled through neural networks. Using simulated and real data (taken from the NASA power project), the proposed technique is compared with those obtained through median polish. The results indicate that the strategy proposed improves the predictionsMaestríaMagíster en Ciencias - Estadísticaix, 58 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasDatos circularesGeoestadística no estacionariaPulimento de medianasRedes neuronalesKriging circularCircular krigingNonstationary geostatisticsNeural networksMedian polishDirectional datageoestadísticageoprocesamientored neuronal artificialgeostatisticsgeoprocessingartificial neural networkGeoestadística en datos circularesGeostatistics in circular dataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlbawi, S.; Mohammed, T.; Al-Zawi, S: Understanding of a convolutional neural network. En: 2017 international conference on engineering and technology (ICET) Ieee, 2017, p. 1–6.Arroyo, L: Estudio de la variabilidad espacio-temporal de la precipitación, el viento y la humedad en la región del Urabá antioqueño a través de resultados de WRF. (2023).Atkinson, P.; Lloyd, C: geoENV VII–geostatistics for environmental applications. Vol. 16. Springer Science & Business Media, 2010.Breckling, J: The analysis of directional time series applications to wind speed and direction. Springer, 1989.Breckling, J: The analysis of directional time series: applications to wind speed and direction. Vol. 61. Springer Science & Business Media, 2012.Carrat, F.; Valleron, A: Epidemiologic mapping using the “kriging” method: application to an influenza-like epidemic in France. En: American journal of epidemiology 135 (1992), Nr. 11, p. 1293–1300.Carrera, J.; Alcolea, A.; Medina, A.; Hidalgo, J.; Slooten, L: Inverse problem in hydrogeology. En: Hydrogeology Journal 13 (2005), p. 206–222.Coble, K.; Mishra, A.; Ferrell, S.; Griffin, T: Big data in agriculture: A challenge for the future. En: Applied Economic Perspectives and Policy 40 (2018), Nr. 1, p. 79–96.Cressie, N: Geostatistical analysis of spatial data. En: Spatial statistics and digital image analysis 1991 (1991), p. 87–108.Cressie, N: Statistics for spatial data. John Wiley & Sons, 2015.Cuador-Gil, J.; Quintero-Silverio, A: Simulación condicional de variables regionalizadas y su aplicación al comportamiento de la porosidad efectiva en un yacimiento fracturado-poroso. En: Boletín de la Sociedad Geológica Mexicana 54 (2001), Nr. 1, p. 19–27.Demyanov, V.; Kanevsky, M.; Chernov, S.; Savelieva, E.; Timonin, V: Neural network residual kriging application for climatic data. En: Journal of Geographic Information and Decision Analysis 2 (1998), Nr. 2, p. 215–232.Dowd, P.; Sarac, C: A neural network approach to geostatistical simulation. En: Mathematical Geology 26 (1994), p. 491–503.Emery, X.; Séguret, S: Geostatistics for the Mining Industry: Applications to Porphyry Copper Deposits. CRC Press, 2020.Eslava, J: Climatología y diversidad climática de Colombia. En: Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 18 (1993), Nr. 71, p. 507–538.Fernholz, L: Von Mises calculus for statistical functionals. Vol. 19. Springer Science & Business Media, 2012.Gill, J.; Hangartner, D: Circular data in political science and how to handle it. En: Political Analysis 18 (2010), Nr. 3, p. 316–336.Grancher, D.; Bar-Hen, A.; Paris, R.; Lavigne, F.; Brunstein, D: Spatial interpolation of circular data: application to tsunami of December 2004. En: Advances and Applications in Statistics 30 (2012), Nr. 1, p. 19–29.Gribov, A.; Krivoruchko, K: Empirical Bayesian kriging implementation and usage. En: Science of the Total Environment 722 (2020), p. 137290.Handcock, M.; Wallis, J: An approach to statistical spatial-temporal modeling of meteorological fields. En: Journal of the American Statistical Association 89 (1994), Nr. 426, p. 368–378.Jona, L.; Santoro, M.; Mastrantonio, G: CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data. En: Journal of Statistical Computation and Simulation 90 (2020), Nr. 7, p. 1315–1345.Kanevski, M.; Maignan, M: Analysis and modelling of spatial environmental data. Vol. 6501. EPFL press, 2004.Kanevski, M.; Timonin, V.; Pozdnukhov, A: Machine learning for spatial environmental data: theory, applications, and software. EPFL press, 2009.Kovacs-Győri, A.; Ristea, A.; Havas, C.; Mehaffy, M.; Hochmair, H.; Resch, B.; Juhasz, L.; Lehner, A.; Ramasubramanian, L.; Blaschke, T: Opportunities and challenges of geospatial analysis for promoting urban livability in the era of big data and machine learning. En: ISPRS International Journal of Geo-Information 9 (2020), Nr. 12, p. 752.Lamamra, A.; Neguritsa, D.; Mazari, M: Geostatistical modeling by the Ordinary Kriging in the estimation of mineral resources on the Kieselguhr mine, Algeria. En: IOP Conference Series: Earth and Environmental Science Vol. 362 IOP Publishing, 2019, p. 012051.Langevin, P: Magnétisme et théorie des électrons. En: Ann. chim. et phys. (1905), Nr. 8, p. 203.Lantuéjoul, C: Geostatistical simulation: models and algorithms. Springer Science & Business Media, 2001 (1139).Mardia, K.; Jupp, P: Directional statistics. Wiley, 2000.Martínez, F: Modelización de la función de covarianza en procesos espacio-temporales: análisis y aplicaciones. Universitat de Valencia (Spain), 2008.Martínez, W.; Melo, C.; Melo, O: Median polish kriging for space–time analysis of precipitation. En: Spatial statistics 19 (2017), p. 1–20.Matías, J.; Vaamonde, A.; Taboada, J.; González-Manteiga, W: Comparison of kriging and neural networks with application to the exploitation of a slate mine. En: Mathematical geology 36 (2004), p. 463–486.McNeill, L: Interpolation and smoothing of mapped circular data. En: South African Statistical Journal 27 (1993), Nr. 1, p. 23–49.Morphet, W: Simulation, kriging, and visualization of circular-spatial data. Utah State University, 2009.Oliver, A.; Webster, R: A tutorial guide to geostatistics: Computing and modelling variograms and kriging. En: Catena 113 (2014), p. 56–69.Oliver, M.; Webster, R: Basic steps in geostatistics: The Variogram and Kriging. Springer, 2015.Padarian, J.; Pérez-Quezada, J.; Seguel, O: Modelling the distribution of organic carbon in the soils of Chile. En: Proceeding of the fifth global workshop on digital soil mapping, Digital Soil assessments and beyond, Sydney, 2012, p. 329–333.Pewsey, A.; Neuhäuser, M.; Ruxton, G: Circular statistics in R. OUP Oxford, 2013.Playfair, W: Playfair’s commercial and political atlas and statistical breviary. Cambridge University Press, 2005.Rao, T: Spatial statistics and spatio-temporal data. En: Journal of Time Series Analysis 34 (2013), Nr. 2, p. 280–280.Rodriguez-Rubio, E.; Stuardo, J: Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. En: Journal of Earth System Science 111 (2002), p. 227–236.Rueda, J.; Rodríguez, E.; Ortiz, J: Caracterización espacio temporal del campo de vientos superficiales del Pacífico colombiano y el Golfo de Panamá a partir de sensores remotos y datos in situ. (2007).Sareen, K.; Panigrahi, B.; Shikhola, T.; Sharma, R: An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction. En: Energy 278 (2023), p. 127799.Seber, G.; Wild, J: Nonlinear Regression. 2003.Seo, Y.; Kim, S.; Singh, V: Estimating spatial precipitation using regression kriging and artificial neural network residual kriging (RKNNRK) hybrid approach. En: Water Resources Management 29 (2015), p. 2189–2204.Sparks, A: nasapower: a NASA POWER global meteorology, surface solar energy, and climatology data client for R. En: Journal of Open Source Software 3 (2018), Nr. 30, p. 1035.Stein, M: Interpolation of Spatial Data: Some theory for Kriging. Springer, 2013.Surjotedjo, H.; Widyaningsih, Y.; Nurrohmah, S: Median polish kriging model for circular-spatial data. En: Empowering Science and Mathematics for Global Competitiveness. CRC Press, 2019, p. 377–385.Wackernagel, H: Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, 2003.Wang, L.; Wong, P.; Shibli, S: Modelling porosity distribution in the A’nan Oilfield: Use of geological quantification, neural networks and geostatistics. En: SPE International Oil and Gas Conference and Exhibition in China SPE, 1998, p. SPE–48884.Webster, R.; Oliver, M: Geostatistics for environmental scientists. John Wiley & Sons, 2007.Weisstein, E: Bessel function of the first kind. En: https://mathworld.wolfram.com/ (2002).Xiao, L.; Zhang, Y: Zhang neural network versus gradient neural network for solving time-varying linear inequalities. En: IEEE transactions on neural networks 22 (2011), Nr. 10, p. 1676–1684.Yan, Q.; Wan, Z.; Yang, C: Flight Load Calculation Using Neural Network Residual Kriging. En: Aerospace 10 (2023), Nr. 7, p. 599.Zakeri, F.; Mariethoz, G: A review of geostatistical simulation models applied to satellite remote sensing: Methods and applications. En: Remote Sensing of Environment 259 (2021), p. 112381.InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86169/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1052410318.2024.pdf1052410318.2024.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf1291703https://repositorio.unal.edu.co/bitstream/unal/86169/4/1052410318.2024.pdff9926f580c092b1f51863fbece8c6936MD54THUMBNAIL1052410318.2024.pdf.jpg1052410318.2024.pdf.jpgGenerated Thumbnailimage/jpeg3682https://repositorio.unal.edu.co/bitstream/unal/86169/5/1052410318.2024.pdf.jpg92b1a656f9efe1f6463c45785e23fe69MD55unal/86169oai:repositorio.unal.edu.co:unal/861692024-05-27 23:05:00.979Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=