Geoestadística en datos circulares
ilustraciones, diagramas
- Autores:
-
Niño Chaparro, Alejandro
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86169
- Palabra clave:
- 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores
510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas
Datos circulares
Geoestadística no estacionaria
Pulimento de medianas
Redes neuronales
Kriging circular
Circular kriging
Nonstationary geostatistics
Neural networks
Median polish
Directional data
geoestadística
geoprocesamiento
red neuronal artificial
geostatistics
geoprocessing
artificial neural network
- Rights
- openAccess
- License
- Atribución-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_da9f94dbda21079425cafa41592bf25a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86169 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Geoestadística en datos circulares |
dc.title.translated.eng.fl_str_mv |
Geostatistics in circular data |
title |
Geoestadística en datos circulares |
spellingShingle |
Geoestadística en datos circulares 000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Datos circulares Geoestadística no estacionaria Pulimento de medianas Redes neuronales Kriging circular Circular kriging Nonstationary geostatistics Neural networks Median polish Directional data geoestadística geoprocesamiento red neuronal artificial geostatistics geoprocessing artificial neural network |
title_short |
Geoestadística en datos circulares |
title_full |
Geoestadística en datos circulares |
title_fullStr |
Geoestadística en datos circulares |
title_full_unstemmed |
Geoestadística en datos circulares |
title_sort |
Geoestadística en datos circulares |
dc.creator.fl_str_mv |
Niño Chaparro, Alejandro |
dc.contributor.advisor.spa.fl_str_mv |
Giraldo Henao, Ramón |
dc.contributor.author.spa.fl_str_mv |
Niño Chaparro, Alejandro |
dc.subject.ddc.spa.fl_str_mv |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas |
topic |
000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores 510 - Matemáticas::519 - Probabilidades y matemáticas aplicadas Datos circulares Geoestadística no estacionaria Pulimento de medianas Redes neuronales Kriging circular Circular kriging Nonstationary geostatistics Neural networks Median polish Directional data geoestadística geoprocesamiento red neuronal artificial geostatistics geoprocessing artificial neural network |
dc.subject.proposal.spa.fl_str_mv |
Datos circulares Geoestadística no estacionaria Pulimento de medianas Redes neuronales |
dc.subject.proposal.eng.fl_str_mv |
Kriging circular Circular kriging Nonstationary geostatistics Neural networks Median polish Directional data |
dc.subject.wikidata.spa.fl_str_mv |
geoestadística geoprocesamiento red neuronal artificial |
dc.subject.wikidata.eng.fl_str_mv |
geostatistics geoprocessing artificial neural network |
description |
ilustraciones, diagramas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023 |
dc.date.accessioned.none.fl_str_mv |
2024-05-27T22:58:41Z |
dc.date.available.none.fl_str_mv |
2024-05-27T22:58:41Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86169 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86169 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Albawi, S.; Mohammed, T.; Al-Zawi, S: Understanding of a convolutional neural network. En: 2017 international conference on engineering and technology (ICET) Ieee, 2017, p. 1–6. Arroyo, L: Estudio de la variabilidad espacio-temporal de la precipitación, el viento y la humedad en la región del Urabá antioqueño a través de resultados de WRF. (2023). Atkinson, P.; Lloyd, C: geoENV VII–geostatistics for environmental applications. Vol. 16. Springer Science & Business Media, 2010. Breckling, J: The analysis of directional time series applications to wind speed and direction. Springer, 1989. Breckling, J: The analysis of directional time series: applications to wind speed and direction. Vol. 61. Springer Science & Business Media, 2012. Carrat, F.; Valleron, A: Epidemiologic mapping using the “kriging” method: application to an influenza-like epidemic in France. En: American journal of epidemiology 135 (1992), Nr. 11, p. 1293–1300. Carrera, J.; Alcolea, A.; Medina, A.; Hidalgo, J.; Slooten, L: Inverse problem in hydrogeology. En: Hydrogeology Journal 13 (2005), p. 206–222. Coble, K.; Mishra, A.; Ferrell, S.; Griffin, T: Big data in agriculture: A challenge for the future. En: Applied Economic Perspectives and Policy 40 (2018), Nr. 1, p. 79–96. Cressie, N: Geostatistical analysis of spatial data. En: Spatial statistics and digital image analysis 1991 (1991), p. 87–108. Cressie, N: Statistics for spatial data. John Wiley & Sons, 2015. Cuador-Gil, J.; Quintero-Silverio, A: Simulación condicional de variables regionalizadas y su aplicación al comportamiento de la porosidad efectiva en un yacimiento fracturado-poroso. En: Boletín de la Sociedad Geológica Mexicana 54 (2001), Nr. 1, p. 19–27. Demyanov, V.; Kanevsky, M.; Chernov, S.; Savelieva, E.; Timonin, V: Neural network residual kriging application for climatic data. En: Journal of Geographic Information and Decision Analysis 2 (1998), Nr. 2, p. 215–232. Dowd, P.; Sarac, C: A neural network approach to geostatistical simulation. En: Mathematical Geology 26 (1994), p. 491–503. Emery, X.; Séguret, S: Geostatistics for the Mining Industry: Applications to Porphyry Copper Deposits. CRC Press, 2020. Eslava, J: Climatología y diversidad climática de Colombia. En: Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 18 (1993), Nr. 71, p. 507–538. Fernholz, L: Von Mises calculus for statistical functionals. Vol. 19. Springer Science & Business Media, 2012. Gill, J.; Hangartner, D: Circular data in political science and how to handle it. En: Political Analysis 18 (2010), Nr. 3, p. 316–336. Grancher, D.; Bar-Hen, A.; Paris, R.; Lavigne, F.; Brunstein, D: Spatial interpolation of circular data: application to tsunami of December 2004. En: Advances and Applications in Statistics 30 (2012), Nr. 1, p. 19–29. Gribov, A.; Krivoruchko, K: Empirical Bayesian kriging implementation and usage. En: Science of the Total Environment 722 (2020), p. 137290. Handcock, M.; Wallis, J: An approach to statistical spatial-temporal modeling of meteorological fields. En: Journal of the American Statistical Association 89 (1994), Nr. 426, p. 368–378. Jona, L.; Santoro, M.; Mastrantonio, G: CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data. En: Journal of Statistical Computation and Simulation 90 (2020), Nr. 7, p. 1315–1345. Kanevski, M.; Maignan, M: Analysis and modelling of spatial environmental data. Vol. 6501. EPFL press, 2004. Kanevski, M.; Timonin, V.; Pozdnukhov, A: Machine learning for spatial environmental data: theory, applications, and software. EPFL press, 2009. Kovacs-Győri, A.; Ristea, A.; Havas, C.; Mehaffy, M.; Hochmair, H.; Resch, B.; Juhasz, L.; Lehner, A.; Ramasubramanian, L.; Blaschke, T: Opportunities and challenges of geospatial analysis for promoting urban livability in the era of big data and machine learning. En: ISPRS International Journal of Geo-Information 9 (2020), Nr. 12, p. 752. Lamamra, A.; Neguritsa, D.; Mazari, M: Geostatistical modeling by the Ordinary Kriging in the estimation of mineral resources on the Kieselguhr mine, Algeria. En: IOP Conference Series: Earth and Environmental Science Vol. 362 IOP Publishing, 2019, p. 012051. Langevin, P: Magnétisme et théorie des électrons. En: Ann. chim. et phys. (1905), Nr. 8, p. 203. Lantuéjoul, C: Geostatistical simulation: models and algorithms. Springer Science & Business Media, 2001 (1139). Mardia, K.; Jupp, P: Directional statistics. Wiley, 2000. Martínez, F: Modelización de la función de covarianza en procesos espacio-temporales: análisis y aplicaciones. Universitat de Valencia (Spain), 2008. Martínez, W.; Melo, C.; Melo, O: Median polish kriging for space–time analysis of precipitation. En: Spatial statistics 19 (2017), p. 1–20. Matías, J.; Vaamonde, A.; Taboada, J.; González-Manteiga, W: Comparison of kriging and neural networks with application to the exploitation of a slate mine. En: Mathematical geology 36 (2004), p. 463–486. McNeill, L: Interpolation and smoothing of mapped circular data. En: South African Statistical Journal 27 (1993), Nr. 1, p. 23–49. Morphet, W: Simulation, kriging, and visualization of circular-spatial data. Utah State University, 2009. Oliver, A.; Webster, R: A tutorial guide to geostatistics: Computing and modelling variograms and kriging. En: Catena 113 (2014), p. 56–69. Oliver, M.; Webster, R: Basic steps in geostatistics: The Variogram and Kriging. Springer, 2015. Padarian, J.; Pérez-Quezada, J.; Seguel, O: Modelling the distribution of organic carbon in the soils of Chile. En: Proceeding of the fifth global workshop on digital soil mapping, Digital Soil assessments and beyond, Sydney, 2012, p. 329–333. Pewsey, A.; Neuhäuser, M.; Ruxton, G: Circular statistics in R. OUP Oxford, 2013. Playfair, W: Playfair’s commercial and political atlas and statistical breviary. Cambridge University Press, 2005. Rao, T: Spatial statistics and spatio-temporal data. En: Journal of Time Series Analysis 34 (2013), Nr. 2, p. 280–280. Rodriguez-Rubio, E.; Stuardo, J: Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. En: Journal of Earth System Science 111 (2002), p. 227–236. Rueda, J.; Rodríguez, E.; Ortiz, J: Caracterización espacio temporal del campo de vientos superficiales del Pacífico colombiano y el Golfo de Panamá a partir de sensores remotos y datos in situ. (2007). Sareen, K.; Panigrahi, B.; Shikhola, T.; Sharma, R: An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction. En: Energy 278 (2023), p. 127799. Seber, G.; Wild, J: Nonlinear Regression. 2003. Seo, Y.; Kim, S.; Singh, V: Estimating spatial precipitation using regression kriging and artificial neural network residual kriging (RKNNRK) hybrid approach. En: Water Resources Management 29 (2015), p. 2189–2204. Sparks, A: nasapower: a NASA POWER global meteorology, surface solar energy, and climatology data client for R. En: Journal of Open Source Software 3 (2018), Nr. 30, p. 1035. Stein, M: Interpolation of Spatial Data: Some theory for Kriging. Springer, 2013. Surjotedjo, H.; Widyaningsih, Y.; Nurrohmah, S: Median polish kriging model for circular-spatial data. En: Empowering Science and Mathematics for Global Competitiveness. CRC Press, 2019, p. 377–385. Wackernagel, H: Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, 2003. Wang, L.; Wong, P.; Shibli, S: Modelling porosity distribution in the A’nan Oilfield: Use of geological quantification, neural networks and geostatistics. En: SPE International Oil and Gas Conference and Exhibition in China SPE, 1998, p. SPE–48884. Webster, R.; Oliver, M: Geostatistics for environmental scientists. John Wiley & Sons, 2007. Weisstein, E: Bessel function of the first kind. En: https://mathworld.wolfram.com/ (2002). Xiao, L.; Zhang, Y: Zhang neural network versus gradient neural network for solving time-varying linear inequalities. En: IEEE transactions on neural networks 22 (2011), Nr. 10, p. 1676–1684. Yan, Q.; Wan, Z.; Yang, C: Flight Load Calculation Using Neural Network Residual Kriging. En: Aerospace 10 (2023), Nr. 7, p. 599. Zakeri, F.; Mariethoz, G: A review of geostatistical simulation models applied to satellite remote sensing: Methods and applications. En: Remote Sensing of Environment 259 (2021), p. 112381. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
ix, 58 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Estadística |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86169/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/86169/4/1052410318.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86169/5/1052410318.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a f9926f580c092b1f51863fbece8c6936 92b1a656f9efe1f6463c45785e23fe69 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090209603616768 |
spelling |
Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Henao, Ramón69cdaf318604c2b37e003603d498f429Niño Chaparro, Alejandro243a8557ddbe3ca6d94be796a5549ec52024-05-27T22:58:41Z2024-05-27T22:58:41Z2023https://repositorio.unal.edu.co/handle/unal/86169Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramasSe propone una nueva metodología en el contexto de geostadística no estacionaria que permite hacer predicción de datos circulares empleando kriging circular residual cuando la tendencia espacial es modelada a través de redes neuronales. Usando datos simulados y reales (tomados del proyecto NASA power) se hace comparación de la técnica propuesta con pulimento de medianas. Los resultados indican que la estrategia considerada mejora las predicciones. (Texto tomado de la fuente).We propose a new methodology in the context of nonstationary geostatistics that allows the prediction of circular data using residual circular kriging when the spatial trend is modeled through neural networks. Using simulated and real data (taken from the NASA power project), the proposed technique is compared with those obtained through median polish. The results indicate that the strategy proposed improves the predictionsMaestríaMagíster en Ciencias - Estadísticaix, 58 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - EstadísticaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadores510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasDatos circularesGeoestadística no estacionariaPulimento de medianasRedes neuronalesKriging circularCircular krigingNonstationary geostatisticsNeural networksMedian polishDirectional datageoestadísticageoprocesamientored neuronal artificialgeostatisticsgeoprocessingartificial neural networkGeoestadística en datos circularesGeostatistics in circular dataTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAlbawi, S.; Mohammed, T.; Al-Zawi, S: Understanding of a convolutional neural network. En: 2017 international conference on engineering and technology (ICET) Ieee, 2017, p. 1–6.Arroyo, L: Estudio de la variabilidad espacio-temporal de la precipitación, el viento y la humedad en la región del Urabá antioqueño a través de resultados de WRF. (2023).Atkinson, P.; Lloyd, C: geoENV VII–geostatistics for environmental applications. Vol. 16. Springer Science & Business Media, 2010.Breckling, J: The analysis of directional time series applications to wind speed and direction. Springer, 1989.Breckling, J: The analysis of directional time series: applications to wind speed and direction. Vol. 61. Springer Science & Business Media, 2012.Carrat, F.; Valleron, A: Epidemiologic mapping using the “kriging” method: application to an influenza-like epidemic in France. En: American journal of epidemiology 135 (1992), Nr. 11, p. 1293–1300.Carrera, J.; Alcolea, A.; Medina, A.; Hidalgo, J.; Slooten, L: Inverse problem in hydrogeology. En: Hydrogeology Journal 13 (2005), p. 206–222.Coble, K.; Mishra, A.; Ferrell, S.; Griffin, T: Big data in agriculture: A challenge for the future. En: Applied Economic Perspectives and Policy 40 (2018), Nr. 1, p. 79–96.Cressie, N: Geostatistical analysis of spatial data. En: Spatial statistics and digital image analysis 1991 (1991), p. 87–108.Cressie, N: Statistics for spatial data. John Wiley & Sons, 2015.Cuador-Gil, J.; Quintero-Silverio, A: Simulación condicional de variables regionalizadas y su aplicación al comportamiento de la porosidad efectiva en un yacimiento fracturado-poroso. En: Boletín de la Sociedad Geológica Mexicana 54 (2001), Nr. 1, p. 19–27.Demyanov, V.; Kanevsky, M.; Chernov, S.; Savelieva, E.; Timonin, V: Neural network residual kriging application for climatic data. En: Journal of Geographic Information and Decision Analysis 2 (1998), Nr. 2, p. 215–232.Dowd, P.; Sarac, C: A neural network approach to geostatistical simulation. En: Mathematical Geology 26 (1994), p. 491–503.Emery, X.; Séguret, S: Geostatistics for the Mining Industry: Applications to Porphyry Copper Deposits. CRC Press, 2020.Eslava, J: Climatología y diversidad climática de Colombia. En: Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 18 (1993), Nr. 71, p. 507–538.Fernholz, L: Von Mises calculus for statistical functionals. Vol. 19. Springer Science & Business Media, 2012.Gill, J.; Hangartner, D: Circular data in political science and how to handle it. En: Political Analysis 18 (2010), Nr. 3, p. 316–336.Grancher, D.; Bar-Hen, A.; Paris, R.; Lavigne, F.; Brunstein, D: Spatial interpolation of circular data: application to tsunami of December 2004. En: Advances and Applications in Statistics 30 (2012), Nr. 1, p. 19–29.Gribov, A.; Krivoruchko, K: Empirical Bayesian kriging implementation and usage. En: Science of the Total Environment 722 (2020), p. 137290.Handcock, M.; Wallis, J: An approach to statistical spatial-temporal modeling of meteorological fields. En: Journal of the American Statistical Association 89 (1994), Nr. 426, p. 368–378.Jona, L.; Santoro, M.; Mastrantonio, G: CircSpaceTime: an R package for spatial and spatio-temporal modelling of circular data. En: Journal of Statistical Computation and Simulation 90 (2020), Nr. 7, p. 1315–1345.Kanevski, M.; Maignan, M: Analysis and modelling of spatial environmental data. Vol. 6501. EPFL press, 2004.Kanevski, M.; Timonin, V.; Pozdnukhov, A: Machine learning for spatial environmental data: theory, applications, and software. EPFL press, 2009.Kovacs-Győri, A.; Ristea, A.; Havas, C.; Mehaffy, M.; Hochmair, H.; Resch, B.; Juhasz, L.; Lehner, A.; Ramasubramanian, L.; Blaschke, T: Opportunities and challenges of geospatial analysis for promoting urban livability in the era of big data and machine learning. En: ISPRS International Journal of Geo-Information 9 (2020), Nr. 12, p. 752.Lamamra, A.; Neguritsa, D.; Mazari, M: Geostatistical modeling by the Ordinary Kriging in the estimation of mineral resources on the Kieselguhr mine, Algeria. En: IOP Conference Series: Earth and Environmental Science Vol. 362 IOP Publishing, 2019, p. 012051.Langevin, P: Magnétisme et théorie des électrons. En: Ann. chim. et phys. (1905), Nr. 8, p. 203.Lantuéjoul, C: Geostatistical simulation: models and algorithms. Springer Science & Business Media, 2001 (1139).Mardia, K.; Jupp, P: Directional statistics. Wiley, 2000.Martínez, F: Modelización de la función de covarianza en procesos espacio-temporales: análisis y aplicaciones. Universitat de Valencia (Spain), 2008.Martínez, W.; Melo, C.; Melo, O: Median polish kriging for space–time analysis of precipitation. En: Spatial statistics 19 (2017), p. 1–20.Matías, J.; Vaamonde, A.; Taboada, J.; González-Manteiga, W: Comparison of kriging and neural networks with application to the exploitation of a slate mine. En: Mathematical geology 36 (2004), p. 463–486.McNeill, L: Interpolation and smoothing of mapped circular data. En: South African Statistical Journal 27 (1993), Nr. 1, p. 23–49.Morphet, W: Simulation, kriging, and visualization of circular-spatial data. Utah State University, 2009.Oliver, A.; Webster, R: A tutorial guide to geostatistics: Computing and modelling variograms and kriging. En: Catena 113 (2014), p. 56–69.Oliver, M.; Webster, R: Basic steps in geostatistics: The Variogram and Kriging. Springer, 2015.Padarian, J.; Pérez-Quezada, J.; Seguel, O: Modelling the distribution of organic carbon in the soils of Chile. En: Proceeding of the fifth global workshop on digital soil mapping, Digital Soil assessments and beyond, Sydney, 2012, p. 329–333.Pewsey, A.; Neuhäuser, M.; Ruxton, G: Circular statistics in R. OUP Oxford, 2013.Playfair, W: Playfair’s commercial and political atlas and statistical breviary. Cambridge University Press, 2005.Rao, T: Spatial statistics and spatio-temporal data. En: Journal of Time Series Analysis 34 (2013), Nr. 2, p. 280–280.Rodriguez-Rubio, E.; Stuardo, J: Variability of photosynthetic pigments in the Colombian Pacific Ocean and its relationship with the wind field using ADEOS-I data. En: Journal of Earth System Science 111 (2002), p. 227–236.Rueda, J.; Rodríguez, E.; Ortiz, J: Caracterización espacio temporal del campo de vientos superficiales del Pacífico colombiano y el Golfo de Panamá a partir de sensores remotos y datos in situ. (2007).Sareen, K.; Panigrahi, B.; Shikhola, T.; Sharma, R: An imputation and decomposition algorithms based integrated approach with bidirectional LSTM neural network for wind speed prediction. En: Energy 278 (2023), p. 127799.Seber, G.; Wild, J: Nonlinear Regression. 2003.Seo, Y.; Kim, S.; Singh, V: Estimating spatial precipitation using regression kriging and artificial neural network residual kriging (RKNNRK) hybrid approach. En: Water Resources Management 29 (2015), p. 2189–2204.Sparks, A: nasapower: a NASA POWER global meteorology, surface solar energy, and climatology data client for R. En: Journal of Open Source Software 3 (2018), Nr. 30, p. 1035.Stein, M: Interpolation of Spatial Data: Some theory for Kriging. Springer, 2013.Surjotedjo, H.; Widyaningsih, Y.; Nurrohmah, S: Median polish kriging model for circular-spatial data. En: Empowering Science and Mathematics for Global Competitiveness. CRC Press, 2019, p. 377–385.Wackernagel, H: Multivariate geostatistics: an introduction with applications. Springer Science & Business Media, 2003.Wang, L.; Wong, P.; Shibli, S: Modelling porosity distribution in the A’nan Oilfield: Use of geological quantification, neural networks and geostatistics. En: SPE International Oil and Gas Conference and Exhibition in China SPE, 1998, p. SPE–48884.Webster, R.; Oliver, M: Geostatistics for environmental scientists. John Wiley & Sons, 2007.Weisstein, E: Bessel function of the first kind. En: https://mathworld.wolfram.com/ (2002).Xiao, L.; Zhang, Y: Zhang neural network versus gradient neural network for solving time-varying linear inequalities. En: IEEE transactions on neural networks 22 (2011), Nr. 10, p. 1676–1684.Yan, Q.; Wan, Z.; Yang, C: Flight Load Calculation Using Neural Network Residual Kriging. En: Aerospace 10 (2023), Nr. 7, p. 599.Zakeri, F.; Mariethoz, G: A review of geostatistical simulation models applied to satellite remote sensing: Methods and applications. En: Remote Sensing of Environment 259 (2021), p. 112381.InvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86169/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1052410318.2024.pdf1052410318.2024.pdfTesis de Maestría en Ciencias - Estadísticaapplication/pdf1291703https://repositorio.unal.edu.co/bitstream/unal/86169/4/1052410318.2024.pdff9926f580c092b1f51863fbece8c6936MD54THUMBNAIL1052410318.2024.pdf.jpg1052410318.2024.pdf.jpgGenerated Thumbnailimage/jpeg3682https://repositorio.unal.edu.co/bitstream/unal/86169/5/1052410318.2024.pdf.jpg92b1a656f9efe1f6463c45785e23fe69MD55unal/86169oai:repositorio.unal.edu.co:unal/861692024-05-27 23:05:00.979Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |