Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica

ilustraciones (principalmente a color), diagramas

Autores:
Linares Melo, Milton Smit
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86523
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86523
https://repositorio.unal.edu.co/
Palabra clave:
530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
Campos magnéticos
Relaciones de dispersión
Sistemas moleculares
Fotónica
Magnetic fields
Photonics
Campo magnético aplicado
Punto cuántico multiexcitónico
Estados moleculares excitónicos y fotónicos
Cavidad óptica
Acoplamiento luz-materia
Relaciones de dispersión de energía
Ocupaciones en estado estacionario.
Applied magnetic field
Multi-excitonic quantum dot
Excitonic and photonic molecular states
Optical cavity
Light-matter coupling
Energy dispersion relations
Steady-state occupancies
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d9cb295f60dfb9d478d34554c6564a5f
oai_identifier_str oai:repositorio.unal.edu.co:unal/86523
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica
dc.title.translated.eng.fl_str_mv Magnetic control of a molecular quantum dot system immersed in a photonic molecule.
title Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica
spellingShingle Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica
530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
Campos magnéticos
Relaciones de dispersión
Sistemas moleculares
Fotónica
Magnetic fields
Photonics
Campo magnético aplicado
Punto cuántico multiexcitónico
Estados moleculares excitónicos y fotónicos
Cavidad óptica
Acoplamiento luz-materia
Relaciones de dispersión de energía
Ocupaciones en estado estacionario.
Applied magnetic field
Multi-excitonic quantum dot
Excitonic and photonic molecular states
Optical cavity
Light-matter coupling
Energy dispersion relations
Steady-state occupancies
title_short Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica
title_full Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica
title_fullStr Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica
title_full_unstemmed Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica
title_sort Control magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónica
dc.creator.fl_str_mv Linares Melo, Milton Smit
dc.contributor.advisor.none.fl_str_mv Vinck-Posada, Herbert
Gómez González, Edgar Arturo
dc.contributor.author.none.fl_str_mv Linares Melo, Milton Smit
dc.contributor.researchgroup.spa.fl_str_mv Óptica e Información Cuántica (UNAL)
Superconductividad y Nanotecnología (UNAL)
dc.subject.ddc.spa.fl_str_mv 530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
topic 530 - Física::535 - Luz y radiación relacionada
530 - Física::539 - Física moderna
Campos magnéticos
Relaciones de dispersión
Sistemas moleculares
Fotónica
Magnetic fields
Photonics
Campo magnético aplicado
Punto cuántico multiexcitónico
Estados moleculares excitónicos y fotónicos
Cavidad óptica
Acoplamiento luz-materia
Relaciones de dispersión de energía
Ocupaciones en estado estacionario.
Applied magnetic field
Multi-excitonic quantum dot
Excitonic and photonic molecular states
Optical cavity
Light-matter coupling
Energy dispersion relations
Steady-state occupancies
dc.subject.lemb.spa.fl_str_mv Campos magnéticos
Relaciones de dispersión
Sistemas moleculares
Fotónica
dc.subject.lemb.eng.fl_str_mv Magnetic fields
Photonics
dc.subject.proposal.spa.fl_str_mv Campo magnético aplicado
Punto cuántico multiexcitónico
Estados moleculares excitónicos y fotónicos
Cavidad óptica
Acoplamiento luz-materia
Relaciones de dispersión de energía
Ocupaciones en estado estacionario.
dc.subject.proposal.eng.fl_str_mv Applied magnetic field
Multi-excitonic quantum dot
Excitonic and photonic molecular states
Optical cavity
Light-matter coupling
Energy dispersion relations
Steady-state occupancies
description ilustraciones (principalmente a color), diagramas
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-07-17T15:32:11Z
dc.date.available.none.fl_str_mv 2024-07-17T15:32:11Z
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86523
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86523
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv Alfonso González Taboada. Control de la forma, tamaño y composición de nanoestructuras de semiconductores III-V: anillos y puntos cuánticos. PhD thesis, Universidad Autónoma de Madrid, 2010.
Suwit Kiravittaya, Armando Rastelli, and Oliver G Schmidt. Advanced quantum dot configurations. IOP Science - Rep. Prog. Phys, 72:046502, 2009.
P Michler. Single Semiconductor Quantum Dots. In NanoScience and Technology. 2009.
Kerry J Vahala. Optical microcavities. Nature, 424:839–846, 2003.
Loannis Chremmos. Photonic Microresonator Research and Applications. 2010.
Misael León Hilario. Efecto de muchos cuerpos en transiciones opticas en nanoestructuras semiconductoras. PhD thesis, Universidad Nacional de Cuyo, 2010.
Peter Lodahl, Sahand Mahmoodian, and Søren Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews Of Modern Physics, 87:347– 400, 2015.
H J Krenner, M Sabathil, E C Clark, A Kress, D Schuh, M Bichler, G Abstreiter, and J J Finley. Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule. Physical Review Letters, 94:057402, 2005.
A S Bracker, M Scheibner, M F Doty, E A Stinaff, I V Ponomarev, J C Kim, L J Whitman, and T L Reinecke. Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules. Applied Physics Letters, 89:233110, 2006.
Michael Scheibner, Allan S Bracker, Danny Kim, and Daniel Gammon. Essential concepts in the optical properties of quantum dot molecules. Solid State Communications, 149:1427–1435, 2009.
S Suraprapapich, S Thainoi, S Kanjanachuchai, and S Panyakeow. Self-assembled quantum-dot molecules by molecular-beam epitaxy. Journal of Vacuum Science & Technology B, 23:1217–1220, 2007.
Svetlana V Boriskina. Chapter 16 : Photonic molecules and spectral engineering. In Photonic Microresonator Research and Applications. 2010.
R P Stanley, R Houdré, U Oesterle, M Ilegems, C Weisbuch, U Oesterle, and M Ilegems. Coupled semiconductor microcavities. Applied Physics Letters, 65:2093–2095, 1994.
Brendon W Lovett, John H Reina, Ahsan Nazir, and G Andrew D Briggs. Optical schemes for quantum computation in quantum dot molecules. Physical Review B, 68:205319, 2003.
A V Tsukanov. Quantum Dots in Photonic Molecules and Quantum Informatics . Part I. Russian Microelectronics, 42:325–346, 2013.
M F Doty, M Scheibner, A S Bracker, I V Ponomarev, T L Reinecke, and D Gammon. Optical spectra of doubly charged quantum dot molecules in electric and magnetic fields. Physical Review B, 78:115316, 2008.
M Bayer, O Stern, A Kuther, and A Forchel. Spectroscopic study of dark excitons in In. Physical Review B, 61:7273–7276, 2000.
H. Vinck-Posada and C. A. Jiménez-Orjuela. Dark excitons in a quantum-dot–cavity system under a tilted magnetic field. Physical Review B, 96:125303, 2017.
Andreas Reiserer and Gerhard Rempe. Cavity-based quantum networks with single atoms and optical photons. Reviews Of Modern Physics, 87:1379–1418, 2015.
J M Elzerman, K M Weiss, and A Imamog. Optical Amplification Using Raman Transitions between Spin-Singlet and Spin-Triplet States of a Pair of Coupled In- GaAs Quantum Dots. Physical Review B - Condensed Matter and Materials Physics, 107:017401, 2011.
Hakan E Türeci, J M Taylor, and A Imamoglu. Coherent optical manipulation of triplet-singlet states in coupled quantum dots. Physical Review B, 75:235313, 2007.
Danny Kim, Samuel G Carter, Alex Greilich, Allan S Bracker, and Daniel Gammon. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Physics, 7:223–229, 2010.
Author M Bayer, P Hawrylak, K Hinzer, S Fafard, M Korkusinski, Z R Wasilewski, O Stern, A Forchel, and Dot Molecules. Coupling and Entangling of Quantum States in Quantum. Science, 291:451–453, 2016.
Yu He, Yu-ming He, Y Wei, X Jiang, M Chen, F Xiong, Y Zhao, Christian Schneider, Chao-yang Lu, Jian-wei Pan, Martin Kamp, and Sven Ho. Indistinguishable Tunable Single Photons Emitted by Spin Flip Raman Transitions in InGaAs Quantum Dots. Physical Review Letters, 111:237403, 2013.
M Bayer, T L Reinecke, F Weidner, A Larionov, A Mcdonald, and A Forchel. Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators. Physical Review Letters, 86:3168–3171, 2001.
J. P. Reithmaier, G. Sek, A.Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432:197–200, 2004.
E L Hu, A Imamog, S Gulde, S Fa, K Hennessy, A Badolato, M Winger, D Gerace, and M Atatu. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445:896–899, 2007.
J I Perea, D Porras, and C Tejedor. Dynamics of the excitations of a quantum dot in a microcavity. Physical Review B, 70:115304, 2004.
M S Linares andWJ Herrera. Emission of an interacting quantum dot system embedded in an optical microcavity. Optik - International Journal for Light and Electron Optics, 176:685–693, 2019.
Z R Wasilewski, S Fafard, and J P Mcca. Size and shape engineering of vertically stacked self assembled quantum dots. Journal of Crystal Growth, 202:1131–1135, 1999.
D. J. Eaglesham and M. Cerullo. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Physical Review Letters, 64:1943–1946, 1990.
Qianghua Xie, Anupam Madhukar, Ping Chen, and Nobuhiko P Kobayashi. Vertically Self-Organized InAs Quantum Box Islands on GaAs(100). Physical Review Letters, 75:2542–2545, 1995.
J Tersoff, C Teichert, and M G Lagally. Self-Organization in Growth of Quantum Dot Superlattices. Physical Review Letters, 76:1675–1678, 1996.
R A Rosas. Excitones confinados en puntos cuánticos esferoidales prolatos. Revista Mexicana De Física, 50:412–421, 2004.
Chang-yu Hsieh, Yun-pil Shim, and Marek Korkusinski. Physics of lateral triple quantum-dot molecules with controlled electron. IOP Science - Rep. Prog. Phys, 75:114501, 2012.
Ahsan Nazir, Brendon W. Lovett, Sean D. Barrett, John H. Reina, and G. Andrew D Briggs. Anticrossings in Förster coupled quantum dots. Physical Review B – Condensed Matter and Materials Physics, 71:045334, 2005.
L Wang, A Rastelli, O G Schmidt, P Michler, G J Beirne, and C Hermannsta. Quantum Light Emission of Two Lateral Tunnel-Coupled (In, Ga)As = GaAs Quantum Dots Controlled by a Tunable Static Electric Field. Physical Review Letters, 96:137401, 2006.
M C Xu, Y Temko, T Suzuki, K Jacobi, M C Xu, Y Temko, T Suzuki, and K Jacobi. Shape transition of InAs quantum dots on GaAs (001). Journal of Applied Physics, 98:083525, 2005.
M. Scheibner, M. F. Doty, A. S. Bracker, E. A. Stinaff, and D. Gammon. Spin fine structure of optically excited quantum dot molecules. Physical Review B, 75:245318, 2007.
E A Stinaff, M Scheibner, and A S Backer. Optical signatures of coupled quantum dots. Science, 311:636–639, 2006.
Rudeesun Songmuang, Suwit Kiravittaya, Oliver G Schmidt, Rudeesun Songmuang, Suwit Kiravittaya, and Oliver G Schmidt. Formation of lateral quantum dot molecules around self-assembled nanoholes. Applied Physics Letters, 82:2892–2894, 2003.
J H Lee, Zh M Wang, N W Strom, Yu I Mazur, G J Salamo, J H Lee, Zh M Wang, N W Strom, Yu I Mazur, and G J Salamo. InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Applied Physics Letters, 89:202101, 2006.
T Yoshie, A Scherer, J Hendrickson, G Khitrova, H M Gibbs, G Rupper, C Ell, O B Shchekin, and D G Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432:200–203, 2004.
Dorothea Pinotsi, Parisa Fallahi, Javier Miguel-sanchez, and Atac Imamoglu. Dots in Photonic Crystal Structures. 47:1371–1374, 2011.
Mark Adams and Axel Scherer. Lithographically fabricated optical cavities for refractive index sensing. Microelectronics and Nanometer Structures, 23:3168–3173, 2005.
Francesca Intonti, Silvia Vignolini, Volker Türck, Marcello Colocci, Paolo Bettotti, Lorenzo Pavesi, L Stefan, Ralf Wehrspohn, and Diederik Wiersma. Rewritable photonic circuits. Applied Physics Letters, 89:211117, 2006.
Qian Bo Chen San Ding Hong-Lin Liu KuiWang Xiang Xu Jun LiWei Zhang Xian-Gao, Chen Kun-Ji and Huang Xin-Fan. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity. Chinese Physics Letters, 25:1888, 2008.
M Bayer, T Gutbrod, J P Reithmaier, and A Forchel. Optical Modes in Photonic Molecules. Physical Review Letters, 81:2582–2585, 1998.
M Benyoucef and S Kiravittaya. Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances. Physical Review B, 77:035108, 2008.
Hsuan Lin, Jhih-hao Chen, Shih-shing Chao, Ming-cheng Lo, Sheng-di Lin, and Wenhao Chang. Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities. Optics Express, 18:1557–1559, 2010.
Svetlana V Boriskina. Theoretical prediction of a dramatic Q -factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules. Optics Letters, 31:338–340, 2006.
Jung-wan Ryu, Soo-young Lee, and Sang Wook Kim. Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission. Physical Review A, 79:053858, 2009.
Atsuo Nakagawa, Satoru Ishii, Toshihiko Baba, Atsuo Nakagawa, Satoru Ishii, and Toshihiko Baba. Photonic molecule laser composed of GaInAsP microdisks. Applied Physics Letters, 86:041112, 2005.
Svetlana V Boriskina. Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Optics Letters, 32:1557–1559, 2007.
Yoshiko Hara, Takashi Mukaiyama, Kenji Takeda, and Makoto Kuwata-gonokami. Photonic molecule lasing. Optics Letters, 28:2437–2439, 2003.
T Mukaiyama, K Takeda, H Miyazaki, and Y Jimba. Tight-Binding Photonic Molecule Modes of Resonant Bispheres. Physical Review Letters, 82:4623–4626, 1999.
David B Thompson, David A Keating, Emre Guler, Kazuya Ichimura, Mary E Williams, and Kirk A Fuller. Separation-sensitive measurements of morphology dependent resonances in coupled fluorescent microspheres. Optics Express, 18:8286–8295, 2010.
B M Möller and UWoggon. Photonic molecules doped with semiconductor nanocrystals. Physical Review B, 70:115323, 2004.
Silvia Vignolini, Francesco Riboli, Diederik Sybolt Wiersma, Laurent Balet, Lianhe H Li, Marco Francardi, Annamaria Gerardino, Andrea Fiore, and Massimo Gurioli. Nanofluidic control of coupled photonic crystal resonators. Applied Physics Letters, 96:141114, 2010.
Silvia Vignolini, Francesca Intonti, Margherita Zani, Francesco Riboli, Diederik S Wiersma, Lianhe H Li, Laurent Balet, Marco Francardi, Annamaria Gerardino, Andrea Fiore, and Massimo Gurioli. Near field imaging of coupled photonic-crystal microcavities. Applied Physics Letters, 94:151103, 2013.
M Brunstein, T J Karle, I Sagnes, F Raineri, J Bloch, Y Halioua, G Beaudoin, L Le Gratiet, J A Levenson, A M Yacomotti, M Brunstein, T J Karle, I Sagnes, F Raineri, J Bloch, Y Halioua, and G Beaudoin. Radiation patterns from coupled photonic crystal nanocavities. Applied Physics Letters, 99:111101, 2011.
A R A Chalcraft, S Lam, B D Jones, D Szymanski, R Oulton, A C T Thijssen, M S Skolnick, D M Whittaker, T F Krauss, and A M Fox. Mode structure of coupled L3 photonic crystal cavities. Optics Express, 19:5670–5675, 2011.
Mehmet A Du, Joost A M Voorbraak, Richard No, and Rob W Van Der Heijden. Multimodal strong coupling of photonic crystal cavities of dissimilar size. Applied Physics Letters, 100:081107, 2012.
Xiaodong Yang, Charlton J Chen, Chad A Husko, Chee Wei Wong, Xiaodong Yang, Charlton J Chen, Chad A Husko, and Chee Wei. Digital resonance tuning of high- Q V m silicon photonic crystal nanocavities by atomic layer deposition. Applied Physics Letters, 91:161114, 2013.
T Gu, S Kocaman, X Yang, J F Mcmillan, and M B Yu. Deterministic integrated tuning of multicavity resonances and phase for slow-light in coupled photonic crystal cavities. Applied Physics Letters, 98:121103, 2014.
Christopher Gerry and Peter Knight. Introductory Quantum Optics. 2005.
Jonas Larson and Neil Young. Extended Jaynes-Cummings models in cavity QED than meets the eye. 2005.
M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B, 65:195315, 2002.
S. Reitzenstein, S. Münch, P. Franeck, A. Rahimi-Iman, A. Löffler, S. Höfling, L. Worschech, and A. Forchel. Control of the Strong Light-Matter Interaction between an Elongated in 0.3Ga0.7 As Quantum Dot and a Micropillar Cavity Using External Magnetic Fields. Physical Review Letters, 103:127401, 2009.
Hyochul Kim, Glenn S. Solomon, and Edo Waks. Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity. Applied Physics Letters, 98:091102, 2011.
S. Lüker, T. Kuhn, and D. E. Reiter. Direct optical state preparation of the dark exciton in a quantum dot. Physical Review B - Condensed Matter and Materials Physics, 92:201305, 2015.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xiv, 97 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Doctorado en Ciencias - Física
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86523/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86523/6/80745283.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/86523/7/80745283.2023.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
82dd65e5c5adaa8b3463cef491298749
0f34f65e8ebdf40a8505dfd92380b375
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090153301377024
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Vinck-Posada, Herbert8253ed3a8322a8314b1c8567e0f1459b600Gómez González, Edgar Arturo356127f4e338a4264e1daa0b5e5a4fb5600Linares Melo, Milton Smitc101b00565560f3451cc3d9744b6829bÓptica e Información Cuántica (UNAL)Superconductividad y Nanotecnología (UNAL)2024-07-17T15:32:11Z2024-07-17T15:32:11Z2023https://repositorio.unal.edu.co/handle/unal/86523Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones (principalmente a color), diagramasEn este trabajo se estudia el efecto de un campo magnético externo sobre los observables en estado estacionario de algunos sistemas de microcavidades y puntos cuánticos que revisten diferentes órdenes de complejidad a nivel estructural y teórico en tanto su arquitectura física cambia al considerar y disponer diferentes componentes en distintas configuraciones. Inicialmente, se considera un punto cuántico multiexcitónico embebido en una cavidad óptica bimodal como una primera aproximación a la idea molecular en cuanto a la posibilidad de más de una excitación material en un emisor cuántico. Se continúa considerando un par de puntos cuánticos que acorde a su distribución espacial lateral o vertical constituyen una molécula tanto mediante interacciones de transferencia de energía de resonancia como mediante interacciones de tunelamiento de portadores de carga correspondiente, los cuales también se encuentran dispuestos en una cavidad óptica. Finalmente, dichos sistemas moleculares de materia se consideran embebidos en una configuración de microcavidades que aportan el componente molecular fotónico. Se construyen los modelos teóricos que definen cada uno de los sistemas de interés para posteriormente realizar un análisis hamiltoniano detallado de las relaciones de dispersión y composiciones fraccionales de los estados. Se prosigue con un análisis disipativo que incorpora los principales mecanismos decoherentes mediante el formalismo de la ecuación maestra a partir del cual se obtienen y analizan observables como las ocupaciones de los estados y funciones de correlación de segundo orden sin retraso. Todo lo anterior en función de la intensidad y el ángulo de inclinación del campo magnético externo aplicado. Se encuentra que las relaciones de dispersión de energía revelan la presencia de anti cruces como una firma de acoplamiento entre los diferentes componentes de los sistemas considerados. Además, se muestra que mediante la variación del ángulo de inclinación y la intensidad del campo magnético, se pueden manipular las dinámicas de ocupaciones en estado estacionario de los diferentes sistemas contemplados, con lo que se identificó regímenes de parámetros que propician la generación de estados biexcitónicos, moleculares excitónicos y fotónicos simples hasta estados híbridos moleculares de materia y de radiación de forma controlada en los diferentes sistemas estudiados (Texto tomado de la fuente).In this study, we investigate the impact of an external magnetic field on the steady-state observables of systems with varying levels of complexity, as their physical architecture chanx ges due to the arrangement of different components. Initially, we examine a multi-excitonic quantum dot embedded in a bimodal optical cavity, representing a preliminary approximation to the concept of multiple material excitations in a quantum emitter. Subsequently, we explore a pair of quantum dots forming a molecular structure through resonance energy transfer interactions and charge carrier tunneling interactions. These dots are also situated within an optical cavity. Finally, we consider these molecular systems embedded within a configuration of micro-cavities that contribute to the photonic molecular component. The theoretical models defining each of these systems of interest are developed to conduct a comprehensive Hamiltonian analysis of dispersion relations and fractional composition states. Subsequently, a dissipative analysis is performed, incorporating key decoherence mechanisms using the master equation formalism. This analysis yields observables such as state occupancies and second-order correlation functions without delay. All these results are studied in relation to the strength and tilt angle of the applied external magnetic field. Our findings reveal that energy dispersion relations exhibit anti-crossing as a signature of coupling between the various components within the considered systems. Furthermore, we demonstrate that adjusting the tilt angle and magnetic field intensity allows manipulation of the steady-state occupancy dynamics of the systems under consideration. This identification of parameter regimes supports the generation of biexcitonic states, excitonic and photonic molecular states, and even hybrid molecular states of matter and radiation. Importantly, these manipulations can be controlled across the diverse systems studied.DoctoradoDoctor en Ciencias - FísicaElectrodinámica cuántica de cavidadesxiv, 97 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Doctorado en Ciencias - FísicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá530 - Física::535 - Luz y radiación relacionada530 - Física::539 - Física modernaCampos magnéticosRelaciones de dispersiónSistemas molecularesFotónicaMagnetic fieldsPhotonicsCampo magnético aplicadoPunto cuántico multiexcitónicoEstados moleculares excitónicos y fotónicosCavidad ópticaAcoplamiento luz-materiaRelaciones de dispersión de energíaOcupaciones en estado estacionario.Applied magnetic fieldMulti-excitonic quantum dotExcitonic and photonic molecular statesOptical cavityLight-matter couplingEnergy dispersion relationsSteady-state occupanciesControl magnético de un sistema molecular de puntos cuánticos inmerso en una molécula fotónicaMagnetic control of a molecular quantum dot system immersed in a photonic molecule.Trabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_db06http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/TDAlfonso González Taboada. Control de la forma, tamaño y composición de nanoestructuras de semiconductores III-V: anillos y puntos cuánticos. PhD thesis, Universidad Autónoma de Madrid, 2010.Suwit Kiravittaya, Armando Rastelli, and Oliver G Schmidt. Advanced quantum dot configurations. IOP Science - Rep. Prog. Phys, 72:046502, 2009.P Michler. Single Semiconductor Quantum Dots. In NanoScience and Technology. 2009.Kerry J Vahala. Optical microcavities. Nature, 424:839–846, 2003.Loannis Chremmos. Photonic Microresonator Research and Applications. 2010.Misael León Hilario. Efecto de muchos cuerpos en transiciones opticas en nanoestructuras semiconductoras. PhD thesis, Universidad Nacional de Cuyo, 2010.Peter Lodahl, Sahand Mahmoodian, and Søren Stobbe. Interfacing single photons and single quantum dots with photonic nanostructures. Reviews Of Modern Physics, 87:347– 400, 2015.H J Krenner, M Sabathil, E C Clark, A Kress, D Schuh, M Bichler, G Abstreiter, and J J Finley. Direct Observation of Controlled Coupling in an Individual Quantum Dot Molecule. Physical Review Letters, 94:057402, 2005.A S Bracker, M Scheibner, M F Doty, E A Stinaff, I V Ponomarev, J C Kim, L J Whitman, and T L Reinecke. Engineering electron and hole tunneling with asymmetric InAs quantum dot molecules. Applied Physics Letters, 89:233110, 2006.Michael Scheibner, Allan S Bracker, Danny Kim, and Daniel Gammon. Essential concepts in the optical properties of quantum dot molecules. Solid State Communications, 149:1427–1435, 2009.S Suraprapapich, S Thainoi, S Kanjanachuchai, and S Panyakeow. Self-assembled quantum-dot molecules by molecular-beam epitaxy. Journal of Vacuum Science & Technology B, 23:1217–1220, 2007.Svetlana V Boriskina. Chapter 16 : Photonic molecules and spectral engineering. In Photonic Microresonator Research and Applications. 2010.R P Stanley, R Houdré, U Oesterle, M Ilegems, C Weisbuch, U Oesterle, and M Ilegems. Coupled semiconductor microcavities. Applied Physics Letters, 65:2093–2095, 1994.Brendon W Lovett, John H Reina, Ahsan Nazir, and G Andrew D Briggs. Optical schemes for quantum computation in quantum dot molecules. Physical Review B, 68:205319, 2003.A V Tsukanov. Quantum Dots in Photonic Molecules and Quantum Informatics . Part I. Russian Microelectronics, 42:325–346, 2013.M F Doty, M Scheibner, A S Bracker, I V Ponomarev, T L Reinecke, and D Gammon. Optical spectra of doubly charged quantum dot molecules in electric and magnetic fields. Physical Review B, 78:115316, 2008.M Bayer, O Stern, A Kuther, and A Forchel. Spectroscopic study of dark excitons in In. Physical Review B, 61:7273–7276, 2000.H. Vinck-Posada and C. A. Jiménez-Orjuela. Dark excitons in a quantum-dot–cavity system under a tilted magnetic field. Physical Review B, 96:125303, 2017.Andreas Reiserer and Gerhard Rempe. Cavity-based quantum networks with single atoms and optical photons. Reviews Of Modern Physics, 87:1379–1418, 2015.J M Elzerman, K M Weiss, and A Imamog. Optical Amplification Using Raman Transitions between Spin-Singlet and Spin-Triplet States of a Pair of Coupled In- GaAs Quantum Dots. Physical Review B - Condensed Matter and Materials Physics, 107:017401, 2011.Hakan E Türeci, J M Taylor, and A Imamoglu. Coherent optical manipulation of triplet-singlet states in coupled quantum dots. Physical Review B, 75:235313, 2007.Danny Kim, Samuel G Carter, Alex Greilich, Allan S Bracker, and Daniel Gammon. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Physics, 7:223–229, 2010.Author M Bayer, P Hawrylak, K Hinzer, S Fafard, M Korkusinski, Z R Wasilewski, O Stern, A Forchel, and Dot Molecules. Coupling and Entangling of Quantum States in Quantum. Science, 291:451–453, 2016.Yu He, Yu-ming He, Y Wei, X Jiang, M Chen, F Xiong, Y Zhao, Christian Schneider, Chao-yang Lu, Jian-wei Pan, Martin Kamp, and Sven Ho. Indistinguishable Tunable Single Photons Emitted by Spin Flip Raman Transitions in InGaAs Quantum Dots. Physical Review Letters, 111:237403, 2013.M Bayer, T L Reinecke, F Weidner, A Larionov, A Mcdonald, and A Forchel. Inhibition and Enhancement of the Spontaneous Emission of Quantum Dots in Structured Microresonators. Physical Review Letters, 86:3168–3171, 2001.J. P. Reithmaier, G. Sek, A.Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature, 432:197–200, 2004.E L Hu, A Imamog, S Gulde, S Fa, K Hennessy, A Badolato, M Winger, D Gerace, and M Atatu. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature, 445:896–899, 2007.J I Perea, D Porras, and C Tejedor. Dynamics of the excitations of a quantum dot in a microcavity. Physical Review B, 70:115304, 2004.M S Linares andWJ Herrera. Emission of an interacting quantum dot system embedded in an optical microcavity. Optik - International Journal for Light and Electron Optics, 176:685–693, 2019.Z R Wasilewski, S Fafard, and J P Mcca. Size and shape engineering of vertically stacked self assembled quantum dots. Journal of Crystal Growth, 202:1131–1135, 1999.D. J. Eaglesham and M. Cerullo. Dislocation-free Stranski-Krastanow growth of Ge on Si(100). Physical Review Letters, 64:1943–1946, 1990.Qianghua Xie, Anupam Madhukar, Ping Chen, and Nobuhiko P Kobayashi. Vertically Self-Organized InAs Quantum Box Islands on GaAs(100). Physical Review Letters, 75:2542–2545, 1995.J Tersoff, C Teichert, and M G Lagally. Self-Organization in Growth of Quantum Dot Superlattices. Physical Review Letters, 76:1675–1678, 1996.R A Rosas. Excitones confinados en puntos cuánticos esferoidales prolatos. Revista Mexicana De Física, 50:412–421, 2004.Chang-yu Hsieh, Yun-pil Shim, and Marek Korkusinski. Physics of lateral triple quantum-dot molecules with controlled electron. IOP Science - Rep. Prog. Phys, 75:114501, 2012.Ahsan Nazir, Brendon W. Lovett, Sean D. Barrett, John H. Reina, and G. Andrew D Briggs. Anticrossings in Förster coupled quantum dots. Physical Review B – Condensed Matter and Materials Physics, 71:045334, 2005.L Wang, A Rastelli, O G Schmidt, P Michler, G J Beirne, and C Hermannsta. Quantum Light Emission of Two Lateral Tunnel-Coupled (In, Ga)As = GaAs Quantum Dots Controlled by a Tunable Static Electric Field. Physical Review Letters, 96:137401, 2006.M C Xu, Y Temko, T Suzuki, K Jacobi, M C Xu, Y Temko, T Suzuki, and K Jacobi. Shape transition of InAs quantum dots on GaAs (001). Journal of Applied Physics, 98:083525, 2005.M. Scheibner, M. F. Doty, A. S. Bracker, E. A. Stinaff, and D. Gammon. Spin fine structure of optically excited quantum dot molecules. Physical Review B, 75:245318, 2007.E A Stinaff, M Scheibner, and A S Backer. Optical signatures of coupled quantum dots. Science, 311:636–639, 2006.Rudeesun Songmuang, Suwit Kiravittaya, Oliver G Schmidt, Rudeesun Songmuang, Suwit Kiravittaya, and Oliver G Schmidt. Formation of lateral quantum dot molecules around self-assembled nanoholes. Applied Physics Letters, 82:2892–2894, 2003.J H Lee, Zh M Wang, N W Strom, Yu I Mazur, G J Salamo, J H Lee, Zh M Wang, N W Strom, Yu I Mazur, and G J Salamo. InGaAs quantum dot molecules around self-assembled GaAs nanomound templates. Applied Physics Letters, 89:202101, 2006.T Yoshie, A Scherer, J Hendrickson, G Khitrova, H M Gibbs, G Rupper, C Ell, O B Shchekin, and D G Deppe. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature, 432:200–203, 2004.Dorothea Pinotsi, Parisa Fallahi, Javier Miguel-sanchez, and Atac Imamoglu. Dots in Photonic Crystal Structures. 47:1371–1374, 2011.Mark Adams and Axel Scherer. Lithographically fabricated optical cavities for refractive index sensing. Microelectronics and Nanometer Structures, 23:3168–3173, 2005.Francesca Intonti, Silvia Vignolini, Volker Türck, Marcello Colocci, Paolo Bettotti, Lorenzo Pavesi, L Stefan, Ralf Wehrspohn, and Diederik Wiersma. Rewritable photonic circuits. Applied Physics Letters, 89:211117, 2006.Qian Bo Chen San Ding Hong-Lin Liu KuiWang Xiang Xu Jun LiWei Zhang Xian-Gao, Chen Kun-Ji and Huang Xin-Fan. Eigenmode Splitting in all Hydrogenated Amorphous Silicon Nitride Coupled Microcavity. Chinese Physics Letters, 25:1888, 2008.M Bayer, T Gutbrod, J P Reithmaier, and A Forchel. Optical Modes in Photonic Molecules. Physical Review Letters, 81:2582–2585, 1998.M Benyoucef and S Kiravittaya. Strongly coupled semiconductor microcavities: A route to couple artificial atoms over micrometric distances. Physical Review B, 77:035108, 2008.Hsuan Lin, Jhih-hao Chen, Shih-shing Chao, Ming-cheng Lo, Sheng-di Lin, and Wenhao Chang. Strong coupling of different cavity modes in photonic molecules formed by two adjacent microdisk microcavities. Optics Express, 18:1557–1559, 2010.Svetlana V Boriskina. Theoretical prediction of a dramatic Q -factor enhancement and degeneracy removal of whispering gallery modes in symmetrical photonic molecules. Optics Letters, 31:338–340, 2006.Jung-wan Ryu, Soo-young Lee, and Sang Wook Kim. Coupled nonidentical microdisks: Avoided crossing of energy levels and unidirectional far-field emission. Physical Review A, 79:053858, 2009.Atsuo Nakagawa, Satoru Ishii, Toshihiko Baba, Atsuo Nakagawa, Satoru Ishii, and Toshihiko Baba. Photonic molecule laser composed of GaInAsP microdisks. Applied Physics Letters, 86:041112, 2005.Svetlana V Boriskina. Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. Optics Letters, 32:1557–1559, 2007.Yoshiko Hara, Takashi Mukaiyama, Kenji Takeda, and Makoto Kuwata-gonokami. Photonic molecule lasing. Optics Letters, 28:2437–2439, 2003.T Mukaiyama, K Takeda, H Miyazaki, and Y Jimba. Tight-Binding Photonic Molecule Modes of Resonant Bispheres. Physical Review Letters, 82:4623–4626, 1999.David B Thompson, David A Keating, Emre Guler, Kazuya Ichimura, Mary E Williams, and Kirk A Fuller. Separation-sensitive measurements of morphology dependent resonances in coupled fluorescent microspheres. Optics Express, 18:8286–8295, 2010.B M Möller and UWoggon. Photonic molecules doped with semiconductor nanocrystals. Physical Review B, 70:115323, 2004.Silvia Vignolini, Francesco Riboli, Diederik Sybolt Wiersma, Laurent Balet, Lianhe H Li, Marco Francardi, Annamaria Gerardino, Andrea Fiore, and Massimo Gurioli. Nanofluidic control of coupled photonic crystal resonators. Applied Physics Letters, 96:141114, 2010.Silvia Vignolini, Francesca Intonti, Margherita Zani, Francesco Riboli, Diederik S Wiersma, Lianhe H Li, Laurent Balet, Marco Francardi, Annamaria Gerardino, Andrea Fiore, and Massimo Gurioli. Near field imaging of coupled photonic-crystal microcavities. Applied Physics Letters, 94:151103, 2013.M Brunstein, T J Karle, I Sagnes, F Raineri, J Bloch, Y Halioua, G Beaudoin, L Le Gratiet, J A Levenson, A M Yacomotti, M Brunstein, T J Karle, I Sagnes, F Raineri, J Bloch, Y Halioua, and G Beaudoin. Radiation patterns from coupled photonic crystal nanocavities. Applied Physics Letters, 99:111101, 2011.A R A Chalcraft, S Lam, B D Jones, D Szymanski, R Oulton, A C T Thijssen, M S Skolnick, D M Whittaker, T F Krauss, and A M Fox. Mode structure of coupled L3 photonic crystal cavities. Optics Express, 19:5670–5675, 2011.Mehmet A Du, Joost A M Voorbraak, Richard No, and Rob W Van Der Heijden. Multimodal strong coupling of photonic crystal cavities of dissimilar size. Applied Physics Letters, 100:081107, 2012.Xiaodong Yang, Charlton J Chen, Chad A Husko, Chee Wei Wong, Xiaodong Yang, Charlton J Chen, Chad A Husko, and Chee Wei. Digital resonance tuning of high- Q V m silicon photonic crystal nanocavities by atomic layer deposition. Applied Physics Letters, 91:161114, 2013.T Gu, S Kocaman, X Yang, J F Mcmillan, and M B Yu. Deterministic integrated tuning of multicavity resonances and phase for slow-light in coupled photonic crystal cavities. Applied Physics Letters, 98:121103, 2014.Christopher Gerry and Peter Knight. Introductory Quantum Optics. 2005.Jonas Larson and Neil Young. Extended Jaynes-Cummings models in cavity QED than meets the eye. 2005.M. Bayer, G. Ortner, O. Stern, A. Kuther, A. A. Gorbunov, A. Forchel, P. Hawrylak, S. Fafard, K. Hinzer, T. L. Reinecke, S. N. Walck, J. P. Reithmaier, F. Klopf, and F. Schäfer. Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Physical Review B, 65:195315, 2002.S. Reitzenstein, S. Münch, P. Franeck, A. Rahimi-Iman, A. Löffler, S. Höfling, L. Worschech, and A. Forchel. Control of the Strong Light-Matter Interaction between an Elongated in 0.3Ga0.7 As Quantum Dot and a Micropillar Cavity Using External Magnetic Fields. Physical Review Letters, 103:127401, 2009.Hyochul Kim, Glenn S. Solomon, and Edo Waks. Magnetic field tuning of a quantum dot strongly coupled to a photonic crystal cavity. Applied Physics Letters, 98:091102, 2011.S. Lüker, T. Kuhn, and D. E. Reiter. Direct optical state preparation of the dark exciton in a quantum dot. Physical Review B - Condensed Matter and Materials Physics, 92:201305, 2015.“Interacción radiación-materia mediada por fonones en la electrodinámica cuántica de cavidades”, código 201010028651, HERMES 42134.“Beca de Doctorados Nacionales de COLCIENCIAS” convocatoria 647BibliotecariosEstudiantesInvestigadoresMaestrosProveedores de ayuda financiera para estudiantesPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86523/5/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD55ORIGINAL80745283.2023.pdf80745283.2023.pdfTesis de Doctorado en Ciencias – Física.application/pdf7757687https://repositorio.unal.edu.co/bitstream/unal/86523/6/80745283.2023.pdf82dd65e5c5adaa8b3463cef491298749MD56THUMBNAIL80745283.2023.pdf.jpg80745283.2023.pdf.jpgGenerated Thumbnailimage/jpeg2549https://repositorio.unal.edu.co/bitstream/unal/86523/7/80745283.2023.pdf.jpg0f34f65e8ebdf40a8505dfd92380b375MD57unal/86523oai:repositorio.unal.edu.co:unal/865232024-08-23 23:12:10.267Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=