Uv-vis in situ spectrometry data mining through linear and non linear analysis methods

UV-visible spectrometers are instruments that register the absorbance of emitted light by particles suspended in water for several wavelengths and deliver continuous measurements that can be interpreted as concentrations of parameters commonly used to evaluate physico-chemical status of water bodies...

Full description

Autores:
Lopez-Kleine, Liliana
Torres, Andrés
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/72262
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/72262
http://bdigital.unal.edu.co/36735/
Palabra clave:
UV-visible spectrometer
water quality
multivariate data analysis
non-linear data analysis
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d7bfcbac017bae0b57d1908ad94fe2e6
oai_identifier_str oai:repositorio.unal.edu.co:unal/72262
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Lopez-Kleine, Lilianaff226246-145e-461f-9554-63fafceafef0300Torres, Andrés35520401-aedf-4e85-8846-2b81140e070d3002019-07-03T15:02:31Z2019-07-03T15:02:31Z2014-06-24https://repositorio.unal.edu.co/handle/unal/72262http://bdigital.unal.edu.co/36735/UV-visible spectrometers are instruments that register the absorbance of emitted light by particles suspended in water for several wavelengths and deliver continuous measurements that can be interpreted as concentrations of parameters commonly used to evaluate physico-chemical status of water bodies. Classical parameters that indicate presence of pollutants are total suspended solids (TSS) and chemical demand of oxygen (CDO). Flexible and efficient methods to relate the instruments’s multivariate registers and classical measurements are needed in order to extract useful information for management and monitoring. Analysis methods such as Partial Least Squares (PLS) are used in order to calibrate an instrument for a water matrix taking into account cross-sensitivity. Several authors have shown that it is necessary to undertake specific instrument calibrations for the studied hydro-system and explore linear and non-linear statistical methods for the UV-visible data analysis and its relationship with chemical and physical parameters. In this work we apply classical linear multivariate data analysis and nonlinear kernel methods in order to mine UV-vis high dimensional data, which turn out to be useful for detecting relationships between UV-vis data and classical parameters and outliers, as well as revealing non-linear data structures.application/pdfspaUniversidad Nacional de Colombia Sede Medellínhttp://revistas.unal.edu.co/index.php/dyna/article/view/37718Universidad Nacional de Colombia Revistas electrónicas UN DynaDynaDYNA; Vol. 81, núm. 185 (2014); 182-188 Dyna; Vol. 81, núm. 185 (2014); 182-188 2346-2183 0012-7353Lopez-Kleine, Liliana and Torres, Andrés (2014) Uv-vis in situ spectrometry data mining through linear and non linear analysis methods. DYNA; Vol. 81, núm. 185 (2014); 182-188 Dyna; Vol. 81, núm. 185 (2014); 182-188 2346-2183 0012-7353 .Uv-vis in situ spectrometry data mining through linear and non linear analysis methodsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTUV-visible spectrometerwater qualitymultivariate data analysisnon-linear data analysisORIGINAL37718-167203-1-SP.pdfapplication/pdf52087https://repositorio.unal.edu.co/bitstream/unal/72262/1/37718-167203-1-SP.pdfb70a37c76aa5a4f03811298cbce35523MD5137718-207931-1-PB.pdfapplication/pdf595032https://repositorio.unal.edu.co/bitstream/unal/72262/2/37718-207931-1-PB.pdf906d484c36ca9500da11270fcfe29c40MD52THUMBNAIL37718-167203-1-SP.pdf.jpg37718-167203-1-SP.pdf.jpgGenerated Thumbnailimage/jpeg7521https://repositorio.unal.edu.co/bitstream/unal/72262/3/37718-167203-1-SP.pdf.jpg29c3e1265d411053acc75c76c5bd3830MD5337718-207931-1-PB.pdf.jpg37718-207931-1-PB.pdf.jpgGenerated Thumbnailimage/jpeg9594https://repositorio.unal.edu.co/bitstream/unal/72262/4/37718-207931-1-PB.pdf.jpgfbcc1eb4949fead536b4ebdb405e5c53MD54unal/72262oai:repositorio.unal.edu.co:unal/722622023-06-23 23:03:01.522Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co
dc.title.spa.fl_str_mv Uv-vis in situ spectrometry data mining through linear and non linear analysis methods
title Uv-vis in situ spectrometry data mining through linear and non linear analysis methods
spellingShingle Uv-vis in situ spectrometry data mining through linear and non linear analysis methods
UV-visible spectrometer
water quality
multivariate data analysis
non-linear data analysis
title_short Uv-vis in situ spectrometry data mining through linear and non linear analysis methods
title_full Uv-vis in situ spectrometry data mining through linear and non linear analysis methods
title_fullStr Uv-vis in situ spectrometry data mining through linear and non linear analysis methods
title_full_unstemmed Uv-vis in situ spectrometry data mining through linear and non linear analysis methods
title_sort Uv-vis in situ spectrometry data mining through linear and non linear analysis methods
dc.creator.fl_str_mv Lopez-Kleine, Liliana
Torres, Andrés
dc.contributor.author.spa.fl_str_mv Lopez-Kleine, Liliana
Torres, Andrés
dc.subject.proposal.spa.fl_str_mv UV-visible spectrometer
water quality
multivariate data analysis
non-linear data analysis
topic UV-visible spectrometer
water quality
multivariate data analysis
non-linear data analysis
description UV-visible spectrometers are instruments that register the absorbance of emitted light by particles suspended in water for several wavelengths and deliver continuous measurements that can be interpreted as concentrations of parameters commonly used to evaluate physico-chemical status of water bodies. Classical parameters that indicate presence of pollutants are total suspended solids (TSS) and chemical demand of oxygen (CDO). Flexible and efficient methods to relate the instruments’s multivariate registers and classical measurements are needed in order to extract useful information for management and monitoring. Analysis methods such as Partial Least Squares (PLS) are used in order to calibrate an instrument for a water matrix taking into account cross-sensitivity. Several authors have shown that it is necessary to undertake specific instrument calibrations for the studied hydro-system and explore linear and non-linear statistical methods for the UV-visible data analysis and its relationship with chemical and physical parameters. In this work we apply classical linear multivariate data analysis and nonlinear kernel methods in order to mine UV-vis high dimensional data, which turn out to be useful for detecting relationships between UV-vis data and classical parameters and outliers, as well as revealing non-linear data structures.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-06-24
dc.date.accessioned.spa.fl_str_mv 2019-07-03T15:02:31Z
dc.date.available.spa.fl_str_mv 2019-07-03T15:02:31Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/72262
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/36735/
url https://repositorio.unal.edu.co/handle/unal/72262
http://bdigital.unal.edu.co/36735/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/dyna/article/view/37718
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Dyna
Dyna
dc.relation.ispartofseries.none.fl_str_mv DYNA; Vol. 81, núm. 185 (2014); 182-188 Dyna; Vol. 81, núm. 185 (2014); 182-188 2346-2183 0012-7353
dc.relation.references.spa.fl_str_mv Lopez-Kleine, Liliana and Torres, Andrés (2014) Uv-vis in situ spectrometry data mining through linear and non linear analysis methods. DYNA; Vol. 81, núm. 185 (2014); 182-188 Dyna; Vol. 81, núm. 185 (2014); 182-188 2346-2183 0012-7353 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/72262/1/37718-167203-1-SP.pdf
https://repositorio.unal.edu.co/bitstream/unal/72262/2/37718-207931-1-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/72262/3/37718-167203-1-SP.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/72262/4/37718-207931-1-PB.pdf.jpg
bitstream.checksum.fl_str_mv b70a37c76aa5a4f03811298cbce35523
906d484c36ca9500da11270fcfe29c40
29c3e1265d411053acc75c76c5bd3830
fbcc1eb4949fead536b4ebdb405e5c53
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089576093843456