Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources
graficas, tablas
- Autores:
-
Henao Bravo, Elkin Edilberto
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83876
- Palabra clave:
- 530 - Física::537 - Electricidad y electrónica
Dual active bridge converter
Zeta/Sepic converter
Photovoltaic systems
Microgrids
Charger/discharger
Batteries
Energy storage devices
High-gain voltage
High-efficiency operation
DC bus voltage regulation
MPPT
Convertidor de doble puente activo
Convertidor Zeta/Sepic
Sistemas fotovoltaicos
Microrredes
Cargador/descargador
Baterías
Dispositivos de almacenamiento de energía
Alta ganancia de voltaje
Operación con alta eficiencia
Regulación de la tensión del bus de CC
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_d71d86a6b8400a21c3a39f9357523bdb |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83876 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources |
dc.title.translated.spa.fl_str_mv |
Sistema de conversión de energía para incrementar la eficiencia en microrredes CC basadas en fuentes renovables |
title |
Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources |
spellingShingle |
Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources 530 - Física::537 - Electricidad y electrónica Dual active bridge converter Zeta/Sepic converter Photovoltaic systems Microgrids Charger/discharger Batteries Energy storage devices High-gain voltage High-efficiency operation DC bus voltage regulation MPPT Convertidor de doble puente activo Convertidor Zeta/Sepic Sistemas fotovoltaicos Microrredes Cargador/descargador Baterías Dispositivos de almacenamiento de energía Alta ganancia de voltaje Operación con alta eficiencia Regulación de la tensión del bus de CC |
title_short |
Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources |
title_full |
Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources |
title_fullStr |
Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources |
title_full_unstemmed |
Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources |
title_sort |
Power conversion systems for increasing the efficiency in DC microgrids based on renewable sources |
dc.creator.fl_str_mv |
Henao Bravo, Elkin Edilberto |
dc.contributor.advisor.none.fl_str_mv |
Saavedra-Montes, Andrés Julián Ramos-Paja, Carlos Andres |
dc.contributor.author.none.fl_str_mv |
Henao Bravo, Elkin Edilberto |
dc.contributor.researchgroup.spa.fl_str_mv |
Automática, Electrónica y Ciencias Computacionales |
dc.contributor.orcid.spa.fl_str_mv |
Henao Bravo, Elkin Edilberto [0000-0001-9663-1082] |
dc.contributor.cvlac.spa.fl_str_mv |
Henao Bravo, Elkin Edilberto [0001526319] |
dc.contributor.researchgate.spa.fl_str_mv |
https://www.researchgate.net/profile/Elkin-Henao-Bravo |
dc.contributor.googlescholar.spa.fl_str_mv |
https://scholar.google.com/citations?user=HISSQZUAAAAJ&hl=es |
dc.subject.ddc.spa.fl_str_mv |
530 - Física::537 - Electricidad y electrónica |
topic |
530 - Física::537 - Electricidad y electrónica Dual active bridge converter Zeta/Sepic converter Photovoltaic systems Microgrids Charger/discharger Batteries Energy storage devices High-gain voltage High-efficiency operation DC bus voltage regulation MPPT Convertidor de doble puente activo Convertidor Zeta/Sepic Sistemas fotovoltaicos Microrredes Cargador/descargador Baterías Dispositivos de almacenamiento de energía Alta ganancia de voltaje Operación con alta eficiencia Regulación de la tensión del bus de CC |
dc.subject.proposal.eng.fl_str_mv |
Dual active bridge converter Zeta/Sepic converter Photovoltaic systems Microgrids Charger/discharger Batteries Energy storage devices High-gain voltage High-efficiency operation DC bus voltage regulation MPPT |
dc.subject.proposal.spa.fl_str_mv |
Convertidor de doble puente activo Convertidor Zeta/Sepic Sistemas fotovoltaicos Microrredes Cargador/descargador Baterías Dispositivos de almacenamiento de energía Alta ganancia de voltaje Operación con alta eficiencia Regulación de la tensión del bus de CC |
description |
graficas, tablas |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-05-25T21:19:18Z |
dc.date.available.none.fl_str_mv |
2023-05-25T21:19:18Z |
dc.date.issued.none.fl_str_mv |
2023 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Image Text |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83876 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83876 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
[1]E. E. Henao-Bravo, C. A. Ramos-Paja, A. J. Saavedra-Montes, D. Gonzalez-Montoya, and J. Sierra-P´erez, “Design method of dual active bridge converters for photovoltaic systems with high voltage gain,” Energies, vol. 13, no. 7, pp. 1–31, 2020 [2]D. A. Herrera-Jaramillo, E. E. Henao-Bravo, D. Gonzalez Montoya, C. A. Ramos-Paja, and A. J. Saavedra-Montes, “Control-Oriented Model of Photovoltaic Systems Based on a Dual Active Bridge Converter,” Sustainability, vol. 13, no. 14, p. 7689, jul 2021. [Online]. Available: https://www.mdpi.com/2071-1050/13/14/7689 [3]E. E. Henao-Bravo, C. A. Ramos-paja, and A. J. Saavedra-montes, “Adaptive control of photovoltaic systems based on dual active bridge converters,” Computation, vol. 10, pp. 1–24, 2022. [Online]. Available: https://www.mdpi.com/2079-3197/10/6/89/htm [4]D. A. Herrera-Jaramillo, D. Gonzalez Montoya, E. E. Henao-Bravo, C. A. Ramos-Paja, and A. J. Saavedra-Montes, “Systematic analysis of control techniques for the dual active bridge converter in photovoltaic applications,” International Journal of Circuit Theory and Applications, no. April, p. cta.3031, apr 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/cta.3031 [5]E. E. Henao-Bravo, A. J. Saavedra-Montes, C. A. Ramos-Paja, J. D. Bastidas- Rodriguez, and D. G. Montoya, “Charging/discharging system based on zeta/sepic converter and a sliding mode controller for dc bus voltage regulation,” IET Power Electronics, vol. 13, no. 8, pp. 1514–1527, 2020. [6]J. P. Villegas-Ceballos, C. A. Ramos-Paja, and E. E. Henao-Bravo, “Sliding-mode controller for a step up-down battery charger with a single current sensor,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, pp. 1251–1264, 2022. [7]N. Earth Science Communications Team.(2019-12-04), “Effects — Facts – Climate Change: Vital Signs of the Planet [online]. available:https://climate.nasa.gov/effects/,” 2018. [Online]. Available: https://climate.nasa.gov/effects/ [8]C. Garcia Arbelaez, G. Vallejo Lopez, M. Lou Higgins, and E. M. Escobar, El Acuerdo De Par´ıs: As´ı Actuar´a Colombia Frente Al Cambio Clim´atico, 1st ed., WWF - Colombia, Ed. Cali - Colombia: WWF-Colombia, 2016. [Online]. Available: http://www.minambiente.gov.co/images/cambioclimatico/pdf [9] International Energy Agency, World Energy Outlook 2018: Electricity. Paris, France: IEA Publications, 2018. [Online]. Available: www.iea.org [10] REN21, “Renewables 2018 Global Status Report,” Renewable Energy Policy Network for the 21st Century, Tech. Rep., 2018. [Online]. Available: http://www.ren21.net/gsr- 2018/ [11] CELSIA, “Celsia Solar Espinal [online]. available: https://www.celsia.com/es/proyectos/celsia-solar-espinal,” 2018. [Online]. Available: https://www.celsia.com/es/Proyectos/Celsia-Solar-Espinal [12] CELSIA., “Inicia operaciones Celsia Solar Bol´ıvar, la nueva granja de generaci´on de energ´ıa solar de Celsia para beneficio de los colombianos [online]. available:https://www.celsia.com/es/sala-prensa/inicia- operaciones-celsia-solar-bol237var-la-nueva-granja-de-generaci243n-de-energ237a- solar-de-celsia-para-beneficio-de-los-colombianos,” 2018. [Online]. Available: https://www.celsia.com/es/sala-prensa/inicia-operaciones-celsia-solar-bol237var- la-nueva-granja-de-generaci243n-de-energ237a-solar-de-celsia-para-beneficio-de-los- colombianos [13]O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, and M. Pourkashanian, “Renewable energy production and demand dataset for the energy system of colombia,” Data in Brief, vol. 28, p. 105084, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2352340919314404 [14] UPME, “Boletín Estadístico de Minas y Energía 2016-2018,” Unidad de Planeación Minero Energética, Ed. Bogotá D.C., Colombia: Unidad de Planeación Minero Energética, 2018, pp. 1–162. [Online]. Available: www.upme.gov.co [15]A. R. López, A. Krumm, L. Schattenhofer, T. Burandt, F. C. Montoya, N. Oberl¨ander, and P.-Y. Oei, “Solar pv generation in colombia - a qualitative and quantitative approach to analyze the potential of solar energy market,” Renewable Energy, vol. 148, pp. 1266 – 1279, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960148119315575 [16]O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, and M. Pourkashanian, “Large scale integration of renewable energy sources (res) in the future colombian energy system,” Energy, vol. 186, p. 115805, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S036054421931477X [17] El Congreso De Colombia, “Ley 1715 - Por Medio De La Cual Se Regula La Integración De Las Energías Renovables No Convencionales Al Sistema Energético Nacional,” 2014. [18] UPME, Integración de las energías renovables no convencionales en Colombia, La Imprenta Editores SA, Ed. Bogotá D.C.: Unidad de Planeación Minero Energética, 2015. [Online]. Available: https://www1.upme.gov.co/ [19]G. Spagnuolo, S. Kouro, and D. Vinnikov, “Photovoltaic Module and Submodule Level Power Electronics and Control,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3856–3859, 2019. [20] REN21 Secretariat, “Renewables 2021 Global Status Report,” Paris, France, Tech. Rep., 2021. [Online]. Available: https://www.ren21.net/wp- content/uploads/2019/05/GSR2021 Full Report.pdf [21] IEA, “World Energy Outlook 2021,” International Energy Agency, Paris, France, Tech. Rep., 2021. [Online]. Available: www.iea.org/weo [22]E. Romero-Cadaval, G. Spagnuolo, L. G. Franquelo, C. A. Ramos-Paja, T. Suntio, and W. M. Xiao, “Grid-connected photovoltaic generation plants: Components and operation,” IEEE Industrial Electronics Magazine, vol. 7, no. 3, pp. 6–20, 2013. [23]J. L. Dos Santos de Morais, Julio Cezar Dos Santos de Morais and R. Gules, “Photovoltaic AC Module Based on a Cuk Converter with a Switched-Inductor Structure,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3881–3890, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8415742/ [24]H. Ardi, A. Ajami, and M. Sabahi, “A Novel High Step-Up DC–DC Converter With Continuous Input Current Integrating Coupled Inductor for Renewable Energy Applications,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1306– 1315, feb 2018. [Online]. Available: http://ieeexplore.ieee.org/document/7995100/ [25]A. M. S. S. Andrade, L. Schuch, and M. L. da Silva Martins, “Analysis and design of high-efficiency hybrid high step-Up DC-DC converter for distributed PV generation systems,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3860–3868, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8370773/ [26]R. A. Messenger and J. Ventre, Photovoltaic Systems Engineering, 2nd ed., C. PRESS, Ed. Taylor & Francis e-Library, 2003. [Online]. Available: http://doi.wiley.com/10.1002/1521-3773/820010316/940 [27]A. Rajaei, R. Khazan, M. Mahmoudian, M. Mardaneh, and M. Gitizadeh, “A Dual Inductor High Step-Up DC/DC Converter Based on the Cockcroft–Walton Multiplier,” IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9699–9709, nov 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8253836/ [28]J. Velez-Sanchez, J. D. Bastidas-Rodriguez, C. A. Ramos-Paja, D. Gonzalez-Montoya, and L. A. Trejos-Grisales, “A non-invasive procedure for estimating the exponential model parameters of bypass diodes in photovoltaic modules,” Energies, vol. 12, no. 2, p. 303, 2019. [29]M. E. Basoglu, “An Improved 0.8 V OC Model Based GMPPT Technique for Module Level Photovoltaic Power Optimizers,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1913–1921, mar 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8565882/ [30]S. Hosseini, S. Taheri, M. Farzaneh, and H. Taheri, “A High-Performance Shade-Tolerant MPPT Based on Current-Mode Control,” IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 10 327–10 340, oct 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8620516/ [31]K. Bataineh, “Improved hybrid algorithms-based MPPT algorithm for PV system operating under severe weather conditions,” IET Power Electronics, vol. 12, no. 4, pp. 703–711, apr 2019. [Online]. Available: https://digital- library.theiet.org/content/journals/10.1049/iet-pel.2018.5651 [32]J. D. Bastidas-Rodriguez, E. Franco, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, “Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review,” IET Power Electronics, vol. 7, no. 6, pp. 1396–1413, jun 2014. [33]D. Vinnikov, A. Chub, E. Liivik, R. Kosenko, and O. Korkh, “Solar optiverter - A novel hybrid approach to the photovoltaic module level power electronics,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3869–3880, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8402238/ [34]Q. Huang, A. Huang, R. Yu, P. Liu, and W. Yu, “High-Efficiency and High-Density Single-Phase Dual-Mode Cascaded Buck-Boost Multilevel Transformerless PV Inverter with GaN AC Switches,” IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 7474–7488, 2018. [35]H. S. Lee and J. J. Yun, “Quasi-Resonant Voltage Doubler with Snubber Capacitor for Boost Half-Bridge DC-DC Converter in Photovoltaic Micro-Inverter,” IEEE Transac- tions on Power Electronics, vol. 34, no. 9, pp. 8377–8388, 2018. [36]J. Roy, Y. Xia, and R. Ayyanar, “High Step-Up Transformerless Inverter for AC Module Applications with Active Power Decoupling,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3891–3901, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8425065/ [37]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics. Converters, Ap- plications and Design, 3rd ed. John Wiley and Sons, Inc, 2003. [38]J. Ravishankar, D. Binu Ben Jose, and N. Ammasai Gounden, “Simple power electronic controller for photovoltaic fed grid-tied systems using line commutated inverter with fixed firing angle,” IET Power Electronics, vol. 7, no. 6, pp. 1424–1434, jun 2014. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet- pel.2013.0440 [39]K. Li, Y. Hu, and A. Ioinovici, “Generation of the Large DC Gain Step- Up Nonisolated Converters in Conjunction With Renewable Energy Sources Starting From a Proposed Geometric Structure,” IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5323–5340, jul 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7567545/ [40]R. K. Surapaneni and P. Das, “A Z-Source-Derived Coupled-Inductor-Based High Voltage Gain Microinverter,” IEEE Transactions on Industrial Elec- tronics, vol. 65, no. 6, pp. 5114–5124, jun 2018. [Online]. Available: http://ieeexplore.ieee.org/document/8017498/ [41]V. Gautam and P. Sensarma, “Design of C´uk-Derived Transformerless Common- Grounded PV Microinverter in CCM,” IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6245–6254, aug 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7869382/ [42]J. Kan, Y. Wu, Y. Tang, S. Xie, and L. Jiang, “Hybrid Control Scheme for Photovoltaic Micro-Inverter with Adaptive Inductor,” IEEE Transactions on Power Electronics, pp. 1–1, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8556060/ [43]N. Sukesh, M. Pahlevaninezhad, and P. K. Jain, “Analysis and Implementation of a Single-Stage Flyback PV Microinverter With Soft Switching,” IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1819–1833, apr 2014. [Online]. Available: http://ieeexplore.ieee.org/document/6517272/ [44]R. K. Surapaneni and A. K. Rathore, “A Single-Stage CCM Zeta Microinverter for Solar Photovoltaic AC Module,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 892–900, dec 2015. [Online]. Available: http://ieeexplore.ieee.org/document/7113782/ [45]D. Meneses, O. Garcia, P. Alou, J. A. Oliver, and J. A. Cobos, “Grid-Connected Forward Microinverter With Primary-Parallel Secondary-Series Transformer,” IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 4819–4830, sep 2015. [Online]. Available: http://ieeexplore.ieee.org/document/6940259/ [46]S.-H. Lee, W.-J. Cha, J.-M. Kwon, and B.-H. Kwon, “Control Strategy of Flyback Microinverter With Hybrid Mode for PV AC Modules,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 995–1002, feb 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7274697/ [47]S.-H. Lee, W.-J. Cha, B.-H. Kwon, and M. Kim, “Discrete-Time Repetitive Control of Flyback CCM Inverter for PV Power Applications,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 976–984, feb 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7247692/ [48]A. Chub, D. Vinnikov, F. Blaabjerg, and F. Z. Peng, “A review of galvanically isolated impedance-source DC-DC converters,” pp. 2808–2828, apr 2016. [49]L. G. Junior, M. A. De Brito, L. P. Sampaio, and C. A. Canesin, “Single stage con- verters for low power stand-alone and grid-connected PV systems,” in Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 1112–1117. [50]B. Zhao, Q. Song, W. Liu, and Y. Sun, “Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4091–4106, 2014. [Online]. Available: http://dx.doi.org/10.1109/TPEL.2013.2289913 [51]F. Yazdani and M. Zolghadri, “Design of dual active bridge isolated bi-directional DC converter based on current stress optimization,” in 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC). IEEE, 2017, pp. 247–252. [Online]. Available: http://ieeexplore.ieee.org/document/7910331/ [52]D. S. Segaran, “Dynamic Modelling and Control of Dual Active Bridge Bi- directional DC-DC Converters for Smart Grid Applications,” Ph.D. dissertation, Royal Melbourne Institute of Technology University, 2013. [Online]. Available: https://researchbank.rmit.edu.au/eserv/rmit:160330/Segaran.pdf [53]Y. C. Jeung and D. C. Lee, “Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control,” IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6937–6946, 2019. [54]D. Wang, B. Nahid-Mobarakeh, and A. Emadi, “Second Harmonic Current Reduction for a Battery-Driven Grid Interface With Three-Phase Dual Active Bridge DC–DC Converter,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 9056– 9064, nov 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8654202/ [55]H. Bayat and A. Yazdani, “A Hybrid MMC-Based Photovoltaic and Bat- tery Energy Storage System,” IEEE Power and Energy Technology Sys- tems Journal, vol. 6, no. 1, pp. 32–40, mar 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8612921/ [56]D. Gonzalez-Agudelo, A. Escobar-Mejia, and H. Ramirez-Murrillo, “Dynamic model of a dual active bridge suitable for solid state transformers,” International Power Electronics Congress - CIEP, vol. 2016-Augus, pp. 350–355, 2016. [57]A. Agrawal, C. S. Nalamati, and R. Gupta, “Hybrid DC–AC Zonal Microgrid Enabled by Solid-State Transformer and Centralized ESD Integration,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 9097–9107, nov 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8648411/ [58]T. M. Parreiras, A. P. MacHado, F. V. Amaral, G. C. Lobato, J. A. Brito, and B. C. Filho, “Forward Dual-Active-Bridge Solid-State Transformer for a SiC-Based Casca- ded Multilevel Converter Cell in Solar Applications,” IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6353–6363, nov 2018. [59]A. Mansour, B. Faouzi, G. Jamel, and E. Ismahen, “Design and analysis of a high fre- quency DC–DC converters for fuel cell and super-capacitor used in electrical vehicle,” International Journal of Hydrogen Energy, vol. 39, no. 3, pp. 1580–1592, jan 2014. [Onli- ne]. Available: https://www.sciencedirect.com/science/article/pii/S0360319913010100 [60]M. I. Marei, H. El-Helw, and M. Al-Hasheem, “A grid-connected PV interface system based on the DAB-converter,” in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, jun 2015, pp. 161–165. [Online]. Available: http://ieeexplore.ieee.org/document/7165534/ [61]H. M. El-Helw, M. Al-Hasheem, and M. I. Marei, “Control strategies for the DAB based PV interface system,” PLoS ONE, vol. 11, no. 8, pp. 1–19, 2016. [62]J. Hu, P. Joebges, G. C. Pasupuleti, N. R. Averous, and R. W. De Doncker, “A Maximum-Output-Power-Point-Tracking Contro- lled Dual-Active Bridge Converter for Photovoltaic Energy Integration in- to MVDC Grids,” IEEE Transactions on Energy Conversion, pp. 1–1, 2018. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85054670210&doi=10.1109/FTEC.2018.2874936 [63]Y. Shi, R. Li, Y. Xue, and H. Li, “High-Frequency-Link-Based Grid-Tied PV System With Small DC-Link Capacitor and Low-Frequency Ripple-Free Maximum Power Point Tracking,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 328–339, jan 2016. [Online]. Available: http://dx.doi.org/10.1109/TPEL.2015.2411858 http://ieeexplore.ieee.org/document/7058411/ [64]T. Liu, X. Yang, W. Chen, Y. Li, Y. Xuan, L. Huang, and X. Hao, “Design and Implementation of High Efficiency Control Scheme of Dual Active Bridge Based 10 kV/1 MW Solid State Transformer for PV Application,” IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4223–4238, may 2019. [65]G. Xu, D. Sha, Y. Xu, and X. Liao, “Dual-Transformer-Based DAB Converter with Wide ZVS Range for Wide Voltage Conversion Gain Application,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3306–3316, 2018. [66]H. Wang, T. Wei, X. Sun, X. Wan, F. Wang, and F. Zhuo, “The application of cascade power electronic transformer in large-scale photovoltaic power generation system,” in PEDG 2019 - 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems. Institute of Electrical and Electronics Engineers Inc., jun 2019, pp. 425–428. [67]M. Aguirre and A. Yazdani, “A single-phase dc-ac dual-active-bridge based resonant converter for grid-connected Photovoltaic (PV) applications,” in 2019 21st European Conference on Power Electronics and Applications, EPE 2019 ECCE Europe. Institute of Electrical and Electronics Engineers Inc., sep 2019. [68]A. Rodriguez, A. Vazquez, D. G. Lamar, M. M. Hernando, and J. Sebastian, “Different purpose design strategies and techniques to improve the performance of a Dual Active Bridge with phase-shift control,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 790–804, 2015. [69]K. S. Kim, S. G. Jeong, and B. H. Kwon, “Single power-conversion DAB microinverter with safe commutation and high efficiency for PV power applications,” Solar Energy, vol. 193, pp. 676–683, nov 2019. [70]A. Mohapatra, B. Nayak, P. Das, and K. B. Mohanty, “A review on mppt techniques of pv system under partial shading condition,” Renewable and Sustainable Energy Reviews, vol. 80, pp. 854–867, 2017. [71]E. Mamarelis, G. Petrone, and G. Spagnuolo, “Design of a sliding-mode-controlled sepic for pv mppt applications,” IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3387–3398, 2014. [72]S. Bacha, I. Munteanu, and A. I. Bratcu, “Introduction to power electronic converters modeling,” in Power Electronic Converters Modeling and Control. Springer, 2014, pp. 9–25. [73]R. Naayagi, A. J. Forsyth, and R. Shuttleworth, “High-power bidirectional dc–dc con- verter for aerospace applications,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4366–4379, 2012. [74]S. Kulasekaran and R. Ayyanar, “Analysis, design, and experimental results of the semidual-active-bridge converter,” IEEE Transactions on power electronics, vol. 29, no. 10, pp. 5136–5147, 2013. [75]F. Zhang and W. Li, “An equivalent circuit method for modeling and simulation of dual active bridge converter based marine distribution system,” in 2019 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2019, pp. 382–387. [76]S. D. F. Zambrano, “A dc-dc multiport converter based solid state transformer inte- grating distributed generation and storage,” Approved Jun, 2011. [77]H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge dc–dc converter,” IEEE Transactions on power electronics, vol. 27, no. 4, pp. 2078–2084, 2011. [78]S. S. Shah and S. Bhattacharya, “Large & small signal modeling of dual active bridge converter using improved first harmonic approximation,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2017, pp. 1175–1182. [79]S. Marti and H. Krishnaswami, “Control algorithm for port power imbalance in two-stage, N-port modular multilevel cascaded photovoltaic inverters,” in 2017 IEEE Texas Power and Energy Conference (TPEC). Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, United States: IEEE, feb 2017, pp. 1–6. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016623184 [80]L. Guan, F. Xiao, C. Tu, and Z. Lan, “Modal analysis method of dab based on phase shift control,” in 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2017, pp. 5954–5959. [81]X. Liu, Z. Zhu, D. A. Stone, M. P. Foster, W. Chu, I. Urquhart, and J. Greenough, “No- vel dual-phase-shift control with bidirectional inner phase shifts for a dual-active-bridge converter having low surge current and stable power control,” IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 4095–4106, 2016. [82]J. Everts, Everts, and Jordi, “Design and Optimization of an Efficient (96.1 %) and Compact (2 kW/dm3) Bidirectional Isolated Single-Phase Dual Active Bridge AC-DC Converter,” Energies, vol. 9, no. 10, p. 799, oct 2016. [Online]. Available: http://www.mdpi.com/1996-1073/9/10/799 [83]L. Cao, K. H. Loo, and Y. M. Lai, “Output-Impedance Shaping of Bidirectional DAB DC–DC Converter Using Double-Proportional-Integral Feedback for Near-Ripple-Free DC Bus Voltage Regulation in Renewable Energy Systems,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2187–2199, mar 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7108066/ [84]R. Sharma and S. K. Sharma, “Solar photovoltaic supply system integrated with solid state transformer,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), 2021, pp. 1–6. [85]B. Krishna, T. S. Bheemraj, and V. Karthikeyan, “Optimized active power management in solar pv-fed transformerless grid-connected system for rural electrified microgrid,” Journal of Circuits, Systems and Computers, vol. 30, no. 03, p. 2150039, 2021. [Online]. Available: https://doi.org/10.1142/S0218126621500390 [86]J. You, J. Xia, and H. Jia, “Analysis and control of DAB based DC-AC multiport converter with small DC link capacitor,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2017, pp. 823–828. [Online]. Available: http://ieeexplore.ieee.org/document/8216142/ [87]S. Kurm and V. Agarwal, “Dual active bridge based reduced stage multiport dc/ac con- verter for pv-battery systems,” IEEE Transactions on Industry Applications, vol. 58, no. 2, pp. 2341–2351, 2022. [88]S. S. Shah and S. Bhattacharya, “Control of active component of current in dual active bridge converter,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, mar 2018, pp. 323–330. [Online]. Available: http://ieeexplore.ieee.org/document/8341030/ [89]B. L. Baolong Liu, Y. Z. Yabing Zha, T. Z. Tao Zhang, and S. C. Shiming Chen, “Fuzzy logic control of dual active bridge in solid state transformer applications,” in 2016 Tsinghua University-IET Electrical Engineering Academic Forum. Institution of Engineering and Technology, 2016, pp. 2 (4 .)–2 (4 .). [Online]. Available: https://digital-library.theiet.org/content/conferences/10.1049/cp.2016.1183 [90]N. Vazquez and M. Liserre, “Peak Current Control and Feed-Forward Com- pensation of a DAB Converter,” IEEE Transactions on Industrial Elec- tronics, vol. 67, no. 10, pp. 8381–8391, oct 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8887534/ [91]J. Arredondo, M. Quispe, and M. Valencia, “Particle swarm optimization mppt al- gorithm in a dual active bridge series-resonant dc-dc converter for partial shading conditions,” in 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC), 2021, pp. 274–279. [92]Y. Wang, B. Wang, C. C. Chu, H. Pota, and R. Gadh, “Energy management for a commercial building microgrid with stationary and mobile battery storage,” Energy and Buildings, vol. 116, pp. 141–150, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2015.12.055 [93]Z. Zeng, R. Zhao, and H. Yang, “Micro-sources design of an intelligent building integrated with micro-grid,” Energy and Buildings, vol. 57, pp. 261–267, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2012.11.018 [94]M. S. Mahmoud and F. M. AL-Sunni, “Networked Control of Microgrid System of Systems,” in Control and Optimization of Distributed Generation Systems. Springer, 2010, pp. 251–308. [95]N. Eghtedarpour and E. Farjah, “Control strategy for distributed inte- gration of photovoltaic and energy storage systems in DC micro-grids,” Renewable Energy, vol. 45, pp. 96–110, sep 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960148112001565 [96]P. K. Gayen, P. Roy Chowdhury, and P. K. Dhara, “An improved dynamic performance of bidirectional SEPIC-Zeta converter based battery energy storage system using adaptive sliding mode control technique,” Electric Power Systems Research, vol. 160, pp. 348–361, 2018. [Online]. Available: https://doi.org/10.1016/j.epsr.2018.03.016 [97]A. Choudar, D. Boukhetala, S. Barkat, and J.-M. Brucker, “A local energy mana- gement of a hybrid PV-storage based distributed generation for microgrids,” Energy Conversion and Management, vol. 90, pp. 21–33, 2015. [98]M. S. Rahman, M. J. Hossain, and J. Lu, “Coordinated control of three-phase AC and DC type EV-ESSs for efficient hybrid microgrid operations,” Energy Conversion and Management, vol. 122, pp. 488–503, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2016.05.070 [99]C. A. Ramos-Paja, J. D. Bastidas-Rodr´ıguez, D. Gonz´alez, S. Acevedo, and J. Pel´aez- Restrepo, “Design and Control of a Buck-Boost Charger-Discharger for DC-Bus Re- gulation in Microgrids,” Energies, vol. 10, no. 11, pp. 1–26, 2017. [100]S. Serna-Garcés, D. Gonzalez Montoya, and C. Ramos-Paja, “Sliding-mode control of a charger/discharger dc/dc converter for dc-bus regulation in renewable power systems,” Energies, vol. 9, no. 4, p. 245, Mar 2016. [Online]. Available: http://dx.doi.org/10.3390/en9040245 [101]J. Renau, L. Domenech, V. Garc´ıa, A. Real, N. Mont´es, and F. S´anchez, “Proposal of a nearly zero energy building electrical power generator with an optimal temporary generation-consumption correlation,” Energy and Buildings, vol. 83, pp. 140–148, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2014.03.083 [102]Y.-C. Chang and C.-M. Liaw, “Establishment of a Switched-Reluctance Generator- Based Common DCMicrogrid System,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2512–2527, 2011. [103]W. Jing, C. H. Lai, W. S. Wong, and M. D. Wong, “Dynamic power allocation of battery-supercapacitor hybrid energy storage for standalone PV microgrid applica- tions,” Sustainable Energy Technologies and Assessments, vol. 22, pp. 55–64, 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S2213138816301849 [104]X. Chang, Y. Li, W. Zhang, N. Wang, and W. Xue, “Active Disturbance Rejection Control for a Flywheel Energy Storage System,” IEEE Transactions on Power Elec- tronics, vol. 62, no. 2, pp. 991–1001, 2015. [105]B. Mebarki, B. Draoui, L. Rahmani, and B. Allaoua, “Electric automobile Ni-MH battery investigation in diverse situations,” Energy Procedia, vol. 36, pp. 130–141, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.egypro.2013.07.016 [106]O. Veneri, C. Capasso, and D. Iannuzzi, “Experimental evaluation of DC charging architecture for fully-electrified low-power two-wheeler,” Applied Energy, vol. 162, pp. 1428–1438, 2016. [107]H. El Fadil and F. Giri, “Sliding Mode Control of Fuel Cell and Supercapacitor Hybrid Energy Storage System,” in Power Electronics and Applications (EPE’15 ECCE-Europe) 2015 17th European Conference on. IFAC, 2015, pp. 1–8. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1474667016320493 [108]R. Georgious, J. Garc´ıa, P. Garc´ıa, and M. Summer, “Analysis of Hybrid Energy Storage Systems with DC Link Fault Ride-Through Capability,” in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1–8. [109]N. Eghtedarpour and E. Farjah, “Control strategy for distributed integration of pho- tovoltaic and energy storage systems in DC micro-grids,” Renewable Energy, vol. 45, pp. 96–110, 2012. [110]H. Wu, S. Ding, K. Sun, L. Zhang, Y. Li, and Y. Xing, “ Bidirectional Soft-Switching Series-Resonant Converter with Simple PWM Control and Load-Independent Voltage-Gain Characteristics For Energy Storage System in DC Microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 1–1, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7812591/ [111]R. Sarrias, L. M. Fern´andez, C. A. Garc´ıa, and F. Jurado, “Coordinate operation of power sources in a doubly-fed induction generator wind turbine / battery hybrid power system,” Journal of Power Sources, vol. 205, pp. 354–366, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.jpowsour.2012.01.005 [112]M. Sechilariu, B. Wang, and F. Locment, “Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid commu- nication,” Energy and Buildings, vol. 59, pp. 236–243, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2012.12.039 [113]T. Vigneysh and N. Kumarappan, “Autonomous operation and control of photovol- taic/solid oxide fuel cell/battery energy storage based microgrid using fuzzy logic con- troller,” International Journal of Hydrogen Energy, vol. 41, no. 3, pp. 1877–1891, 2016. [114]C. Capasso and O. Veneri, “Experimental study of a DC charging station for full electric and plug in hybrid vehicles,” Applied Energy, vol. 152, pp. 131–142, 2015. [115]A. Kloenne and T. Sigle, “Bidirectional ZETA/SEPIC Converter as Battery Char- ging System with High Transfer Ratio,” in 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), 2017, pp. 1–7. [116]C. Dimna Denny and M. Shahin, “Analysis of bidirectional SEPIC/Zeta converter with coupled inductor,” in 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy), 2015, pp. 103–108. [117]S. Sivakumar, M. J. Sathik, P. S. Manoj, and G. Sundararajan, “An assessment on performance of DC-DC converters for renewable energy applications,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1475–1485, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2015.12.057 [118]M. E. Sah´ın, H. ´I. Okumu, and H. Kahvec´ı, “Sliding mode control of PV powered DC / DC Buck-Boost converter with digital signal processor,” in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 2015, pp. 1–8. [119]S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Over- view,” IEEE Access, vol. 7, pp. 117 997–118 019, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8811451/ [120]T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Transactions on Power Electronics, vol. 29, no. 2, 2014. [121]H. Fakham, D. Lu, and B. Francois, “Power Control Design of a Battery Charger in a Hybrid Active PV Generator for Load-Following Applications,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 85–94, 2011. [Online]. Available: http://ieeexplore.ieee.org/document/5530376/ [122]A. K. Singh and M. K. Pathak, “Single-stage ZETA-SEPIC-based multifunctional integrated converter for plug-in electric vehicles,” IET Electrical Systems in Transportation, vol. 8, no. 2, pp. 101–111, jun 2018. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1049/iet-est.2017.0063 [123]E. Sunarno, I. Sudiharto, S. D. Nugraha, F. D. Murdianto, Suryono, and O. A. Qudsi, “Design and implementation bidirectional SEPIC/ZETA conver- ter using Fuzzy Logic Controller in DC microgrid application,” Journal of Physics: Conference Series, vol. 1367, p. 12058, nov 2019. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1367/1/012058 [124]A. J. Morelo, S. C. Trujillo, and F. E. Hoyos, “Simulation, bifurcation, and stability analysis of a SEPIC converter controlled with ZAD,” International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 728–737, 2020. [125]M. Venmathi and R. Ramaprabha, “Investigation on Fuzzy Logic Ba- sed Centralized Control in Four-Port SEPIC/ZETA Bidirectional Conver- ter for Photovoltaic Applications,” Advances in Electrical and Compu- ter Engineering, vol. 16, no. 1, pp. 53–60, 2016. [Online]. Available: http://www.aece.ro/abstractplus.php?year=2016&number=1&article=8 [126]F. Altaf, B. Egardt, and L. Johannesson Mardh, “Load Management of Modular Battery Using Model Predictive Control: Thermal and State-of-Charge Balancing,” IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 47–62, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7458184/ [127]A. Goudarzian and A. Khosravi, “Application of DC/DC Cúk converter as a soft starter for battery chargers based on double-loop control strategy,” International Journal of Circuit Theory and Applications, vol. 47, no. 5, pp. 753–781, 2019. [128]A. Goudarzian, A. Khosravi, and H. A. Raeisi, “A new approach in design of sliding- mode voltage-controller for a SEPIC,” International Journal of Dynamics and Control, jan 2021. [Online]. Available: http://link.springer.com/10.1007/s40435-020-00741-9 [129]J. Saeed, M. Niakinezhad, N. Fernando, and L. Wang, “Model Predictive Control of an Electric Vehicle Motor Drive Integrated Battery Charger,” in 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG).IEEE, 2019, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/8862423/ [130]H. Zhong, J. Li, and Y.-X. Wang, “A Bus-Based Battery Equalization via Modified Isolated Cuk Converter Governed by Adaptive Control,” in 2019 Chinese Automation Congress (CAC). IEEE, nov 2019, pp. 2824–2828. [Online]. Available: https://ieeexplore.ieee.org/document/8996984/ [131]J. L. Mathieu and J. A. Taylor, “Controlling nonlinear batteries for power systems: Trading off performance and battery life,” in 2016 Power Systems Computation Conference (PSCC). IEEE, jun 2016, pp. 1–7. [Online]. Available: http://ieeexplore.ieee.org/document/7540856/ [132]Guan-Chyun Hsieh, Liang-Rui Chen, and Kuo-Shun Huang, “Fuzzy-controlled active state-of-charge controller for fasting the charging behavior of Li-ion battery,” in IECON’99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029), vol. 1. IEEE, 2001, pp. 400–405. [Online]. Available: http://ieeexplore.ieee.org/document/822231/ [133]N. Sujitha and S. Krithiga, “RES based EV battery charging system: A review,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 978–988, aug 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032116308206 [134]H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge DC-DC converter,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 2078–2084, 2012. [135]B. Zhao, Q. Song, W. Liu, G. Liu, and Y. Zhao, “Universal High-Frequency-Link Cha- racterization and Practical Fundamental-Optimal Strategy for Dual-Active-Bridge DC- DC Converter under PWM Plus Phase-Shift Control,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6488–6494, dec 2015. [136]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. New York: Kluwer Academic Publishers, 2001. [137]C. Ferreira and J. L. Lopez, “Asymptotic expansions of the hurwitz–lerch zeta function,” Journal of Mathematical Analysis and Applications, vol. 298, no. 1, pp. 210–224, 2004. [138]G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, Photovoltaic Sources Modeling, 1st ed., I. PRESS, Ed. Pondicherry, India: Wiley, 2017, vol. 1, no. 1. [139]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963–973, 2005. [140]J. Ahmed and Z. Salam, “An improved perturb and observe (P&O) maximum powerpoint tracking (MPPT) algorithm for higher efficiency,” Applied Energy, vol. 150, pp. 97–108, jul 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261915004456#b0055 [141]E. Mamarelis, G. Petrone, and G. Spagnuolo, “A two-steps al- gorithm improving the P&O steady state MPPT efficiency,” Ap- plied Energy, vol. 113, pp. 414–421, jan 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261913005886 [142]M. Valentini, A. Raducu, D. Sera, and R. Teodorescu, “PV inverter test setup for european efficiency, static and dynamic MPPT efficiency evaluation,” in 11th Inter- national Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2008. Brasov, Romania: IEEE, 2008, pp. 433–438. [143]D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, “Impro- ved MPPT Algorithms for Rapidly Changing Environmental Conditions,” in 12th International Power Electronics and Motion Control Conferen- ce. Portoroz, Slovenia: IEEE, 2006, pp. 1614–1619. [Online]. Available: https://ieeexplore.ieee.org/document/4778635?arnumber=4778635 [144]BP Solar, “BP585 Solar Modules,” dec 2003. [Online]. Available: http://calculationsolar.com/pdfs/Calculationsolar module BP 585F468.pdf [145]J. Accarino, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, “Symbolic algebra for the calculation of the series and parallel resistances in PV module model,” 4th Inter- national Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2013, pp. 62–66, 2013. [146]I. D. de Souza, P. M. de Almeida, P. G. Barbosa, C. A. Duque, and P. F. Ribeiro, “Digital single voltage loop control of a VSI with LC output filter,” Sustainable Energy, Grids and Networks, vol. 16, pp. 145–155, dec 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352467718300092#b15 [147]Y. Ting, S. de Haan, and J. A. Ferreira, “Elimination of switching losses in the single active bridge over a wide voltage and load range at constant frequency,” in 2013 15th European Conference on Power Electronics and Applications (EPE). IEEE, sep 2013, pp. 1–10. [Online]. Available: http://ieeexplore.ieee.org/document/6634627/ [148]F. Liu, X. Sun, J. Feng, J. Wu, and X. Li, “The improved dual active bridge converter with a modified phase shift and variable frequency control,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, mar 2018, pp. 814–819. [Online]. Available: http://ieeexplore.ieee.org/document/8341106/ [149]J. Li, Z. Chen, Z. Shen, P. Mattavelli, J. Liu, and D. Boroyevich, “An adaptive dead-time control scheme for high-switching-frequency dual-active-bridge converter,” in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, feb 2012, pp. 1355–1361. [Online]. Available: http://ieeexplore.ieee.org/document/6165996/ [150]X. Han, Y. Tan, and H. Ma, “The switching frequency optimization of dual phase shift control for dual active bridge DC-DC converter,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2017, pp. 1610–1615. [Online]. Available: http://ieeexplore.ieee.org/document/8216273/ [151]A. Aganza-Torres, V. C´ardenas, and M. Pacas, “Generalized average model for a high-frequency link grid-connected DC/AC converter,” International Journal of Electrical Power & Energy Systems, vol. 107, pp. 344–351, may 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061518308548 [152]S. A. Evangelou and M. Rehman-Shaikh, “Hybrid electric vehicle fuel minimization by DC-DC converter dual-phase-shift control,” Control En- gineering Practice, vol. 64, pp. 44–60, jul 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S096706611730093X [153]M. Monika, M. Rane, S. Wagh, A. Stankovi´c, and N. Singh, “Development of dynamic phasor based higher index model for performance enhancement of dual active bridge,” Electric Power Systems Research, vol. 168, pp. 305–312, mar 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779618303419 [154]J. Li, D. Wang, W. Wang, and J. Jiang, “Minimize Current Stress of Dual- Active-Bridge DC-DC Converters for Electric Vehicles Based on Lagrange Multipliers Method,” Energy Procedia, vol. 105, pp. 2733–2738, may 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1876610217310238 [155]D.-D. Nguyen, D.-H. Nguyen, M. C. Ta, and G. Fujita, “Sensorless Feedforward Cu- rrent Control of Dual-Active-Bridge DC/DC Converter for Micro-Grid Applications,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 333–338, jan 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896318334438 [156]Daniel W.Hart, Power Electronics. Mc Graw Hill, 2011. [157]V. Michal, “Dynamic duty-cycle limitation of the boost dc/dc converter allowing maxi- mal output power operations,” in 2016 International Conference on Applied Electronics (AE). IEEE, 2016, pp. 177–182. [158]M. Z. Malik, H. Chen, M. S. Nazir, I. A. Khan, A. N. Abdalla, A. Ali, and W. Chen, “A new efficient step-up boost converter with cld cell for electric vehicle and new energy systems,” Energies, vol. 13, no. 7, p. 1791, 2020. [159]A. M. S. S. Andrade, L. Schuch, and M. L. da Silva Martins, “Analysis and design of high-efficiency hybrid high step-up dc–dc converter for distributed pv generation systems,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3860–3868, 2018. [160]M. S. Bhaskar, R. Alammari, M. Meraj, S. Padmanaban, and A. Iqbal, “A new triple- switch-triple-mode high step-up converter with wide range of duty cycle for dc mi- crogrid applications,” IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 7425–7441, 2019. [161]O. Aldosari, L. A. Garcia Rodriguez, J. C. Balda, and S. K. Mazumder, “Design trade-offs for medium- and high-frequency transformers for isolated power converters in distribution system applications,” in 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2018, pp. 1–7. [162]Y. Du, S. Baek, S. Bhattacharya, and A. Q. Huang, “High-voltage high-frequency transformer design for a 7.2kv to 120v/240v 20kva solid state transformer,” IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 493–498, 2010. [163]C. Liu, L. Qi, X. Cui, and X. Wei, “Experimental extraction of parasitic capacitances for high-frequency transformers,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4157–4167, 2017. [164]G. Spagnuolo, G. Petrone, B. Lehman, C. Ramos-Paja, Y. Zhao, and M. Orozco Gutie- rrez, “Control of photovoltaic arrays: Dynamical reconfiguration for fighting mismat- ched conditions and meeting load requests,” IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 62–76, March 2015. [165]J. Bastidas-Rodriguez, E. Franco, G. Petrone, C. Ramos-Paja, and G. Spagnuolo, “Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review,” IET Power Electronics, vol. 7, no. 6, pp. 1396–1413, 2014. [166]E. Romero-Cadaval, G. Spagnuolo, L. Garcia Franquelo, C. Ramos-Paja, T. Suntio, and W. Xiao, “Grid-connected photovoltaic generation plants: Components and ope- ration,” IEEE Industrial Electronics Magazine, vol. 7, no. 3, pp. 6–20, Sept 2013. [167]S. S. Kumar, C. Bibin, K. Akash, K. Aravindan, M. Kishore, and G. Magesh, “Solar powered water pumping systems for irrigation: a comprehensive review on develop- ments and prospects towards a green energy approach,” Materials Today: Proceedings, vol. 33, pp. 303–307, 2020. [168]M. Aliyu, G. Hassan, S. A. Said, M. U. Siddiqui, A. T. Alawami, and I. M. Elamin, “A review of solar-powered water pumping systems,” Renewable and Sustainable Energy Reviews, vol. 87, pp. 61–76, 2018. [169]A. Trejos, D. Gonzalez, and C. A. Ramos-Paja, “Modeling of step-up grid-connected photovoltaic systems for control purposes,” Energies, vol. 5, no. 6, pp. 1900–1926, 2012. [170]T. L. Nguyen, G. Griepentrog et al., “Modeling and control of dual active bridge conver- ter with two control loops and output filter,” in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2017, pp. 4683–4689. [171]S. Zou, S. Zheng, and M. Chinthavali, “Design, analyses and validation of sliding mode control for a dab dc-dc converter,” in 2019 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, 2019, pp. 1–6. [172]L. V. Bellinaso, H. H. Figueira, M. F. Basquera, R. P. Vieira, H. A. Gru¨ndling, and L. Michels, “Cascade control with adaptive voltage controller applied to photovoltaic boost converters,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1903–1912, 2018. [173]R. Giral, C. A. Ramos-Paja, D. Gonzalez, J. Calvente, A`. Cid-Pastor, and L. Martinez-Salamero, “Minimizing the effects of shadowing in a pv module by means of active voltage sharing,” in 2010 IEEE International Conference on Industrial Technology. IEEE, 2010, pp. 943–948. [174]H. Song and H. Hofmann, “Robust, accurate systems-based power electronic circuit models in simulink,” in 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, 2018, pp. 1–8. [175]R. Tanaka, M. Toyota, and T. Koga, “Linear active disturbance rejection controller design based on disturbance response specification for a 1st order plant,” in 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2020, pp. 1250–1256. [176]Y. Furukawa and F. Kurokawa, “Design consideration of high performance digital control dc-dc converter based on frequency characteristics,” in 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2015, pp. 2080–2084. [177]V. Ignatenko, A. Yudintsev, and D. Lyapunov, “Application of state-space method for control system analysis,” in 2019 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2019, pp. 1–5. [178]I. H. Baciu, I. Ciocan, and S. Lungu, “Modeling transfer function for buck power con- verter,” in 2007 30th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2007, pp. 541–544. [179]J. Hu, P. Joebges, and R. W. De Doncker, “Maximum power point tracking control of a high power dc-dc converter for PV integration in MVDC distribution grids,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). Institute for Power Generation and Storage Systems, E. on Energy Research Center, RWTH Aachen University, Aachen, Germany: IEEE, mar 2017, pp.1259–1266. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2- s2.0-85019986027&doi=10.1109/FAPEC.2017.7930857 [180]S. Ozturk, P. Pospos, V. Utalay, A. Koc, M. Ermis, and I. C adırcı, “Operating principles and practical design aspects of all SiC DC/AC/DC converter for MPPT in grid-connected PV supplies,” Solar Energy, vol. 176, pp. 380–394, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0038092X18310284 [181]M. I. Marei, H. El-Helw, and M. Al-Hasheem, “A grid-connected PV interface system based on the DAB-converter,” in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, jun 2015, pp. 161–165. [Online]. Available: http://ieeexplore.ieee.org/document/7165534/ [182]J. Hu, Z. An, S. Cui, N. R. Averous, and R. W. De Doncker, “Impedance modeling and stability analysis of dual-active bridge converter interfacing dc grids,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2018, pp. 4907–4914. [183]T. Duman, S. Marti, M. A. Moonem, A. A. R. A. Kader, and H. Krishnaswami, “A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems,” Energies, vol. 10, no. 5, p. 698, may 2017. [Online]. Available: http://dx.doi.org/10.3390/en10050698 http://www.mdpi.com/1996-1073/10/5/698 [184]D. A. Herrera-Jaramillo, E. E. Henao-Bravo, and D. G. Montoya, Design Of A Mathe- matical Model For Control Purposes Of A Dc/Dc Dab Converter In Conjunction With An Mppt Algorithm To Raise The Voltage Delivered By A Solar Panel To The Load, 2021. [185]F. Wang, F. C. Lee, X. Yue, and F. Zhuo, “Quantified evaluation and criteria analysis for dmppt pv system,” in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe). IEEE, 2015, pp. 1–6. [186]M. Forcan and Z. Durisic, “The analysis of pv string efficiency under mismatch conditions,” in 2016 4th International Symposium on Environmental Friendly Energies and Applications (EFEA). IEEE, 2016, pp. 1–6. [187]H. Qin and J. W. Kimball, “Closed-loop control of DC-DC dual active bridge conver- ters driving single-phase inverters,” in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 173–179. [188]I. Syed and W. Xiao, “Modeling and control of DAB applied in a PV based DC microgrid,” in 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, dec 2012, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/6484489/ [189]Y.-C. Jeung and D.-C. Lee, “Sliding mode control of bi-directional dual active bridge DC/DC converters for battery energy storage systems,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), ser. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 0. Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, Korea, Republic of: IEEE, mar 2017, pp. 3385–3390. [Online]. Available: http://dx.doi.org/10.1109/APEC.2017.7931182 http://ieeexplore.ieee.org/document/7931182/ [190]D. D. Nguyen, G. Fujita, Q. Bui-Dang, and M. C. Ta, “Reduced-Order Observer-Based Control System for Dual-Active-Bridge DC/DC Converter,” IEEE Transactions on Industry Applications, vol. 54, no. 4, pp. 3426–3439, 2018. [191]M. Cupelli, S. K. Gurumurthy, and A. Monti, “Modelling and control of single phase DAB based MVDC shipboard power system,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2017, pp. 6813–6819. [Online]. Available: http://ieeexplore.ieee.org/document/8217190/ [192]F. An, W. Song, B. Yu, and K. Yang, “Model Predictive Control With Power Self-Balancing of the Output Parallel DAB DC–DC Converters in Power Electronic Traction Transformer,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1806–1818, dec 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8331829/ [193]L. Chen, S. Shao, Q. Xiao, L. Tarisciotti, T. Dragicevic, and P. Wheeler, “Model- predictive-control for dual-active-bridge converters supplying pulsed power loads in naval dc microgrids,” IEEE Transactions on Power Electronics, 2019. [194]T. Soejima, Y. Ishizuka, K. Domoto, and T. Hirose, “Adaptive Control Technique for High Power Efficiency Dual Active Bridge DC-DC Converter with Wide Load Range,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, sep 2018, pp. 2829–2834. [Online]. Available: https://ieeexplore.ieee.org/document/8557374/ [195]O. M. Hebala, A. A. Aboushady, K. H. Ahmed, and I. Abdelsalam, “Generic closed- loop controller for power regulation in dual active bridge dc–dc converter with current stress minimization,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4468–4478, 2018. [196]M. Rodriguez, V. M. Lopez, F. J. Azcondo, J. Sebastian, and D. Maksimovic, “Average inductor current sensor for digitally controlled switched-mode power supplies,” IEEE transactions on power electronics, vol. 27, no. 8, pp. 3795–3806, 2012. [197]C. A. B. Karim and M. A. Zamee, “Design and analysis of pole-placement contro- ller for dynamic stability improvement of vsc-hvdc based power system,” in 2014 9th International Forum on Strategic Technology (IFOST). IEEE, 2014, pp. 272–275. [198]J. K. Cavers, K. Mehrotra, and G. K. Woodward, “Advantages of second-order car- tesian feedback linearizers for radio amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 11, pp. 4134–4146, 2019. [199]R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2007. [200]K. Ogata, Modern Control Engineering, ser. Instrumentation and controls series. Prentice Hall, 2010. [Online]. Available: https://books.google.com.co/books?id=Wu5GpNAelzkC [201]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “A technique for improving p&o mppt performances of double-stage grid-connected photovoltaic systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4473–4482, 2009. [202]Powersim Inc, “PSIM: Unbeatable Power Electronics Software - Powersim, Inc,” 2021. [Online]. Available: https://powersimtech.com/ [203]E. I. Batzelis, G. Anagnostou, C. Chakraborty, and B. C. Pal, “Computation of the Lambert W Function in Photovoltaic Modeling,” in ELECTRIMACS 2019. Lecture Notes in Electrical Engineering, vol. 615. Salerno, Italy: Springer, 2020, pp. 583–595. [204]R. H. M. Abdelkarim, “Cascaded Voltage Step-up Canonical Elements for Power Processing in PV Applications,” Ph.D. dissertation, Universitat Rovira i Virgili, 2014. [Online]. Available: http://www.tdx.cat/handle/10803/284039 [205]N. Abouchabana, M. Haddadi, A. Rabhi, A. D. Grasso, and G. M. Tina, “Power Efficiency Improvement of a Boost Converter Using a Coupled Inductor with a Fuzzy Logic Controller: Application to a Photovoltaic System,” Applied Sciences, vol. 11, no. 3, p. 980, jan 2021. [206]M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Ho-Baillie, “Solar cell efficiency tables (version 52),” Progress in Photovoltaics: Research and Applications, vol. 26, no. 7, pp. 427–436, jul 2018. [Online]. Available: http://doi.wiley.com/10.1002/pip.3040 [207]N. Torabi, A. Behjat, Y. Zhou, P. Docampo, R. J. Stoddard, H. W. Hillhouse, and T. Ameri, “Progress and challenges in perovskite pho- tovoltaics from single- to multi-junction cells,” Materials Today Energy, vol. 12, pp. 70–94, jun 2019. [Online]. Available: https://www-sciencedirect- com.ezproxy.unal.edu.co/science/article/pii/S2468606918302247 [208]H. Sira-Ramirez, “Sliding Motions in Bilinear Switched Networks,” IEEE Transactions on Circuits and Systems, vol. 34, no. 8, pp. 919–933, 1987. [209]E. Babaei and M. E. Seyed Mahmoodieh, “Systematical method of desig- ning the elements of the Cuk converter,” International Journal of Electrical Power and Energy Systems, vol. 55, pp. 351–361, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.ijepes.2013.09.024 [210]S. M. Sharkh, M. A. Abusara, G. I. Orfanoudakis, and B. Hussain, Power Electronic Converters for Microgrids. JohnWiley & Sons Singapore Pte. Ltd., 2014. [211]D. G. Montoya, C. A. Ramos-Paja, and R. Giral, “Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 235–247, 2016. [212]STMicroelectronics, “TS555 Low-power dual CMOS timer,” pp. 1–19, 2015. [Online]. Available: https://www.st.com/resource/en/datasheet/ts555.pdf [213]S. T. Lee and H. A. F. Almurib, “Control techniques for power converters in photo- voltaic hybrid energy storage system,” in 3rd IET International Conference on Clean Energy and Technology (CEAT), Nov 2014, pp. 1–6. [214]S. Somkun, C. Sirisamphanwong, and S. Sukchai, “A dsp-based interleaved boost dc–dc converter for fuel cell applications,” International Journal of Hydrogen Energy, vol. 40, no. 19, pp. 6391–6404, 2015 [215]Q. Lin, J. Wang, R. Xiong, W. Shen, and H. He, “Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries,” Energy, vol. 183, pp. 220–234, 2019. [Online]. Available: https://doi.org/10.1016/j.energy.2019.06.128 [216]K. Liu, C. Zou, K. Li, and T. Wik, “Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model,” IEEE Transactions on Industrial In- formatics, vol. 14, no. 12, pp. 5463–5474, 2018. [217]M. Shafiee-Rad, M. S. Sadabadi, Q. Shafiee, and M. R. Jahed-Motlagh, “Robust decentralized voltage control for uncertain DC microgrids,” International Journal of Electrical Power and Energy Systems, vol. 125, p. 106468, feb 2021. [218]S. Serna-Garces, D. Lez Montoya, and C. Ramos-Paja, “Control of a charger/discharger DC/DC converter with improved disturbance rejection for bus regulation,” Energies, vol. 11, no. 3, 2018. [219]S. I. Serna-Garc´es, D. G. Montoya, and C. A. Ramos-Paja, “Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems,” Energies, vol. 9, no. 4, 2016. [220]J. D. Bastidas-Rodr´ıguez, D. Gonz´alez, S. Acevedo, and J. Pel´aez-Restrepo, “Design and Control of a Buck–Boost Charger-Discharger for DC-Bus Regulation in Microgrids,” Energies, vol. 10, no. 11, p. 1847, nov 2017. [Online]. Available: http://www.mdpi.com/1996-1073/10/11/1847 [221]H. Ram´ırez-Murillo, C. Restrepo, T. Konjedic, J. Calvente, A. Romero, C. R. Baier, and R. Giral, “An Efficiency Comparison of Fuel-Cell Hybrid Systems Based on the Versatile Buck-Boost Converter,” IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1237–1246, 2018. [222]M. E. S. Mahmoodieh and A. Deihimi, “Battery-integrated multi-input step-up con- verter for sustainable hybrid energy supply,” IET Power Electronics, vol. 12, no. 4, pp. 777–789, 2019. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xxxiii, 198 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Manizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - Automática |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería y Arquitectura |
dc.publisher.place.spa.fl_str_mv |
Manizales, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Manizales |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83876/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83876/2/16077298.2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83876/3/16077298.2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 5890000435aec1a1f357963be32ef973 a7ebd12e5885fb48d8a9df0bf75cd44c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089974410117120 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Saavedra-Montes, Andrés Julián33aed0a4ccb487181a222d178ef97408600Ramos-Paja, Carlos Andres22871ce2c9a322eb04cef6277ecc2601600Henao Bravo, Elkin Edilbertoa417e16247e0f9a12bba79fb42ea671e600Automática, Electrónica y Ciencias ComputacionalesHenao Bravo, Elkin Edilberto [0000-0001-9663-1082]Henao Bravo, Elkin Edilberto [0001526319]https://www.researchgate.net/profile/Elkin-Henao-Bravohttps://scholar.google.com/citations?user=HISSQZUAAAAJ&hl=es2023-05-25T21:19:18Z2023-05-25T21:19:18Z2023https://repositorio.unal.edu.co/handle/unal/83876Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/graficas, tablasThis thesis reports the contributions obtained while developing doctoral studies in the Doctorado en Ingeniería Automática from the Universidad Nacional de Colombia. The thesis focuses on power converters for processing energy in DC microgrids. The document contains six chapters; each chapter begins with a brief introduction of the specific topics; then, the methodology focuses on system analysis, design, modeling, or/and control. The chapters also present the validations of the proposed methodology. Finally, each chapter presents conclusions about its topic. To validate the contributions of this thesis, specialized software and experimental validations are used for corroborating the design process for the power converters and their controllers. DC microgrids formed by PV systems and batteries are the subject of study for this thesis; therefore, the energy flow optimization in those DC microgrids is the main research area faced by designing, modeling, and controlling power converters that can be used with PV panels or with batteries as chargers/dischargers. In this sense, this thesis proposes the design, modeling, and control of the double active bridge (DAB) converter for photovoltaic (PV) panels, which is aimed to improve the harvesting and flow of energy in PV systems in a DC microgrid. Additionally, this thesis proposes chargers/dischargers based on Zeta/Sepic converters for batteries in DC microgrids. This solution allows adapting different battery banks to microgrids with a DC bus voltage lower, equal, or higher than the batteries; it also allows for regulating the DC bus voltage in the presence of change of loads or sources by proposing sliding mode controllers (SMC) for the charger/discharger.(Texto tomado de la fuente)Esta tesis reporta los aportes obtenidos durante el desarrollo de los estudios de Doctorado en Ingeniería Automática de la Universidad Nacional de Colombia. La tesis se centra en los convertidores de potencia para el procesamiento de energía en microrredes de corriente continua. El documento contiene seis capítulos; cada capítulo comienza con una breve introducción de los temas específicos; luego, la metodología se centra en el análisis, diseño, modelado y/o control del sistema. Los capítulos también presentan las validaciones de la metodología propuesta. Por último, cada capítulo presenta las conclusiones sobre su tema. Para validar las aportaciones de esta tesis, se utiliza software especializado y validaciones experimentales para corroborar el proceso de diseño de los convertidores de potencia y sus controladores. Las microrredes de corriente continua formadas por sistemas fotovoltaicos y baterías son el objeto de estudio de esta tesis; por lo tanto, la optimización del flujo de energía en dichas microrredes de corriente continua es la principal área de investigación que se aborda mediante el diseño, modelado y control de los convertidores de potencia que se pueden utilizar con los paneles fotovoltaicos o con las baterías como cargadores/descargadores. En este sentido, esta tesis propone el diseño, modelado y control del convertidor de doble puente activo (DAB por su nombre en inglés) para paneles fotovoltaicos (FV), cuyo objetivo es mejorar la recolección y el flujo de energía en sistemas FV en una microrred de corriente continua. Además, esta tesis propone cargadores/descargadores basados en convertidores Zeta/Sepic para baterías en microrredes CC. Esta solución permite adaptar diferentes bancos de baterías a las microrredes con una tensión del bus CC inferior, igual o superior a la de las baterías; también permite regular la tensión del bus CC ante el cambio de cargas o fuentes proponiendo controladores en modos deslizantes (SMC por su nombre en inglés) para el cargador/descargador.DoctoradoDoctor en IngenieríaElectrónica y Energías RenovablesEléctrica, Electrónica, Automatización Y Telecomunicacionesxxxiii, 198 páginasapplication/pdfengUniversidad Nacional de ColombiaManizales - Ingeniería y Arquitectura - Doctorado en Ingeniería - AutomáticaFacultad de Ingeniería y ArquitecturaManizales, ColombiaUniversidad Nacional de Colombia - Sede Manizales530 - Física::537 - Electricidad y electrónicaDual active bridge converterZeta/Sepic converterPhotovoltaic systemsMicrogridsCharger/dischargerBatteriesEnergy storage devicesHigh-gain voltageHigh-efficiency operationDC bus voltage regulationMPPTConvertidor de doble puente activoConvertidor Zeta/SepicSistemas fotovoltaicosMicrorredesCargador/descargadorBateríasDispositivos de almacenamiento de energíaAlta ganancia de voltajeOperación con alta eficienciaRegulación de la tensión del bus de CCPower conversion systems for increasing the efficiency in DC microgrids based on renewable sourcesSistema de conversión de energía para incrementar la eficiencia en microrredes CC basadas en fuentes renovablesTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06ImageText[1]E. E. Henao-Bravo, C. A. Ramos-Paja, A. J. Saavedra-Montes, D. Gonzalez-Montoya, and J. Sierra-P´erez, “Design method of dual active bridge converters for photovoltaic systems with high voltage gain,” Energies, vol. 13, no. 7, pp. 1–31, 2020[2]D. A. Herrera-Jaramillo, E. E. Henao-Bravo, D. Gonzalez Montoya, C. A. Ramos-Paja, and A. J. Saavedra-Montes, “Control-Oriented Model of Photovoltaic Systems Based on a Dual Active Bridge Converter,” Sustainability, vol. 13, no. 14, p. 7689, jul 2021. [Online]. Available: https://www.mdpi.com/2071-1050/13/14/7689[3]E. E. Henao-Bravo, C. A. Ramos-paja, and A. J. Saavedra-montes, “Adaptive control of photovoltaic systems based on dual active bridge converters,” Computation, vol. 10, pp. 1–24, 2022. [Online]. Available: https://www.mdpi.com/2079-3197/10/6/89/htm[4]D. A. Herrera-Jaramillo, D. Gonzalez Montoya, E. E. Henao-Bravo, C. A. Ramos-Paja, and A. J. Saavedra-Montes, “Systematic analysis of control techniques for the dual active bridge converter in photovoltaic applications,” International Journal of Circuit Theory and Applications, no. April, p. cta.3031, apr 2021. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1002/cta.3031[5]E. E. Henao-Bravo, A. J. Saavedra-Montes, C. A. Ramos-Paja, J. D. Bastidas- Rodriguez, and D. G. Montoya, “Charging/discharging system based on zeta/sepic converter and a sliding mode controller for dc bus voltage regulation,” IET Power Electronics, vol. 13, no. 8, pp. 1514–1527, 2020.[6]J. P. Villegas-Ceballos, C. A. Ramos-Paja, and E. E. Henao-Bravo, “Sliding-mode controller for a step up-down battery charger with a single current sensor,” International Journal of Electrical and Computer Engineering (IJECE), vol. 12, pp. 1251–1264, 2022.[7]N. Earth Science Communications Team.(2019-12-04), “Effects — Facts – Climate Change: Vital Signs of the Planet [online]. available:https://climate.nasa.gov/effects/,” 2018. [Online]. Available: https://climate.nasa.gov/effects/[8]C. Garcia Arbelaez, G. Vallejo Lopez, M. Lou Higgins, and E. M. Escobar, El Acuerdo De Par´ıs: As´ı Actuar´a Colombia Frente Al Cambio Clim´atico, 1st ed., WWF - Colombia, Ed. Cali - Colombia: WWF-Colombia, 2016. [Online]. Available: http://www.minambiente.gov.co/images/cambioclimatico/pdf[9] International Energy Agency, World Energy Outlook 2018: Electricity. Paris, France: IEA Publications, 2018. [Online]. Available: www.iea.org[10] REN21, “Renewables 2018 Global Status Report,” Renewable Energy Policy Network for the 21st Century, Tech. Rep., 2018. [Online]. Available: http://www.ren21.net/gsr- 2018/[11] CELSIA, “Celsia Solar Espinal [online]. available: https://www.celsia.com/es/proyectos/celsia-solar-espinal,” 2018. [Online]. Available: https://www.celsia.com/es/Proyectos/Celsia-Solar-Espinal[12] CELSIA., “Inicia operaciones Celsia Solar Bol´ıvar, la nueva granja de generaci´on de energ´ıa solar de Celsia para beneficio de los colombianos [online]. available:https://www.celsia.com/es/sala-prensa/inicia- operaciones-celsia-solar-bol237var-la-nueva-granja-de-generaci243n-de-energ237a- solar-de-celsia-para-beneficio-de-los-colombianos,” 2018. [Online]. Available: https://www.celsia.com/es/sala-prensa/inicia-operaciones-celsia-solar-bol237var- la-nueva-granja-de-generaci243n-de-energ237a-solar-de-celsia-para-beneficio-de-los- colombianos[13]O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, and M. Pourkashanian, “Renewable energy production and demand dataset for the energy system of colombia,” Data in Brief, vol. 28, p. 105084, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S2352340919314404[14] UPME, “Boletín Estadístico de Minas y Energía 2016-2018,” Unidad de Planeación Minero Energética, Ed. Bogotá D.C., Colombia: Unidad de Planeación Minero Energética, 2018, pp. 1–162. [Online]. Available: www.upme.gov.co[15]A. R. López, A. Krumm, L. Schattenhofer, T. Burandt, F. C. Montoya, N. Oberl¨ander, and P.-Y. Oei, “Solar pv generation in colombia - a qualitative and quantitative approach to analyze the potential of solar energy market,” Renewable Energy, vol. 148, pp. 1266 – 1279, 2020. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960148119315575[16]O. Pupo-Roncallo, J. Campillo, D. Ingham, K. Hughes, and M. Pourkashanian, “Large scale integration of renewable energy sources (res) in the future colombian energy system,” Energy, vol. 186, p. 115805, 2019. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S036054421931477X[17] El Congreso De Colombia, “Ley 1715 - Por Medio De La Cual Se Regula La Integración De Las Energías Renovables No Convencionales Al Sistema Energético Nacional,” 2014.[18] UPME, Integración de las energías renovables no convencionales en Colombia, La Imprenta Editores SA, Ed. Bogotá D.C.: Unidad de Planeación Minero Energética, 2015. [Online]. Available: https://www1.upme.gov.co/[19]G. Spagnuolo, S. Kouro, and D. Vinnikov, “Photovoltaic Module and Submodule Level Power Electronics and Control,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3856–3859, 2019.[20] REN21 Secretariat, “Renewables 2021 Global Status Report,” Paris, France, Tech. Rep., 2021. [Online]. Available: https://www.ren21.net/wp- content/uploads/2019/05/GSR2021 Full Report.pdf[21] IEA, “World Energy Outlook 2021,” International Energy Agency, Paris, France, Tech. Rep., 2021. [Online]. Available: www.iea.org/weo[22]E. Romero-Cadaval, G. Spagnuolo, L. G. Franquelo, C. A. Ramos-Paja, T. Suntio, and W. M. Xiao, “Grid-connected photovoltaic generation plants: Components and operation,” IEEE Industrial Electronics Magazine, vol. 7, no. 3, pp. 6–20, 2013.[23]J. L. Dos Santos de Morais, Julio Cezar Dos Santos de Morais and R. Gules, “Photovoltaic AC Module Based on a Cuk Converter with a Switched-Inductor Structure,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3881–3890, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8415742/[24]H. Ardi, A. Ajami, and M. Sabahi, “A Novel High Step-Up DC–DC Converter With Continuous Input Current Integrating Coupled Inductor for Renewable Energy Applications,” IEEE Transactions on Industrial Electronics, vol. 65, no. 2, pp. 1306– 1315, feb 2018. [Online]. Available: http://ieeexplore.ieee.org/document/7995100/[25]A. M. S. S. Andrade, L. Schuch, and M. L. da Silva Martins, “Analysis and design of high-efficiency hybrid high step-Up DC-DC converter for distributed PV generation systems,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3860–3868, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8370773/[26]R. A. Messenger and J. Ventre, Photovoltaic Systems Engineering, 2nd ed., C. PRESS, Ed. Taylor & Francis e-Library, 2003. [Online]. Available: http://doi.wiley.com/10.1002/1521-3773/820010316/940[27]A. Rajaei, R. Khazan, M. Mahmoudian, M. Mardaneh, and M. Gitizadeh, “A Dual Inductor High Step-Up DC/DC Converter Based on the Cockcroft–Walton Multiplier,” IEEE Transactions on Power Electronics, vol. 33, no. 11, pp. 9699–9709, nov 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8253836/[28]J. Velez-Sanchez, J. D. Bastidas-Rodriguez, C. A. Ramos-Paja, D. Gonzalez-Montoya, and L. A. Trejos-Grisales, “A non-invasive procedure for estimating the exponential model parameters of bypass diodes in photovoltaic modules,” Energies, vol. 12, no. 2, p. 303, 2019.[29]M. E. Basoglu, “An Improved 0.8 V OC Model Based GMPPT Technique for Module Level Photovoltaic Power Optimizers,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1913–1921, mar 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8565882/[30]S. Hosseini, S. Taheri, M. Farzaneh, and H. Taheri, “A High-Performance Shade-Tolerant MPPT Based on Current-Mode Control,” IEEE Transactions on Power Electronics, vol. 34, no. 10, pp. 10 327–10 340, oct 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8620516/[31]K. Bataineh, “Improved hybrid algorithms-based MPPT algorithm for PV system operating under severe weather conditions,” IET Power Electronics, vol. 12, no. 4, pp. 703–711, apr 2019. [Online]. Available: https://digital- library.theiet.org/content/journals/10.1049/iet-pel.2018.5651[32]J. D. Bastidas-Rodriguez, E. Franco, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, “Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review,” IET Power Electronics, vol. 7, no. 6, pp. 1396–1413, jun 2014.[33]D. Vinnikov, A. Chub, E. Liivik, R. Kosenko, and O. Korkh, “Solar optiverter - A novel hybrid approach to the photovoltaic module level power electronics,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3869–3880, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8402238/[34]Q. Huang, A. Huang, R. Yu, P. Liu, and W. Yu, “High-Efficiency and High-Density Single-Phase Dual-Mode Cascaded Buck-Boost Multilevel Transformerless PV Inverter with GaN AC Switches,” IEEE Transactions on Power Electronics, vol. 34, no. 8, pp. 7474–7488, 2018.[35]H. S. Lee and J. J. Yun, “Quasi-Resonant Voltage Doubler with Snubber Capacitor for Boost Half-Bridge DC-DC Converter in Photovoltaic Micro-Inverter,” IEEE Transac- tions on Power Electronics, vol. 34, no. 9, pp. 8377–8388, 2018.[36]J. Roy, Y. Xia, and R. Ayyanar, “High Step-Up Transformerless Inverter for AC Module Applications with Active Power Decoupling,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3891–3901, may 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8425065/[37]N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics. Converters, Ap- plications and Design, 3rd ed. John Wiley and Sons, Inc, 2003.[38]J. Ravishankar, D. Binu Ben Jose, and N. Ammasai Gounden, “Simple power electronic controller for photovoltaic fed grid-tied systems using line commutated inverter with fixed firing angle,” IET Power Electronics, vol. 7, no. 6, pp. 1424–1434, jun 2014. [Online]. Available: https://digital-library.theiet.org/content/journals/10.1049/iet- pel.2013.0440[39]K. Li, Y. Hu, and A. Ioinovici, “Generation of the Large DC Gain Step- Up Nonisolated Converters in Conjunction With Renewable Energy Sources Starting From a Proposed Geometric Structure,” IEEE Transactions on Power Electronics, vol. 32, no. 7, pp. 5323–5340, jul 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7567545/[40]R. K. Surapaneni and P. Das, “A Z-Source-Derived Coupled-Inductor-Based High Voltage Gain Microinverter,” IEEE Transactions on Industrial Elec- tronics, vol. 65, no. 6, pp. 5114–5124, jun 2018. [Online]. Available: http://ieeexplore.ieee.org/document/8017498/[41]V. Gautam and P. Sensarma, “Design of C´uk-Derived Transformerless Common- Grounded PV Microinverter in CCM,” IEEE Transactions on Industrial Electronics, vol. 64, no. 8, pp. 6245–6254, aug 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7869382/[42]J. Kan, Y. Wu, Y. Tang, S. Xie, and L. Jiang, “Hybrid Control Scheme for Photovoltaic Micro-Inverter with Adaptive Inductor,” IEEE Transactions on Power Electronics, pp. 1–1, 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8556060/[43]N. Sukesh, M. Pahlevaninezhad, and P. K. Jain, “Analysis and Implementation of a Single-Stage Flyback PV Microinverter With Soft Switching,” IEEE Transactions on Industrial Electronics, vol. 61, no. 4, pp. 1819–1833, apr 2014. [Online]. Available: http://ieeexplore.ieee.org/document/6517272/[44]R. K. Surapaneni and A. K. Rathore, “A Single-Stage CCM Zeta Microinverter for Solar Photovoltaic AC Module,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 4, pp. 892–900, dec 2015. [Online]. Available: http://ieeexplore.ieee.org/document/7113782/[45]D. Meneses, O. Garcia, P. Alou, J. A. Oliver, and J. A. Cobos, “Grid-Connected Forward Microinverter With Primary-Parallel Secondary-Series Transformer,” IEEE Transactions on Power Electronics, vol. 30, no. 9, pp. 4819–4830, sep 2015. [Online]. Available: http://ieeexplore.ieee.org/document/6940259/[46]S.-H. Lee, W.-J. Cha, J.-M. Kwon, and B.-H. Kwon, “Control Strategy of Flyback Microinverter With Hybrid Mode for PV AC Modules,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 995–1002, feb 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7274697/[47]S.-H. Lee, W.-J. Cha, B.-H. Kwon, and M. Kim, “Discrete-Time Repetitive Control of Flyback CCM Inverter for PV Power Applications,” IEEE Transactions on Industrial Electronics, vol. 63, no. 2, pp. 976–984, feb 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7247692/[48]A. Chub, D. Vinnikov, F. Blaabjerg, and F. Z. Peng, “A review of galvanically isolated impedance-source DC-DC converters,” pp. 2808–2828, apr 2016.[49]L. G. Junior, M. A. De Brito, L. P. Sampaio, and C. A. Canesin, “Single stage con- verters for low power stand-alone and grid-connected PV systems,” in Proceedings - ISIE 2011: 2011 IEEE International Symposium on Industrial Electronics, 2011, pp. 1112–1117.[50]B. Zhao, Q. Song, W. Liu, and Y. Sun, “Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4091–4106, 2014. [Online]. Available: http://dx.doi.org/10.1109/TPEL.2013.2289913[51]F. Yazdani and M. Zolghadri, “Design of dual active bridge isolated bi-directional DC converter based on current stress optimization,” in 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC). IEEE, 2017, pp. 247–252. [Online]. Available: http://ieeexplore.ieee.org/document/7910331/[52]D. S. Segaran, “Dynamic Modelling and Control of Dual Active Bridge Bi- directional DC-DC Converters for Smart Grid Applications,” Ph.D. dissertation, Royal Melbourne Institute of Technology University, 2013. [Online]. Available: https://researchbank.rmit.edu.au/eserv/rmit:160330/Segaran.pdf[53]Y. C. Jeung and D. C. Lee, “Voltage and current regulations of bidirectional isolated dual-active-bridge DC-DC converters based on a double-integral sliding mode control,” IEEE Transactions on Power Electronics, vol. 34, no. 7, pp. 6937–6946, 2019.[54]D. Wang, B. Nahid-Mobarakeh, and A. Emadi, “Second Harmonic Current Reduction for a Battery-Driven Grid Interface With Three-Phase Dual Active Bridge DC–DC Converter,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 9056– 9064, nov 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8654202/[55]H. Bayat and A. Yazdani, “A Hybrid MMC-Based Photovoltaic and Bat- tery Energy Storage System,” IEEE Power and Energy Technology Sys- tems Journal, vol. 6, no. 1, pp. 32–40, mar 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8612921/[56]D. Gonzalez-Agudelo, A. Escobar-Mejia, and H. Ramirez-Murrillo, “Dynamic model of a dual active bridge suitable for solid state transformers,” International Power Electronics Congress - CIEP, vol. 2016-Augus, pp. 350–355, 2016.[57]A. Agrawal, C. S. Nalamati, and R. Gupta, “Hybrid DC–AC Zonal Microgrid Enabled by Solid-State Transformer and Centralized ESD Integration,” IEEE Transactions on Industrial Electronics, vol. 66, no. 11, pp. 9097–9107, nov 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8648411/[58]T. M. Parreiras, A. P. MacHado, F. V. Amaral, G. C. Lobato, J. A. Brito, and B. C. Filho, “Forward Dual-Active-Bridge Solid-State Transformer for a SiC-Based Casca- ded Multilevel Converter Cell in Solar Applications,” IEEE Transactions on Industry Applications, vol. 54, no. 6, pp. 6353–6363, nov 2018.[59]A. Mansour, B. Faouzi, G. Jamel, and E. Ismahen, “Design and analysis of a high fre- quency DC–DC converters for fuel cell and super-capacitor used in electrical vehicle,” International Journal of Hydrogen Energy, vol. 39, no. 3, pp. 1580–1592, jan 2014. [Onli- ne]. Available: https://www.sciencedirect.com/science/article/pii/S0360319913010100[60]M. I. Marei, H. El-Helw, and M. Al-Hasheem, “A grid-connected PV interface system based on the DAB-converter,” in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, jun 2015, pp. 161–165. [Online]. Available: http://ieeexplore.ieee.org/document/7165534/[61]H. M. El-Helw, M. Al-Hasheem, and M. I. Marei, “Control strategies for the DAB based PV interface system,” PLoS ONE, vol. 11, no. 8, pp. 1–19, 2016.[62]J. Hu, P. Joebges, G. C. Pasupuleti, N. R. Averous, and R. W. De Doncker, “A Maximum-Output-Power-Point-Tracking Contro- lled Dual-Active Bridge Converter for Photovoltaic Energy Integration in- to MVDC Grids,” IEEE Transactions on Energy Conversion, pp. 1–1, 2018. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0- 85054670210&doi=10.1109/FTEC.2018.2874936[63]Y. Shi, R. Li, Y. Xue, and H. Li, “High-Frequency-Link-Based Grid-Tied PV System With Small DC-Link Capacitor and Low-Frequency Ripple-Free Maximum Power Point Tracking,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 328–339, jan 2016. [Online]. Available: http://dx.doi.org/10.1109/TPEL.2015.2411858 http://ieeexplore.ieee.org/document/7058411/[64]T. Liu, X. Yang, W. Chen, Y. Li, Y. Xuan, L. Huang, and X. Hao, “Design and Implementation of High Efficiency Control Scheme of Dual Active Bridge Based 10 kV/1 MW Solid State Transformer for PV Application,” IEEE Transactions on Power Electronics, vol. 34, no. 5, pp. 4223–4238, may 2019.[65]G. Xu, D. Sha, Y. Xu, and X. Liao, “Dual-Transformer-Based DAB Converter with Wide ZVS Range for Wide Voltage Conversion Gain Application,” IEEE Transactions on Industrial Electronics, vol. 65, no. 4, pp. 3306–3316, 2018.[66]H. Wang, T. Wei, X. Sun, X. Wan, F. Wang, and F. Zhuo, “The application of cascade power electronic transformer in large-scale photovoltaic power generation system,” in PEDG 2019 - 2019 IEEE 10th International Symposium on Power Electronics for Distributed Generation Systems. Institute of Electrical and Electronics Engineers Inc., jun 2019, pp. 425–428.[67]M. Aguirre and A. Yazdani, “A single-phase dc-ac dual-active-bridge based resonant converter for grid-connected Photovoltaic (PV) applications,” in 2019 21st European Conference on Power Electronics and Applications, EPE 2019 ECCE Europe. Institute of Electrical and Electronics Engineers Inc., sep 2019.[68]A. Rodriguez, A. Vazquez, D. G. Lamar, M. M. Hernando, and J. Sebastian, “Different purpose design strategies and techniques to improve the performance of a Dual Active Bridge with phase-shift control,” IEEE Transactions on Power Electronics, vol. 30, no. 2, pp. 790–804, 2015.[69]K. S. Kim, S. G. Jeong, and B. H. Kwon, “Single power-conversion DAB microinverter with safe commutation and high efficiency for PV power applications,” Solar Energy, vol. 193, pp. 676–683, nov 2019.[70]A. Mohapatra, B. Nayak, P. Das, and K. B. Mohanty, “A review on mppt techniques of pv system under partial shading condition,” Renewable and Sustainable Energy Reviews, vol. 80, pp. 854–867, 2017.[71]E. Mamarelis, G. Petrone, and G. Spagnuolo, “Design of a sliding-mode-controlled sepic for pv mppt applications,” IEEE Transactions on Industrial Electronics, vol. 61, no. 7, pp. 3387–3398, 2014.[72]S. Bacha, I. Munteanu, and A. I. Bratcu, “Introduction to power electronic converters modeling,” in Power Electronic Converters Modeling and Control. Springer, 2014, pp. 9–25.[73]R. Naayagi, A. J. Forsyth, and R. Shuttleworth, “High-power bidirectional dc–dc con- verter for aerospace applications,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4366–4379, 2012.[74]S. Kulasekaran and R. Ayyanar, “Analysis, design, and experimental results of the semidual-active-bridge converter,” IEEE Transactions on power electronics, vol. 29, no. 10, pp. 5136–5147, 2013.[75]F. Zhang and W. Li, “An equivalent circuit method for modeling and simulation of dual active bridge converter based marine distribution system,” in 2019 IEEE Electric Ship Technologies Symposium (ESTS). IEEE, 2019, pp. 382–387.[76]S. D. F. Zambrano, “A dc-dc multiport converter based solid state transformer inte- grating distributed generation and storage,” Approved Jun, 2011.[77]H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge dc–dc converter,” IEEE Transactions on power electronics, vol. 27, no. 4, pp. 2078–2084, 2011.[78]S. S. Shah and S. Bhattacharya, “Large & small signal modeling of dual active bridge converter using improved first harmonic approximation,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, 2017, pp. 1175–1182.[79]S. Marti and H. Krishnaswami, “Control algorithm for port power imbalance in two-stage, N-port modular multilevel cascaded photovoltaic inverters,” in 2017 IEEE Texas Power and Energy Conference (TPEC). Department of Electrical and Computer Engineering, University of Texas at San Antonio, San Antonio, TX, United States: IEEE, feb 2017, pp. 1–6. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85016623184[80]L. Guan, F. Xiao, C. Tu, and Z. Lan, “Modal analysis method of dab based on phase shift control,” in 2019 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2017, pp. 5954–5959.[81]X. Liu, Z. Zhu, D. A. Stone, M. P. Foster, W. Chu, I. Urquhart, and J. Greenough, “No- vel dual-phase-shift control with bidirectional inner phase shifts for a dual-active-bridge converter having low surge current and stable power control,” IEEE Transactions on Power Electronics, vol. 32, no. 5, pp. 4095–4106, 2016.[82]J. Everts, Everts, and Jordi, “Design and Optimization of an Efficient (96.1 %) and Compact (2 kW/dm3) Bidirectional Isolated Single-Phase Dual Active Bridge AC-DC Converter,” Energies, vol. 9, no. 10, p. 799, oct 2016. [Online]. Available: http://www.mdpi.com/1996-1073/9/10/799[83]L. Cao, K. H. Loo, and Y. M. Lai, “Output-Impedance Shaping of Bidirectional DAB DC–DC Converter Using Double-Proportional-Integral Feedback for Near-Ripple-Free DC Bus Voltage Regulation in Renewable Energy Systems,” IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2187–2199, mar 2016. [Online]. Available: http://ieeexplore.ieee.org/document/7108066/[84]R. Sharma and S. K. Sharma, “Solar photovoltaic supply system integrated with solid state transformer,” in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), 2021, pp. 1–6.[85]B. Krishna, T. S. Bheemraj, and V. Karthikeyan, “Optimized active power management in solar pv-fed transformerless grid-connected system for rural electrified microgrid,” Journal of Circuits, Systems and Computers, vol. 30, no. 03, p. 2150039, 2021. [Online]. Available: https://doi.org/10.1142/S0218126621500390[86]J. You, J. Xia, and H. Jia, “Analysis and control of DAB based DC-AC multiport converter with small DC link capacitor,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2017, pp. 823–828. [Online]. Available: http://ieeexplore.ieee.org/document/8216142/[87]S. Kurm and V. Agarwal, “Dual active bridge based reduced stage multiport dc/ac con- verter for pv-battery systems,” IEEE Transactions on Industry Applications, vol. 58, no. 2, pp. 2341–2351, 2022.[88]S. S. Shah and S. Bhattacharya, “Control of active component of current in dual active bridge converter,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, mar 2018, pp. 323–330. [Online]. Available: http://ieeexplore.ieee.org/document/8341030/[89]B. L. Baolong Liu, Y. Z. Yabing Zha, T. Z. Tao Zhang, and S. C. Shiming Chen, “Fuzzy logic control of dual active bridge in solid state transformer applications,” in 2016 Tsinghua University-IET Electrical Engineering Academic Forum. Institution of Engineering and Technology, 2016, pp. 2 (4 .)–2 (4 .). [Online]. Available: https://digital-library.theiet.org/content/conferences/10.1049/cp.2016.1183[90]N. Vazquez and M. Liserre, “Peak Current Control and Feed-Forward Com- pensation of a DAB Converter,” IEEE Transactions on Industrial Elec- tronics, vol. 67, no. 10, pp. 8381–8391, oct 2020. [Online]. Available: https://ieeexplore.ieee.org/document/8887534/[91]J. Arredondo, M. Quispe, and M. Valencia, “Particle swarm optimization mppt al- gorithm in a dual active bridge series-resonant dc-dc converter for partial shading conditions,” in 2021 IEEE 5th Colombian Conference on Automatic Control (CCAC), 2021, pp. 274–279.[92]Y. Wang, B. Wang, C. C. Chu, H. Pota, and R. Gadh, “Energy management for a commercial building microgrid with stationary and mobile battery storage,” Energy and Buildings, vol. 116, pp. 141–150, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2015.12.055[93]Z. Zeng, R. Zhao, and H. Yang, “Micro-sources design of an intelligent building integrated with micro-grid,” Energy and Buildings, vol. 57, pp. 261–267, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2012.11.018[94]M. S. Mahmoud and F. M. AL-Sunni, “Networked Control of Microgrid System of Systems,” in Control and Optimization of Distributed Generation Systems. Springer, 2010, pp. 251–308.[95]N. Eghtedarpour and E. Farjah, “Control strategy for distributed inte- gration of photovoltaic and energy storage systems in DC micro-grids,” Renewable Energy, vol. 45, pp. 96–110, sep 2012. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0960148112001565[96]P. K. Gayen, P. Roy Chowdhury, and P. K. Dhara, “An improved dynamic performance of bidirectional SEPIC-Zeta converter based battery energy storage system using adaptive sliding mode control technique,” Electric Power Systems Research, vol. 160, pp. 348–361, 2018. [Online]. Available: https://doi.org/10.1016/j.epsr.2018.03.016[97]A. Choudar, D. Boukhetala, S. Barkat, and J.-M. Brucker, “A local energy mana- gement of a hybrid PV-storage based distributed generation for microgrids,” Energy Conversion and Management, vol. 90, pp. 21–33, 2015.[98]M. S. Rahman, M. J. Hossain, and J. Lu, “Coordinated control of three-phase AC and DC type EV-ESSs for efficient hybrid microgrid operations,” Energy Conversion and Management, vol. 122, pp. 488–503, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.enconman.2016.05.070[99]C. A. Ramos-Paja, J. D. Bastidas-Rodr´ıguez, D. Gonz´alez, S. Acevedo, and J. Pel´aez- Restrepo, “Design and Control of a Buck-Boost Charger-Discharger for DC-Bus Re- gulation in Microgrids,” Energies, vol. 10, no. 11, pp. 1–26, 2017.[100]S. Serna-Garcés, D. Gonzalez Montoya, and C. Ramos-Paja, “Sliding-mode control of a charger/discharger dc/dc converter for dc-bus regulation in renewable power systems,” Energies, vol. 9, no. 4, p. 245, Mar 2016. [Online]. Available: http://dx.doi.org/10.3390/en9040245[101]J. Renau, L. Domenech, V. Garc´ıa, A. Real, N. Mont´es, and F. S´anchez, “Proposal of a nearly zero energy building electrical power generator with an optimal temporary generation-consumption correlation,” Energy and Buildings, vol. 83, pp. 140–148, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2014.03.083[102]Y.-C. Chang and C.-M. Liaw, “Establishment of a Switched-Reluctance Generator- Based Common DCMicrogrid System,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2512–2527, 2011.[103]W. Jing, C. H. Lai, W. S. Wong, and M. D. Wong, “Dynamic power allocation of battery-supercapacitor hybrid energy storage for standalone PV microgrid applica- tions,” Sustainable Energy Technologies and Assessments, vol. 22, pp. 55–64, 2017. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/S2213138816301849[104]X. Chang, Y. Li, W. Zhang, N. Wang, and W. Xue, “Active Disturbance Rejection Control for a Flywheel Energy Storage System,” IEEE Transactions on Power Elec- tronics, vol. 62, no. 2, pp. 991–1001, 2015.[105]B. Mebarki, B. Draoui, L. Rahmani, and B. Allaoua, “Electric automobile Ni-MH battery investigation in diverse situations,” Energy Procedia, vol. 36, pp. 130–141, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.egypro.2013.07.016[106]O. Veneri, C. Capasso, and D. Iannuzzi, “Experimental evaluation of DC charging architecture for fully-electrified low-power two-wheeler,” Applied Energy, vol. 162, pp. 1428–1438, 2016.[107]H. El Fadil and F. Giri, “Sliding Mode Control of Fuel Cell and Supercapacitor Hybrid Energy Storage System,” in Power Electronics and Applications (EPE’15 ECCE-Europe) 2015 17th European Conference on. IFAC, 2015, pp. 1–8. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S1474667016320493[108]R. Georgious, J. Garc´ıa, P. Garc´ıa, and M. Summer, “Analysis of Hybrid Energy Storage Systems with DC Link Fault Ride-Through Capability,” in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016, pp. 1–8.[109]N. Eghtedarpour and E. Farjah, “Control strategy for distributed integration of pho- tovoltaic and energy storage systems in DC micro-grids,” Renewable Energy, vol. 45, pp. 96–110, 2012.[110]H. Wu, S. Ding, K. Sun, L. Zhang, Y. Li, and Y. Xing, “ Bidirectional Soft-Switching Series-Resonant Converter with Simple PWM Control and Load-Independent Voltage-Gain Characteristics For Energy Storage System in DC Microgrids,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 5, no. 3, pp. 1–1, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7812591/[111]R. Sarrias, L. M. Fern´andez, C. A. Garc´ıa, and F. Jurado, “Coordinate operation of power sources in a doubly-fed induction generator wind turbine / battery hybrid power system,” Journal of Power Sources, vol. 205, pp. 354–366, 2012. [Online]. Available: http://dx.doi.org/10.1016/j.jpowsour.2012.01.005[112]M. Sechilariu, B. Wang, and F. Locment, “Building-integrated microgrid: Advanced local energy management for forthcoming smart power grid commu- nication,” Energy and Buildings, vol. 59, pp. 236–243, 2013. [Online]. Available: http://dx.doi.org/10.1016/j.enbuild.2012.12.039[113]T. Vigneysh and N. Kumarappan, “Autonomous operation and control of photovol- taic/solid oxide fuel cell/battery energy storage based microgrid using fuzzy logic con- troller,” International Journal of Hydrogen Energy, vol. 41, no. 3, pp. 1877–1891, 2016.[114]C. Capasso and O. Veneri, “Experimental study of a DC charging station for full electric and plug in hybrid vehicles,” Applied Energy, vol. 152, pp. 131–142, 2015.[115]A. Kloenne and T. Sigle, “Bidirectional ZETA/SEPIC Converter as Battery Char- ging System with High Transfer Ratio,” in 2017 19th European Conference on Power Electronics and Applications (EPE’17 ECCE Europe), 2017, pp. 1–7.[116]C. Dimna Denny and M. Shahin, “Analysis of bidirectional SEPIC/Zeta converter with coupled inductor,” in 2015 International Conference on Technological Advancements in Power and Energy (TAP Energy), 2015, pp. 103–108.[117]S. Sivakumar, M. J. Sathik, P. S. Manoj, and G. Sundararajan, “An assessment on performance of DC-DC converters for renewable energy applications,” Renewable and Sustainable Energy Reviews, vol. 58, pp. 1475–1485, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.rser.2015.12.057[118]M. E. Sah´ın, H. ´I. Okumu, and H. Kahvec´ı, “Sliding mode control of PV powered DC / DC Buck-Boost converter with digital signal processor,” in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 2015, pp. 1–8.[119]S. A. Gorji, H. G. Sahebi, M. Ektesabi, and A. B. Rad, “Topologies and Control Schemes of Bidirectional DC–DC Power Converters: An Over- view,” IEEE Access, vol. 7, pp. 117 997–118 019, 2019. [Online]. Available: https://ieeexplore.ieee.org/document/8811451/[120]T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Transactions on Power Electronics, vol. 29, no. 2, 2014.[121]H. Fakham, D. Lu, and B. Francois, “Power Control Design of a Battery Charger in a Hybrid Active PV Generator for Load-Following Applications,” IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 85–94, 2011. [Online]. Available: http://ieeexplore.ieee.org/document/5530376/[122]A. K. Singh and M. K. Pathak, “Single-stage ZETA-SEPIC-based multifunctional integrated converter for plug-in electric vehicles,” IET Electrical Systems in Transportation, vol. 8, no. 2, pp. 101–111, jun 2018. [Online]. Available: https://onlinelibrary.wiley.com/doi/10.1049/iet-est.2017.0063[123]E. Sunarno, I. Sudiharto, S. D. Nugraha, F. D. Murdianto, Suryono, and O. A. Qudsi, “Design and implementation bidirectional SEPIC/ZETA conver- ter using Fuzzy Logic Controller in DC microgrid application,” Journal of Physics: Conference Series, vol. 1367, p. 12058, nov 2019. [Online]. Available: https://iopscience.iop.org/article/10.1088/1742-6596/1367/1/012058[124]A. J. Morelo, S. C. Trujillo, and F. E. Hoyos, “Simulation, bifurcation, and stability analysis of a SEPIC converter controlled with ZAD,” International Journal of Electrical and Computer Engineering, vol. 10, no. 1, pp. 728–737, 2020.[125]M. Venmathi and R. Ramaprabha, “Investigation on Fuzzy Logic Ba- sed Centralized Control in Four-Port SEPIC/ZETA Bidirectional Conver- ter for Photovoltaic Applications,” Advances in Electrical and Compu- ter Engineering, vol. 16, no. 1, pp. 53–60, 2016. [Online]. Available: http://www.aece.ro/abstractplus.php?year=2016&number=1&article=8[126]F. Altaf, B. Egardt, and L. Johannesson Mardh, “Load Management of Modular Battery Using Model Predictive Control: Thermal and State-of-Charge Balancing,” IEEE Transactions on Control Systems Technology, vol. 25, no. 1, pp. 47–62, 2017. [Online]. Available: http://ieeexplore.ieee.org/document/7458184/[127]A. Goudarzian and A. Khosravi, “Application of DC/DC Cúk converter as a soft starter for battery chargers based on double-loop control strategy,” International Journal of Circuit Theory and Applications, vol. 47, no. 5, pp. 753–781, 2019.[128]A. Goudarzian, A. Khosravi, and H. A. Raeisi, “A new approach in design of sliding- mode voltage-controller for a SEPIC,” International Journal of Dynamics and Control, jan 2021. [Online]. Available: http://link.springer.com/10.1007/s40435-020-00741-9[129]J. Saeed, M. Niakinezhad, N. Fernando, and L. Wang, “Model Predictive Control of an Electric Vehicle Motor Drive Integrated Battery Charger,” in 2019 IEEE 13th International Conference on Compatibility, Power Electronics and Power Engineering (CPE-POWERENG).IEEE, 2019, pp. 1–6. [Online]. Available: https://ieeexplore.ieee.org/document/8862423/[130]H. Zhong, J. Li, and Y.-X. Wang, “A Bus-Based Battery Equalization via Modified Isolated Cuk Converter Governed by Adaptive Control,” in 2019 Chinese Automation Congress (CAC). IEEE, nov 2019, pp. 2824–2828. [Online]. Available: https://ieeexplore.ieee.org/document/8996984/[131]J. L. Mathieu and J. A. Taylor, “Controlling nonlinear batteries for power systems: Trading off performance and battery life,” in 2016 Power Systems Computation Conference (PSCC). IEEE, jun 2016, pp. 1–7. [Online]. Available: http://ieeexplore.ieee.org/document/7540856/[132]Guan-Chyun Hsieh, Liang-Rui Chen, and Kuo-Shun Huang, “Fuzzy-controlled active state-of-charge controller for fasting the charging behavior of Li-ion battery,” in IECON’99. Conference Proceedings. 25th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.99CH37029), vol. 1. IEEE, 2001, pp. 400–405. [Online]. Available: http://ieeexplore.ieee.org/document/822231/[133]N. Sujitha and S. Krithiga, “RES based EV battery charging system: A review,” Renewable and Sustainable Energy Reviews, vol. 75, pp. 978–988, aug 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032116308206[134]H. Qin and J. W. Kimball, “Generalized average modeling of dual active bridge DC-DC converter,” IEEE Transactions on Power Electronics, vol. 27, no. 4, pp. 2078–2084, 2012.[135]B. Zhao, Q. Song, W. Liu, G. Liu, and Y. Zhao, “Universal High-Frequency-Link Cha- racterization and Practical Fundamental-Optimal Strategy for Dual-Active-Bridge DC- DC Converter under PWM Plus Phase-Shift Control,” IEEE Transactions on Power Electronics, vol. 30, no. 12, pp. 6488–6494, dec 2015.[136]R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed. New York: Kluwer Academic Publishers, 2001.[137]C. Ferreira and J. L. Lopez, “Asymptotic expansions of the hurwitz–lerch zeta function,” Journal of Mathematical Analysis and Applications, vol. 298, no. 1, pp. 210–224, 2004.[138]G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, Photovoltaic Sources Modeling, 1st ed., I. PRESS, Ed. Pondicherry, India: Wiley, 2017, vol. 1, no. 1.[139]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “Optimization of perturb and observe maximum power point tracking method,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 963–973, 2005.[140]J. Ahmed and Z. Salam, “An improved perturb and observe (P&O) maximum powerpoint tracking (MPPT) algorithm for higher efficiency,” Applied Energy, vol. 150, pp. 97–108, jul 2015. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261915004456#b0055[141]E. Mamarelis, G. Petrone, and G. Spagnuolo, “A two-steps al- gorithm improving the P&O steady state MPPT efficiency,” Ap- plied Energy, vol. 113, pp. 414–421, jan 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0306261913005886[142]M. Valentini, A. Raducu, D. Sera, and R. Teodorescu, “PV inverter test setup for european efficiency, static and dynamic MPPT efficiency evaluation,” in 11th Inter- national Conference on Optimization of Electrical and Electronic Equipment, OPTIM 2008. Brasov, Romania: IEEE, 2008, pp. 433–438.[143]D. Sera, T. Kerekes, R. Teodorescu, and F. Blaabjerg, “Impro- ved MPPT Algorithms for Rapidly Changing Environmental Conditions,” in 12th International Power Electronics and Motion Control Conferen- ce. Portoroz, Slovenia: IEEE, 2006, pp. 1614–1619. [Online]. Available: https://ieeexplore.ieee.org/document/4778635?arnumber=4778635[144]BP Solar, “BP585 Solar Modules,” dec 2003. [Online]. Available: http://calculationsolar.com/pdfs/Calculationsolar module BP 585F468.pdf[145]J. Accarino, G. Petrone, C. A. Ramos-Paja, and G. Spagnuolo, “Symbolic algebra for the calculation of the series and parallel resistances in PV module model,” 4th Inter- national Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2013, pp. 62–66, 2013.[146]I. D. de Souza, P. M. de Almeida, P. G. Barbosa, C. A. Duque, and P. F. Ribeiro, “Digital single voltage loop control of a VSI with LC output filter,” Sustainable Energy, Grids and Networks, vol. 16, pp. 145–155, dec 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352467718300092#b15[147]Y. Ting, S. de Haan, and J. A. Ferreira, “Elimination of switching losses in the single active bridge over a wide voltage and load range at constant frequency,” in 2013 15th European Conference on Power Electronics and Applications (EPE). IEEE, sep 2013, pp. 1–10. [Online]. Available: http://ieeexplore.ieee.org/document/6634627/[148]F. Liu, X. Sun, J. Feng, J. Wu, and X. Li, “The improved dual active bridge converter with a modified phase shift and variable frequency control,” in 2018 IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, mar 2018, pp. 814–819. [Online]. Available: http://ieeexplore.ieee.org/document/8341106/[149]J. Li, Z. Chen, Z. Shen, P. Mattavelli, J. Liu, and D. Boroyevich, “An adaptive dead-time control scheme for high-switching-frequency dual-active-bridge converter,” in 2012 Twenty-Seventh Annual IEEE Applied Power Electronics Conference and Exposition (APEC). IEEE, feb 2012, pp. 1355–1361. [Online]. Available: http://ieeexplore.ieee.org/document/6165996/[150]X. Han, Y. Tan, and H. Ma, “The switching frequency optimization of dual phase shift control for dual active bridge DC-DC converter,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2017, pp. 1610–1615. [Online]. Available: http://ieeexplore.ieee.org/document/8216273/[151]A. Aganza-Torres, V. C´ardenas, and M. Pacas, “Generalized average model for a high-frequency link grid-connected DC/AC converter,” International Journal of Electrical Power & Energy Systems, vol. 107, pp. 344–351, may 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061518308548[152]S. A. Evangelou and M. Rehman-Shaikh, “Hybrid electric vehicle fuel minimization by DC-DC converter dual-phase-shift control,” Control En- gineering Practice, vol. 64, pp. 44–60, jul 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S096706611730093X[153]M. Monika, M. Rane, S. Wagh, A. Stankovi´c, and N. Singh, “Development of dynamic phasor based higher index model for performance enhancement of dual active bridge,” Electric Power Systems Research, vol. 168, pp. 305–312, mar 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0378779618303419[154]J. Li, D. Wang, W. Wang, and J. Jiang, “Minimize Current Stress of Dual- Active-Bridge DC-DC Converters for Electric Vehicles Based on Lagrange Multipliers Method,” Energy Procedia, vol. 105, pp. 2733–2738, may 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1876610217310238[155]D.-D. Nguyen, D.-H. Nguyen, M. C. Ta, and G. Fujita, “Sensorless Feedforward Cu- rrent Control of Dual-Active-Bridge DC/DC Converter for Micro-Grid Applications,” IFAC-PapersOnLine, vol. 51, no. 28, pp. 333–338, jan 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405896318334438[156]Daniel W.Hart, Power Electronics. Mc Graw Hill, 2011.[157]V. Michal, “Dynamic duty-cycle limitation of the boost dc/dc converter allowing maxi- mal output power operations,” in 2016 International Conference on Applied Electronics (AE). IEEE, 2016, pp. 177–182.[158]M. Z. Malik, H. Chen, M. S. Nazir, I. A. Khan, A. N. Abdalla, A. Ali, and W. Chen, “A new efficient step-up boost converter with cld cell for electric vehicle and new energy systems,” Energies, vol. 13, no. 7, p. 1791, 2020.[159]A. M. S. S. Andrade, L. Schuch, and M. L. da Silva Martins, “Analysis and design of high-efficiency hybrid high step-up dc–dc converter for distributed pv generation systems,” IEEE Transactions on Industrial Electronics, vol. 66, no. 5, pp. 3860–3868, 2018.[160]M. S. Bhaskar, R. Alammari, M. Meraj, S. Padmanaban, and A. Iqbal, “A new triple- switch-triple-mode high step-up converter with wide range of duty cycle for dc mi- crogrid applications,” IEEE Transactions on Industry Applications, vol. 55, no. 6, pp. 7425–7441, 2019.[161]O. Aldosari, L. A. Garcia Rodriguez, J. C. Balda, and S. K. Mazumder, “Design trade-offs for medium- and high-frequency transformers for isolated power converters in distribution system applications,” in 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems (PEDG), 2018, pp. 1–7.[162]Y. Du, S. Baek, S. Bhattacharya, and A. Q. Huang, “High-voltage high-frequency transformer design for a 7.2kv to 120v/240v 20kva solid state transformer,” IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 493–498, 2010.[163]C. Liu, L. Qi, X. Cui, and X. Wei, “Experimental extraction of parasitic capacitances for high-frequency transformers,” IEEE Transactions on Power Electronics, vol. 32, no. 6, pp. 4157–4167, 2017.[164]G. Spagnuolo, G. Petrone, B. Lehman, C. Ramos-Paja, Y. Zhao, and M. Orozco Gutie- rrez, “Control of photovoltaic arrays: Dynamical reconfiguration for fighting mismat- ched conditions and meeting load requests,” IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 62–76, March 2015.[165]J. Bastidas-Rodriguez, E. Franco, G. Petrone, C. Ramos-Paja, and G. Spagnuolo, “Maximum power point tracking architectures for photovoltaic systems in mismatching conditions: a review,” IET Power Electronics, vol. 7, no. 6, pp. 1396–1413, 2014.[166]E. Romero-Cadaval, G. Spagnuolo, L. Garcia Franquelo, C. Ramos-Paja, T. Suntio, and W. Xiao, “Grid-connected photovoltaic generation plants: Components and ope- ration,” IEEE Industrial Electronics Magazine, vol. 7, no. 3, pp. 6–20, Sept 2013.[167]S. S. Kumar, C. Bibin, K. Akash, K. Aravindan, M. Kishore, and G. Magesh, “Solar powered water pumping systems for irrigation: a comprehensive review on develop- ments and prospects towards a green energy approach,” Materials Today: Proceedings, vol. 33, pp. 303–307, 2020.[168]M. Aliyu, G. Hassan, S. A. Said, M. U. Siddiqui, A. T. Alawami, and I. M. Elamin, “A review of solar-powered water pumping systems,” Renewable and Sustainable Energy Reviews, vol. 87, pp. 61–76, 2018.[169]A. Trejos, D. Gonzalez, and C. A. Ramos-Paja, “Modeling of step-up grid-connected photovoltaic systems for control purposes,” Energies, vol. 5, no. 6, pp. 1900–1926, 2012.[170]T. L. Nguyen, G. Griepentrog et al., “Modeling and control of dual active bridge conver- ter with two control loops and output filter,” in IECON 2017-43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, 2017, pp. 4683–4689.[171]S. Zou, S. Zheng, and M. Chinthavali, “Design, analyses and validation of sliding mode control for a dab dc-dc converter,” in 2019 IEEE Transportation Electrification Conference and Expo (ITEC). IEEE, 2019, pp. 1–6.[172]L. V. Bellinaso, H. H. Figueira, M. F. Basquera, R. P. Vieira, H. A. Gru¨ndling, and L. Michels, “Cascade control with adaptive voltage controller applied to photovoltaic boost converters,” IEEE Transactions on Industry Applications, vol. 55, no. 2, pp. 1903–1912, 2018.[173]R. Giral, C. A. Ramos-Paja, D. Gonzalez, J. Calvente, A`. Cid-Pastor, and L. Martinez-Salamero, “Minimizing the effects of shadowing in a pv module by means of active voltage sharing,” in 2010 IEEE International Conference on Industrial Technology. IEEE, 2010, pp. 943–948.[174]H. Song and H. Hofmann, “Robust, accurate systems-based power electronic circuit models in simulink,” in 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL). IEEE, 2018, pp. 1–8.[175]R. Tanaka, M. Toyota, and T. Koga, “Linear active disturbance rejection controller design based on disturbance response specification for a 1st order plant,” in 2020 59th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE). IEEE, 2020, pp. 1250–1256.[176]Y. Furukawa and F. Kurokawa, “Design consideration of high performance digital control dc-dc converter based on frequency characteristics,” in 2015 IEEE International Conference on Industrial Technology (ICIT). IEEE, 2015, pp. 2080–2084.[177]V. Ignatenko, A. Yudintsev, and D. Lyapunov, “Application of state-space method for control system analysis,” in 2019 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2019, pp. 1–5.[178]I. H. Baciu, I. Ciocan, and S. Lungu, “Modeling transfer function for buck power con- verter,” in 2007 30th International Spring Seminar on Electronics Technology (ISSE). IEEE, 2007, pp. 541–544.[179]J. Hu, P. Joebges, and R. W. De Doncker, “Maximum power point tracking control of a high power dc-dc converter for PV integration in MVDC distribution grids,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC). Institute for Power Generation and Storage Systems, E. on Energy Research Center, RWTH Aachen University, Aachen, Germany: IEEE, mar 2017, pp.1259–1266. [Online]. Available: https://www.scopus.com/inward/record.uri?eid=2- s2.0-85019986027&doi=10.1109/FAPEC.2017.7930857[180]S. Ozturk, P. Pospos, V. Utalay, A. Koc, M. Ermis, and I. C adırcı, “Operating principles and practical design aspects of all SiC DC/AC/DC converter for MPPT in grid-connected PV supplies,” Solar Energy, vol. 176, pp. 380–394, 2018. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S0038092X18310284[181]M. I. Marei, H. El-Helw, and M. Al-Hasheem, “A grid-connected PV interface system based on the DAB-converter,” in 2015 IEEE 15th International Conference on Environment and Electrical Engineering (EEEIC). IEEE, jun 2015, pp. 161–165. [Online]. Available: http://ieeexplore.ieee.org/document/7165534/[182]J. Hu, Z. An, S. Cui, N. R. Averous, and R. W. De Doncker, “Impedance modeling and stability analysis of dual-active bridge converter interfacing dc grids,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, 2018, pp. 4907–4914.[183]T. Duman, S. Marti, M. A. Moonem, A. A. R. A. Kader, and H. Krishnaswami, “A Modular Multilevel Converter with Power Mismatch Control for Grid-Connected Photovoltaic Systems,” Energies, vol. 10, no. 5, p. 698, may 2017. [Online]. Available: http://dx.doi.org/10.3390/en10050698 http://www.mdpi.com/1996-1073/10/5/698[184]D. A. Herrera-Jaramillo, E. E. Henao-Bravo, and D. G. Montoya, Design Of A Mathe- matical Model For Control Purposes Of A Dc/Dc Dab Converter In Conjunction With An Mppt Algorithm To Raise The Voltage Delivered By A Solar Panel To The Load, 2021.[185]F. Wang, F. C. Lee, X. Yue, and F. Zhuo, “Quantified evaluation and criteria analysis for dmppt pv system,” in 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe). IEEE, 2015, pp. 1–6.[186]M. Forcan and Z. Durisic, “The analysis of pv string efficiency under mismatch conditions,” in 2016 4th International Symposium on Environmental Friendly Energies and Applications (EFEA). IEEE, 2016, pp. 1–6.[187]H. Qin and J. W. Kimball, “Closed-loop control of DC-DC dual active bridge conver- ters driving single-phase inverters,” in 2012 IEEE Energy Conversion Congress and Exposition (ECCE), 2012, pp. 173–179.[188]I. Syed and W. Xiao, “Modeling and control of DAB applied in a PV based DC microgrid,” in 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES). IEEE, dec 2012, pp. 1–6. [Online]. Available: http://ieeexplore.ieee.org/document/6484489/[189]Y.-C. Jeung and D.-C. Lee, “Sliding mode control of bi-directional dual active bridge DC/DC converters for battery energy storage systems,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), ser. Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, vol. 0. Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, Korea, Republic of: IEEE, mar 2017, pp. 3385–3390. [Online]. Available: http://dx.doi.org/10.1109/APEC.2017.7931182 http://ieeexplore.ieee.org/document/7931182/[190]D. D. Nguyen, G. Fujita, Q. Bui-Dang, and M. C. Ta, “Reduced-Order Observer-Based Control System for Dual-Active-Bridge DC/DC Converter,” IEEE Transactions on Industry Applications, vol. 54, no. 4, pp. 3426–3439, 2018.[191]M. Cupelli, S. K. Gurumurthy, and A. Monti, “Modelling and control of single phase DAB based MVDC shipboard power system,” in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society. IEEE, oct 2017, pp. 6813–6819. [Online]. Available: http://ieeexplore.ieee.org/document/8217190/[192]F. An, W. Song, B. Yu, and K. Yang, “Model Predictive Control With Power Self-Balancing of the Output Parallel DAB DC–DC Converters in Power Electronic Traction Transformer,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6, no. 4, pp. 1806–1818, dec 2018. [Online]. Available: https://ieeexplore.ieee.org/document/8331829/[193]L. Chen, S. Shao, Q. Xiao, L. Tarisciotti, T. Dragicevic, and P. Wheeler, “Model- predictive-control for dual-active-bridge converters supplying pulsed power loads in naval dc microgrids,” IEEE Transactions on Power Electronics, 2019.[194]T. Soejima, Y. Ishizuka, K. Domoto, and T. Hirose, “Adaptive Control Technique for High Power Efficiency Dual Active Bridge DC-DC Converter with Wide Load Range,” in 2018 IEEE Energy Conversion Congress and Exposition (ECCE). IEEE, sep 2018, pp. 2829–2834. [Online]. Available: https://ieeexplore.ieee.org/document/8557374/[195]O. M. Hebala, A. A. Aboushady, K. H. Ahmed, and I. Abdelsalam, “Generic closed- loop controller for power regulation in dual active bridge dc–dc converter with current stress minimization,” IEEE Transactions on Industrial Electronics, vol. 66, no. 6, pp. 4468–4478, 2018.[196]M. Rodriguez, V. M. Lopez, F. J. Azcondo, J. Sebastian, and D. Maksimovic, “Average inductor current sensor for digitally controlled switched-mode power supplies,” IEEE transactions on power electronics, vol. 27, no. 8, pp. 3795–3806, 2012.[197]C. A. B. Karim and M. A. Zamee, “Design and analysis of pole-placement contro- ller for dynamic stability improvement of vsc-hvdc based power system,” in 2014 9th International Forum on Strategic Technology (IFOST). IEEE, 2014, pp. 272–275.[198]J. K. Cavers, K. Mehrotra, and G. K. Woodward, “Advantages of second-order car- tesian feedback linearizers for radio amplifiers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 11, pp. 4134–4146, 2019.[199]R. W. Erickson and D. Maksimovic, Fundamentals of power electronics. Springer Science & Business Media, 2007.[200]K. Ogata, Modern Control Engineering, ser. Instrumentation and controls series. Prentice Hall, 2010. [Online]. Available: https://books.google.com.co/books?id=Wu5GpNAelzkC[201]N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, “A technique for improving p&o mppt performances of double-stage grid-connected photovoltaic systems,” IEEE Transactions on Industrial Electronics, vol. 56, no. 11, pp. 4473–4482, 2009.[202]Powersim Inc, “PSIM: Unbeatable Power Electronics Software - Powersim, Inc,” 2021. [Online]. Available: https://powersimtech.com/[203]E. I. Batzelis, G. Anagnostou, C. Chakraborty, and B. C. Pal, “Computation of the Lambert W Function in Photovoltaic Modeling,” in ELECTRIMACS 2019. Lecture Notes in Electrical Engineering, vol. 615. Salerno, Italy: Springer, 2020, pp. 583–595.[204]R. H. M. Abdelkarim, “Cascaded Voltage Step-up Canonical Elements for Power Processing in PV Applications,” Ph.D. dissertation, Universitat Rovira i Virgili, 2014. [Online]. Available: http://www.tdx.cat/handle/10803/284039[205]N. Abouchabana, M. Haddadi, A. Rabhi, A. D. Grasso, and G. M. Tina, “Power Efficiency Improvement of a Boost Converter Using a Coupled Inductor with a Fuzzy Logic Controller: Application to a Photovoltaic System,” Applied Sciences, vol. 11, no. 3, p. 980, jan 2021.[206]M. A. Green, Y. Hishikawa, E. D. Dunlop, D. H. Levi, J. Hohl-Ebinger, and A. W. Ho-Baillie, “Solar cell efficiency tables (version 52),” Progress in Photovoltaics: Research and Applications, vol. 26, no. 7, pp. 427–436, jul 2018. [Online]. Available: http://doi.wiley.com/10.1002/pip.3040[207]N. Torabi, A. Behjat, Y. Zhou, P. Docampo, R. J. Stoddard, H. W. Hillhouse, and T. Ameri, “Progress and challenges in perovskite pho- tovoltaics from single- to multi-junction cells,” Materials Today Energy, vol. 12, pp. 70–94, jun 2019. [Online]. Available: https://www-sciencedirect- com.ezproxy.unal.edu.co/science/article/pii/S2468606918302247[208]H. Sira-Ramirez, “Sliding Motions in Bilinear Switched Networks,” IEEE Transactions on Circuits and Systems, vol. 34, no. 8, pp. 919–933, 1987.[209]E. Babaei and M. E. Seyed Mahmoodieh, “Systematical method of desig- ning the elements of the Cuk converter,” International Journal of Electrical Power and Energy Systems, vol. 55, pp. 351–361, 2014. [Online]. Available: http://dx.doi.org/10.1016/j.ijepes.2013.09.024[210]S. M. Sharkh, M. A. Abusara, G. I. Orfanoudakis, and B. Hussain, Power Electronic Converters for Microgrids. JohnWiley & Sons Singapore Pte. Ltd., 2014.[211]D. G. Montoya, C. A. Ramos-Paja, and R. Giral, “Improved Design of Sliding-Mode Controllers Based on the Requirements of MPPT Techniques,” IEEE Transactions on Power Electronics, vol. 31, no. 1, pp. 235–247, 2016.[212]STMicroelectronics, “TS555 Low-power dual CMOS timer,” pp. 1–19, 2015. [Online]. Available: https://www.st.com/resource/en/datasheet/ts555.pdf[213]S. T. Lee and H. A. F. Almurib, “Control techniques for power converters in photo- voltaic hybrid energy storage system,” in 3rd IET International Conference on Clean Energy and Technology (CEAT), Nov 2014, pp. 1–6.[214]S. Somkun, C. Sirisamphanwong, and S. Sukchai, “A dsp-based interleaved boost dc–dc converter for fuel cell applications,” International Journal of Hydrogen Energy, vol. 40, no. 19, pp. 6391–6404, 2015[215]Q. Lin, J. Wang, R. Xiong, W. Shen, and H. He, “Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries,” Energy, vol. 183, pp. 220–234, 2019. [Online]. Available: https://doi.org/10.1016/j.energy.2019.06.128[216]K. Liu, C. Zou, K. Li, and T. Wik, “Charging pattern optimization for lithium-ion batteries with an electrothermal-aging model,” IEEE Transactions on Industrial In- formatics, vol. 14, no. 12, pp. 5463–5474, 2018.[217]M. Shafiee-Rad, M. S. Sadabadi, Q. Shafiee, and M. R. Jahed-Motlagh, “Robust decentralized voltage control for uncertain DC microgrids,” International Journal of Electrical Power and Energy Systems, vol. 125, p. 106468, feb 2021.[218]S. Serna-Garces, D. Lez Montoya, and C. Ramos-Paja, “Control of a charger/discharger DC/DC converter with improved disturbance rejection for bus regulation,” Energies, vol. 11, no. 3, 2018.[219]S. I. Serna-Garc´es, D. G. Montoya, and C. A. Ramos-Paja, “Sliding-mode control of a charger/discharger DC/DC converter for DC-bus regulation in renewable power systems,” Energies, vol. 9, no. 4, 2016.[220]J. D. Bastidas-Rodr´ıguez, D. Gonz´alez, S. Acevedo, and J. Pel´aez-Restrepo, “Design and Control of a Buck–Boost Charger-Discharger for DC-Bus Regulation in Microgrids,” Energies, vol. 10, no. 11, p. 1847, nov 2017. [Online]. Available: http://www.mdpi.com/1996-1073/10/11/1847[221]H. Ram´ırez-Murillo, C. Restrepo, T. Konjedic, J. Calvente, A. Romero, C. R. Baier, and R. Giral, “An Efficiency Comparison of Fuel-Cell Hybrid Systems Based on the Versatile Buck-Boost Converter,” IEEE Transactions on Power Electronics, vol. 33, no. 2, pp. 1237–1246, 2018.[222]M. E. S. Mahmoodieh and A. Deihimi, “Battery-integrated multi-input step-up con- verter for sustainable hybrid energy supply,” IET Power Electronics, vol. 12, no. 4, pp. 777–789, 2019.Programa de investigación “Estrategias para el desarrollo de sistemas energéticos sostenibles, confiables, eficientes y accesibles para el futuro de Colombia”, (Código Minciencias 1150-852-70378, Código Hermes 46771).Proyecto de investigación Dimensionamiento, planeación y control de sistemas eléctricos basados en fuentes renovables no convencionales, sistemas de almacenamiento y pilas de combustible para incrementar el acceso y la seguridad energética de poblaciones colombianas”, (Código Minciencias 70386)Ministerio de Ciencia, Tecnología e Innovación - MincienciasUniversidad Nacional de ColombiaInstitución Universitaria ITMEstudiantesInvestigadoresMaestrosPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83876/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL16077298.2023.pdf16077298.2023.pdfTesis de Doctorado en Ingeniería - Automáticaapplication/pdf22464631https://repositorio.unal.edu.co/bitstream/unal/83876/2/16077298.2023.pdf5890000435aec1a1f357963be32ef973MD52THUMBNAIL16077298.2023.pdf.jpg16077298.2023.pdf.jpgGenerated Thumbnailimage/jpeg4786https://repositorio.unal.edu.co/bitstream/unal/83876/3/16077298.2023.pdf.jpga7ebd12e5885fb48d8a9df0bf75cd44cMD53unal/83876oai:repositorio.unal.edu.co:unal/838762024-08-05 23:10:27.639Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |