Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo

ilustraciones, fotografías, graficas

Autores:
Delgado Saavedra, Juan Camilo
Tipo de recurso:
Fecha de publicación:
2022
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/83934
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/83934
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::548 - Cristalografía
620 - Ingeniería y operaciones afines::621 - Física aplicada
MONOCRISTALES
Single crystals
Sistemas intermetálicos
Técnica de flujo metálico
Materiales cuánticos
Intermetallic systems
Metallic flux technique
Quantum materials
Rights
openAccess
License
Reconocimiento 4.0 Internacional
id UNACIONAL2_d9d07868fe2eb6f263cc0cee85fef0a8
oai_identifier_str oai:repositorio.unal.edu.co:unal/83934
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo
dc.title.translated.eng.fl_str_mv Fabrication and characterization of intermetallic systems of the RT2AI10 family based on rare earths using flux technique
title Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo
spellingShingle Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo
540 - Química y ciencias afines::548 - Cristalografía
620 - Ingeniería y operaciones afines::621 - Física aplicada
MONOCRISTALES
Single crystals
Sistemas intermetálicos
Técnica de flujo metálico
Materiales cuánticos
Intermetallic systems
Metallic flux technique
Quantum materials
title_short Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo
title_full Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo
title_fullStr Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo
title_full_unstemmed Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo
title_sort Fabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujo
dc.creator.fl_str_mv Delgado Saavedra, Juan Camilo
dc.contributor.advisor.none.fl_str_mv Landinez Téllez, David Arsenio
Cabrera Báez, Michael
dc.contributor.author.none.fl_str_mv Delgado Saavedra, Juan Camilo
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Física de Nuevos Materiales
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::548 - Cristalografía
620 - Ingeniería y operaciones afines::621 - Física aplicada
topic 540 - Química y ciencias afines::548 - Cristalografía
620 - Ingeniería y operaciones afines::621 - Física aplicada
MONOCRISTALES
Single crystals
Sistemas intermetálicos
Técnica de flujo metálico
Materiales cuánticos
Intermetallic systems
Metallic flux technique
Quantum materials
dc.subject.lemb.spa.fl_str_mv MONOCRISTALES
dc.subject.lemb.eng.fl_str_mv Single crystals
dc.subject.proposal.spa.fl_str_mv Sistemas intermetálicos
Técnica de flujo metálico
Materiales cuánticos
dc.subject.proposal.eng.fl_str_mv Intermetallic systems
Metallic flux technique
Quantum materials
description ilustraciones, fotografías, graficas
publishDate 2022
dc.date.issued.none.fl_str_mv 2022
dc.date.accessioned.none.fl_str_mv 2023-05-31T20:04:58Z
dc.date.available.none.fl_str_mv 2023-05-31T20:04:58Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/83934
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/83934
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Piers Coleman. Introduction to Many Body Physics. Cambridge University Press, University. Printing House, Cambridge CB2 8BS, United Kingdom, 2016.
Ernst Bauer. Strongly correlated electron systems, https://www.ifp.tuwien.ac.at/mitarbeiterinnen/persoenliche-homepages/ernst-bauer/research/strongly-correlatedelectron-systems/ (accessed June 10, 2020).
V.W. Burnett, D. Yazici, B.D. White, N.R. Dilley, A.J Friedman, B. Brandom, and M.B Maple. Structure and physical properties of RT2Cd20 (R = rare earth, T = Ni, Pd) compounds with the CeCr2Al20 - type structure. Journal of Solid State Chemistry, page 215, (2014).
S. Jia, N. Ni, S.L Budko, and P.C Canfield. Magnetic properties of RFe2Zn20 and RCo2Zn20 (R = Y,Nd, Sm, Gd–Lu). Physical Review B 80, 104403, (2009).
M.A. Avila, K. Suekini, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Tabatake. Ba8Ga16Sn30 with type-I Clathrate structure: Drastic suppression of heat conduction. Applied Physics Letters, 92, 041901, (2008).
K. Wei, J.N. Neu, Y. Lai, K-W. Chen, D. Hobbis, G. Nolas, D. Graf, T. Siegrist, and R. Baumbach. Enhanced thermoelectric performance of heavy-fermion compounds Y bTM2Zn20 (TM = Co, Rh, Ir) at low temperatures. SCIENCE ADVANCES, eaaw6183:1–8, (2019).
M. Cabrera-Baez, V.C. Denis, L. Mendoca-Ferreira, M. Carlone, P.A. Venegas, M.A Avila, and C. Rettori. Unusual evolution from a superconducting to an antiferromagnetic ground state in Y1−xGdxPb3 (0 ≤ x ≤ 1). PHYSICAL REVIEW, B 97, 224425:1–8 (2018).
M. Cabrera-Baez, A. Naranjo-Uribe, J.M. Osorio-Guillén, C. Rettori, and Avila. Conduction electrons mediating the evolution from antiferromagnetic to ferromagnetic ordering in Gd(Co1−yFey)2Zn20 (0 ≤ y ≤ 1). PHYSICAL REVIEW, B 95, 104407:1–7, (2017).
M. Cabrera-Baez, A. Naranjo-Uribe, J.M. Osorio-Guillén, C. Rettori, and Avila. Multiband electronic characterization of the complex intermetallic cage system Y1−xGdxCo2Zn20. PHYSICAL REVIEW, B 92, 214414:1–7, (2015).
C. Guo, C. Cao, M. Smidman, F. Wu, Y. Zhang, F. Steglich, F. Zhang, and H. Yuan. Possible Weyl fermions in the magnetic Kondo system CeSb. Quantum Materials, doi:10.1038/s41535-017-0038-3, (2017).
L. Wu, M. Kim, K. Park, A.M. Tsvelik, and M. Aronson. Quantum critical fluctuations in layered Y Fe2Al10. PNAS, 111 No.39, (2014).
W.J. Gannon, L.S. Wu, I.A. Zaliznyak, and et.al. Local quantum phase transition inY Fe2Al10. PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1721493115, (2017).
J.L. Lv, R. Chen, H. Wang, J.L. Luo, and N. Wang. Single-crystal growth and physical property characterization of the intermediate-valence compound Y bF e2Al10. PHYSICAL REVIEW, B 95, 235132:1–6, (2017).
T. Kubo, M. Sakoda, E. Matsuoka, T. Terashima, N. Kikugawa, S. Uji, and H. Sugawara. Magnetoresistance, hall effect, and shubnikov–de haas effect in antiferromagnetic kondo semimetal CeRu2Al10. Journal of the Physical Society of Japan, 89, 114704:338–341, (2020).
Tomoaki Takesaka, Kenta Oe, Riki Kobayashi, Yukihiro Kawamura, Takashi Nishioka, Harukazu Kato, Masahiro Matsumura, and Kazuto Kodama. Semiconducting behavior in CeF e2Al10 and CeRu2Al10 single crystals. Journal of Physics: Conference Series, 200(1):012201, jan 2010.
Kazunori Umeo, Takashi Ohsuka, Yuji Muro, Junpei Kajino, and Toshiro Takabatake. Pressure effect on the anomalous phase transition in CeOs2Al10. Journal of The Physical Society of Japan - J PHYS SOC JPN, 80, 06 2011.
P.C. Canfield and Z. Fisk. Growth of single crystals from metallic fluxes. Philosophical Magazine Part B, 65:6, 1117-1123, DOI:10.1080/13642819208215073, (1992).
Z. Fisk and J.P. Remeika. Growth of single crystals from molten metal fluxes. Handbook on the Physics and Chemistry of Rare Earths, 12:53–70, (1989).
Raquel A. Ribeiro and Marcos A. Avila. Single crystal flux growths of thermoelectric materials. Philosophical Magazine, 92,(2012).
Carlos M. Giles de Mayolo. Estudio de compuestos intermetálicos por difracción de rayos X en cristales individuales, https://sites.ifi.unicamp.br/giles/pesquisa/ (accessed June 15, 2020).
Elizabeth Chavira Martínez. Superconductividad en materiales cerámicos e intermetálicos, https://www.iim.unam.mx/investigadores/chavira/investigacion.html (accessed June 15, 2020).
Paula Giraldo. Grupo de Materiales Cuánticos (Quantum Materials), https://quantummaterials.uniandes.edu.co/index.php/research/single-crystal-growth/ (accessed October 6, 2022).
L. Fuentes. Introducción al método de Rietveld. Sociedad Mexicana de Cristalografía, A.C, Centro de Investigación en Materiales Avanzados, S.C, Instituto de Investigaciones en Materiales UNAM, 2004.
G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley. Handbook of crystal growth. Springer-Verlag Berlin Heidelberg, 2010.
S. Galli, M. Moret, and P. Roversi. Cristalografía: la visión de rayos X- 2014: Año internacional de la cristalografía. Asociación Italiana de Cristalografía, 2014.
W. Callister. Introducción a la Ciencia e Ingeniería de los materiales. Editorial Reverte S.A, 1995.
K. Sangwal. Nucleation and crystal growth: metastability of solutions and melts. John Wiley & Sons, Inc., John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA, 2018.
Andrew F. May, Jiaqiang Yan, and Michael A. McGuire. A practical guide for crystal growth of van der waals layered materials. Journal of Applied Physics, 128(5):051101, 2020.
W. K. Burton, N. Cabrera, and F.C. Frank. The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. R. Soc. Lond., 243:299–358, (1951).
J. Hulliger. Chemistry and crystal growth. Angew. Chem. Int. Ed. Engl, 33:143–162, (1994).
M. Sera, H. Nohara, M. Nakamura, H. Tanida, T. Nishioka, and M. Matsumura. Unusual temperature-dependent exchange interaction in GdFe2Al10 in comparison with GdRu2Al10. PHYSICAL REVIEW, B 88, 100404(R), (2013).
T. Nishioka, Y. Kawamura, and T. et.al. Takesaka. Novel phase transition and the pressure effect in Y Fe2Al10 - type CeT2Al10 (T = Fe,Ru,Os). J. Phys. Soc. Jpn., https://arxiv.org/abs/0909.2911v1, 2009.
R. White. MAGNETISM AND PROPERTIES OF THREE RARE EARTH INTERMETALLIC SERIES). UNSW Canberra, PhD Thesis, (accessed July 29, 2022), 2017.
V. Thiede, T. Ebel, and W. Jeitschko. Ternary aluminidesLnT2Al10 (Ln = Y, La–Nd, Sm, Gd–Lu and T = Fe,Ru,Os) with Y bF e2Al10 type structure and magnetic properties of the iron-containing series. J. Mater. Chem., 8(1):125–130, (1998).
B.D. Cullity and S.R. Stock. Elements of X-Ray Diffraction. PEARSON., Pearson Education Limited, 2014.
G.A. Pérez and H. Colorado. Difracción de Rayos X y el Método Rietveld. Teoría y software de refinamiento. Universidad del Valle - Cali, Colombia. Edición Notas de Clase, Ciudad Universitaria, Meléndez - Cali, Colombia., 2015.
B. H. Toby and R. B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544-549, (2013).
K. Momma and F. Izumi. VESTA:a three-dimensional visualization system for electronic and structural analysis. J. Appl. Phys. Crystallogr, 41, 653, (2008).
A. Kerkau, L. Wu, and et.al. Crystal structure of yttrium iron aluminium (1/2/10), Y Fe2Al10. Z. Kristallogr, NCS 227:289–290, (2012).
S. Niemann and W. Jeitschko. The crystal structure of Y bF e2Al10, a combined substitution and stacking variant of the ThMn12 and CeMn4Al8 type structures. Zeitschrift fur Kristallographie, 210:338–341, (1995).
GdFe2Al10 (T = 300K) Crystal Structure: Datasheet from “PAULING FILE multinaries edition – 2012” in springermaterials (https://materials.springer.com/isp/crystallographic/docs/sd 1232746). Copyright 2016 Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan, Part of SpringerMaterials, accessed 2022-09-28.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Reconocimiento 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Reconocimiento 4.0 Internacional
http://creativecommons.org/licenses/by/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv x, 62 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/83934/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/83934/4/1031154215.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/83934/5/1031154215.2022.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
0351a5d2857b3e6d37749509bef956f2
f1c3b728e49958b7acbd790c377dbd21
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089374508253184
spelling Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Landinez Téllez, David Arseniodffede821dc3e8c8b91ae4341116fe45Cabrera Báez, Michaelf6191285e2fc4bfa801c34e4bcd1df20Delgado Saavedra, Juan Camilof8546883ff0828d0188df235edf75fecGrupo de Física de Nuevos Materiales2023-05-31T20:04:58Z2023-05-31T20:04:58Z2022https://repositorio.unal.edu.co/handle/unal/83934Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías, graficasAl abordar un trabajo experimental en física de la materia condensada o en ciencia de materiales, resulta primordial contar con muestras confiables, cuidadosamente diseñadas y fabricadas, de modo que exhiban los diferentes fenómenos físicos que se desean estudiar, tales como: magnetismo, superconductividad, termoelectricidad, fermiones pesados, criticalidad cuántica, entre otros. Este trabajo de grado, se enfoca en la adaptación e implementación de un espacio en el laboratorio del GFNM, para la fabricación y caracterización estructural de monocristales de la familia RT2Al10(R: tierra rara, T: metal de transición) utilizando una técnica experimental denominada técnica de flujo, con el propósito de lograr muestras de una alta calidad, para luego medir sus características estructurales y composicionales, dando paso a una nueva linea de investigación en ciencia de materiales en la Universidad Nacional de Colombia - Sede Bogotá, en la que a futuro se podrán estudiar propiedades electrónicas, magnéticas y térmicas derivadas de los grados de correlación electrónica y otro tipo de fenómenos físicos que se producen en esta familia de compuestos; y que se encuentran a la vanguardia de la investigación en nuevos materiales, específicamente en la línea de materiales cuánticos. (Texto tomado de la fuente)When starting an experimental work in condensed matter physics or materials science, it is essential to have reliable samples, carefully designed and manufactured, so that they exhibit the different physical phenomena that we want to be studied, such as: magnetism, superconductivity, thermoelectricity , heavy fermions, quantum criticality, among others. This degree work focuses on the adaptation and implementation of a place into the GFNM-Laboratory, for the fabrication and structural characterization of single crystals of the RT2Al10 family (R: rare earth, T: transition metal) using an experimental technique called flux technique, with the purpose of to obtain high quality samples, to later measure their structural and compositional characteristics, giving way to a new line of research in materials science at the National University of Colombia - Bogotá Campus, in which electronic, magnetic and thermal properties derived from the degrees of electronic correlation and other types of physical phenomena that occur in this family of compounds that can be studied in the future; and that, are at the forefront of research into new materials, specifically in the line of quantum materials.MaestríaMagíster en Ciencias - FísicaFíısica experimental de nuevos materialesx, 62 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::548 - Cristalografía620 - Ingeniería y operaciones afines::621 - Física aplicadaMONOCRISTALESSingle crystalsSistemas intermetálicosTécnica de flujo metálicoMateriales cuánticosIntermetallic systemsMetallic flux techniqueQuantum materialsFabricación y caracterización de sistemas intermetálicos de la familia RT2AI10 a base de tierras raras mediante la técnica de flujoFabrication and characterization of intermetallic systems of the RT2AI10 family based on rare earths using flux techniqueTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMPiers Coleman. Introduction to Many Body Physics. Cambridge University Press, University. Printing House, Cambridge CB2 8BS, United Kingdom, 2016.Ernst Bauer. Strongly correlated electron systems, https://www.ifp.tuwien.ac.at/mitarbeiterinnen/persoenliche-homepages/ernst-bauer/research/strongly-correlatedelectron-systems/ (accessed June 10, 2020).V.W. Burnett, D. Yazici, B.D. White, N.R. Dilley, A.J Friedman, B. Brandom, and M.B Maple. Structure and physical properties of RT2Cd20 (R = rare earth, T = Ni, Pd) compounds with the CeCr2Al20 - type structure. Journal of Solid State Chemistry, page 215, (2014).S. Jia, N. Ni, S.L Budko, and P.C Canfield. Magnetic properties of RFe2Zn20 and RCo2Zn20 (R = Y,Nd, Sm, Gd–Lu). Physical Review B 80, 104403, (2009).M.A. Avila, K. Suekini, K. Umeo, H. Fukuoka, S. Yamanaka, and T. Tabatake. Ba8Ga16Sn30 with type-I Clathrate structure: Drastic suppression of heat conduction. Applied Physics Letters, 92, 041901, (2008).K. Wei, J.N. Neu, Y. Lai, K-W. Chen, D. Hobbis, G. Nolas, D. Graf, T. Siegrist, and R. Baumbach. Enhanced thermoelectric performance of heavy-fermion compounds Y bTM2Zn20 (TM = Co, Rh, Ir) at low temperatures. SCIENCE ADVANCES, eaaw6183:1–8, (2019).M. Cabrera-Baez, V.C. Denis, L. Mendoca-Ferreira, M. Carlone, P.A. Venegas, M.A Avila, and C. Rettori. Unusual evolution from a superconducting to an antiferromagnetic ground state in Y1−xGdxPb3 (0 ≤ x ≤ 1). PHYSICAL REVIEW, B 97, 224425:1–8 (2018).M. Cabrera-Baez, A. Naranjo-Uribe, J.M. Osorio-Guillén, C. Rettori, and Avila. Conduction electrons mediating the evolution from antiferromagnetic to ferromagnetic ordering in Gd(Co1−yFey)2Zn20 (0 ≤ y ≤ 1). PHYSICAL REVIEW, B 95, 104407:1–7, (2017).M. Cabrera-Baez, A. Naranjo-Uribe, J.M. Osorio-Guillén, C. Rettori, and Avila. Multiband electronic characterization of the complex intermetallic cage system Y1−xGdxCo2Zn20. PHYSICAL REVIEW, B 92, 214414:1–7, (2015).C. Guo, C. Cao, M. Smidman, F. Wu, Y. Zhang, F. Steglich, F. Zhang, and H. Yuan. Possible Weyl fermions in the magnetic Kondo system CeSb. Quantum Materials, doi:10.1038/s41535-017-0038-3, (2017).L. Wu, M. Kim, K. Park, A.M. Tsvelik, and M. Aronson. Quantum critical fluctuations in layered Y Fe2Al10. PNAS, 111 No.39, (2014).W.J. Gannon, L.S. Wu, I.A. Zaliznyak, and et.al. Local quantum phase transition inY Fe2Al10. PNAS, www.pnas.org/cgi/doi/10.1073/pnas.1721493115, (2017).J.L. Lv, R. Chen, H. Wang, J.L. Luo, and N. Wang. Single-crystal growth and physical property characterization of the intermediate-valence compound Y bF e2Al10. PHYSICAL REVIEW, B 95, 235132:1–6, (2017).T. Kubo, M. Sakoda, E. Matsuoka, T. Terashima, N. Kikugawa, S. Uji, and H. Sugawara. Magnetoresistance, hall effect, and shubnikov–de haas effect in antiferromagnetic kondo semimetal CeRu2Al10. Journal of the Physical Society of Japan, 89, 114704:338–341, (2020).Tomoaki Takesaka, Kenta Oe, Riki Kobayashi, Yukihiro Kawamura, Takashi Nishioka, Harukazu Kato, Masahiro Matsumura, and Kazuto Kodama. Semiconducting behavior in CeF e2Al10 and CeRu2Al10 single crystals. Journal of Physics: Conference Series, 200(1):012201, jan 2010.Kazunori Umeo, Takashi Ohsuka, Yuji Muro, Junpei Kajino, and Toshiro Takabatake. Pressure effect on the anomalous phase transition in CeOs2Al10. Journal of The Physical Society of Japan - J PHYS SOC JPN, 80, 06 2011.P.C. Canfield and Z. Fisk. Growth of single crystals from metallic fluxes. Philosophical Magazine Part B, 65:6, 1117-1123, DOI:10.1080/13642819208215073, (1992).Z. Fisk and J.P. Remeika. Growth of single crystals from molten metal fluxes. Handbook on the Physics and Chemistry of Rare Earths, 12:53–70, (1989).Raquel A. Ribeiro and Marcos A. Avila. Single crystal flux growths of thermoelectric materials. Philosophical Magazine, 92,(2012).Carlos M. Giles de Mayolo. Estudio de compuestos intermetálicos por difracción de rayos X en cristales individuales, https://sites.ifi.unicamp.br/giles/pesquisa/ (accessed June 15, 2020).Elizabeth Chavira Martínez. Superconductividad en materiales cerámicos e intermetálicos, https://www.iim.unam.mx/investigadores/chavira/investigacion.html (accessed June 15, 2020).Paula Giraldo. Grupo de Materiales Cuánticos (Quantum Materials), https://quantummaterials.uniandes.edu.co/index.php/research/single-crystal-growth/ (accessed October 6, 2022).L. Fuentes. Introducción al método de Rietveld. Sociedad Mexicana de Cristalografía, A.C, Centro de Investigación en Materiales Avanzados, S.C, Instituto de Investigaciones en Materiales UNAM, 2004.G. Dhanaraj, K. Byrappa, V. Prasad, and M. Dudley. Handbook of crystal growth. Springer-Verlag Berlin Heidelberg, 2010.S. Galli, M. Moret, and P. Roversi. Cristalografía: la visión de rayos X- 2014: Año internacional de la cristalografía. Asociación Italiana de Cristalografía, 2014.W. Callister. Introducción a la Ciencia e Ingeniería de los materiales. Editorial Reverte S.A, 1995.K. Sangwal. Nucleation and crystal growth: metastability of solutions and melts. John Wiley & Sons, Inc., John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA, 2018.Andrew F. May, Jiaqiang Yan, and Michael A. McGuire. A practical guide for crystal growth of van der waals layered materials. Journal of Applied Physics, 128(5):051101, 2020.W. K. Burton, N. Cabrera, and F.C. Frank. The growth of crystals and the equilibrium structure of their surfaces. Phil. Trans. R. Soc. Lond., 243:299–358, (1951).J. Hulliger. Chemistry and crystal growth. Angew. Chem. Int. Ed. Engl, 33:143–162, (1994).M. Sera, H. Nohara, M. Nakamura, H. Tanida, T. Nishioka, and M. Matsumura. Unusual temperature-dependent exchange interaction in GdFe2Al10 in comparison with GdRu2Al10. PHYSICAL REVIEW, B 88, 100404(R), (2013).T. Nishioka, Y. Kawamura, and T. et.al. Takesaka. Novel phase transition and the pressure effect in Y Fe2Al10 - type CeT2Al10 (T = Fe,Ru,Os). J. Phys. Soc. Jpn., https://arxiv.org/abs/0909.2911v1, 2009.R. White. MAGNETISM AND PROPERTIES OF THREE RARE EARTH INTERMETALLIC SERIES). UNSW Canberra, PhD Thesis, (accessed July 29, 2022), 2017.V. Thiede, T. Ebel, and W. Jeitschko. Ternary aluminidesLnT2Al10 (Ln = Y, La–Nd, Sm, Gd–Lu and T = Fe,Ru,Os) with Y bF e2Al10 type structure and magnetic properties of the iron-containing series. J. Mater. Chem., 8(1):125–130, (1998).B.D. Cullity and S.R. Stock. Elements of X-Ray Diffraction. PEARSON., Pearson Education Limited, 2014.G.A. Pérez and H. Colorado. Difracción de Rayos X y el Método Rietveld. Teoría y software de refinamiento. Universidad del Valle - Cali, Colombia. Edición Notas de Clase, Ciudad Universitaria, Meléndez - Cali, Colombia., 2015.B. H. Toby and R. B. Von Dreele. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. Journal of Applied Crystallography, 46(2), 544-549, (2013).K. Momma and F. Izumi. VESTA:a three-dimensional visualization system for electronic and structural analysis. J. Appl. Phys. Crystallogr, 41, 653, (2008).A. Kerkau, L. Wu, and et.al. Crystal structure of yttrium iron aluminium (1/2/10), Y Fe2Al10. Z. Kristallogr, NCS 227:289–290, (2012).S. Niemann and W. Jeitschko. The crystal structure of Y bF e2Al10, a combined substitution and stacking variant of the ThMn12 and CeMn4Al8 type structures. Zeitschrift fur Kristallographie, 210:338–341, (1995).GdFe2Al10 (T = 300K) Crystal Structure: Datasheet from “PAULING FILE multinaries edition – 2012” in springermaterials (https://materials.springer.com/isp/crystallographic/docs/sd 1232746). Copyright 2016 Springer-Verlag Berlin Heidelberg & Material Phases Data System (MPDS), Switzerland & National Institute for Materials Science (NIMS), Japan, Part of SpringerMaterials, accessed 2022-09-28.LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83934/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINAL1031154215.2022.pdf1031154215.2022.pdfTesis de Maestría en Ciencias - Físicaapplication/pdf15883019https://repositorio.unal.edu.co/bitstream/unal/83934/4/1031154215.2022.pdf0351a5d2857b3e6d37749509bef956f2MD54THUMBNAIL1031154215.2022.pdf.jpg1031154215.2022.pdf.jpgGenerated Thumbnailimage/jpeg5736https://repositorio.unal.edu.co/bitstream/unal/83934/5/1031154215.2022.pdf.jpgf1c3b728e49958b7acbd790c377dbd21MD55unal/83934oai:repositorio.unal.edu.co:unal/839342023-08-05 23:04:09.079Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=