Contribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humana

ilustraciones, diagramas, fotografías

Autores:
García Manosalva, Leidy Carolina
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86475
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86475
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud::615 - Farmacología y terapéutica
Catepsina G
Metaloproteinasas de la Matriz
Ácidos Fíbricos
Envejecimiento de la Piel
Cathepsin G
Matrix Metalloproteinases
Fibric Acids
Skin Aging
Elastina
Elastasas
Integridad de fibra
Potencia elastolítica
Elastin
Elastases
Fibre integrity
Elastolytic power
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d7577cec81aec81ce66a9014b108113f
oai_identifier_str oai:repositorio.unal.edu.co:unal/86475
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Contribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humana
dc.title.translated.eng.fl_str_mv Contribution to understanding the role of elastases in the degradation of elastin derived from human skin
title Contribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humana
spellingShingle Contribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humana
610 - Medicina y salud::615 - Farmacología y terapéutica
Catepsina G
Metaloproteinasas de la Matriz
Ácidos Fíbricos
Envejecimiento de la Piel
Cathepsin G
Matrix Metalloproteinases
Fibric Acids
Skin Aging
Elastina
Elastasas
Integridad de fibra
Potencia elastolítica
Elastin
Elastases
Fibre integrity
Elastolytic power
title_short Contribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humana
title_full Contribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humana
title_fullStr Contribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humana
title_full_unstemmed Contribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humana
title_sort Contribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humana
dc.creator.fl_str_mv García Manosalva, Leidy Carolina
dc.contributor.advisor.spa.fl_str_mv Mora Huertas, Angela Cristina
dc.contributor.author.spa.fl_str_mv García Manosalva, Leidy Carolina
dc.contributor.researchgroup.spa.fl_str_mv Grupo de investigación en tecnologías analíticas farmacéuticas
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud::615 - Farmacología y terapéutica
topic 610 - Medicina y salud::615 - Farmacología y terapéutica
Catepsina G
Metaloproteinasas de la Matriz
Ácidos Fíbricos
Envejecimiento de la Piel
Cathepsin G
Matrix Metalloproteinases
Fibric Acids
Skin Aging
Elastina
Elastasas
Integridad de fibra
Potencia elastolítica
Elastin
Elastases
Fibre integrity
Elastolytic power
dc.subject.decs.spa.fl_str_mv Catepsina G
Metaloproteinasas de la Matriz
Ácidos Fíbricos
Envejecimiento de la Piel
dc.subject.decs.eng.fl_str_mv Cathepsin G
Matrix Metalloproteinases
Fibric Acids
Skin Aging
dc.subject.proposal.spa.fl_str_mv Elastina
Elastasas
Integridad de fibra
Potencia elastolítica
dc.subject.proposal.eng.fl_str_mv Elastin
Elastases
Fibre integrity
Elastolytic power
description ilustraciones, diagramas, fotografías
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-16T19:43:25Z
dc.date.available.none.fl_str_mv 2024-07-16T19:43:25Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86475
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86475
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv Bireme
dc.relation.references.spa.fl_str_mv Shapiro S, Endicott S, Province M, Pierce J, Campbell E. (1991). Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. The Journal Clinical Investigation, 87:1828-1834. DOI: 10.1172/JCI115204.
Procknow SS, Kozel BA. (2022). Emerging mechanisms of elastin transcriptional regulation. Am J Physiol Cell Physiol, 323(3):C666-C677. DOI:10.1152/ajpcell.00228.2022.
Parks W, Pierce R, Lee K, Mecham R. (1993). Elastin En: Kleinman H, ed. Advances in Molecular and Cell Biology. 134-182. [JAI Press]. Recuperado de: DOI:10.1016/S1569-2558(08)60201-5.
Schmelzer CEH, Duca L. (2022). Elastic fibers: formation, function, and fate during aging and disease. FEBS Journal. 289(13):3704-3730. DOI:10.1111/febs.15899.
Panwar P, Hedtke T, Heinz A, et al. (2020). Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochim Biophys Acta Gen Subj. 1864(5):129544. DOI:10.1016/j.bbagen.2020.129544.
Novinec M, Grass RN, Stark WJ, Turk V, Baici A, Lenarčič B. (2007). Interaction between human cathepsins K, L, and S and elastins. Journal of Biological Chemistry. 282(11):7893-7902. DOI:10.1074/jbc.M610107200.
Schmelzer CEH, Jung MC, Wohlrab J, Neubert RHH, Heinz A. (2012). Does human leukocyte elastase degrade intact skin elastin? FEBS Journal. 279(22):4191-4200. DOI:10.1111/febs.12012.
Boudier C, Holle C, Bieth JG. (1981). Stimulation of the elastolytic activity of leukocyte elastase by leukocyte cathepsin G. Journal of Biological Chemistry. 10256-1025(20):10256-10258. DOI: 10.1016/S0021-9258(19)68612-6.
Heinz A, Taddese S, Sippl W, Neubert RHH, Schmelzer CEH. (2011). Insights into the degradation of human elastin by matrilysin-1. Biochimie. 93(2):187-194. DOI:10.1016/j.biochi.2010.09.011.
Skjøt-Arkil H, Clausen RE, Nguyen QHT, et al. (2012). Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation. BMC Pulm Med. 12. DOI:10.1186/1471-2466-12-34.
Mora Huertas AC. (2017). Degradation of Skin Elastin in Ageing and Disease: An Ex Vivo Quantitative Proteomic Approach (Tesis doctoral). Martin-Luther-Universität Halle-Wittemberg; Alemania.
Mora Huertas AC, Schmelzer CEH, Luise C, et al. (2017) Degradation of tropoelastin and skin elastin by neprilysin. Biochimie. 146:73-78. DOI:10.1016/j.biochi.2017.11.018.
Shimizu H. (2007). Shimizu’s Textbook of Dermatology. JA KUBU.
Kolarsick PAJ, Kolarsick MA, Goodwin C. (2011). Anatomy and Physiology of the skin. Journal of the Dermatology Nurses´Association, 3(4), 203-213. DOI:10.1097/JDN.0b013e3182274a98.
Thomas S, Enders J, Kaiser A, et al. (2023). Abnormal intraepidermal nerve fiber density in disease: A scoping review. Front Neurol. 14:1161077. DOI:10.3389/fneur.2023.1161077.
Bettley FR. (2004). Textbook of Dermatology. British Medical Journal. 1(5428), 178. DOI:10.1136/bmj.2.4835.546.
Cole MA, Quan T, Voorhees JJ, Fisher GJ. (2018). Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal. 12(1):35-43. DOI:10.1007/s12079-018-0459-1.
Hwa C, Bauer EA, Cohen DE. (2011). Skin biology. Dermatol Ther.;24(5):464-470. DOI:10.1111/j.1529-8019.2012.01460.x.
Wong R, Geyer S, Weninger W, Guimberteau JC, Wong JK. (2016). The dynamic anatomy and patterning of skin. Exp Dermatol. 25(2):92-98. doi:10.1111/exd.12832.
Dengjel J, Bruckner-Tuderman L, Nyström A. (2020). Skin proteomics–analysis of the extracellular matrix in health and disease. Expert Rev Proteomics. 17(5):377-391. DOI:10.1080/14789450.2020.1773261.
Tracy LE, Minasian RA, Caterson EJ. (2016). Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv Wound Care (New Rochelle). 5(3):119-136. DOI:10.1089/wound.2014.0561.
Ghosh R. (2017). Role of proteases in photo-aging of the skin. En: Proteases in Physiology and Pathology. 435. DOI:10.1007/978-981-10-2513-6.
Verzijl N, DeGroot J, Thorpe SR, et al. (2000). Effect of collagen turnover on the accumulation of advanced glycation end products. Journal of Biological Chemistry. 275(50):39027-39031. DOI:10.1074/jbc.M006700200.
Aziz J, Shezali H, Radzi Z, et al. (2016). Molecular Mechanisms of Stress-Responsive Changes in Collagen and Elastin Networks in Skin. Skin Pharmacol Physiol. 29(4):190-203. DOI:10.1159/000447017.
Heinz A. (2021). Elastic fibers during aging and disease. Ageing Res Rev. 66, 101255. DOI:10.1016/j.arr.2021.101255.
Sherratt MJ. (2009). Tissue elasticity and the ageing elastic fibre. Age (Omaha). 31(4):305-325. DOI:10.1007/s11357-009-9103-6.
El-Khoury J, Kurban M, Abbas O. (2014). Elastophagocytosis: Underlying mechanisms and associated cutaneous entities. J Am Acad Dermatol. 70(5):934-944. DOI:10.1016/j.jaad.2013.12.012.
Mecham RP. (2011). Extracellular Matrix: An Overview. Current protocols in cell biology. 57(1), 10-1. DOI:10.1007/978-3-642-16861-1.
Debelle L, Alix AJP. (1999). The structures of elastins and their function. Biochimie. 81(10):981-994. DOI:10.1016/S0300-9084(99)00221-7.
Mora Huertas AC, Schmelzer CEH, Hoehenwarter W, Heyroth F, Heinz A. (2016). Molecular-level insights into aging processes of skin elastin. Biochimie. 128-129:163-173. DOI:10.1016/j.biochi.2016.08.010.
Parks W.C., Mecham R., eds. (2011). Extracellular Matrix Degradation. Springer Science & Business Media. DOI:10.1007/978-3-642-16861-1.
Heinz A, Jung MC, Jahreis G, et al. (2012). The action of neutrophil serine proteases on elastin and its precursor. Biochimie. 94(1):192-202. DOI:10.1016/j.biochi.2011.10.006.
Du X. (2013). Structural Requirements for the Elasotolytic and Collagenolytic Activities of Cathepsins and the Identification of Exosite Inhibitors (Tesis Doctoral) University of British Columbia.
Weihermann AC, Lorencini M, Brohem CA, de Carvalho CM. (2017). Elastin structure and its involvement in skin photoageing. Int J Cosmet Sci. 39(3):241-247. DOI:10.1111/ics.12372.
Miekus N, Luise C, Sippl W, Baczek T, Schmelzer CEH, Heinz A. (2019). MMP-14 degrades tropoelastin and elastin. Biochimie. 165:32-39. DOI:10.1016/j.biochi.2019.07.001.
Heinz A. (2020). Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol. 55(3):252-273. DOI:10.1080/10409238.2020.1768208.
Mecham RP, ed. (2012). Regulation of Matrix Accumulation. Academic Press.
Schmelzer CEH, Getie M, Neubert RHH. (2005). Mass spectrometric characterization of human skin elastin peptides produced by proteolytic digestion with pepsin and thermitase. J Chromatogr A. 1083(1-2):120-126. DOI:10.1016/j.chroma.2005.06.034.
Eyre DR., Paz MA, Gallop PM. (1984). Cross-linking in collagen and elastin. Annual review of biochemistry, 53(1),717-748. DOI: 10.1146/annurev.bi.53.070184.003441.
Hornebeck W, Emonard H. (2011).The Cell-Elastin-Elastase(s) Interacting Triade Directs Elastolysis. Front Biosci. 16(1), 707-722. DOI: 10.2741/3714.
Werb Z, Banda MJ, McKerrow JH, Sandhaus RA. (1982). Elastases and elastin degradation. The Journal of Investive Dermatology. 79:154-159. DOI:10.1038/jid.1982.28.
Kamolz LP, Lumenta LPK DB. (2013). Dermal Replacements in general, burn, and plastic surgery. Tissue Engineering in Clinical Practice, 226.
Korkmaz B, Moreau T, Gauthier F. (2007). Neutrophil elastase, proteinase 3 and cathepsin G: Physicochemical properties, activity and physiopathological functions. Biochimie. 90(2):227-242. DOI:10.1016/j.biochi.2007.10.009.
Joshi R, Heinz A, Fan Q, et al. (2018). Role for cela1 in postnatal lung remodeling and alpha-1 antitrypsin–deficient emphysema. Am J Respir Cell Mol Biol. 59(2):167-178. DOI:10.1165/rcmb.2017-0361OC.
Brandt de Oliveira E, Salgado MCO. (2013). Pancreatic Elastases. Handbook of Proteolytic Enzymes. 3:2639-2645. DOI:10.1016/B978-0-12-382219-2.00584-6.
Owen CA, Campbell EJ. (1999). The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol. 65(2):137-150. DOI:10.1002/jlb.65.2.137.
Korkmaz B, Horwitz M, Jenne D, Gauthier F. (2010). Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 62(4):726-759. DOI:10.1124/pr.110.002733.726.
Cavarra E, Fimiani M, Lungarella G, et al. (2002). UVA light stimulates the production of cathepsin G and elastase-like enzymes by dermal fibroblasts: A possible contribution to the remodeling of elastotic areas in sun-damaged skin. Biol Chem. 383(1):199-206. DOI:10.1515/BC.2002.020.
Voet D, Voet JG, Pratt CW. (2007). Fundamentos de Bioquímica La Vida a Nivel Molecular. México.
Boudier C, Godeau G, Hornebeck W, Robert L, Bieth JG. (1991). The Elastolytic Activity of Cathepsin G: An Ex Vivo Study with Dermal Elastin. Am J Respir Cell Mol Biol, 4(6), 497-503. DOI:10.1165/ajrcmb/4.6.497.
Andrault P marie, Panwar P, Mackenzie NCW, Brömme D. (2019). Elastolytic activity of cysteine cathepsins K, S, and V promotes vascular calcification. Sci Rep. 9:1-13. DOI:10.1038/s41598-019-45918-1.
Verma S, Dixit R, Pandey KC. (2016). Cysteine proteases: Modes of activation and future prospects as pharmacological targets. Frontiers in Pharmacology. 7, 193290. DOI:10.3389/fphar.2016.00107.
Codriansky KA, Quintanilla-Dieck MJ, Gan S, Keady M, Bhawan J, Rünger TM. (2009). Intracellular degradation of elastin by cathepsin k in skin fibroblasts - A possible role in photoaging. Photochem Photobiol. 85(6):1356-1363. DOI:10.1111/j.1751-1097.2009.00592.x.
Brömme D, Li Z, Barnes M, Mehler E. (1999). Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry. 38(8):2377-2385. DOI:10.1021/bi982175f.
Somoza JR, Zhan H, Bowman KK, et al. (2000). Crystal structure of human cathepsin V. Biochemistry. 39(41):12543-12551. DOI:10.1021/bi000951p.
Yasuda Y, Li Z, Greenbaum D, Bogyo M, Weber E, Brömme D. (2004). Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. Journal of Biological Chemistry. 279(35):36761-36770. DOI:10.1074/jbc.M403986200.
Cui N, Hu M, Khalil RA. (2017). Biochemical and Biological Attributes of Matrix Metalloproteinases. En: Progress in Molecular Biology and Translational Science. 147, 1-73. DOI:10.1016/bs.pmbts.2017.02.005.
Laronha H, Caldeira J. (2020). Structure and Function of Human Matrix Metalloproteinases. Cells. 9(5). DOI:10.3390/cells9051076.
Sbardella D, Fasciglione GF, Gioia M, et al. (2012). Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med. 33:119-208. DOI:10.1016/j.mam.2011.10.015.
Zucker S, Pei D, Cao J, Lopez-Otin C. (2003). Membrane Type-Matrix Metalloproteinases (MT-MMP). Current Topics in Developmental Biology. 54, 1-74. DOI: 10.1016/S0070-2153(03)54004-2.
Maskos K, Bode W. (2003). Structural Basis of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases. Molecular biotechnology. 25, 241-266. DOI: 10.1385/mb:25:3:241.
Kridel SJ, Sawai H, Ratnikov BI, et al. (2002). A unique substrate binding mode discriminates membrane type-1 matrix metalloproteinase from other matrix metalloproteinases. Journal of Biological Chemistry. 277(26):23788-23793. DOI:10.1074/jbc.M111574200.
Pérez-García LJ. (2004). Metaloproteinasas y piel. Actas Dermo-Sifiliograficas. 95(7):413-423. DOI: 10.1016/S0001-7310(04)76850-7.
Eckhard U, Huesgen PF, Schilling O, et al. (2016). Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biology. 49:37-60. DOI:10.1016/j.matbio.2015.09.003.
Quan T, Little E, Quan H, Qin Z, Voorhees JJ, Fisher GJ. (2013). Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: Impact of altered extracellular matrix microenvironment on dermal fibroblast function. Journal of Investigative Dermatology. 133(5):1362-1366. DOI:10.1038/jid.2012.509.
Isnard N, Péterszegi G, Robert AM, Robert L. (2002). Regulation of Elastase-Type Endopeptidase Activity, MMP-2 and MMP-9 Expression and Activation in Human Dermal Fibroblasts by Fucose and a Fucose-Rich Polysaccharide. Biomedicine & pharmacotherapy, 56(5), 258-264. DOI: 10.1016/S0753-3322(02)00196-8.
Van Den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. (2002). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 37(6):375-536. DOI:10.1080/10409230290771546.
Antonicelli F, Bellon G, Debelle L, Hornebeck W. (2007). Elastin-Elastases and Inflamm-Aging. Curr Top Dev Biol. 79(06):99-155. DOI:10.1016/S0070-2153(06)79005-6.
Umeda H, Aikawa M, Libby P. (2011). Liberation of desmosine and isodesmosine as amino acids from insoluble elastin by elastolytic proteases. Biochem Biophys Res Commun. 411(2):281-286. DOI:10.1016/j.bbrc.2011.06.124.
Senior RM, Griffin GL, Fliszar CJ, Shapiro SD, Goldberg GI, Welgus HG. (1991). Human 92- and 72-kilodalton type IV collagenases are elastases. Journal of Biological Chemistry. 266(12):7870-7875. DOI: 10.1016/S0021-9258(20)89530-1.
Berton A, Godeau G, Emonard H, et al. (2000). Analysis of the ex vivo specificity of human gelatinases A and B towards skin collagen and elastic fibers by computerized morphometry. Matrix Biology. 19(2):139-148. DOI:10.1016/S0945-053X(00)00057-3.
Murphy G, Cockett MI, Ward R V, Docherty AJ. (1991). Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem J. 277 ( Pt 1(June):277-279. DOI:10.1042/bj2770277.
Szecsi PB. (1992). The aspartic proteases. Scand J Clin Lab Invest. 52:5-22. DOI:10.3109/00365519209104650.
Eder J, Hommel U, Cumin F, Martoglio B, Gerhartz B. (2007). Aspartic Proteases in Drug Discovery. Pharmaceutical Desing. 13(3), 271-285. DOI: 10.2174/138161207779313560.
Ahn J, Cao MJ, Yu YQ, Engen JR. (2013). Accessing the reproducibility and specificity of pepsin and other aspartic proteases. Biochim Biophys Acta Proteins Proteom. 1834(6):1222-1229. DOI:10.1016/j.bbapap.2012.10.003.
Quan T, Fisher GJ. (2015). Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: A mini-review. Gerontology. 61(5):427-434. DOI:10.1159/000371708.
Freitas-Rodríguez S, Folgueras AR, López-Otín C. (2017). The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim Biophys Acta Mol Cell Res. 1864(11):2015-2025. DOI:10.1016/j.bbamcr.2017.05.007.
Gronski TJ, Martin RL, Kobayashi DK, et al. (1997). Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. Journal of Biological Chemistry. 272(18):12189-12194. DOI:10.1074/jbc.272.18.12189.
Filippov S, Caras I, Murray R, et al. (2003). Matrilysin-dependent Elastolysis by Human Macrophages. J Exp Med. 198(6):925-935. DOI:10.1084/jem.20030626.
Barroso B, Abello N, Bischoff R. (2006). Study of human lung elastin degradation by different elastases using high-performance liquid chromatography/mass spectrometry. Anal Biochem. 358(2):216-224. DOI:10.1016/j.ab.2006.07.011.
Reilly CF, Travis J. (1980). The degradation of human Lung elastin by neutrophil proteinases. Biochimica et Biophysica Acta (BBA)-Protein Structure. 621(1):147-157. DOI: 10.1016/0005-2795(80)90070-7.
Taddese S, Weiss AS, Neubert RHH, Schmelzer CEH. (2008). Mapping of macrophage elastase cleavage sites in insoluble human skin elastin. Matrix Biology. 27(5):420-428. DOI:10.1016/j.matbio.2008.02.001.
Heinz A, Jung MC, Duca L, et al. (2010). Degradation of tropoelastin by matrix metalloproteinases - Cleavage site specificities and release of matrikines. FEBS Journal. 277(8):1939-1956. DOI:10.1111/j.1742-4658.2010.07616.x.
Taddese S, Weiss AS, Jahreis G, Neubert RHH, Schmelzer CEH. (2009). In vitro degradation of human tropoelastin by MMP-12 and the generation of matrikines from domain 24. Matrix Biology. 28(2):84-91. DOI:10.1016/j.matbio.2008.12.002.
Baumberger JP, Suntzeff V, Cowdry EV. (1942). Methods for the Separation of Epidermis from Dermis and Some Physiologic and Chemical Properties of Isolated Epidermis. J Natl Cancer Inst. 2(5), 413-423. DOI: 10.1093/jnci/2.5.413.
Starcher B. (2001). A ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal Biochem. 292(1):125-129. DOI:10.1006/abio.2001.5050.
Sun SW, Lin YC, Weng YM, Chen MJ. (2006). Efficiency improvements on ninhydrin method for amino acid quantification. Journal of Food Composition and Analysis. 19(2-3):112-117. DOI:10.1016/j.jfca.2005.04.006.
Umeda H, Takeuchi M, Suyama K. (2001). Two new elastin cross-links having pyridine skeleton. Implication of ammonia in elastin cross-linking in vivo. Journal of Biological Chemistry. 276(16):12579-12587. DOI:10.1074/jbc.M009744200.
Lansing AI, Rosenthal TB, Alex M, Dempsey’ EW. (1952). The Structure and Chemical Characterization of Elastic Fibers as Revealed by Elastase and by Electron Miscroscopy. The Anatomical Record. 114(4), 555-575. DOI: 10.1002/ar.1091140404.
D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. (2013). UV radiation and the skin. Int J Mol Sci. 14(6):12222-12248. DOI:10.3390/ijms140612222.
Olsen J, Gaetti G, Grandahl K, Jemec GBE. (2021). Optical coherence tomography quantifying photo aging: skin microvasculature depth, epidermal thickness and UV exposure. Arch Dermatol Res. 314(5):469-476. DOI:10.1007/s00403-021-02245-8.
El-Domyati AM, Attia S, Saleh F, et al. (2002). Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol. 11:398-405. DOI: 10.1034/j.1600-0625.2002.110502.x.
Diaz LA, Heaphy MR, Calvanico NJ, Tomasi TB, Jordon RE. (1977). Separation of epidermis from dermis with sodium thiocyanate. Journal of Investigative Dermatology. 68(1):36-38. DOI:10.1111/1523-1747.ep12485156.
Felsher Z. (1946). Studies on the adherence of the epidermis to the corium. Proceedings of the Society for Experimental Biology and Medicine. 8(1):35-47. DOI:10.1038/jid.1947.7.
Li Y, Asadi A, Monroe MR, Douglas EP. (2009). pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding. Materials Science and Engineering C. 29(5):1643-1649. DOI:10.1016/j.msec.2009.01.001.
Martínez Ruiz DA, Mora Huertas AC. (2021). Contribución a La Implementación de Métodos de Extracción de Elastina (Tesis de pregrado). Universidad Nacional de Colombia.
Gibco by Life Solution. (2013). Manual of technical information. Collagenase, Gibco by life Solution. Publication Number MAN0007350. Rev 1.00.
Sakai LY, Keene DR, Glanville RW, Bachinger HP. (1991). Purification and Partial Characterization of Fibrillin, a Cysteine-rich Structural Component of Connective Tissue Microfibrils. Journal of Biological Chemistry. 266(22):14763-14770. DOI:10.1016/s0021-9258(18)98752-1.
Shi L, Ermis R, Garcia A, Telgenhoff D, Aust D. (2010). Degradation of human collagen isoforms by Clostridium collagenase and the effects of degradation products on cell migration. Int Wound J. 7(2):87-95. DOI:10.1111/j.1742-481X.2010.00659.x
Theocharidis G, Connelly JT. (2019). Minor collagens of the skin with not so minor functions. J Anat. 235(2):418-429. DOI:10.1111/joa.12584.
Rasmussen BL, Bruenger E, Sandberg LB. (1975). A New Method for Purification of Mature Elastin. Anal Biochem. 9:255-259. DOI: 10.1016/0003-2697(75)90426-1.
Daamen WF, Sc M, Hafmans T, Sc B, Veerkamp JH, Ph D. (2005). Isolation of Intact Elastin Fibers Devoid of Microfibrils. Tissue Eng. 11:1168-1176. DOI: 10.1089/ten.2005.11.1168.
Braverman IM, Fonferko E. (1982). Studies in Cutaneous Aging: The Elastic Fiber Network. J Invest Dermatol. 78:434-443. DOI: 10.1111/1523-1747.ep12507866.
Waller JM, Maibach HI. (2006). Age and skin structure and function, a quantitative approach (II): Protein, glycosaminoglycan, water, and lipid content and structure. Skin Research and Technology. 12(3):145-154. DOI:10.1111/j.0909-752X.2006.00146.x.
Chen VL, Fleischmajer R, Schwartz E, Palaia M, Timpl R. (1986). Immunochemistry of elastotic material in sun-damaged skin. Journal of Investigative Dermatology. 87(3):334-337. DOI:10.1111/1523-1747.ep12524421.
Pu SY, Huang YL, Pu CM, et al. (2023). Effects of Oral Collagen for Skin Anti-Aging: A Systematic Review and Meta-Analysis. Nutrients. 15(9). DOI:10.3390/nu15092080.
Talas U, Dunlop J, Khalaf S, Leigh IM, Kelsell DP. (2000). Human elastase 1: evidence for expression in the skin and the identification of a frequent frameshift polymorphism. Journal of Investigative Dermatology. 114(1):165-170. DOI:10.1046/j.1523-1747.2000.00825.x.
Yates JR, Ruse CI, Nakorchevsky A. (2009). Proteomics by mass spectrometry: Approaches, advances, and applications. Annu Rev Biomed Eng. 11:49-79. DOI:10.1146/annurev-bioeng-061008-124934.
Matissek R, Schnepel FM, Steiner G. (1998). Análisis de Los Alimentos, Fundamentos, Métodos, Aplicaciones. Editorial ACRIBIA; España.
Fountoulakis M, Lahm HW. (1998). Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A. 826:109-134. DOI:10.1016/S0021-9673(98)00721-3.
Chaparro Gómez D. (2023). Desarrollo de Un Método Analítico Para La Cuantificación de La Degradación Enzimática de Elastina (Trabajo de pregrado). Universidad Nacional de Colombia.
Schwartz E, Cruickshank FA. (1990). Determination of Desmosines in Elastin-Related Skin Disorders by Isocratic High-Performance Liquid Chromatography. Experimental and molecular pathology, 52(1), 63-68. DOI: 10.1016/0014-4800(90)90059-M.
Kielty CM, Lees M, Shuttleworth A, Woolley D. (1993). Catabolism of intact type VI Collagen microfibrils: susceptibility to degradation by serine proteinases. Biochemical and Biophysical Reserch Communications. 191(3):1230-1236. DOI:10.1006/bbrc.1993.1349.
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. (2022). Cathepsin V: molecular characteristics and significance in health and disease. Mol Aspects Med. 8:101086. DOI: 10.1016/j.mam.2022.101086.
Stoilov I, Starcher BC, Mecham RP, Broekelmann TJ. (2018). Measurement of elastin, collagen, and total protein levels in tissues. In: Methods in Cell Biology. Vol 143. Academic Press Inc.; 133-146. DOI:10.1016/bs.mcb.2017.08.008.
Hedtke T, Schrader C, Heinz A, et al. (2019). A comprehensive map of human elastin cross-linking during elastogenesis. FEBS J. 286:3594-3610. DOI:10.1111/febs.14929.
Laronha H, Caldeira J. (2020). Structure and function of human matrix metalloproteinases. Cells. 9(5). DOI:10.3390/cells9051076.
Dominici R, Franzini C. (2002). Fecal Elastase-1 as a Test for Pancreatic Function. Clin Chem Lab Med. 40(4):325-332. DOI: 10.1515/CCLM.2002.051.
Du X, Chen NLH, Wong A, Craik CS, Brömme D. (2013). Elastin degradation by cathepsin v requires two exosites. Journal of Biological Chemistry. 288(48):34871-34881. DOI:10.1074/jbc.M113.510008.
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv viii, 89 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86475/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86475/2/1052379344.2024.pdf
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2715ba905a1f5c212c2ff528c36b5814
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886671257436160
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mora Huertas, Angela Cristinaed4f68971b26575e5681f3321a6085adGarcía Manosalva, Leidy Carolinaa780b73801c24ec612b6946eaac4aff7Grupo de investigación en tecnologías analíticas farmacéuticas2024-07-16T19:43:25Z2024-07-16T19:43:25Z2024https://repositorio.unal.edu.co/handle/unal/86475Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasLa elastina es una proteína de la matriz extracelular que provee elasticidad y resiliencia a los tejidos. Durante su tiempo de vida media (74 años), continuamente es degradada principalmente por enzimas denominadas elastasas, lo que se asocia con la aparición de signos del envejecimiento cutáneo, desarrollo de enfermedades como aneurismas y aterosclerosis, entre otras. Es necesario entender los factores que influyen en la proteólisis enzimática de las fibras de elastina para en un futuro, poder retrasar o controlar este proceso. Se han identificado en la piel doce elastasas pertenecientes a tres diferentes familias de proteasas: cistein, serin y metaloproteasas. El tejido de origen de la elastina y la integridad de la fibra pueden condicionar la acción de las enzimas; pocos reportes han evaluado el efecto de estos factores sobre la potencia elastolítica, y algunos han encontrado comportamientos disimiles entre ellos. Para contribuir a la comprensión del efecto de la integridad de la fibra de elastina sobre la actividad de las elastasas, en esta tesis inicialmente se implementaron un método de aislamiento de elastina y dos metodologías analíticas para hacer el seguimiento a la degradación inducida por Catepsina G y V, Metaloproteinasa de la matriz 9 y Elastasa Pancreática. Los resultados obtenidos permiten concluir que el daño previo de la fibra no influye igual en la actividad de todas las enzimas y es necesario continuar estudiando la interacción entre tipo de elastasa y grado de degradación de la fibra, con el objetivo de establecer las enzimas de mayor relevancia en el inicio de la degradación de la elastina. (Texto tomado de la fuente).Elastin is an extracellular matrix protein that provides elasticity and resilience to tissues. During its half-life (74 years), it is continuously degraded, mainly by enzymes called elastases. Elastin damage is associated with the appearance of signs of skin ageing and the development of diseases such as aneurysms and atherosclerosis, among others. Understanding the factors that influence the enzymatic proteolysis of elastin fibres is crucial for developing strategies to delay or control this process. Twelve elastases belonging to three different families of proteases have been identified in the skin: cysteine, serin and metalloproteases. The tissue of elastin's origin and the fibre's integrity can condition the enzymes' action. Only some researchers have evaluated the effect of these factors on elastolytic activity, and some have found dissimilar behaviours between them. To contribute to the understanding of the effect of the integrity of the elastin fibre on the activity of elastases, in this thesis, an elastin isolation method and two analytical methodologies were initially implemented to monitor the degradation induced by Cathepsin G and V, Matrix Metalloproteinase 9 and Pancreatic Elastase. The results allow us to conclude that previous damage to the fibre does not influence the activity of all enzymes in the same way, and it is necessary to continue studying the interaction between the type of elastase and the degree of fibre damage to establish the most relevant enzymes at the beginning of elastin degradation.MaestríaMagíster en Ciencias FarmacéuticasMétodos para la evaluación de actividad biológicaviii, 89 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias FarmacéuticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéuticaCatepsina GMetaloproteinasas de la MatrizÁcidos FíbricosEnvejecimiento de la PielCathepsin GMatrix MetalloproteinasesFibric AcidsSkin AgingElastinaElastasasIntegridad de fibraPotencia elastolíticaElastinElastasesFibre integrityElastolytic powerContribución al estudio de la función de las elastasas en la degradación de elastina aislada de piel humanaContribution to understanding the role of elastases in the degradation of elastin derived from human skinTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMBiremeShapiro S, Endicott S, Province M, Pierce J, Campbell E. (1991). Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. The Journal Clinical Investigation, 87:1828-1834. DOI: 10.1172/JCI115204.Procknow SS, Kozel BA. (2022). Emerging mechanisms of elastin transcriptional regulation. Am J Physiol Cell Physiol, 323(3):C666-C677. DOI:10.1152/ajpcell.00228.2022.Parks W, Pierce R, Lee K, Mecham R. (1993). Elastin En: Kleinman H, ed. Advances in Molecular and Cell Biology. 134-182. [JAI Press]. Recuperado de: DOI:10.1016/S1569-2558(08)60201-5.Schmelzer CEH, Duca L. (2022). Elastic fibers: formation, function, and fate during aging and disease. FEBS Journal. 289(13):3704-3730. DOI:10.1111/febs.15899.Panwar P, Hedtke T, Heinz A, et al. (2020). Expression of elastolytic cathepsins in human skin and their involvement in age-dependent elastin degradation. Biochim Biophys Acta Gen Subj. 1864(5):129544. DOI:10.1016/j.bbagen.2020.129544.Novinec M, Grass RN, Stark WJ, Turk V, Baici A, Lenarčič B. (2007). Interaction between human cathepsins K, L, and S and elastins. Journal of Biological Chemistry. 282(11):7893-7902. DOI:10.1074/jbc.M610107200.Schmelzer CEH, Jung MC, Wohlrab J, Neubert RHH, Heinz A. (2012). Does human leukocyte elastase degrade intact skin elastin? FEBS Journal. 279(22):4191-4200. DOI:10.1111/febs.12012.Boudier C, Holle C, Bieth JG. (1981). Stimulation of the elastolytic activity of leukocyte elastase by leukocyte cathepsin G. Journal of Biological Chemistry. 10256-1025(20):10256-10258. DOI: 10.1016/S0021-9258(19)68612-6.Heinz A, Taddese S, Sippl W, Neubert RHH, Schmelzer CEH. (2011). Insights into the degradation of human elastin by matrilysin-1. Biochimie. 93(2):187-194. DOI:10.1016/j.biochi.2010.09.011.Skjøt-Arkil H, Clausen RE, Nguyen QHT, et al. (2012). Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation. BMC Pulm Med. 12. DOI:10.1186/1471-2466-12-34.Mora Huertas AC. (2017). Degradation of Skin Elastin in Ageing and Disease: An Ex Vivo Quantitative Proteomic Approach (Tesis doctoral). Martin-Luther-Universität Halle-Wittemberg; Alemania.Mora Huertas AC, Schmelzer CEH, Luise C, et al. (2017) Degradation of tropoelastin and skin elastin by neprilysin. Biochimie. 146:73-78. DOI:10.1016/j.biochi.2017.11.018.Shimizu H. (2007). Shimizu’s Textbook of Dermatology. JA KUBU.Kolarsick PAJ, Kolarsick MA, Goodwin C. (2011). Anatomy and Physiology of the skin. Journal of the Dermatology Nurses´Association, 3(4), 203-213. DOI:10.1097/JDN.0b013e3182274a98.Thomas S, Enders J, Kaiser A, et al. (2023). Abnormal intraepidermal nerve fiber density in disease: A scoping review. Front Neurol. 14:1161077. DOI:10.3389/fneur.2023.1161077.Bettley FR. (2004). Textbook of Dermatology. British Medical Journal. 1(5428), 178. DOI:10.1136/bmj.2.4835.546.Cole MA, Quan T, Voorhees JJ, Fisher GJ. (2018). Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal. 12(1):35-43. DOI:10.1007/s12079-018-0459-1.Hwa C, Bauer EA, Cohen DE. (2011). Skin biology. Dermatol Ther.;24(5):464-470. DOI:10.1111/j.1529-8019.2012.01460.x.Wong R, Geyer S, Weninger W, Guimberteau JC, Wong JK. (2016). The dynamic anatomy and patterning of skin. Exp Dermatol. 25(2):92-98. doi:10.1111/exd.12832.Dengjel J, Bruckner-Tuderman L, Nyström A. (2020). Skin proteomics–analysis of the extracellular matrix in health and disease. Expert Rev Proteomics. 17(5):377-391. DOI:10.1080/14789450.2020.1773261.Tracy LE, Minasian RA, Caterson EJ. (2016). Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv Wound Care (New Rochelle). 5(3):119-136. DOI:10.1089/wound.2014.0561.Ghosh R. (2017). Role of proteases in photo-aging of the skin. En: Proteases in Physiology and Pathology. 435. DOI:10.1007/978-981-10-2513-6.Verzijl N, DeGroot J, Thorpe SR, et al. (2000). Effect of collagen turnover on the accumulation of advanced glycation end products. Journal of Biological Chemistry. 275(50):39027-39031. DOI:10.1074/jbc.M006700200.Aziz J, Shezali H, Radzi Z, et al. (2016). Molecular Mechanisms of Stress-Responsive Changes in Collagen and Elastin Networks in Skin. Skin Pharmacol Physiol. 29(4):190-203. DOI:10.1159/000447017.Heinz A. (2021). Elastic fibers during aging and disease. Ageing Res Rev. 66, 101255. DOI:10.1016/j.arr.2021.101255.Sherratt MJ. (2009). Tissue elasticity and the ageing elastic fibre. Age (Omaha). 31(4):305-325. DOI:10.1007/s11357-009-9103-6.El-Khoury J, Kurban M, Abbas O. (2014). Elastophagocytosis: Underlying mechanisms and associated cutaneous entities. J Am Acad Dermatol. 70(5):934-944. DOI:10.1016/j.jaad.2013.12.012.Mecham RP. (2011). Extracellular Matrix: An Overview. Current protocols in cell biology. 57(1), 10-1. DOI:10.1007/978-3-642-16861-1.Debelle L, Alix AJP. (1999). The structures of elastins and their function. Biochimie. 81(10):981-994. DOI:10.1016/S0300-9084(99)00221-7.Mora Huertas AC, Schmelzer CEH, Hoehenwarter W, Heyroth F, Heinz A. (2016). Molecular-level insights into aging processes of skin elastin. Biochimie. 128-129:163-173. DOI:10.1016/j.biochi.2016.08.010.Parks W.C., Mecham R., eds. (2011). Extracellular Matrix Degradation. Springer Science & Business Media. DOI:10.1007/978-3-642-16861-1.Heinz A, Jung MC, Jahreis G, et al. (2012). The action of neutrophil serine proteases on elastin and its precursor. Biochimie. 94(1):192-202. DOI:10.1016/j.biochi.2011.10.006.Du X. (2013). Structural Requirements for the Elasotolytic and Collagenolytic Activities of Cathepsins and the Identification of Exosite Inhibitors (Tesis Doctoral) University of British Columbia.Weihermann AC, Lorencini M, Brohem CA, de Carvalho CM. (2017). Elastin structure and its involvement in skin photoageing. Int J Cosmet Sci. 39(3):241-247. DOI:10.1111/ics.12372.Miekus N, Luise C, Sippl W, Baczek T, Schmelzer CEH, Heinz A. (2019). MMP-14 degrades tropoelastin and elastin. Biochimie. 165:32-39. DOI:10.1016/j.biochi.2019.07.001.Heinz A. (2020). Elastases and elastokines: elastin degradation and its significance in health and disease. Crit Rev Biochem Mol Biol. 55(3):252-273. DOI:10.1080/10409238.2020.1768208.Mecham RP, ed. (2012). Regulation of Matrix Accumulation. Academic Press.Schmelzer CEH, Getie M, Neubert RHH. (2005). Mass spectrometric characterization of human skin elastin peptides produced by proteolytic digestion with pepsin and thermitase. J Chromatogr A. 1083(1-2):120-126. DOI:10.1016/j.chroma.2005.06.034.Eyre DR., Paz MA, Gallop PM. (1984). Cross-linking in collagen and elastin. Annual review of biochemistry, 53(1),717-748. DOI: 10.1146/annurev.bi.53.070184.003441.Hornebeck W, Emonard H. (2011).The Cell-Elastin-Elastase(s) Interacting Triade Directs Elastolysis. Front Biosci. 16(1), 707-722. DOI: 10.2741/3714.Werb Z, Banda MJ, McKerrow JH, Sandhaus RA. (1982). Elastases and elastin degradation. The Journal of Investive Dermatology. 79:154-159. DOI:10.1038/jid.1982.28.Kamolz LP, Lumenta LPK DB. (2013). Dermal Replacements in general, burn, and plastic surgery. Tissue Engineering in Clinical Practice, 226.Korkmaz B, Moreau T, Gauthier F. (2007). Neutrophil elastase, proteinase 3 and cathepsin G: Physicochemical properties, activity and physiopathological functions. Biochimie. 90(2):227-242. DOI:10.1016/j.biochi.2007.10.009.Joshi R, Heinz A, Fan Q, et al. (2018). Role for cela1 in postnatal lung remodeling and alpha-1 antitrypsin–deficient emphysema. Am J Respir Cell Mol Biol. 59(2):167-178. DOI:10.1165/rcmb.2017-0361OC.Brandt de Oliveira E, Salgado MCO. (2013). Pancreatic Elastases. Handbook of Proteolytic Enzymes. 3:2639-2645. DOI:10.1016/B978-0-12-382219-2.00584-6.Owen CA, Campbell EJ. (1999). The cell biology of leukocyte-mediated proteolysis. J Leukoc Biol. 65(2):137-150. DOI:10.1002/jlb.65.2.137.Korkmaz B, Horwitz M, Jenne D, Gauthier F. (2010). Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev. 62(4):726-759. DOI:10.1124/pr.110.002733.726.Cavarra E, Fimiani M, Lungarella G, et al. (2002). UVA light stimulates the production of cathepsin G and elastase-like enzymes by dermal fibroblasts: A possible contribution to the remodeling of elastotic areas in sun-damaged skin. Biol Chem. 383(1):199-206. DOI:10.1515/BC.2002.020.Voet D, Voet JG, Pratt CW. (2007). Fundamentos de Bioquímica La Vida a Nivel Molecular. México.Boudier C, Godeau G, Hornebeck W, Robert L, Bieth JG. (1991). The Elastolytic Activity of Cathepsin G: An Ex Vivo Study with Dermal Elastin. Am J Respir Cell Mol Biol, 4(6), 497-503. DOI:10.1165/ajrcmb/4.6.497.Andrault P marie, Panwar P, Mackenzie NCW, Brömme D. (2019). Elastolytic activity of cysteine cathepsins K, S, and V promotes vascular calcification. Sci Rep. 9:1-13. DOI:10.1038/s41598-019-45918-1.Verma S, Dixit R, Pandey KC. (2016). Cysteine proteases: Modes of activation and future prospects as pharmacological targets. Frontiers in Pharmacology. 7, 193290. DOI:10.3389/fphar.2016.00107.Codriansky KA, Quintanilla-Dieck MJ, Gan S, Keady M, Bhawan J, Rünger TM. (2009). Intracellular degradation of elastin by cathepsin k in skin fibroblasts - A possible role in photoaging. Photochem Photobiol. 85(6):1356-1363. DOI:10.1111/j.1751-1097.2009.00592.x.Brömme D, Li Z, Barnes M, Mehler E. (1999). Human cathepsin V functional expression, tissue distribution, electrostatic surface potential, enzymatic characterization, and chromosomal localization. Biochemistry. 38(8):2377-2385. DOI:10.1021/bi982175f.Somoza JR, Zhan H, Bowman KK, et al. (2000). Crystal structure of human cathepsin V. Biochemistry. 39(41):12543-12551. DOI:10.1021/bi000951p.Yasuda Y, Li Z, Greenbaum D, Bogyo M, Weber E, Brömme D. (2004). Cathepsin V, a novel and potent elastolytic activity expressed in activated macrophages. Journal of Biological Chemistry. 279(35):36761-36770. DOI:10.1074/jbc.M403986200.Cui N, Hu M, Khalil RA. (2017). Biochemical and Biological Attributes of Matrix Metalloproteinases. En: Progress in Molecular Biology and Translational Science. 147, 1-73. DOI:10.1016/bs.pmbts.2017.02.005.Laronha H, Caldeira J. (2020). Structure and Function of Human Matrix Metalloproteinases. Cells. 9(5). DOI:10.3390/cells9051076.Sbardella D, Fasciglione GF, Gioia M, et al. (2012). Human matrix metalloproteinases: An ubiquitarian class of enzymes involved in several pathological processes. Mol Aspects Med. 33:119-208. DOI:10.1016/j.mam.2011.10.015.Zucker S, Pei D, Cao J, Lopez-Otin C. (2003). Membrane Type-Matrix Metalloproteinases (MT-MMP). Current Topics in Developmental Biology. 54, 1-74. DOI: 10.1016/S0070-2153(03)54004-2.Maskos K, Bode W. (2003). Structural Basis of Matrix Metalloproteinases and Tissue Inhibitors of Metalloproteinases. Molecular biotechnology. 25, 241-266. DOI: 10.1385/mb:25:3:241.Kridel SJ, Sawai H, Ratnikov BI, et al. (2002). A unique substrate binding mode discriminates membrane type-1 matrix metalloproteinase from other matrix metalloproteinases. Journal of Biological Chemistry. 277(26):23788-23793. DOI:10.1074/jbc.M111574200.Pérez-García LJ. (2004). Metaloproteinasas y piel. Actas Dermo-Sifiliograficas. 95(7):413-423. DOI: 10.1016/S0001-7310(04)76850-7.Eckhard U, Huesgen PF, Schilling O, et al. (2016). Active site specificity profiling of the matrix metalloproteinase family: Proteomic identification of 4300 cleavage sites by nine MMPs explored with structural and synthetic peptide cleavage analyses. Matrix Biology. 49:37-60. DOI:10.1016/j.matbio.2015.09.003.Quan T, Little E, Quan H, Qin Z, Voorhees JJ, Fisher GJ. (2013). Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: Impact of altered extracellular matrix microenvironment on dermal fibroblast function. Journal of Investigative Dermatology. 133(5):1362-1366. DOI:10.1038/jid.2012.509.Isnard N, Péterszegi G, Robert AM, Robert L. (2002). Regulation of Elastase-Type Endopeptidase Activity, MMP-2 and MMP-9 Expression and Activation in Human Dermal Fibroblasts by Fucose and a Fucose-Rich Polysaccharide. Biomedicine & pharmacotherapy, 56(5), 258-264. DOI: 10.1016/S0753-3322(02)00196-8.Van Den Steen PE, Dubois B, Nelissen I, Rudd PM, Dwek RA, Opdenakker G. (2002). Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9). Crit Rev Biochem Mol Biol. 37(6):375-536. DOI:10.1080/10409230290771546.Antonicelli F, Bellon G, Debelle L, Hornebeck W. (2007). Elastin-Elastases and Inflamm-Aging. Curr Top Dev Biol. 79(06):99-155. DOI:10.1016/S0070-2153(06)79005-6.Umeda H, Aikawa M, Libby P. (2011). Liberation of desmosine and isodesmosine as amino acids from insoluble elastin by elastolytic proteases. Biochem Biophys Res Commun. 411(2):281-286. DOI:10.1016/j.bbrc.2011.06.124.Senior RM, Griffin GL, Fliszar CJ, Shapiro SD, Goldberg GI, Welgus HG. (1991). Human 92- and 72-kilodalton type IV collagenases are elastases. Journal of Biological Chemistry. 266(12):7870-7875. DOI: 10.1016/S0021-9258(20)89530-1.Berton A, Godeau G, Emonard H, et al. (2000). Analysis of the ex vivo specificity of human gelatinases A and B towards skin collagen and elastic fibers by computerized morphometry. Matrix Biology. 19(2):139-148. DOI:10.1016/S0945-053X(00)00057-3.Murphy G, Cockett MI, Ward R V, Docherty AJ. (1991). Matrix metalloproteinase degradation of elastin, type IV collagen and proteoglycan. A quantitative comparison of the activities of 95 kDa and 72 kDa gelatinases, stromelysins-1 and -2 and punctuated metalloproteinase (PUMP). Biochem J. 277 ( Pt 1(June):277-279. DOI:10.1042/bj2770277.Szecsi PB. (1992). The aspartic proteases. Scand J Clin Lab Invest. 52:5-22. DOI:10.3109/00365519209104650.Eder J, Hommel U, Cumin F, Martoglio B, Gerhartz B. (2007). Aspartic Proteases in Drug Discovery. Pharmaceutical Desing. 13(3), 271-285. DOI: 10.2174/138161207779313560.Ahn J, Cao MJ, Yu YQ, Engen JR. (2013). Accessing the reproducibility and specificity of pepsin and other aspartic proteases. Biochim Biophys Acta Proteins Proteom. 1834(6):1222-1229. DOI:10.1016/j.bbapap.2012.10.003.Quan T, Fisher GJ. (2015). Role of age-associated alterations of the dermal extracellular matrix microenvironment in human skin aging: A mini-review. Gerontology. 61(5):427-434. DOI:10.1159/000371708.Freitas-Rodríguez S, Folgueras AR, López-Otín C. (2017). The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim Biophys Acta Mol Cell Res. 1864(11):2015-2025. DOI:10.1016/j.bbamcr.2017.05.007.Gronski TJ, Martin RL, Kobayashi DK, et al. (1997). Hydrolysis of a broad spectrum of extracellular matrix proteins by human macrophage elastase. Journal of Biological Chemistry. 272(18):12189-12194. DOI:10.1074/jbc.272.18.12189.Filippov S, Caras I, Murray R, et al. (2003). Matrilysin-dependent Elastolysis by Human Macrophages. J Exp Med. 198(6):925-935. DOI:10.1084/jem.20030626.Barroso B, Abello N, Bischoff R. (2006). Study of human lung elastin degradation by different elastases using high-performance liquid chromatography/mass spectrometry. Anal Biochem. 358(2):216-224. DOI:10.1016/j.ab.2006.07.011.Reilly CF, Travis J. (1980). The degradation of human Lung elastin by neutrophil proteinases. Biochimica et Biophysica Acta (BBA)-Protein Structure. 621(1):147-157. DOI: 10.1016/0005-2795(80)90070-7.Taddese S, Weiss AS, Neubert RHH, Schmelzer CEH. (2008). Mapping of macrophage elastase cleavage sites in insoluble human skin elastin. Matrix Biology. 27(5):420-428. DOI:10.1016/j.matbio.2008.02.001.Heinz A, Jung MC, Duca L, et al. (2010). Degradation of tropoelastin by matrix metalloproteinases - Cleavage site specificities and release of matrikines. FEBS Journal. 277(8):1939-1956. DOI:10.1111/j.1742-4658.2010.07616.x.Taddese S, Weiss AS, Jahreis G, Neubert RHH, Schmelzer CEH. (2009). In vitro degradation of human tropoelastin by MMP-12 and the generation of matrikines from domain 24. Matrix Biology. 28(2):84-91. DOI:10.1016/j.matbio.2008.12.002.Baumberger JP, Suntzeff V, Cowdry EV. (1942). Methods for the Separation of Epidermis from Dermis and Some Physiologic and Chemical Properties of Isolated Epidermis. J Natl Cancer Inst. 2(5), 413-423. DOI: 10.1093/jnci/2.5.413.Starcher B. (2001). A ninhydrin-based assay to quantitate the total protein content of tissue samples. Anal Biochem. 292(1):125-129. DOI:10.1006/abio.2001.5050.Sun SW, Lin YC, Weng YM, Chen MJ. (2006). Efficiency improvements on ninhydrin method for amino acid quantification. Journal of Food Composition and Analysis. 19(2-3):112-117. DOI:10.1016/j.jfca.2005.04.006.Umeda H, Takeuchi M, Suyama K. (2001). Two new elastin cross-links having pyridine skeleton. Implication of ammonia in elastin cross-linking in vivo. Journal of Biological Chemistry. 276(16):12579-12587. DOI:10.1074/jbc.M009744200.Lansing AI, Rosenthal TB, Alex M, Dempsey’ EW. (1952). The Structure and Chemical Characterization of Elastic Fibers as Revealed by Elastase and by Electron Miscroscopy. The Anatomical Record. 114(4), 555-575. DOI: 10.1002/ar.1091140404.D’Orazio J, Jarrett S, Amaro-Ortiz A, Scott T. (2013). UV radiation and the skin. Int J Mol Sci. 14(6):12222-12248. DOI:10.3390/ijms140612222.Olsen J, Gaetti G, Grandahl K, Jemec GBE. (2021). Optical coherence tomography quantifying photo aging: skin microvasculature depth, epidermal thickness and UV exposure. Arch Dermatol Res. 314(5):469-476. DOI:10.1007/s00403-021-02245-8.El-Domyati AM, Attia S, Saleh F, et al. (2002). Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Exp Dermatol. 11:398-405. DOI: 10.1034/j.1600-0625.2002.110502.x.Diaz LA, Heaphy MR, Calvanico NJ, Tomasi TB, Jordon RE. (1977). Separation of epidermis from dermis with sodium thiocyanate. Journal of Investigative Dermatology. 68(1):36-38. DOI:10.1111/1523-1747.ep12485156.Felsher Z. (1946). Studies on the adherence of the epidermis to the corium. Proceedings of the Society for Experimental Biology and Medicine. 8(1):35-47. DOI:10.1038/jid.1947.7.Li Y, Asadi A, Monroe MR, Douglas EP. (2009). pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding. Materials Science and Engineering C. 29(5):1643-1649. DOI:10.1016/j.msec.2009.01.001.Martínez Ruiz DA, Mora Huertas AC. (2021). Contribución a La Implementación de Métodos de Extracción de Elastina (Tesis de pregrado). Universidad Nacional de Colombia.Gibco by Life Solution. (2013). Manual of technical information. Collagenase, Gibco by life Solution. Publication Number MAN0007350. Rev 1.00.Sakai LY, Keene DR, Glanville RW, Bachinger HP. (1991). Purification and Partial Characterization of Fibrillin, a Cysteine-rich Structural Component of Connective Tissue Microfibrils. Journal of Biological Chemistry. 266(22):14763-14770. DOI:10.1016/s0021-9258(18)98752-1.Shi L, Ermis R, Garcia A, Telgenhoff D, Aust D. (2010). Degradation of human collagen isoforms by Clostridium collagenase and the effects of degradation products on cell migration. Int Wound J. 7(2):87-95. DOI:10.1111/j.1742-481X.2010.00659.xTheocharidis G, Connelly JT. (2019). Minor collagens of the skin with not so minor functions. J Anat. 235(2):418-429. DOI:10.1111/joa.12584.Rasmussen BL, Bruenger E, Sandberg LB. (1975). A New Method for Purification of Mature Elastin. Anal Biochem. 9:255-259. DOI: 10.1016/0003-2697(75)90426-1.Daamen WF, Sc M, Hafmans T, Sc B, Veerkamp JH, Ph D. (2005). Isolation of Intact Elastin Fibers Devoid of Microfibrils. Tissue Eng. 11:1168-1176. DOI: 10.1089/ten.2005.11.1168.Braverman IM, Fonferko E. (1982). Studies in Cutaneous Aging: The Elastic Fiber Network. J Invest Dermatol. 78:434-443. DOI: 10.1111/1523-1747.ep12507866.Waller JM, Maibach HI. (2006). Age and skin structure and function, a quantitative approach (II): Protein, glycosaminoglycan, water, and lipid content and structure. Skin Research and Technology. 12(3):145-154. DOI:10.1111/j.0909-752X.2006.00146.x.Chen VL, Fleischmajer R, Schwartz E, Palaia M, Timpl R. (1986). Immunochemistry of elastotic material in sun-damaged skin. Journal of Investigative Dermatology. 87(3):334-337. DOI:10.1111/1523-1747.ep12524421.Pu SY, Huang YL, Pu CM, et al. (2023). Effects of Oral Collagen for Skin Anti-Aging: A Systematic Review and Meta-Analysis. Nutrients. 15(9). DOI:10.3390/nu15092080.Talas U, Dunlop J, Khalaf S, Leigh IM, Kelsell DP. (2000). Human elastase 1: evidence for expression in the skin and the identification of a frequent frameshift polymorphism. Journal of Investigative Dermatology. 114(1):165-170. DOI:10.1046/j.1523-1747.2000.00825.x.Yates JR, Ruse CI, Nakorchevsky A. (2009). Proteomics by mass spectrometry: Approaches, advances, and applications. Annu Rev Biomed Eng. 11:49-79. DOI:10.1146/annurev-bioeng-061008-124934.Matissek R, Schnepel FM, Steiner G. (1998). Análisis de Los Alimentos, Fundamentos, Métodos, Aplicaciones. Editorial ACRIBIA; España.Fountoulakis M, Lahm HW. (1998). Hydrolysis and amino acid composition analysis of proteins. J Chromatogr A. 826:109-134. DOI:10.1016/S0021-9673(98)00721-3.Chaparro Gómez D. (2023). Desarrollo de Un Método Analítico Para La Cuantificación de La Degradación Enzimática de Elastina (Trabajo de pregrado). Universidad Nacional de Colombia.Schwartz E, Cruickshank FA. (1990). Determination of Desmosines in Elastin-Related Skin Disorders by Isocratic High-Performance Liquid Chromatography. Experimental and molecular pathology, 52(1), 63-68. DOI: 10.1016/0014-4800(90)90059-M.Kielty CM, Lees M, Shuttleworth A, Woolley D. (1993). Catabolism of intact type VI Collagen microfibrils: susceptibility to degradation by serine proteinases. Biochemical and Biophysical Reserch Communications. 191(3):1230-1236. DOI:10.1006/bbrc.1993.1349.Lecaille F, Chazeirat T, Saidi A, Lalmanach G. (2022). Cathepsin V: molecular characteristics and significance in health and disease. Mol Aspects Med. 8:101086. DOI: 10.1016/j.mam.2022.101086.Stoilov I, Starcher BC, Mecham RP, Broekelmann TJ. (2018). Measurement of elastin, collagen, and total protein levels in tissues. In: Methods in Cell Biology. Vol 143. Academic Press Inc.; 133-146. DOI:10.1016/bs.mcb.2017.08.008.Hedtke T, Schrader C, Heinz A, et al. (2019). A comprehensive map of human elastin cross-linking during elastogenesis. FEBS J. 286:3594-3610. DOI:10.1111/febs.14929.Laronha H, Caldeira J. (2020). Structure and function of human matrix metalloproteinases. Cells. 9(5). DOI:10.3390/cells9051076.Dominici R, Franzini C. (2002). Fecal Elastase-1 as a Test for Pancreatic Function. Clin Chem Lab Med. 40(4):325-332. DOI: 10.1515/CCLM.2002.051.Du X, Chen NLH, Wong A, Craik CS, Brömme D. (2013). Elastin degradation by cathepsin v requires two exosites. Journal of Biological Chemistry. 288(48):34871-34881. DOI:10.1074/jbc.M113.510008.Determinación de nuevas dianas para la prevención y tratamiento cosmético del envejecimiento cutáneoUniversidad Nacional de ColombiaEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86475/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1052379344.2024.pdf1052379344.2024.pdfTesis de Maestría en Ciencias Farmacéuticasapplication/pdf2448206https://repositorio.unal.edu.co/bitstream/unal/86475/2/1052379344.2024.pdf2715ba905a1f5c212c2ff528c36b5814MD52unal/86475oai:repositorio.unal.edu.co:unal/864752024-07-16 14:44:44.236Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=