Diseño de criptoprocesadores de curva elíptica sobre gf(2^163) usando bases normales gaussianas

This paper presents the efficient hardware implementation of cryptoprocessors that carry out the scalar multiplication kP over finite field GF(2163) using two digit-level multipliers. The finite field arithmetic operations were implemented using Gaussian normal basis (GNB) representation, and the sc...

Full description

Autores:
Realpe, Paulo Cesar
Trujillo-Olaya, Vladimir
Velasco-Medina, Jaime
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/48969
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/48969
http://bdigital.unal.edu.co/42426/
Palabra clave:
criptografía de curva elíptica
bases normales Gaussianas
multiplicador a nivel de digito
multiplicación escalar
elliptic curve cryptography
Gaussian normal basis
digit-level multiplier
scalar multiplication
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:This paper presents the efficient hardware implementation of cryptoprocessors that carry out the scalar multiplication kP over finite field GF(2163) using two digit-level multipliers. The finite field arithmetic operations were implemented using Gaussian normal basis (GNB) representation, and the scalar multiplication kP was implemented using Lopez-Dahab algorithm, 2-NAF halve-and-add algorithm and w-tNAF method for Koblitz curves. The processors were designed using VHDL description, synthesized on the Stratix-IV FPGA using Quartus II 12.0 and verified using SignalTAP II and Matlab. The simulation results show that the cryptoprocessors present a very good performance to carry out the scalar multiplication kP. In this case, the computation times of the multiplication kP using Lopez-Dahab, 2-NAF halve-and-add and 16-tNAF for Koblitz curves were 13.37 µs, 16.90 µs and 5.05 µs, respectively.