Definable group extensions and o-minimal group cohomology via spectral sequences
We provide the theoretical foundation for the Lyndon-Hochschild-Serre spectral sequence as a tool to study the group cohomology and with this the group extensions in the category of definable groups. We also present various results on definable modules and actions, definable extensions and group coh...
- Autores:
-
Barriga, Eliana
- Tipo de recurso:
- Article of journal
- Fecha de publicación:
- 2013
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/49338
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/49338
http://bdigital.unal.edu.co/42795/
- Palabra clave:
- o-minimalidad
extensiones definibles
cohomología o-minimal
G--módulo definible
sucesión espectral de LHS
03C64
20J06
06F25
o-Minimality
Definable extensions
o-Minimal cohomology
Definable G--module
LHS spectral sequences
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
Summary: | We provide the theoretical foundation for the Lyndon-Hochschild-Serre spectral sequence as a tool to study the group cohomology and with this the group extensions in the category of definable groups. We also present various results on definable modules and actions, definable extensions and group cohomology of definable groups. These have applications to the study of non-definably compact groups definable in o-minimal theories (see [1]). |
---|