Definable group extensions and o-minimal group cohomology via spectral sequences

We provide the theoretical foundation for the Lyndon-Hochschild-Serre spectral sequence as a tool to study the group cohomology and with this the group extensions in the category of definable groups. We also present various results on definable modules and actions, definable extensions and group coh...

Full description

Autores:
Barriga, Eliana
Tipo de recurso:
Article of journal
Fecha de publicación:
2013
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/49338
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/49338
http://bdigital.unal.edu.co/42795/
Palabra clave:
o-minimalidad
extensiones definibles
cohomología o-minimal
G--módulo definible
sucesión espectral de LHS
03C64
20J06
06F25
o-Minimality
Definable extensions
o-Minimal cohomology
Definable G--module
LHS spectral sequences
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:We provide the theoretical foundation for the Lyndon-Hochschild-Serre spectral sequence as a tool to study the group cohomology and with this the group extensions in the category of definable groups. We also present various results on definable modules and actions, definable extensions and group cohomology of definable groups. These have applications to the study of non-definably compact groups definable in o-minimal theories (see [1]).