Herramienta software para el análisis de canasta de mercado sin selección de candidatos

Actualmente en el entorno del comercio electrónico es necesario contar con herramientas que permitan obtener conocimiento ú-til que brinde soporte a la toma de decisiones de marketing; para ello se necesita de un proceso que utiliza una serie de técnicas para el procesamiento de los datos, entre ell...

Full description

Autores:
Naranjo Cuervo, Roberto Carlos
Sierra Martínez, Luz Marina
Tipo de recurso:
Article of journal
Fecha de publicación:
2009
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/29142
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/29142
http://bdigital.unal.edu.co/19190/
http://bdigital.unal.edu.co/19190/2/
Palabra clave:
data-mining
B2C e-business
family shopping basket analysis
minería de datos
comercio electrónico B2C
análisis de la canasta de mercado
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:Actualmente en el entorno del comercio electrónico es necesario contar con herramientas que permitan obtener conocimiento ú-til que brinde soporte a la toma de decisiones de marketing; para ello se necesita de un proceso que utiliza una serie de técnicas para el procesamiento de los datos, entre ellas se encuentra la minería de datos, que permite llevar a cabo un proceso de des-cubrimiento de información automático. Este trabajo tiene como objetivo presentar la técnica de reglas de asociación como la adecuada para descubrir cómo compran los clientes en una empresa que ofrece un servicio de comercio electrónico tipo B2C, con el fin de apoyar la toma de decisiones para desarrollar ofertas hacia sus clientes o cautivar nuevos. Para la implementación de las reglas de asociación existe una variedad de algoritmos como: A priori, DHP, Partition, FP-Growth y Eclat y para seleccio-nar el más adecuado se define una serie de criterios (Danger y Berlanga, 2001), entre los que se encuentran: inserciones a la base de datos, costo computacional, tiempo de ejecución y rendimiento, los cuales se analizaron en cada algoritmo para reali-zar la selección. Además, se presenta el desarrollo de una herramienta software que contempla la metodología CRISP-DM cons-tituida por cuatro submódulos, así: Preprocesamiento de datos, Minería de datos, Análisis de resultados y Aplicación de resulta-dos. El diseño de la aplicación utiliza una arquitectura de tres capas: Lógica de presentación, Lógica del Negocio y Lógica de servicios; dentro del proceso de construcción de la herramienta se incluye el diseño de la bodega de datos y el diseño de algo-ritmo como parte de la herramienta de minería de datos. Las pruebas hechas a la herramienta de minería de datos desarrollada se realizaron con una base de datos de la compañía FoodMart3. Estas pruebas fueron de: rendimiento, funcionalidad y confiabi-lidad en resultados, las cuales permiten encontrar reglas de asociación igualmente. Los resultados obtenidos facilitaron concluir, entre otros aspectos, que las reglas de asociación como técnica de minería de datos permiten analizar volúmenes de datos para servicios de comercio electrónico tipo B2C, lo cual es una ventaja competitiva para las empresas.