Time-series representation framework based on multi-instance similarity measures
Time series analysis plays an essential role in today’s society due to the ease of access to information. This analysis is present in the majority of applications that involve sensors, but in recent years thanks to technological advancement, this approach has been directed towards the treatment of c...
- Autores:
-
Caicedo Acosta, Julian Camilo
- Tipo de recurso:
- Fecha de publicación:
- 2019
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/76883
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/76883
http://bdigital.unal.edu.co/73819/
- Palabra clave:
- Time-Series analysis
Similarity
Multiple instance learning
EEG
MRI
Satellite images
Análisis de series de tiempo
Aprendizaje de múltiples instancias
EEG, MRI, Imágenes satelita
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_d8e6153c4ac46812705f72855cdc4df0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/76883 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Time-series representation framework based on multi-instance similarity measures |
title |
Time-series representation framework based on multi-instance similarity measures |
spellingShingle |
Time-series representation framework based on multi-instance similarity measures Time-Series analysis Similarity Multiple instance learning EEG MRI Satellite images Análisis de series de tiempo Aprendizaje de múltiples instancias EEG, MRI, Imágenes satelita |
title_short |
Time-series representation framework based on multi-instance similarity measures |
title_full |
Time-series representation framework based on multi-instance similarity measures |
title_fullStr |
Time-series representation framework based on multi-instance similarity measures |
title_full_unstemmed |
Time-series representation framework based on multi-instance similarity measures |
title_sort |
Time-series representation framework based on multi-instance similarity measures |
dc.creator.fl_str_mv |
Caicedo Acosta, Julian Camilo |
dc.contributor.advisor.spa.fl_str_mv |
Cárdenas Peña, David Augusto (Thesis advisor) |
dc.contributor.author.spa.fl_str_mv |
Caicedo Acosta, Julian Camilo |
dc.contributor.spa.fl_str_mv |
Castellanos Domínguez, César Germán |
dc.subject.proposal.spa.fl_str_mv |
Time-Series analysis Similarity Multiple instance learning EEG MRI Satellite images Análisis de series de tiempo Aprendizaje de múltiples instancias EEG, MRI, Imágenes satelita |
topic |
Time-Series analysis Similarity Multiple instance learning EEG MRI Satellite images Análisis de series de tiempo Aprendizaje de múltiples instancias EEG, MRI, Imágenes satelita |
description |
Time series analysis plays an essential role in today’s society due to the ease of access to information. This analysis is present in the majority of applications that involve sensors, but in recent years thanks to technological advancement, this approach has been directed towards the treatment of complex signals that lack periodicity and even that present non-stationary dynamics such as signals of brain activity or magnetic and satellite resonance images. The main challenges at the time of time series analysis are focused on the representation of the same, for which methodologies based on similarity measures have been proposed. However, these approaches are oriented to the measurement of local patterns point-to-point in the signals using metrics based on the form. Besides, the selection of relevant information from the representations is of high importance, in order to eliminate noise and train classifiers with discriminant information for the analysis tasks, however, this selection is usually made at the level of characteristics, leaving aside the Global signal information. In the same way, lately, there have been applications in which it is necessary to analyze time series from different sources of information or multimodal, for which there are methods that generate acceptable performance but lack interpretability. In this regard, we propose a framework based on representations of similarity and multiple-instance learning that allows selecting relevant information for classification tasks in order to improve the performance and interpretability of the models |
publishDate |
2019 |
dc.date.issued.spa.fl_str_mv |
2019-08-30 |
dc.date.accessioned.spa.fl_str_mv |
2020-03-30T06:31:57Z |
dc.date.available.spa.fl_str_mv |
2020-03-30T06:31:57Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/76883 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/73819/ |
url |
https://repositorio.unal.edu.co/handle/unal/76883 http://bdigital.unal.edu.co/73819/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y Computación Departamento de Ingeniería Eléctrica, Electrónica y Computación |
dc.relation.haspart.spa.fl_str_mv |
62 Ingeniería y operaciones afines / Engineering |
dc.relation.references.spa.fl_str_mv |
Caicedo Acosta, Julian Camilo (2019) Time-series representation framework based on multi-instance similarity measures. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/76883/1/1053847443.2019.pdf https://repositorio.unal.edu.co/bitstream/unal/76883/2/1053847443.2019.pdf.jpg |
bitstream.checksum.fl_str_mv |
3cc3bd7a4d536bbdb488dca92f87287b 1b63b27d7272a34ecdde70000a27e97a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089624007475200 |
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Castellanos Domínguez, César GermánCárdenas Peña, David Augusto (Thesis advisor)4d4899ac-0b9a-4de3-bafd-f5b1abb9df44Caicedo Acosta, Julian Camilo826c91ea-9b2b-496f-9bca-3d48fc4bceff3002020-03-30T06:31:57Z2020-03-30T06:31:57Z2019-08-30https://repositorio.unal.edu.co/handle/unal/76883http://bdigital.unal.edu.co/73819/Time series analysis plays an essential role in today’s society due to the ease of access to information. This analysis is present in the majority of applications that involve sensors, but in recent years thanks to technological advancement, this approach has been directed towards the treatment of complex signals that lack periodicity and even that present non-stationary dynamics such as signals of brain activity or magnetic and satellite resonance images. The main challenges at the time of time series analysis are focused on the representation of the same, for which methodologies based on similarity measures have been proposed. However, these approaches are oriented to the measurement of local patterns point-to-point in the signals using metrics based on the form. Besides, the selection of relevant information from the representations is of high importance, in order to eliminate noise and train classifiers with discriminant information for the analysis tasks, however, this selection is usually made at the level of characteristics, leaving aside the Global signal information. In the same way, lately, there have been applications in which it is necessary to analyze time series from different sources of information or multimodal, for which there are methods that generate acceptable performance but lack interpretability. In this regard, we propose a framework based on representations of similarity and multiple-instance learning that allows selecting relevant information for classification tasks in order to improve the performance and interpretability of the modelsEl análisis de series de tiempo juega un papel importante en la sociedad actual debido a la facilidad de acceso a la información. Este análisis está presente en la mayoría de aplicaciones que involucran sensores, pero en los ´últimos años gracias al avance tecnológico, este enfoque se ha encaminado hacia el tratamiento de señales complejas que carecen de periodicidad e incluso que presentan dinámicas no estacionarias como lo son las señales de actividad cerebral o las imágenes de resonancias magnéticas y satelitales. Los principales retos a la hora de realizar en análisis de series de tiempo se centran en la representación de las mismas, para lo cual se han propuesto metodologías basadas en medidas de similitud, sin embargo, estos enfoques están orientados a la medición de patrones locales punto a punto en las señales utilizando métricas basadas en la forma. Además, es de alta importancia la selección de información relevante de las representaciones, con el fin de eliminar el ruido y entrenar clasificadores con información discriminante para las tareas de análisis, sin embargo, esta selección se suele hacer a nivel de características, dejando de lado la información de global de la señal. De la misma manera, ´últimamente han surgido aplicaciones en las cuales es necesario el análisis de series de tiempo provenientes de diferentes fuentes de información o multimodales, para lo cual existen métodos que generan un rendimiento aceptable, pero carecen de interpretabilidad. En este sentido, en nosotros proponemos un marco de trabajo basado en representaciones de similitud y aprendizaje de múltiples instancias que permita seleccionar información relevante para tareas de clasificación con el fin de mejorar el rendimiento y la interpretabilidad de los modelosMaestríaapplication/pdfspaUniversidad Nacional de Colombia Sede Manizales Facultad de Ingeniería y Arquitectura Departamento de Ingeniería Eléctrica, Electrónica y ComputaciónDepartamento de Ingeniería Eléctrica, Electrónica y Computación62 Ingeniería y operaciones afines / EngineeringCaicedo Acosta, Julian Camilo (2019) Time-series representation framework based on multi-instance similarity measures. Maestría thesis, Universidad Nacional de Colombia - Sede Manizales.Time-series representation framework based on multi-instance similarity measuresTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMTime-Series analysisSimilarityMultiple instance learningEEGMRISatellite imagesAnálisis de series de tiempoAprendizaje de múltiples instanciasEEG, MRI, Imágenes satelitaORIGINAL1053847443.2019.pdfTesis de Maestría en Ingeniería - Automatización Industrialapplication/pdf1603900https://repositorio.unal.edu.co/bitstream/unal/76883/1/1053847443.2019.pdf3cc3bd7a4d536bbdb488dca92f87287bMD51THUMBNAIL1053847443.2019.pdf.jpg1053847443.2019.pdf.jpgGenerated Thumbnailimage/jpeg5644https://repositorio.unal.edu.co/bitstream/unal/76883/2/1053847443.2019.pdf.jpg1b63b27d7272a34ecdde70000a27e97aMD52unal/76883oai:repositorio.unal.edu.co:unal/768832024-09-16 16:09:34.732Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |