Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica
ilustraciones, diagramas, fotografías, tablas
- Autores:
-
Gomez Garcia, Luisa Fernanda
- Tipo de recurso:
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86924
- Palabra clave:
- 570 - Biología::577 - Ecología
ECOLOGIA COSTERA
MANGLARES
BOSQUES TROPICALES
ANATOMIA VEGETAL
CICLO DEL CARBONO (BIOGEOQUIMICA)
Coastal ecology
Mangrove swamps
Tropical forests
Plant anatomy
Carbon cycle (biogeochemistry)
Manglar
Carbono orgánico
Intervención antrópica
Servicios ecosistémicos
Mangrove
Organic Carbon
Anthropogenic Intervention
Ecosystem Services
- Rights
- openAccess
- License
- Atribución-NoComercial-CompartirIgual 4.0 Internacional
id |
UNACIONAL2_d6f77517c4878b879194f3e2f8b658f0 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86924 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica |
dc.title.translated.eng.fl_str_mv |
Organic carbon stocks in mangroves of the Colombian Pacific and their relationship with the degree of anthropogenic intervention |
title |
Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica |
spellingShingle |
Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica 570 - Biología::577 - Ecología ECOLOGIA COSTERA MANGLARES BOSQUES TROPICALES ANATOMIA VEGETAL CICLO DEL CARBONO (BIOGEOQUIMICA) Coastal ecology Mangrove swamps Tropical forests Plant anatomy Carbon cycle (biogeochemistry) Manglar Carbono orgánico Intervención antrópica Servicios ecosistémicos Mangrove Organic Carbon Anthropogenic Intervention Ecosystem Services |
title_short |
Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica |
title_full |
Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica |
title_fullStr |
Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica |
title_full_unstemmed |
Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica |
title_sort |
Reservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópica |
dc.creator.fl_str_mv |
Gomez Garcia, Luisa Fernanda |
dc.contributor.advisor.spa.fl_str_mv |
Mancera Pineda, José Ernesto Perdomo Trujillo, Laura Victoria |
dc.contributor.author.spa.fl_str_mv |
Gomez Garcia, Luisa Fernanda |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología::577 - Ecología |
topic |
570 - Biología::577 - Ecología ECOLOGIA COSTERA MANGLARES BOSQUES TROPICALES ANATOMIA VEGETAL CICLO DEL CARBONO (BIOGEOQUIMICA) Coastal ecology Mangrove swamps Tropical forests Plant anatomy Carbon cycle (biogeochemistry) Manglar Carbono orgánico Intervención antrópica Servicios ecosistémicos Mangrove Organic Carbon Anthropogenic Intervention Ecosystem Services |
dc.subject.lemb.spa.fl_str_mv |
ECOLOGIA COSTERA MANGLARES BOSQUES TROPICALES ANATOMIA VEGETAL CICLO DEL CARBONO (BIOGEOQUIMICA) |
dc.subject.lemb.eng.fl_str_mv |
Coastal ecology Mangrove swamps Tropical forests Plant anatomy Carbon cycle (biogeochemistry) |
dc.subject.proposal.spa.fl_str_mv |
Manglar Carbono orgánico Intervención antrópica Servicios ecosistémicos |
dc.subject.proposal.eng.fl_str_mv |
Mangrove Organic Carbon Anthropogenic Intervention Ecosystem Services |
description |
ilustraciones, diagramas, fotografías, tablas |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-10-09T19:47:26Z |
dc.date.available.none.fl_str_mv |
2024-10-09T19:47:26Z |
dc.date.issued.none.fl_str_mv |
2024 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86924 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86924 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.indexed.spa.fl_str_mv |
N/A |
dc.relation.references.spa.fl_str_mv |
Adame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean & Coastal Management, 161, 117-126. https://doi.org/10.1016/J.OCECOAMAN.2018.04.019 Adame, M. Fernanda, Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52-60. https://doi.org/10.1016/J.FORECO.2017.08.016 Adame, Maria Fernanda, Kauffman, J. B., Medina, I., Gamboa, J. N., Torres, O., Caamal, J. P., Reza, M., & Herrera-Silveira, J. A. (2013). Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLOS ONE, 8(2), e56569. https://doi.org/10.1371/JOURNAL.PONE.0056569 Adame, Maria Fernanda, Teutli, C., Santini, N. S., Caamal, J. P., Zaldívar-Jiménez, A., Herńndez, R., & Herrera-Silveira, J. A. (2014). Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands, 34(3), 479-488. https://doi.org/10.1007/S13157-014-0514-5/FIGURES/4 Alongi, D. M. (1994). Zonation and seasonality of benthic primary production and community respiration in tropical mangrove forests. Oecologia 1994 98:3, 98(3), 320-327. https://doi.org/10.1007/BF00324220 Alongi, D. M. (2009). The Energetics of Mangrove Forests. Springer. Alongi, D. M., & Dixon, P. (2000). Mangrove primary production and above- and below-ground biomass in Sawi Bay, southern Thailand. Phuket Marine Biology Centre Special Publication, 22, 31-38. Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., & Klumpp, D. W. (2005). Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine, Coastal and Shelf Science, 63(4), 605-618. https://doi.org/10.1016/J.ECSS.2005.01.004 Alongi, D. M., Sasekumar, A., Chong, V. C., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., & Brunskill, G. J. (2004). Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land–ocean–atmosphere exchange in peninsular Malaysia. Marine Geology, 208(2-4), 383-402. https://doi.org/10.1016/J.MARGEO.2004.04.016 Alongi, Daniel M. (2002). Present state and future of the world’s mangrove forests. En Environmental Conservation (Vol. 29, Número 3, pp. 331-349). Cambridge University Press. https://doi.org/10.1017/S0376892902000231 Alongi, Daniel M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1-13. https://doi.org/10.1016/J.ECSS.2007.08.024 Alongi, Daniel M. (2011). Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environmental Science & Policy, 14(4), 462-470. https://doi.org/10.1016/J.ENVSCI.2011.02.004 Alongi, Daniel M. (2012). Carbon sequestration in mangrove forests. Carbon management, 3(3), 313-322. https://doi.org/10.4155/CMT.12.20 Alongi, Daniel M. (2014). Carbon Cycling and Storage in Mangrove Forests. Annual Review of Marine Science, 6(1), 195-219. https://doi.org/10.1146/annurev-marine-010213-135020 Alongi, Daniel M. (2018). Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 2018, Vol. 9, Page 596, 9(10), 596. https://doi.org/10.3390/F9100596 Apitz, S. E. (2012). Integrated Risk Assessments for the Management of Contaminated Sediments in Estuaries and Coastal Systems. Treatise on Estuarine and Coastal Science, 4, 311-338. https://doi.org/10.1016/B978-0-12-374711-2.00413-7 Arnaud, M., Krause, S., Norby, R. J., Dang, T. H., Acil, N., Kettridge, N., Gauci, V., & Ullah, S. (2023). Global mangrove root production, its controls and roles in the blue carbon budget of mangroves. Global Change Biology, 29(12), 3256-3270. https://doi.org/10.1111/GCB.16701 Arroyo Ponce, R., & Vargas Marin, L. A. (2020). Acciones de gobernanza comunitaria para reducir efectos de cambio climático en el consejo comunitario de comunidades negras de Bahía Málaga - Distrito de Buenaventura. Entorno Geográfico, 20, 23-41. https://doi.org/10.25100/eg.v0i20.10637 Ashworth, J., Keyes, D., Kirk, R., & Lessard, R. (2007). STANDARD PROCEDURE IN THE HYDROMETER METHOD FOR PARTICLE SIZE ANALYSIS. http://dx.doi.org.ezproxy.unal.edu.co/10.1081/CSS-100103897, 32(5-6), 633-642. https://doi.org/10.1081/CSS-100103897 Aşkin, T., & Özdemir, N. (2003). Soil bulk density as related to soil particle size distribution and organic matter content. Agriculture, 9(2), 52-55. ASTM D422-63. (2007). Standard Test Method for Particle-Size Analysis of Soils. Technical standard. ASTM International. Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523-528. https://doi.org/10.1038/nclimate3326 Ball, M. C., & Pidsley, S. M. (1995). Growth Responses to Salinity in Relation to Distribution of Two Mangrove Species, Sonneratia alba and S. lanceolata, in Northern Australia. Functional Ecology, 9(1), 77. https://doi.org/10.2307/2390093 Ball, Marilyn C., Cowan, I., & Farquhar, G. (1988). Maintenance of leaf temperature and the optimisation of carbon gain in relation to water loss in a tropical mangrove Forest. Functional Plant Biology, 15(2), 263. https://doi.org/https://doi.org/10.1071/PP9880263 Baux, N., Murat, A., Faivre, Q., Lesourd, S., Poizot, E., Méar, Y., Brasselet, S., & Dauvin, J. C. (2019). Sediment dynamic equilibrium, a key for assessing a coastal anthropogenic disturbance using geochemical tracers: Application to the eastern part of the Bay of Seine. Continental Shelf Research, 175, 87-98. https://doi.org/10.1016/J.CSR.2019.02.002 Benavides, A. M. S., Barboza, J. P., Rodríguez, F. M., Gairaud, C. G., Benavides, A. M. S., Barboza, J. P., Rodríguez, F. M., & Gairaud, C. G. (2015). Implicaciones sedimentológicas sobre el cambio en la cobertura del bosque de manglar en Boca Zacate, Humedal Nacional Térraba-Sierpe, Costa Rica. Revista de Biología Tropical, 63(3), 591-601. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442015000300591&lng=en&nrm=iso&tlng=es Bengtsson, L., & Enell, M. (1986). Chemical analysis. En B. E. Berglund (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 423-451). John Wiley & Sons Ldt. Bhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 24(2), 187-201. https://doi.org/10.1007/S11273-016-9483-1/TABLES/5 Blanco-Libreros, J. F., & Cantera, J. R. (1995). Patrones estructurales de algunos manglares de la Bahía de Buenaventura (Pacifico colombiano) y las condiciones hidrológicas y de intervención humana que los determinan. Delta del río San Juan, bahías de Málaga y Buenaventura, Pacifico colombiano. Universidad EAFIT-Universidad del Valle. Bolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145-155. https://doi.org/10.1016/J.RSMA.2017.12.011 Boone Kauffman, J., Arifanti, V. B., Hernández Trejo, H., del Carmen Jesús García, M., Norfolk, J., Cifuentes, M., Hadriyanto, D., & Murdiyarso, D. (2017). The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 15(4), 183-188. https://doi.org/10.1002/FEE.1482 Boone Kauffman, J., Fernanda Adame, M., Budi Arifanti, V., Schile-beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Del Carmen Jesus Garcia, M., Mackenzie, R. A., Patrick Megonigal, J., Murdiyarso, D., Simpson, L., Hern Andez Trejo, H., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., … Simpson, L. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), e01405. https://doi.org/10.1002/ECM.1405 Borges, A. C., Sanders, C. J., Santos, H. L. R., Araripe, D. R., Machado, W., & Patchineelam, S. R. (2009). Eutrophication history of Guanabara Bay (SE Brazil) recorded by phosphorus flux to sediments from a degraded mangrove area. MarPB, 58(11), 1750-1754. https://doi.org/10.1016/J.MARPOLBUL.2009.07.025 Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB003052 Bouillon, S., Dehairs, F., Schiettecatte, L. S., & Borges, A. V. (2007). Biogeochemistry of the Tana estuary and delta (northern Kenya). Limnology and Oceanography, 52(1), 46-59. https://doi.org/10.4319/LO.2007.52.1.0046 Bouillon, S., Moens, T., Overmeer, I., Koedam, N., & Dehairs, F. (2004). Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Marine Ecology Progress Series, 278, 77-88. https://doi.org/10.3354/MEPS278077 Bouyoucos, G. J. (1962). Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agronomy Journal, 54(5), 464-465. https://doi.org/10.2134/AGRONJ1962.00021962005400050028X Bulmer, R. H., Lundquist, C. J., & Schwendenmann, L. (2015). Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences, 12(20), 6169-6180. https://doi.org/10.5194/BG-12-6169-2015 Bulmer, Richard H., Schwendenmann, L., & Lundquist, C. J. (2016). Carbon and nitrogen stocks and below-ground allometry in temperate mangroves. Frontiers in Marine Science, 3(AUG), 205547. https://doi.org/10.3389/FMARS.2016.00150/BIBTEX Burchett, M. D., Clarke, C. J., Field, C. D., & Pulkownik, A. (1989). Growth and respiration in two mangrove species at a range of salinities. Physiologia Plantarum, 75(2), 299-303. https://doi.org/10.1111/J.1399-3054.1989.TB06185.X Cantera, J. R., & Blanco, J. F. (2001). The Estuary Ecosystem of Buenaventura Bay, Colombia. 265-280. https://doi.org/10.1007/978-3-662-04482-7_19 Castañeda-Moya, E., Twilley, R. R., Rivera-Monroy, V. H., Marx, B. D., Coronado-Molina, C., & Ewe, S. M. L. (2011). Patterns of Root Dynamics in Mangrove Forests Along Environmental Gradients in the Florida Coastal Everglades, USA. Ecosystems, 14(7), 1178-1195. https://doi.org/10.1007/S10021-011-9473-3/METRICS Castañeda, E. (2010). Landscape patterns of community structure, biomass and net primary productivity of mangrove forests in the Florida Coastal Everglades as a function of resources, regulators, hydroperiod, and hurricane disturbance. Ph.D. Dissertation [Louisiana State University]. https://repository.lsu.edu/cgi/viewcontent.cgi?article=3822&context=gradschool_dissertations Castellanos-Galindo, G. A., Cantera, J. R., Saint-Paul, U., & Ferrol-Schulte, D. (2014). Threats to mangrove social-ecological systems in the most luxuriant coastal forests of the Neotropics. Biodiversity and Conservation 2014 24:3, 24(3), 701-704. https://doi.org/10.1007/S10531-014-0827-Y Castellanos-Galindo, G. A., Casella, E., Tavera, H., Zapata Padilla, L. A., & Simard, M. (2021). Structural Characteristics of the Tallest Mangrove Forests of the American Continent: A Comparison of Ground-Based, Drone and Radar Measurements. Frontiers in Forests and Global Change, 4, 732468. https://doi.org/10.3389/FFGC.2021.732468/BIBTEX Castellanos-Galindo, G. A., Kluger, L. C., Camargo, M. A., Cantera, J., Mancera Pineda, J. E., Blanco-Libreros, J. F., & Wolff, M. (2021). Mangrove research in Colombia: Temporal trends, geographical coverage and research gaps. Estuarine, Coastal and Shelf Science, 248, 106799. https://doi.org/10.1016/j.ecss.2020.106799 Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. https://doi.org/10.1007/S00442-005-0100-X/METRICS Cormier, N., Twilley, R. R., Ewel, K. C., & Krauss, K. W. (2015). Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia, 750(1), 69-87. https://doi.org/10.1007/S10750-015-2178-4/TABLES/4 Correa, I., & Morton, R. (2010). Pacific Coast of Colombia. En E. C. F. Bird (Ed.), Encyclopedia of the World’s Coastal Landforms (pp. 193-198). Springer. https://doi.org/10.1007/978-1-4020-8639-7_29 Dahdouh-Guebas, F. (2011). World Atlas of Mangroves: Mark Spalding, Mami Kainuma and Lorna Collins (eds). Human Ecology, 39, 107-109. https://doi.org/10.1007/s10745-010-9366-7 De Lacerda, L. D., Ferreira, A. C., Ward, R., & Borges, R. (2022). Editorial: Mangroves in the Anthropocene: From local change to global challenge. Frontiers In Forests And Global Change, 5. https://doi.org/10.3389/ffgc.2022.993409 Del Río, A. (1945). Reconocimiento geológico de la Bahía de Málaga, departamento del Valle del Cauca. Servicio Geológico Nacional (SGNC), 15. Donato, D. C., Kauffman, J. B., Mackenzie, R. A., Ainsworth, A., & Pfleeger, A. Z. (2012). Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of Environmental Management, 97(1), 89-96. https://doi.org/10.1016/J.JENVMAN.2011.12.004 Donato, Daniel C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293-297. https://doi.org/10.1038/ngeo1123 Duarte, C. M., Middelburg, J. J., & Caraco, N. (2004). Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2(1), 1-8. https://doi.org/10.5194/BG-2-1-2005 Eid, E. M., Khedher, K. M., Ayed, H., Arshad, M., Moatamed, A., & Mouldi, A. (2020). Evaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi Arabia. Oceanologia, 62(2), 200-213. https://doi.org/10.1016/J.OCEANO.2019.12.001 Elwin, A., Bukoski, J. J., Jintana, V., Robinson, E. J. Z., & Clark, J. M. (2019). Preservation and recovery of mangrove ecosystem carbon stocks in abandoned shrimp ponds. Scientific Reports 2019 9:1, 9(1), 1-10. https://doi.org/10.1038/s41598-019-54893-6 Estrada, G. C. D., & Soares, M. L. G. (2017). Global patterns of aboveground carbon stock and sequestration in mangroves. Anais da Academia Brasileira de Ciências, 89(2), 973-989. https://doi.org/10.1590/0001-3765201720160357 FAO. (2023). The world’s mangroves: 2000 - 2020. https://doi.org/10.4060/cc7044en Feller, I. C., Whigham, D. F., McKee, K. L., & Lovelock, C. E. (2003). Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia, 134(3), 405-414. https://doi.org/10.1007/S00442-002-1117-Z/FIGURES/2 Field, C. D. (1999). Charter for Mangroves. En A. Yáñez-Arancibia & A. L. Lara-Domínquez (Eds.), Ecosistemas de Manglar en América Tropical (pp. 1-4). Florida, F., Eugenia, B., & Sánchez, G. (2005). Belowground productivity of mangrove forests in southwest Florida. LSU Doctoral Dissertations. https://doi.org/10.31390/gradschool_dissertations.1652 Furukawa, K., & Wolanski, E. (1996). Sedimentation in mangrove forests. Mangroves and Salt Marshes, 1, 3-10. Furukawa, K., Wolanski, E., & Mueller, H. (1997). Currents and Sediment Transport in Mangrove Forests. Estuarine, Coastal and Shelf Science, 44(3), 301-310. https://doi.org/10.1006/ECSS.1996.0120 Gillis, L. G., Belshe, E. F., & Narayan, G. R. (2017). Deforested Mangroves Affect the Potential for Carbon Linkages between Connected Ecosystems. Estuaries and Coasts, 40(4), 1207-1213. https://doi.org/10.1007/S12237-017-0210-9/FIGURES/3 Gómez García, L. F., Quesada Mora, C. A., Peña Salamanca, E. J., Perdomo Trujillo, L. V., & Mancera Pineda, J. E. (2024). Carbon reserves in deltaic mangroves of the Colombian Pacific across different disturbance degrees. Bulletin Of Marine Science. Todavía no publicado. https://doi.org/10.5343/bms.2023.0142 Grellier, S., Janeau, J. L., Dang Hoai, N., Nguyen Thi Kim, C., Le Thi Phuong, Q., Pham Thi Thu, T., Tran-Thi, N. T., & Marchand, C. (2017). Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam). Science of The Total Environment, 593-594, 654-663. https://doi.org/10.1016/J.SCITOTENV.2017.03.204 Guevara-Fletcher, C. E., Cantera Kintz, J. R., Mejía-Ladino, L. M., & Cortés, F. A. (2011). Benthic Macrofauna Associated with Submerged Bottoms of a Tectonic Estuary in Tropical Eastern Pacific. Journal of Marine Biology, 2011, 1-13. https://doi.org/10.1155/2011/193759 Guzmán, A. I., Selvaraj, J. J., & Martínez, A. (2012). Variabilidad espacial y temporal de parámetros físico-químicos en la Bahía de Tumaco. Acta Agronómica, 61(5), 20-21. Guzmán, A. I., Zambrano-Ortíz, M. M., Casanova-Rosero, R. F., Selvaraj, J. J., & Martínez, A. (2014). La condición ecológica de la bahía de Tumaco (Pacífico colombiano): evaluación de la calidad del agua y del fitoplancton. Boletín Científico CIOH, 32, 3-16. Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729-738. https://doi.org/10.1111/geb.12449 Hamilton, S. E., & Friess, D. A. (2018). Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change 2018 8:3, 8(3), 240-244. https://doi.org/10.1038/s41558-018-0090-4 Havanond, S., & Maxwell, G. S. (1996). Strategies for mangrove restration. FORTROP, 10, 21-36. Hayes, M. A., Jesse, A., Tabet, B., Reef, R., Keuskamp, J. A., & Lovelock, C. E. (2017). The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands. Plant and Soil, 416(1-2), 193-204. https://doi.org/10.1007/S11104-017-3206-0/FIGURES/4 He, Z., Peng, Y., Guan, D., Hu, Z., Chen, Y., & Lee, S. Y. (2018). Appearance can be deceptive: shrubby native mangrove species contributes more to soil carbon sequestration than fast-growing exotic species. Plant and Soil, 432(1-2), 425-436. https://doi.org/10.1007/S11104-018-3821-4/FIGURES/4 Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101-110. https://doi.org/10.1023/A:1008119611481/METRICS Holling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology and systematics, 4(1), 1-23. Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewki, M. (2014). Coastal blue carbon: methods for assessing carbon stock and emission factors in mangroves, tidal salt marshes, and seagrasses. En J. Howard, S. Hoyt, K. Isensee, E. Pidgeon, & M. Telszewki (Eds.), Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. Indoria, A. K., Sharma, K. L., & Reddy, K. S. (2020). Hydraulic properties of soil under warming climate. Climate Change and Soil Interactions, 473-508. https://doi.org/10.1016/B978-0-12-818032-7.00018-7 Instituto Colombiano de Normas Técnicas y Certificación. (2011). Análisis de suelos, Determinación del Nitrógeno Total (NTC 5889:2011). Instituto Colombiano de Normas Técnicas y Certificación. (2020). Calidad del suelo. Determinación de fósforo disponible (NTC 5350:2020). Instituto Colombiano de Normas Técnicas y Certificación. (2021). Calidad de suelo. Determinación del carbono orgánico (NTC 5403 2006-02-22). https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-del-carbono-organico-ntc5403-2021.html INVEMAR; Univalle e INCIVA. (2006). BIOMÁLAGA: Valoración de la biodiversidad marina y costera de Bahía Málaga (Valle del Cauca), como uno de los instrumentos necesarios para que sea considerada un área protegida. http://www.invemar.org.co/documents/10182/13789/9860IF_BIOMALAGA2007.pdf/9ee8dadb-a43e-46aa-a9d5-7c6cfb3c40c5 INVEMAR. (2022). Mapa de Manglares de Colombia. https://siam.invemar.org.co/cifras_siam#manglCar Jennerjahn, T. C. (2020). Relevance and magnitude of «Blue Carbon» storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks. Estuarine, Coastal and Shelf Science, 247, 107027. https://doi.org/10.1016/J.ECSS.2020.107027 Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 2001 89:1, 89(1), 23-30. https://doi.org/10.1007/S00114-001-0283-X Kalyn, A. L., & Van Rees, K. C. J. (2006). Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in Saskatchewan. Agricultural and Forest Meteorology, 140(1-4), 236-243. https://doi.org/10.1016/J.AGRFORMET.2005.08.019 Kauffman, J. B., Donato, D. C., & Adame, M. F. (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. CIFOR, 117. Kauffman, J. Boone, Heider, C., Cole, T. G., Dwire, K. A., & Donato, D. C. (2011). Ecosystem carbon stocks of micronesian mangrove forests. Wetlands, 31(2), 343-352. https://doi.org/10.1007/s13157-011-0148-9 Kauffman, J. Boone, Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518-527. https://doi.org/10.1890/13-0640.1 Kauffman, J. K., & Bhomia, R. K. (2017). Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLOS ONE, 12(11), e0187749. https://doi.org/10.1371/JOURNAL.PONE.0187749 Kauffman, J.B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. CIFOR. https://doi.org/10.17528/CIFOR/003749 Kelleway, J. J., Cavanaugh, K., Rogers, K., Feller, I. C., Ens, E., Doughty, C., & Saintilan, N. (2017). Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology, 23(10), 3967-3983. https://doi.org/10.1111/gcb.13727 Khan, M. N. I., Suwa, R., & Hagihara, A. (2009). Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management, 17(6), 585-599. https://doi.org/10.1007/S11273-009-9136-8/FIGURES/9 Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für Analytische Chemie, 22(1), 366-382. https://doi.org/10.1007/BF01338151/METRICS Komiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S., & Miyagi, T. (2000). Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. Forest Ecology and Management, 139(1-3), 127-134. https://doi.org/10.1016/S0378-1127(99)00339-4 Komiyama, A., Ogino, K., Aksornkoae, S., & Sabhasri, S. (1987). Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology, 3(2), 97-108. https://doi.org/10.1017/S0266467400001826 Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128-137. https://doi.org/10.1016/J.AQUABOT.2007.12.006 Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471-477. https://doi.org/10.1017/S0266467405002476 Krauss, K. W., & Ball, M. C. (2013). On the halophytic nature of mangroves. Trees - Structure and Function, 27(1), 7-11. https://doi.org/10.1007/S00468-012-0767-7/FIGURES/1 Krauss, K. W., Mckee, K. L., Lovelock, C. E., Cahoon, D. R., Saintilan, N., Reef, R., & Chen, L. (2014). How mangrove forests adjust to rising sea level. En New Phytologist (Vol. 202, Número 1, pp. 19-34). John Wiley & Sons, Ltd. https://doi.org/10.1111/nph.12605 Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2), 201-219. https://doi.org/10.1016/J.AQUABOT.2007.12.005 Kusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M., Ransby, D., & Jennerjahn, T. C. (2019). Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218, 310-323. https://doi.org/10.1016/j.ecss.2018.12.007 Laffoley, D., & Grimsditch, G. (2009). The Management of Natural Coastal Carbon Sinks . www.iucn.org/marine Lagomasino, D., Fatoyinbo, T., Castañeda-Moya, E., Cook, B. D., Montesano, P. M., Neigh, C. S., & Morton, D. C. (2021). Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nature Comunicativos, 12(1), 1-8. Lagomasino, D., Fatoyinbo, T., Lee, S., Feliciano, E., Trettin, C., Shapiro, A., & Mangora, M. M. (2019). Measuring mangrove carbon loss and gain in deltas. Environmental Research Letters, 14(2), 025002. Leal, M., & Spalding, M. D. (Eds.). (2022). The State of the World’s Mangroves 2022. Global Mangrove Alliance. https://www.mangrovealliance.org/mangrove-forests/ Lee, S. Y. (2016). From blue to black: Anthropogenic forcing of carbon and nitrogen influx to mangrove-lined estuaries in the South China Sea. Marine Pollution Bulletin, 109(2), 682-690. https://doi.org/10.1016/j.marpolbul.2016.01.008 Lin, Q., Chen, L., Zhang, J., Wang, L., Yu, X., & Guo, Q. (2023). How fine root turnover functions during mangrove root zone expansion and affects belowground carbon processes. Plant and Soil, 488(1-2), 451-463. https://doi.org/10.1007/S11104-023-05985-W/TABLES/3 López-Angarita, J., Roberts, C. M., Tilley, A., Hawkins, J. P., & Cooke, R. G. (2016). Mangroves and people: Lessons from a history of use and abuse in four Latin American countries. En Forest Ecology and Management (Vol. 368, pp. 151-162). Elsevier B.V. https://doi.org/10.1016/j.foreco.2016.03.020 Lovelock, C. E., Feller, I. C., Reef, R., & Ruess, R. W. (2014). Variable effects of nutrient enrichment on soil respiration in mangrove forests. Plant and Soil, 379(1-2), 135-148. https://doi.org/10.1007/S11104-014-2036-6/FIGURES/6 Lovelock, C. E., Ruess, R. W., & Feller, I. C. (2011). CO2 Efflux from Cleared Mangrove Peat. PLOS ONE, 6(6), e21279. https://doi.org/10.1371/JOURNAL.PONE.0021279 Lozada Ordóñez, L., Dias da Cruz, D., & Oliveira de Andrade, M. (2018). Ecosystem services and use of Afro-descendant land in the Colombian North Pacific: Transformations in the traditional production system. Land Use Policy, 75, 631-641. https://doi.org/10.1016/j.landusepol.2018.01.043 Mackenzie, R. A., Foulk, P. B., Van Klump, J., Weckerly, K., Purbopuspito, J., Murdiyarso, D., Donato, D. C., & Vien, N. N. (2016). Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves. Mackey, A. P. (1993). Biomass of the mangrove Avicennia marina (Forsk.) Vierh. Near Brisbane, South-eastern Queensland. Marine and Freshwater Research, 44(5), 721-725. https://doi.org/10.1071/MF9930721 Macreadie, P. I., Allen, K., Kelaher, B. P., Ralph, P. J., & Skilbeck, C. G. (2012). Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Global Change Biology, 18(3), 891-901. https://doi.org/10.1111/J.1365-2486.2011.02582.X MADS. (2011). Manglares: Los manglares de Colombia. https://www.minambiente.gov.co/index.php/component/content/article?id=412:plantilla-bosques-biodiversidad-y-servicios-ecosistematicos-14 Málikov, I., & Camacho Guerrero, G. A. (1998). Método de aproximación para determinar cambios entreanuales aplicado a parámetros de temperatura y salinidad del Pacífico colombiano. Boletín Científico CCCP, 7, 30-41. https://doi.org/10.26640/01213423.7.30_41 Mancera-Pineda, J. E., Twilley, R. R., & Rivera-Monroy, V. H. (2009). Carbono (δ 13 C) y nitrógeno (δ 15 N) discriminación isotópica en manglares de los Everglades costeros de Florida en función del estrés ambiental. Contribución Mar Sci, 38, 109-129. Martínez Ortega, Á. P., Patiño Yepes, Á. A., Riascos Araujo, A. D., Mosquera Arturo, E. J., Pepinosa Bravo, H. E., & Montoya Rivera, J. J. (2022). Goce efectivo del derecho a la educación: Una mirada desde Tumaco, Nariño. UNIMAR. Mazda, Y., Magi, M., Kogo, M., & Hong, P. N. (1997). Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves and Salt Marshes, 1, 127-135. Mckee, K.L. (1993). Soil Physicochemical Patterns and Mangrove Species Distribution--Reciprocal Effects? Journal of Ecology, 81(3), 477-487. https://doi.org/10.2307/2261526 Mckee, Karen L., Cahoon, D. R., & Feller, I. C. (2007). Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16(5), 545-556. https://doi.org/10.1111/J.1466-8238.2007.00317.X McLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. En Frontiers in Ecology and the Environment (Vol. 9, Número 10, pp. 552-560). John Wiley & Sons, Ltd. https://doi.org/10.1890/110004 Medina-Calderón, J. H., Mancera-Pineda, J. E., Castañeda-Moya, E., & Rivera-Monroy, V. H. (2021). Hydroperiod and Salinity Interactions Control Mangrove Root Dynamics in a Karstic Oceanic Island in the Caribbean Sea (San Andres, Colombia). Frontiers in Marine Science, 7, 598132. https://doi.org/10.3389/FMARS.2020.598132/BIBTEX Medina-Contreras, D., Arenas-González, F., Cantera-Kintz, J., Sánchez-González, A., & Giraldo, A. (2020). Food web structure and isotopic niche in a fringe macro-tidal mangrove system, Tropical Eastern Pacific. Hydrobiologia, 847(15), 3185-3199. https://doi.org/10.1007/S10750-020-04295-X/FIGURES/3 Medina Contreras, D., Cantera Kintz, J., Sánchez González, A., & Mancera, E. (2018). Food Web Structure and Trophic Relations in a Riverine Mangrove System of the Tropical Eastern Pacific, Central Coast of Colombia. Estuaries and Coasts, 41(5), 1511-1521. https://doi.org/10.1007/s12237-017-0350-y Mejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R., & Hamilton, S. E. (2018). A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuarine, Coastal and Shelf Science, 212, 233-240. https://doi.org/10.1016/j.ecss.2018.07.020 Michigan State University. (2008, julio 1). Protocol - Particle Size Analysis ‒ Hydrometer Method. https://lter.kbs.msu.edu/protocols/108 Monika, N., & Yadav, A. (2021). A Holistic Study on Impact of Anthropogenic Activities over the Mangrove Ecosystem and Their Conservation Strategies. En Coastal research library (pp. 265-284). https://doi.org/10.1007/978-3-030-84255-0_11 Monsalve, A., Herrera, D., & Bolivar, J. (2015). Caracterización de la estructura y contenido de carbono de diez parcelas permanentes establecidas en el área de jurisdicción del consejo comunitario La Plata, Bahía Málaga, Valle del Cauca (p. 58). Centro de investigación en ecosistemas y cambio global. Carbono y Bosques. Montagut Cifuentes, E. A., & Cabrera Luna, E. E. (1997). Situación de Riesgo En La Ensenada de Tumaco. Boletín Científico Centro de Control de Contaminación del Pacifico (CERRADO EN 2009), 6, 7-28. Murdiyarso, D., Donato, D., Kauffman, J. B., Kurnianto, S., Stidham, M., & Kanninen, M. (2009). Carbon storage in mangrove and peatland ecosystems: A preliminary account from plots in Indonesia. Working paper 48. Bogor Banat, Indonesia: Center for International Forestry Research, 1-35. www.cifor.cgiar.org Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., & Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 5(12), 1089-1092. https://doi.org/10.1038/nclimate2734 Nguyen, H. T., Stanton, D. E., Schmitz, N., Farquhar, G. D., & Ball, M. C. (2015). Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. Annals of Botany, 115(3), 397-407. https://doi.org/10.1093/AOB/MCU257 Nixon, S. (1980). Between coastal marshes and coastal waters: a review of 20 years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. En P. Hamilton & K. MacDonald (Eds.), Estuarine and Wetland Processes (pp. 437-525). Plenum Press. Nóbrega, G. N., Ferreira, T. O., Siqueira Neto, M., Mendonça, E. de S., Romero, R. E., & Otero, X. L. (2019). The importance of blue carbon soil stocks in tropical semiarid mangroves: a case study in Northeastern Brazil. Environmental Earth Sciences, 78(12), 1-10. https://doi.org/10.1007/S12665-019-8368-Z/TABLES/2 Odum, E. P. (1980). The status of three ecosystem level hypotheses regarding salt marshes: tidal subsidy, outwelling and the detritus based food chain. En V. S. Kennedy (Ed.), Estuarine Perspectives (pp. 485-496). Academic Press. Odum, W. E., & Heald, E. . (1972). “Trophic analyses of an estuarine mangrove community”. Bulletin of Marine Science, 22, 671-738. Odum, W. E., & Heald, E. J. (1975). The detritus-based food web of an estuarine mangrove community. En L. E. Cronin (Ed.), Estuarine Research (pp. 265-286). Academic Press. Odum, W. E., McIvor, C. C., & Smith, T. J. (1982). The ecology of the mangroves of south Florida: A community profile. Fish and Wildlife Service/ Office of Biological Services. Osorio Garcés, C. E. (2018). Representaciones y Epistemes Locales sobre la naturaleza en el Pacifíco sur de Colombia. Universidad del Cauca. Otero, E., Mosquera, L., Silva, G., & Guzmán, J. (2007). Deltas y Estuarios de Colombia. Colección Ecológica del Banco de Occidente. https://www.imeditores.com/banocc/deltas/cap7.htm Otero, X. L., Méndez, A., Nóbrega, G. N., Ferreira, T. O., Santiso-Taboada, M. J., Meléndez, W., & Macías, F. (2017). High fragility of the soil organic C pools in mangrove forests. Marine Pollution Bulletin, 119(1), 460-464. https://doi.org/10.1016/J.MARPOLBUL.2017.03.074 Ouyang, X., Guo, F., & Lee, S. Y. (2024). Multiple drivers for carbon stocks and fluxes in different types of mangroves. Science of The Total Environment, 906, 167511. https://doi.org/10.1016/J.SCITOTENV.2023.167511 Palacios, M. L., & Cantera, J. R. (2017). Mangrove timber use as an ecosystem service in the Colombian Pacific. Hydrobiologia, 803(1), 345-358. https://doi.org/10.1007/s10750-017-3309-x Palacios Moreno, M. A., Vargas Polonia, E. L., & De la Pava, M. L. (1990). Determinación del aporte de materia orgánica del manglar en la zona de Bocagrande. Boletín Científico CCCP, 1, 55-72. https://ojs.dimar.mil.co/index.php/CCCP/article/download/297/403 Palacios Peñaranda, M. L., Cantera Kintz, J. R., & Peña Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227, 106299. https://doi.org/10.1016/J.ECSS.2019.106299 Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., & Baldera, A. (2012). Estimating Global «Blue Carbon» Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE, 7(9), e43542. https://doi.org/10.1371/journal.pone.0043542 Perdomo-Trujillo, L. V. (2020). Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribucción a las reservas de carbono en el ecosistema. Universidad Nacional de Colombia. Perdomo-Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderón, J. H., Sánchez-Núñez, D. A., & Schnetter, M.-L. (2021). Effect of Restoration Actions on Organic Carbon Pools in the Lagoon—Delta Ciénaga Grande de Santa Marta, Colombian Caribbean. Water, 13(9), 1297. https://doi.org/10.3390/w13091297 Perdomo Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderon, J. H., Zimmer, M., & Schnetter, M. L. (2021). Massive loss of aboveground biomass and its effect on sediment organic carbon concentration: Less mangrove, more carbon? Estuarine, Coastal and Shelf Science, 248, 106888. https://doi.org/10.1016/J.ECSS.2020.106888 Perea-Ardila, M. A., Oviedo-Barrero, F., & Leal-Villamil, J. (2019). Mangrove forest mapping through remote sensing imagery: Study case for Buenaventura, Colombia. Revista de Teledeteccion, 2019(53), 73-86. https://doi.org/10.4995/raet.2019.11684 Pérez, A., Machado, W., Gutiérrez, D., Borges, A. C., Patchineelam, S. R., & Sanders, C. J. (2018). Carbon accumulation and storage capacity in mangrove sediments three decades after deforestation within a eutrophic bay. Marine Pollution Bulletin, 126, 275-280. https://doi.org/10.1016/J.MARPOLBUL.2017.11.018 Pérez, Alexander, Libardoni, B. G., & Sanders, C. J. (2018). Factors influencing organic carbon accumulation in mangrove ecosystems. Biology Letters, 14(10). https://doi.org/10.1098/RSBL.2018.0237 Pickett, S. T. A., & White, P. S. (Eds.). (1985). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press. Poveda, G., & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 1675-1678. https://doi.org/10.1029/1999GL006091 Queiroz, L. de S., Rossi, S., Calvet-Mir, L., Ruiz-Mallén, I., García-Betorz, S., Salvà-Prat, J., & Meireles, A. J. de A. (2017). Neglected ecosystem services: Highlighting the socio-cultural perception of mangroves in decision-making processes. Ecosystem Services, 26, 137-145. https://doi.org/10.1016/j.ecoser.2017.06.013 Ragavan, P., Rahman, A., Sarkar, S., Verma, S., Jeeva, C., Mohan, P. M., & Kumar, S. (2023). Variability in soil organic carbon stock and isotopic signature in tropical island mangrove forests of India. Regional Environmental Change, 23(4), 1-12. https://doi.org/10.1007/S10113-023-02130-2/FIGURES/3 Rahman, M. M., Zimmer, M., Ahmed, I., Donato, D., Kanzaki, M., & Xu, M. (2021). Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nature Communications 2021 12:1, 12(1), 1-9. https://doi.org/10.1038/s41467-021-24207-4 Ramanathan, A., Rajkumar, K., Majumdar, J., Singh, G., Behera, P., Santra, S., & Chidambaram, S. (2009). Textural characteristics of the surface sediments of a tropical mangrove Sundarban ecosystem India. Indian Journal of Marine Sciences. Rangel-Ch., J. O. (2011). Ecosistemas del Chocó Biogegráfico: Síntesis final. En J. O. Rangel-Ch. (Ed.), Colombia Diversidad Biótica IV: El Chocó biogeográfico/Costa Pacífica (pp. 937-976). Universidad Nacional de Colombia. Reef, R., Winter, K., Morales, J., Adame, M. F., Reef, D. L., & Lovelock, C. E. (2015). The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities. Physiologia Plantarum, 154(3), 358-368. https://doi.org/10.1111/PPL.12289 Saintilan, N. (1997). Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River estuary, New South Wales. Marine Freshwater Research, 48, 147-152. Saintilan, N., Rogers, K., Mazumder, D., & Woodroffe, C. (2013). Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science, 128, 84-92. https://doi.org/10.1016/J.ECSS.2013.05.010 Saldarriaga, J. G., Duque, A. J., & Álvarez, E. (2011). Modelos para la estimación de la biomasa y el carbono en diferentes tipos de bosque del choco biogeográfico, Colombia: manglar, guandal y bosques de colina localizados en los Consejos Comunitarios de Bajo Mira y Concosta a partir de los datos colectados e (p. 22). Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Ministerio de Medio Ambiente, Vivienda y Desarrollo Territorial (MAVDT), Fundación Natura, Fundación Gordon y Betty Moore – USAID. Sánchez-Páez, H., Alvarez-León, R., Guevara-Mancera, O., Zamora-Guzmán, A., Rodríguez-Cruz, H., & Bravo-Pazmiño, H. (1997). Diagnostico y Zonificación preliminar de los manglares del Pacífico de Colombia (H. Sánchez-Páez & R. Alvarez-Leon (Eds.)). Ministerio del Medio Ambiente. http://www.itto.int/files/user/pdf/publications/PD171 91/pd171-91-p1-1 Rev1(F) s.pdf Sasmito, S. D., Sillanpää, M., Hayes, M. A., Bachri, S., Saragi-Sasmito, M. F., Sidik, F., Hanggara, B. B., Mofu, W. Y., Rumbiak, V. I., Hendri, Taberima, S., Suhaemi, Nugroho, J. D., Pattiasina, T. F., Widagti, N., Barakalla, Rahajoe, J. S., Hartantri, H., Nikijuluw, V., … Murdiyarso, D. (2020). Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change. Global Change Biology, 26(5), 3028-3039. https://doi.org/10.1111/GCB.15056 Sasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25(12), 4291-4302. https://doi.org/10.1111/GCB.14774 Schelske, C., & Odum, E. (1961). Mechanisms maintaining high productivity in Georgia estuaries. Proceedings of the Gulf and Caribbean Fisheries Institute, 75-80. SGC- Servicio Geológico Colombiano. (2013). Anexo A susceptibilidad por geología. En Documento metodológico de la zonificación de susceptibilidad y amenaza relativa por movimientos en masa escala 1:100.000 (Versión 2, p. 12). Shaltout, K. H., Ahmed, M. T., Alrumman, S. A., Ahmed, D. A., & Eid, E. M. (2020). Evaluation of the carbon sequestration capacity of arid mangroves along nutrient availability and salinity gradients along the Red Sea coastline of Saudi Arabia. Oceanologia, 62(1), 56-69. https://doi.org/10.1016/J.OCEANO.2019.08.002 Sherman, R. E., Fahey, T. J., & Martinez, P. (2003). Spatial Patterns of Biomass and Aboveground Net Primary Productivity in a Mangrove Ecosystem in the Dominican Republic. Ecosystems, 6(4), 384-398. Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2018). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 2018 12:1, 12(1), 40-45. https://doi.org/10.1038/s41561-018-0279-1 Simpson, L. T., Feller, I. C., & Chapman, S. K. (2013). Effects of competition and nutrient enrichemnt on Avicennia germinans in the salt marsh-mangrove ecotone. Aquatic Botany, 104, 55-59. https://doi.org/10.1016/J.AQUABOT.2012.09.006 Sousa, W. P. (1984). The role of disturbance in natural communities. Annual review of ecology and systematics, 15(1), 353-391. Steinmetz, Z. (2007). Particle size estimation using the hydrometer method modified from ASTM D422-63 (2007) and Bouyoucos (1927). https://cran.r-project.org/web/packages/envalysis/vignettes/texture.html Stokes, D. J., & Harris, R. J. (2015). Sediment properties and surface erodibility following a large-scale mangrove (Avicennia marina) removal. Continental Shelf Research, 107, 1-10. https://doi.org/10.1016/J.CSR.2015.07.011 Suman, D. (2007). Development of an integrated coastal management plan for the Gulf of San Miguel and Darien Province, Panama: Lessons from the experience. Ocean & Coastal Management, 50(8), 634-660. https://doi.org/10.1016/J.OCECOAMAN.2007.03.007 Sweetman, A. K., Middelburg, J. J., Berle, A. M., Bernardino, A. F., Schander, C., Demopoulos, A. W. J., & Smith, C. R. (2010). Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments. Biogeosciences, 7(7), 2129-2145. https://doi.org/10.5194/BG-7-2129-2010 Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297. https://doi.org/10.1016/J.FORECO.2008.06.026 Tanner, M. K., Moity, N., Costa, M. T., Marin Jarrin, J. R., Aburto-Oropeza, O., & Salinas-de-León, P. (2019). Mangroves in the Galapagos: Ecosystem services and their valuation. Ecological Economics, 160, 12-24. https://doi.org/10.1016/j.ecolecon.2019.01.024 Tue, N. T., Thai, N. D., & Nhuan, M. T. (2020). Carbon storage potential of mangrove forests from Northeastern Vietnam. Regional Studies in Marine Science, 40, 101516. https://doi.org/10.1016/J.RSMA.2020.101516 Twilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution 1992 64:1, 64(1), 265-288. https://doi.org/10.1007/BF00477106 Twilley, Robert R., Rovai, A. S., & Riul, P. (2018). Coastal morphology explains global blue carbon distributions. Frontiers in Ecology and the Environment, 16(9), 503-508. https://doi.org/10.1002/FEE.1937 Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove Forests: One of the World’s Threatened Major Tropical Environments. BioScience, 51(10), 807-815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2 Vanacker, V., & Ortega, R. (2013). Dynamic soil properties in response to anthropogenic disturbance. EGUGA. https://ui.adsabs.harvard.edu/abs/2013EGUGA..15..908V/abstract Walkley, A., & Black, I. A. (1934). An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003 Warner, R., Kaidonis, M., Dun, O., Rogers, K., Shi, Y., Nguyen, T. T. X., & Woodroffe, C. D. (2016). Opportunities and challenges for mangrove carbon sequestration in the Mekong River Delta in Vietnam. Sustainability Science, 11(4), 661-677. https://doi.org/10.1007/s11625-016-0359-3 West, R. C. (1956). Mangrove swamps of the pacific coast of colombia. Annals of the Association of American Geographers, 46(1), 98-121. https://doi.org/10.1111/J.1467-8306.1956.TB01498.X Wolanski, E., Huan, N. N., Dao, L. T., Nhan, N. H., & Thuy, N. N. (1996). Fine-sediment Dynamics in the Mekong River Estuary, Vietnam. Estuarine, Coastal and Shelf Science, 43(5), 565-582. https://doi.org/10.1006/ECSS.1996.0088 Worthington, T. A., zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71194-5 Wu, J., & Loucks, O. L. (1995). From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. The Quarterly review of biology, 70(4), 439-466. Xiong, Y., Liu, X., Guan, W., Liao, B., Chen, Y., Li, M., & Zhong, C. (2017). Fine root functional group based estimates of fine root production and turnover rate in natural mangrove forests. Plant and Soil, 413(1-2), 83-95. https://doi.org/10.1007/S11104-016-3082-Z/FIGURES/7 Yin, L., Zhang, T., Dijkstra, F. A., Huo, C., Wang, P., & Cheng, W. (2021). Priming effect varies with root order: A case of Cunninghamia lanceolata. Soil Biology and Biochemistry, 160, 108354. https://doi.org/10.1016/J.SOILBIO.2021.108354 Zakaria, R. M., Chen, G., Chew, L. L., Sofawi, A. B., Moh, H. H., Chen, S., Teoh, H. W., & Adibah, S. Y. S. N. (2021). Carbon stock of disturbed and undisturbed mangrove ecosystems in Klang Straits, Malaysia. Journal of Sea Research, 176, 102113. https://doi.org/10.1016/J.SEARES.2021.102113 Zarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5), e0126627. https://doi.org/10.1371/journal.pone.0126627 Zhang, J. P., Shen, C. De, Ren, H., Wang, J., & Han, W. D. (2012). Estimating Change in Sedimentary Organic Carbon Content During Mangrove Restoration in Southern China Using Carbon Isotopic Measurements. Pedosphere, 22(1), 58-66. https://doi.org/10.1016/S1002-0160(11)60191-4 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-sa/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-CompartirIgual 4.0 Internacional http://creativecommons.org/licenses/by-nc-sa/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
143 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.city.spa.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86924/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86924/2/1032473518.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86924/3/1032473518.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a c856cc335414d60dc7fe88a0f8ae6119 8d54ad4073fb7c711a4873d5d4070d9f |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089918749605888 |
spelling |
Atribución-NoComercial-CompartirIgual 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-sa/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Mancera Pineda, José Ernesto7d14e54e5998aedcb38949d9e509e0cbPerdomo Trujillo, Laura Victoriaf185dce188f90075bad2ad1d32a788b4600Gomez Garcia, Luisa Fernandaff9a01f1e2a4a82368fcd23073ae40116002024-10-09T19:47:26Z2024-10-09T19:47:26Z2024https://repositorio.unal.edu.co/handle/unal/86924Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografías, tablasLos bosques de manglar, a pesar de ocupar menos del 1% del área total de bosques tropicales, representan aproximadamente el 3% del secuestro de carbono por los bosques tropicales del mundo. Los bosques de manglares capturan y almacenan carbono orgánico (CO), lo que les otorga un papel fundamental en la mitigación del cambio climático. Sin embargo, son objeto de perturbaciones antrópicas que afectan negativamente su estructura y funcionamiento. El objetivo de este estudio fue evaluar: (i) la relación del CO con la modificación de la estructura vegetal por acción antrópica, con la hipótesis de que, a menor grado de perturbación, mayor sería el CO en los bosques. (ii) la relación del CO en sedimentos con la profundidad del suelo en bosques con diferentes grados de intervención antrópica, donde se manejó la hipótesis que bosques conservados tendrían mayor CO en las capas superficiales, y bosques perturbados en las capas más profundas. (iii) el CO desde la costa hacía el interior en bosques con diferentes grados de intervención antrópica, con la hipótesis de mayores reservas de CO en el interior del bosque respecto a la linea de costa y (iv) el efecto de la intervención antrópica en los contenidos de carbono orgánico. El análisis consideró el CO sobre el suelo (biomasa aérea y necromasa) y bajo el suelo (biomasa subterránea y sedimentos) de seis bosques de manglares de la costa del Pacífico Colombiano con diferentes grados de intervención antrópica y de múltiples usos. Los resultados confirmaron la primera hipótesis, donde los bosques conservados y maduros presentaron las mayores reservas de CO (con valores que oscilaron entre 401,3 y 535,4 Mg C ha-1), en comparación con bosques con fuertes perturbaciones antrópicas (con valores que oscilaron entre 247,2 y 342,1 Mg C ha-1). También se confirmó la segunda hipótesis, con mayores reservas de CO en sedimentos en las capas superficiales en los bosques con nula o poca perturbación antrópica. Patrón contrario al que presentaron los bosques perturbados. Se evidenció que la perturbación antrópica afecta también las características físico – químicas de los suelos, modificando su densidad aparente, granulometría e incluso la capacidad de almacenamiento de nutrientes (nitrógeno, fosforo, y carbono) y materia orgánica, factores que se identificaron como los de mayor peso para explicar la varianza del CO sedimentario (F (2,33) =191, p<0,05, R2c = 0,92). No se evidenció ningún patrón en el CO desde la costa hacía el interior de los bosques. Los resultados demuestran que hay una tendencia general a que los impactos antrópicos disminuyan las reservas de CO en los bosques de manglar, sin olvidar que impactos naturales como la erosión costera suponen una amenaza muy importante para estas reservas. Las pérdidas de carbono orgánico estimadas se situaron entre el 33 y 58%, que corresponden a 754,9 y 1.313,6 Mg CO2 -eq. ha-1, respectivamente. El impacto sobre las reservas de carbono orgánico depende del tipo y magnitud de disturbio antrópico. Los bosques con mayor desarrollo estructural están sujetos a una mayor presión. Los resultados obtenidos en este estudio sirven como base para tomar decisiones en programas de manejo y en la elaboración de medidas apropiadas en el marco de los esquemas REDD+, que permite proyectar usos sostenibles del ecosistema (Texto tomado de la fuente).Mangrove forests, despite covering less than 1% of the total area of tropical forests, contribute to approximately 3% of carbon sequestration by global tropical forests. Mangrove forests play a crucial role in capturing and storing organic carbon (OC), making them essential for mitigating global climate change. However, they are subject to anthropogenic disturbances that adversely affect their structure and functioning. This study aimed to assess: (i) the relationship between OC and modifications in plant structure due to anthropogenic actions, hypothesizing that forests with lower disturbance levels would exhibit higher OC. (ii) the relationship between OC in sediments and soil depth in forests with varying degrees of anthropogenic intervention, hypothesizing that preserved forests would have higher OC in surface layers, while disturbed forests would show higher OC in deeper layers. (iii) OC distribution from the coast to the interior in forests with different anthropogenic intervention levels, hypothesizing greater OC reserves in the forest interior compared to the coastline. (iv) the impact of anthropogenic intervention on organic carbon contents. The analysis considered OC above-ground (aerial and necromass biomass) and below-ground (subterranean biomass and sediments) in six mangrove forests along the Colombian Pacific coast with varying degrees of anthropogenic intervention and multiple uses. Results confirmed the first hypothesis, with preserved and mature forests exhibiting the highest OC reserves (ranging from 401.3 to 535.4 Mg C ha-1), compared to heavily disturbed forests (ranging from 247.2 to 342.1 Mg C ha-1). The second hypothesis was also confirmed, indicating higher sediment OC reserves in surface layers in forests with minimal or no anthropogenic disturbance, contrary to disturbed forests. Anthropogenic disturbance was found to affect the physicochemical characteristics of soils, altering bulk density, granulometry, and nutrient (nitrogen, phosphorus, and carbon) and organic matter storage capacity. These factors were identified as significant contributors to sedimentary OC variance (F (2,33) =191, p<0.05, R2c = 0.92). No discernible pattern in OC distribution from the coast to the forest interior was observed. The results demonstrate a general trend of anthropogenic impacts reducing OC reserves in mangrove forests, emphasizing the significant threat posed by natural impacts such as coastal erosion. Estimated losses of organic carbon ranged from 33% to 58%, corresponding to 754.9 to 1,313.6 Mg CO2 -eq. ha-1, respectively. The impact on organic carbon reserves depends on the type and magnitude of anthropogenic disturbance, with forests exhibiting greater structural development facing higher pressures. The findings from this study serve as a foundation for decision-making in management programs and the development of appropriate measures within the framework of REDD+ schemes, facilitating sustainable ecosystem utilization.El documento presenta el resumen gráfico de la investigación.Esta investigación recibió distinción meritoria mediante la Resolución 0693 de 2024, Acta 027 de 2024MaestríaMagíster en Ciencias - Biología143 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - Biología::577 - EcologíaECOLOGIA COSTERAMANGLARESBOSQUES TROPICALESANATOMIA VEGETALCICLO DEL CARBONO (BIOGEOQUIMICA)Coastal ecologyMangrove swampsTropical forestsPlant anatomyCarbon cycle (biogeochemistry)ManglarCarbono orgánicoIntervención antrópicaServicios ecosistémicosMangroveOrganic CarbonAnthropogenic InterventionEcosystem ServicesReservas de carbono orgánico en manglares del Pacífico colombiano y su relación con el grado de intervención antrópicaOrganic carbon stocks in mangroves of the Colombian Pacific and their relationship with the degree of anthropogenic interventionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaN/AAdame, M. F., Zakaria, R. M., Fry, B., Chong, V. C., Then, Y. H. A., Brown, C. J., & Lee, S. Y. (2018). Loss and recovery of carbon and nitrogen after mangrove clearing. Ocean & Coastal Management, 161, 117-126. https://doi.org/10.1016/J.OCECOAMAN.2018.04.019Adame, M. Fernanda, Cherian, S., Reef, R., & Stewart-Koster, B. (2017). Mangrove root biomass and the uncertainty of belowground carbon estimations. Forest Ecology and Management, 403, 52-60. https://doi.org/10.1016/J.FORECO.2017.08.016Adame, Maria Fernanda, Kauffman, J. B., Medina, I., Gamboa, J. N., Torres, O., Caamal, J. P., Reza, M., & Herrera-Silveira, J. A. (2013). Carbon Stocks of Tropical Coastal Wetlands within the Karstic Landscape of the Mexican Caribbean. PLOS ONE, 8(2), e56569. https://doi.org/10.1371/JOURNAL.PONE.0056569Adame, Maria Fernanda, Teutli, C., Santini, N. S., Caamal, J. P., Zaldívar-Jiménez, A., Herńndez, R., & Herrera-Silveira, J. A. (2014). Root biomass and production of mangroves surrounding a karstic oligotrophic coastal lagoon. Wetlands, 34(3), 479-488. https://doi.org/10.1007/S13157-014-0514-5/FIGURES/4Alongi, D. M. (1994). Zonation and seasonality of benthic primary production and community respiration in tropical mangrove forests. Oecologia 1994 98:3, 98(3), 320-327. https://doi.org/10.1007/BF00324220Alongi, D. M. (2009). The Energetics of Mangrove Forests. Springer.Alongi, D. M., & Dixon, P. (2000). Mangrove primary production and above- and below-ground biomass in Sawi Bay, southern Thailand. Phuket Marine Biology Centre Special Publication, 22, 31-38.Alongi, D. M., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., & Klumpp, D. W. (2005). Rapid sediment accumulation and microbial mineralization in forests of the mangrove Kandelia candel in the Jiulongjiang Estuary, China. Estuarine, Coastal and Shelf Science, 63(4), 605-618. https://doi.org/10.1016/J.ECSS.2005.01.004Alongi, D. M., Sasekumar, A., Chong, V. C., Pfitzner, J., Trott, L. A., Tirendi, F., Dixon, P., & Brunskill, G. J. (2004). Sediment accumulation and organic material flux in a managed mangrove ecosystem: estimates of land–ocean–atmosphere exchange in peninsular Malaysia. Marine Geology, 208(2-4), 383-402. https://doi.org/10.1016/J.MARGEO.2004.04.016Alongi, Daniel M. (2002). Present state and future of the world’s mangrove forests. En Environmental Conservation (Vol. 29, Número 3, pp. 331-349). Cambridge University Press. https://doi.org/10.1017/S0376892902000231Alongi, Daniel M. (2008). Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science, 76(1), 1-13. https://doi.org/10.1016/J.ECSS.2007.08.024Alongi, Daniel M. (2011). Carbon payments for mangrove conservation: ecosystem constraints and uncertainties of sequestration potential. Environmental Science & Policy, 14(4), 462-470. https://doi.org/10.1016/J.ENVSCI.2011.02.004Alongi, Daniel M. (2012). Carbon sequestration in mangrove forests. Carbon management, 3(3), 313-322. https://doi.org/10.4155/CMT.12.20Alongi, Daniel M. (2014). Carbon Cycling and Storage in Mangrove Forests. Annual Review of Marine Science, 6(1), 195-219. https://doi.org/10.1146/annurev-marine-010213-135020Alongi, Daniel M. (2018). Impact of Global Change on Nutrient Dynamics in Mangrove Forests. Forests 2018, Vol. 9, Page 596, 9(10), 596. https://doi.org/10.3390/F9100596Apitz, S. E. (2012). Integrated Risk Assessments for the Management of Contaminated Sediments in Estuaries and Coastal Systems. Treatise on Estuarine and Coastal Science, 4, 311-338. https://doi.org/10.1016/B978-0-12-374711-2.00413-7Arnaud, M., Krause, S., Norby, R. J., Dang, T. H., Acil, N., Kettridge, N., Gauci, V., & Ullah, S. (2023). Global mangrove root production, its controls and roles in the blue carbon budget of mangroves. Global Change Biology, 29(12), 3256-3270. https://doi.org/10.1111/GCB.16701Arroyo Ponce, R., & Vargas Marin, L. A. (2020). Acciones de gobernanza comunitaria para reducir efectos de cambio climático en el consejo comunitario de comunidades negras de Bahía Málaga - Distrito de Buenaventura. Entorno Geográfico, 20, 23-41. https://doi.org/10.25100/eg.v0i20.10637Ashworth, J., Keyes, D., Kirk, R., & Lessard, R. (2007). STANDARD PROCEDURE IN THE HYDROMETER METHOD FOR PARTICLE SIZE ANALYSIS. http://dx.doi.org.ezproxy.unal.edu.co/10.1081/CSS-100103897, 32(5-6), 633-642. https://doi.org/10.1081/CSS-100103897Aşkin, T., & Özdemir, N. (2003). Soil bulk density as related to soil particle size distribution and organic matter content. Agriculture, 9(2), 52-55.ASTM D422-63. (2007). Standard Test Method for Particle-Size Analysis of Soils. Technical standard. ASTM International.Atwood, T. B., Connolly, R. M., Almahasheer, H., Carnell, P. E., Duarte, C. M., Lewis, C. J. E., Irigoien, X., Kelleway, J. J., Lavery, P. S., Macreadie, P. I., Serrano, O., Sanders, C. J., Santos, I., Steven, A. D. L., & Lovelock, C. E. (2017). Global patterns in mangrove soil carbon stocks and losses. Nature Climate Change, 7(7), 523-528. https://doi.org/10.1038/nclimate3326Ball, M. C., & Pidsley, S. M. (1995). Growth Responses to Salinity in Relation to Distribution of Two Mangrove Species, Sonneratia alba and S. lanceolata, in Northern Australia. Functional Ecology, 9(1), 77. https://doi.org/10.2307/2390093Ball, Marilyn C., Cowan, I., & Farquhar, G. (1988). Maintenance of leaf temperature and the optimisation of carbon gain in relation to water loss in a tropical mangrove Forest. Functional Plant Biology, 15(2), 263. https://doi.org/https://doi.org/10.1071/PP9880263Baux, N., Murat, A., Faivre, Q., Lesourd, S., Poizot, E., Méar, Y., Brasselet, S., & Dauvin, J. C. (2019). Sediment dynamic equilibrium, a key for assessing a coastal anthropogenic disturbance using geochemical tracers: Application to the eastern part of the Bay of Seine. Continental Shelf Research, 175, 87-98. https://doi.org/10.1016/J.CSR.2019.02.002Benavides, A. M. S., Barboza, J. P., Rodríguez, F. M., Gairaud, C. G., Benavides, A. M. S., Barboza, J. P., Rodríguez, F. M., & Gairaud, C. G. (2015). Implicaciones sedimentológicas sobre el cambio en la cobertura del bosque de manglar en Boca Zacate, Humedal Nacional Térraba-Sierpe, Costa Rica. Revista de Biología Tropical, 63(3), 591-601. http://www.scielo.sa.cr/scielo.php?script=sci_arttext&pid=S0034-77442015000300591&lng=en&nrm=iso&tlng=esBengtsson, L., & Enell, M. (1986). Chemical analysis. En B. E. Berglund (Ed.), Handbook of Holocene Palaeoecology and Palaeohydrology (pp. 423-451). John Wiley & Sons Ldt.Bhomia, R. K., Kauffman, J. B., & McFadden, T. N. (2016). Ecosystem carbon stocks of mangrove forests along the Pacific and Caribbean coasts of Honduras. Wetlands Ecology and Management, 24(2), 187-201. https://doi.org/10.1007/S11273-016-9483-1/TABLES/5Blanco-Libreros, J. F., & Cantera, J. R. (1995). Patrones estructurales de algunos manglares de la Bahía de Buenaventura (Pacifico colombiano) y las condiciones hidrológicas y de intervención humana que los determinan. Delta del río San Juan, bahías de Málaga y Buenaventura, Pacifico colombiano. Universidad EAFIT-Universidad del Valle.Bolivar, J. M., Gutierrez-Velez, V. H., & Sierra, C. A. (2018). Carbon stocks in aboveground biomass for Colombian mangroves with associated uncertainties. Regional Studies in Marine Science, 18, 145-155. https://doi.org/10.1016/J.RSMA.2017.12.011Boone Kauffman, J., Arifanti, V. B., Hernández Trejo, H., del Carmen Jesús García, M., Norfolk, J., Cifuentes, M., Hadriyanto, D., & Murdiyarso, D. (2017). The jumbo carbon footprint of a shrimp: carbon losses from mangrove deforestation. Frontiers in Ecology and the Environment, 15(4), 183-188. https://doi.org/10.1002/FEE.1482Boone Kauffman, J., Fernanda Adame, M., Budi Arifanti, V., Schile-beers, L. M., Bernardino, A. F., Bhomia, R. K., Donato, D. C., Feller, I. C., Ferreira, T. O., Del Carmen Jesus Garcia, M., Mackenzie, R. A., Patrick Megonigal, J., Murdiyarso, D., Simpson, L., Hern Andez Trejo, H., Adame, M. F., Arifanti, V. B., Schile-Beers, L. M., Bernardino, A. F., … Simpson, L. (2020). Total ecosystem carbon stocks of mangroves across broad global environmental and physical gradients. Ecological Monographs, 90(2), e01405. https://doi.org/10.1002/ECM.1405Borges, A. C., Sanders, C. J., Santos, H. L. R., Araripe, D. R., Machado, W., & Patchineelam, S. R. (2009). Eutrophication history of Guanabara Bay (SE Brazil) recorded by phosphorus flux to sediments from a degraded mangrove area. MarPB, 58(11), 1750-1754. https://doi.org/10.1016/J.MARPOLBUL.2009.07.025Bouillon, S., Borges, A. V., Castañeda-Moya, E., Diele, K., Dittmar, T., Duke, N. C., Kristensen, E., Lee, S. Y., Marchand, C., Middelburg, J. J., Rivera-Monroy, V. H., Smith, T. J., & Twilley, R. R. (2008). Mangrove production and carbon sinks: A revision of global budget estimates. Global Biogeochemical Cycles, 22(2). https://doi.org/10.1029/2007GB003052Bouillon, S., Dehairs, F., Schiettecatte, L. S., & Borges, A. V. (2007). Biogeochemistry of the Tana estuary and delta (northern Kenya). Limnology and Oceanography, 52(1), 46-59. https://doi.org/10.4319/LO.2007.52.1.0046Bouillon, S., Moens, T., Overmeer, I., Koedam, N., & Dehairs, F. (2004). Resource utilization patterns of epifauna from mangrove forests with contrasting inputs of local versus imported organic matter. Marine Ecology Progress Series, 278, 77-88. https://doi.org/10.3354/MEPS278077Bouyoucos, G. J. (1962). Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agronomy Journal, 54(5), 464-465. https://doi.org/10.2134/AGRONJ1962.00021962005400050028XBulmer, R. H., Lundquist, C. J., & Schwendenmann, L. (2015). Sediment properties and CO2 efflux from intact and cleared temperate mangrove forests. Biogeosciences, 12(20), 6169-6180. https://doi.org/10.5194/BG-12-6169-2015Bulmer, Richard H., Schwendenmann, L., & Lundquist, C. J. (2016). Carbon and nitrogen stocks and below-ground allometry in temperate mangroves. Frontiers in Marine Science, 3(AUG), 205547. https://doi.org/10.3389/FMARS.2016.00150/BIBTEXBurchett, M. D., Clarke, C. J., Field, C. D., & Pulkownik, A. (1989). Growth and respiration in two mangrove species at a range of salinities. Physiologia Plantarum, 75(2), 299-303. https://doi.org/10.1111/J.1399-3054.1989.TB06185.XCantera, J. R., & Blanco, J. F. (2001). The Estuary Ecosystem of Buenaventura Bay, Colombia. 265-280. https://doi.org/10.1007/978-3-662-04482-7_19Castañeda-Moya, E., Twilley, R. R., Rivera-Monroy, V. H., Marx, B. D., Coronado-Molina, C., & Ewe, S. M. L. (2011). Patterns of Root Dynamics in Mangrove Forests Along Environmental Gradients in the Florida Coastal Everglades, USA. Ecosystems, 14(7), 1178-1195. https://doi.org/10.1007/S10021-011-9473-3/METRICSCastañeda, E. (2010). Landscape patterns of community structure, biomass and net primary productivity of mangrove forests in the Florida Coastal Everglades as a function of resources, regulators, hydroperiod, and hurricane disturbance. Ph.D. Dissertation [Louisiana State University]. https://repository.lsu.edu/cgi/viewcontent.cgi?article=3822&context=gradschool_dissertationsCastellanos-Galindo, G. A., Cantera, J. R., Saint-Paul, U., & Ferrol-Schulte, D. (2014). Threats to mangrove social-ecological systems in the most luxuriant coastal forests of the Neotropics. Biodiversity and Conservation 2014 24:3, 24(3), 701-704. https://doi.org/10.1007/S10531-014-0827-YCastellanos-Galindo, G. A., Casella, E., Tavera, H., Zapata Padilla, L. A., & Simard, M. (2021). Structural Characteristics of the Tallest Mangrove Forests of the American Continent: A Comparison of Ground-Based, Drone and Radar Measurements. Frontiers in Forests and Global Change, 4, 732468. https://doi.org/10.3389/FFGC.2021.732468/BIBTEXCastellanos-Galindo, G. A., Kluger, L. C., Camargo, M. A., Cantera, J., Mancera Pineda, J. E., Blanco-Libreros, J. F., & Wolff, M. (2021). Mangrove research in Colombia: Temporal trends, geographical coverage and research gaps. Estuarine, Coastal and Shelf Science, 248, 106799. https://doi.org/10.1016/j.ecss.2020.106799Chave, J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q., Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure, J. P., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., & Yamakura, T. (2005). Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia, 145(1), 87-99. https://doi.org/10.1007/S00442-005-0100-X/METRICSCormier, N., Twilley, R. R., Ewel, K. C., & Krauss, K. W. (2015). Fine root productivity varies along nitrogen and phosphorus gradients in high-rainfall mangrove forests of Micronesia. Hydrobiologia, 750(1), 69-87. https://doi.org/10.1007/S10750-015-2178-4/TABLES/4Correa, I., & Morton, R. (2010). Pacific Coast of Colombia. En E. C. F. Bird (Ed.), Encyclopedia of the World’s Coastal Landforms (pp. 193-198). Springer. https://doi.org/10.1007/978-1-4020-8639-7_29Dahdouh-Guebas, F. (2011). World Atlas of Mangroves: Mark Spalding, Mami Kainuma and Lorna Collins (eds). Human Ecology, 39, 107-109. https://doi.org/10.1007/s10745-010-9366-7De Lacerda, L. D., Ferreira, A. C., Ward, R., & Borges, R. (2022). Editorial: Mangroves in the Anthropocene: From local change to global challenge. Frontiers In Forests And Global Change, 5. https://doi.org/10.3389/ffgc.2022.993409Del Río, A. (1945). Reconocimiento geológico de la Bahía de Málaga, departamento del Valle del Cauca. Servicio Geológico Nacional (SGNC), 15.Donato, D. C., Kauffman, J. B., Mackenzie, R. A., Ainsworth, A., & Pfleeger, A. Z. (2012). Whole-island carbon stocks in the tropical Pacific: Implications for mangrove conservation and upland restoration. Journal of Environmental Management, 97(1), 89-96. https://doi.org/10.1016/J.JENVMAN.2011.12.004Donato, Daniel C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4(5), 293-297. https://doi.org/10.1038/ngeo1123Duarte, C. M., Middelburg, J. J., & Caraco, N. (2004). Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences, 2(1), 1-8. https://doi.org/10.5194/BG-2-1-2005Eid, E. M., Khedher, K. M., Ayed, H., Arshad, M., Moatamed, A., & Mouldi, A. (2020). Evaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi Arabia. Oceanologia, 62(2), 200-213. https://doi.org/10.1016/J.OCEANO.2019.12.001Elwin, A., Bukoski, J. J., Jintana, V., Robinson, E. J. Z., & Clark, J. M. (2019). Preservation and recovery of mangrove ecosystem carbon stocks in abandoned shrimp ponds. Scientific Reports 2019 9:1, 9(1), 1-10. https://doi.org/10.1038/s41598-019-54893-6Estrada, G. C. D., & Soares, M. L. G. (2017). Global patterns of aboveground carbon stock and sequestration in mangroves. Anais da Academia Brasileira de Ciências, 89(2), 973-989. https://doi.org/10.1590/0001-3765201720160357FAO. (2023). The world’s mangroves: 2000 - 2020. https://doi.org/10.4060/cc7044enFeller, I. C., Whigham, D. F., McKee, K. L., & Lovelock, C. E. (2003). Nitrogen limitation of growth and nutrient dynamics in a disturbed mangrove forest, Indian River Lagoon, Florida. Oecologia, 134(3), 405-414. https://doi.org/10.1007/S00442-002-1117-Z/FIGURES/2Field, C. D. (1999). Charter for Mangroves. En A. Yáñez-Arancibia & A. L. Lara-Domínquez (Eds.), Ecosistemas de Manglar en América Tropical (pp. 1-4).Florida, F., Eugenia, B., & Sánchez, G. (2005). Belowground productivity of mangrove forests in southwest Florida. LSU Doctoral Dissertations. https://doi.org/10.31390/gradschool_dissertations.1652Furukawa, K., & Wolanski, E. (1996). Sedimentation in mangrove forests. Mangroves and Salt Marshes, 1, 3-10.Furukawa, K., Wolanski, E., & Mueller, H. (1997). Currents and Sediment Transport in Mangrove Forests. Estuarine, Coastal and Shelf Science, 44(3), 301-310. https://doi.org/10.1006/ECSS.1996.0120Gillis, L. G., Belshe, E. F., & Narayan, G. R. (2017). Deforested Mangroves Affect the Potential for Carbon Linkages between Connected Ecosystems. Estuaries and Coasts, 40(4), 1207-1213. https://doi.org/10.1007/S12237-017-0210-9/FIGURES/3Gómez García, L. F., Quesada Mora, C. A., Peña Salamanca, E. J., Perdomo Trujillo, L. V., & Mancera Pineda, J. E. (2024). Carbon reserves in deltaic mangroves of the Colombian Pacific across different disturbance degrees. Bulletin Of Marine Science. Todavía no publicado. https://doi.org/10.5343/bms.2023.0142Grellier, S., Janeau, J. L., Dang Hoai, N., Nguyen Thi Kim, C., Le Thi Phuong, Q., Pham Thi Thu, T., Tran-Thi, N. T., & Marchand, C. (2017). Changes in soil characteristics and C dynamics after mangrove clearing (Vietnam). Science of The Total Environment, 593-594, 654-663. https://doi.org/10.1016/J.SCITOTENV.2017.03.204Guevara-Fletcher, C. E., Cantera Kintz, J. R., Mejía-Ladino, L. M., & Cortés, F. A. (2011). Benthic Macrofauna Associated with Submerged Bottoms of a Tectonic Estuary in Tropical Eastern Pacific. Journal of Marine Biology, 2011, 1-13. https://doi.org/10.1155/2011/193759Guzmán, A. I., Selvaraj, J. J., & Martínez, A. (2012). Variabilidad espacial y temporal de parámetros físico-químicos en la Bahía de Tumaco. Acta Agronómica, 61(5), 20-21.Guzmán, A. I., Zambrano-Ortíz, M. M., Casanova-Rosero, R. F., Selvaraj, J. J., & Martínez, A. (2014). La condición ecológica de la bahía de Tumaco (Pacífico colombiano): evaluación de la calidad del agua y del fitoplancton. Boletín Científico CIOH, 32, 3-16.Hamilton, S. E., & Casey, D. (2016). Creation of a high spatio-temporal resolution global database of continuous mangrove forest cover for the 21st century (CGMFC-21). Global Ecology and Biogeography, 25(6), 729-738. https://doi.org/10.1111/geb.12449Hamilton, S. E., & Friess, D. A. (2018). Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nature Climate Change 2018 8:3, 8(3), 240-244. https://doi.org/10.1038/s41558-018-0090-4Havanond, S., & Maxwell, G. S. (1996). Strategies for mangrove restration. FORTROP, 10, 21-36.Hayes, M. A., Jesse, A., Tabet, B., Reef, R., Keuskamp, J. A., & Lovelock, C. E. (2017). The contrasting effects of nutrient enrichment on growth, biomass allocation and decomposition of plant tissue in coastal wetlands. Plant and Soil, 416(1-2), 193-204. https://doi.org/10.1007/S11104-017-3206-0/FIGURES/4He, Z., Peng, Y., Guan, D., Hu, Z., Chen, Y., & Lee, S. Y. (2018). Appearance can be deceptive: shrubby native mangrove species contributes more to soil carbon sequestration than fast-growing exotic species. Plant and Soil, 432(1-2), 425-436. https://doi.org/10.1007/S11104-018-3821-4/FIGURES/4Heiri, O., Lotter, A. F., & Lemcke, G. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101-110. https://doi.org/10.1023/A:1008119611481/METRICSHolling, C. S. (1973). Resilience and stability of ecological systems. Annual review of ecology and systematics, 4(1), 1-23.Howard, J., Hoyt, S., Isensee, K., Pidgeon, E., & Telszewki, M. (2014). Coastal blue carbon: methods for assessing carbon stock and emission factors in mangroves, tidal salt marshes, and seagrasses. En J. Howard, S. Hoyt, K. Isensee, E. Pidgeon, & M. Telszewki (Eds.), Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature.Indoria, A. K., Sharma, K. L., & Reddy, K. S. (2020). Hydraulic properties of soil under warming climate. Climate Change and Soil Interactions, 473-508. https://doi.org/10.1016/B978-0-12-818032-7.00018-7Instituto Colombiano de Normas Técnicas y Certificación. (2011). Análisis de suelos, Determinación del Nitrógeno Total (NTC 5889:2011).Instituto Colombiano de Normas Técnicas y Certificación. (2020). Calidad del suelo. Determinación de fósforo disponible (NTC 5350:2020).Instituto Colombiano de Normas Técnicas y Certificación. (2021). Calidad de suelo. Determinación del carbono orgánico (NTC 5403 2006-02-22). https://tienda.icontec.org/gp-calidad-del-suelo-determinacion-del-carbono-organico-ntc5403-2021.htmlINVEMAR; Univalle e INCIVA. (2006). BIOMÁLAGA: Valoración de la biodiversidad marina y costera de Bahía Málaga (Valle del Cauca), como uno de los instrumentos necesarios para que sea considerada un área protegida. http://www.invemar.org.co/documents/10182/13789/9860IF_BIOMALAGA2007.pdf/9ee8dadb-a43e-46aa-a9d5-7c6cfb3c40c5INVEMAR. (2022). Mapa de Manglares de Colombia. https://siam.invemar.org.co/cifras_siam#manglCarJennerjahn, T. C. (2020). Relevance and magnitude of «Blue Carbon» storage in mangrove sediments: Carbon accumulation rates vs. stocks, sources vs. sinks. Estuarine, Coastal and Shelf Science, 247, 107027. https://doi.org/10.1016/J.ECSS.2020.107027Jennerjahn, T. C., & Ittekkot, V. (2002). Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 2001 89:1, 89(1), 23-30. https://doi.org/10.1007/S00114-001-0283-XKalyn, A. L., & Van Rees, K. C. J. (2006). Contribution of fine roots to ecosystem biomass and net primary production in black spruce, aspen, and jack pine forests in Saskatchewan. Agricultural and Forest Meteorology, 140(1-4), 236-243. https://doi.org/10.1016/J.AGRFORMET.2005.08.019Kauffman, J. B., Donato, D. C., & Adame, M. F. (2013). Protocolo para la medición, monitoreo y reporte de la estructura, biomasa y reservas de carbono de los manglares. CIFOR, 117.Kauffman, J. Boone, Heider, C., Cole, T. G., Dwire, K. A., & Donato, D. C. (2011). Ecosystem carbon stocks of micronesian mangrove forests. Wetlands, 31(2), 343-352. https://doi.org/10.1007/s13157-011-0148-9Kauffman, J. Boone, Heider, C., Norfolk, J., & Payton, F. (2014). Carbon stocks of intact mangroves and carbon emissions arising from their conversion in the Dominican Republic. Ecological Applications, 24(3), 518-527. https://doi.org/10.1890/13-0640.1Kauffman, J. K., & Bhomia, R. K. (2017). Ecosystem carbon stocks of mangroves across broad environmental gradients in West-Central Africa: Global and regional comparisons. PLOS ONE, 12(11), e0187749. https://doi.org/10.1371/JOURNAL.PONE.0187749Kauffman, J.B., & Donato, D. (2012). Protocols for the measurement, monitoring and reporting of structure, biomass and carbon stocks in mangrove forests. CIFOR. https://doi.org/10.17528/CIFOR/003749Kelleway, J. J., Cavanaugh, K., Rogers, K., Feller, I. C., Ens, E., Doughty, C., & Saintilan, N. (2017). Review of the ecosystem service implications of mangrove encroachment into salt marshes. Global Change Biology, 23(10), 3967-3983. https://doi.org/10.1111/gcb.13727Khan, M. N. I., Suwa, R., & Hagihara, A. (2009). Biomass and aboveground net primary production in a subtropical mangrove stand of Kandelia obovata (S., L.) Yong at Manko Wetland, Okinawa, Japan. Wetlands Ecology and Management, 17(6), 585-599. https://doi.org/10.1007/S11273-009-9136-8/FIGURES/9Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für Analytische Chemie, 22(1), 366-382. https://doi.org/10.1007/BF01338151/METRICSKomiyama, A., Havanond, S., Srisawatt, W., Mochida, Y., Fujimoto, K., Ohnishi, T., Ishihara, S., & Miyagi, T. (2000). Top/root biomass ratio of a secondary mangrove (Ceriops tagal (Perr.) C.B. Rob.) forest. Forest Ecology and Management, 139(1-3), 127-134. https://doi.org/10.1016/S0378-1127(99)00339-4Komiyama, A., Ogino, K., Aksornkoae, S., & Sabhasri, S. (1987). Root biomass of a mangrove forest in southern Thailand. 1. Estimation by the trench method and the zonal structure of root biomass. Journal of Tropical Ecology, 3(2), 97-108. https://doi.org/10.1017/S0266467400001826Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic Botany, 89(2), 128-137. https://doi.org/10.1016/J.AQUABOT.2007.12.006Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of Tropical Ecology, 21(4), 471-477. https://doi.org/10.1017/S0266467405002476Krauss, K. W., & Ball, M. C. (2013). On the halophytic nature of mangroves. Trees - Structure and Function, 27(1), 7-11. https://doi.org/10.1007/S00468-012-0767-7/FIGURES/1Krauss, K. W., Mckee, K. L., Lovelock, C. E., Cahoon, D. R., Saintilan, N., Reef, R., & Chen, L. (2014). How mangrove forests adjust to rising sea level. En New Phytologist (Vol. 202, Número 1, pp. 19-34). John Wiley & Sons, Ltd. https://doi.org/10.1111/nph.12605Kristensen, E., Bouillon, S., Dittmar, T., & Marchand, C. (2008). Organic carbon dynamics in mangrove ecosystems: A review. Aquatic Botany, 89(2), 201-219. https://doi.org/10.1016/J.AQUABOT.2007.12.005Kusumaningtyas, M. A., Hutahaean, A. A., Fischer, H. W., Pérez-Mayo, M., Ransby, D., & Jennerjahn, T. C. (2019). Variability in the organic carbon stocks, sources, and accumulation rates of Indonesian mangrove ecosystems. Estuarine, Coastal and Shelf Science, 218, 310-323. https://doi.org/10.1016/j.ecss.2018.12.007Laffoley, D., & Grimsditch, G. (2009). The Management of Natural Coastal Carbon Sinks . www.iucn.org/marineLagomasino, D., Fatoyinbo, T., Castañeda-Moya, E., Cook, B. D., Montesano, P. M., Neigh, C. S., & Morton, D. C. (2021). Storm surge and ponding explain mangrove dieback in southwest Florida following Hurricane Irma. Nature Comunicativos, 12(1), 1-8.Lagomasino, D., Fatoyinbo, T., Lee, S., Feliciano, E., Trettin, C., Shapiro, A., & Mangora, M. M. (2019). Measuring mangrove carbon loss and gain in deltas. Environmental Research Letters, 14(2), 025002.Leal, M., & Spalding, M. D. (Eds.). (2022). The State of the World’s Mangroves 2022. Global Mangrove Alliance. https://www.mangrovealliance.org/mangrove-forests/Lee, S. Y. (2016). From blue to black: Anthropogenic forcing of carbon and nitrogen influx to mangrove-lined estuaries in the South China Sea. Marine Pollution Bulletin, 109(2), 682-690. https://doi.org/10.1016/j.marpolbul.2016.01.008Lin, Q., Chen, L., Zhang, J., Wang, L., Yu, X., & Guo, Q. (2023). How fine root turnover functions during mangrove root zone expansion and affects belowground carbon processes. Plant and Soil, 488(1-2), 451-463. https://doi.org/10.1007/S11104-023-05985-W/TABLES/3López-Angarita, J., Roberts, C. M., Tilley, A., Hawkins, J. P., & Cooke, R. G. (2016). Mangroves and people: Lessons from a history of use and abuse in four Latin American countries. En Forest Ecology and Management (Vol. 368, pp. 151-162). Elsevier B.V. https://doi.org/10.1016/j.foreco.2016.03.020Lovelock, C. E., Feller, I. C., Reef, R., & Ruess, R. W. (2014). Variable effects of nutrient enrichment on soil respiration in mangrove forests. Plant and Soil, 379(1-2), 135-148. https://doi.org/10.1007/S11104-014-2036-6/FIGURES/6Lovelock, C. E., Ruess, R. W., & Feller, I. C. (2011). CO2 Efflux from Cleared Mangrove Peat. PLOS ONE, 6(6), e21279. https://doi.org/10.1371/JOURNAL.PONE.0021279Lozada Ordóñez, L., Dias da Cruz, D., & Oliveira de Andrade, M. (2018). Ecosystem services and use of Afro-descendant land in the Colombian North Pacific: Transformations in the traditional production system. Land Use Policy, 75, 631-641. https://doi.org/10.1016/j.landusepol.2018.01.043Mackenzie, R. A., Foulk, P. B., Van Klump, J., Weckerly, K., Purbopuspito, J., Murdiyarso, D., Donato, D. C., & Vien, N. N. (2016). Sedimentation and belowground carbon accumulation rates in mangrove forests that differ in diversity and land use: a tale of two mangroves.Mackey, A. P. (1993). Biomass of the mangrove Avicennia marina (Forsk.) Vierh. Near Brisbane, South-eastern Queensland. Marine and Freshwater Research, 44(5), 721-725. https://doi.org/10.1071/MF9930721Macreadie, P. I., Allen, K., Kelaher, B. P., Ralph, P. J., & Skilbeck, C. G. (2012). Paleoreconstruction of estuarine sediments reveal human-induced weakening of coastal carbon sinks. Global Change Biology, 18(3), 891-901. https://doi.org/10.1111/J.1365-2486.2011.02582.XMADS. (2011). Manglares: Los manglares de Colombia. https://www.minambiente.gov.co/index.php/component/content/article?id=412:plantilla-bosques-biodiversidad-y-servicios-ecosistematicos-14Málikov, I., & Camacho Guerrero, G. A. (1998). Método de aproximación para determinar cambios entreanuales aplicado a parámetros de temperatura y salinidad del Pacífico colombiano. Boletín Científico CCCP, 7, 30-41. https://doi.org/10.26640/01213423.7.30_41Mancera-Pineda, J. E., Twilley, R. R., & Rivera-Monroy, V. H. (2009). Carbono (δ 13 C) y nitrógeno (δ 15 N) discriminación isotópica en manglares de los Everglades costeros de Florida en función del estrés ambiental. Contribución Mar Sci, 38, 109-129.Martínez Ortega, Á. P., Patiño Yepes, Á. A., Riascos Araujo, A. D., Mosquera Arturo, E. J., Pepinosa Bravo, H. E., & Montoya Rivera, J. J. (2022). Goce efectivo del derecho a la educación: Una mirada desde Tumaco, Nariño. UNIMAR.Mazda, Y., Magi, M., Kogo, M., & Hong, P. N. (1997). Mangroves as a coastal protection from waves in the Tong King delta, Vietnam. Mangroves and Salt Marshes, 1, 127-135.Mckee, K.L. (1993). Soil Physicochemical Patterns and Mangrove Species Distribution--Reciprocal Effects? Journal of Ecology, 81(3), 477-487. https://doi.org/10.2307/2261526Mckee, Karen L., Cahoon, D. R., & Feller, I. C. (2007). Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography, 16(5), 545-556. https://doi.org/10.1111/J.1466-8238.2007.00317.XMcLeod, E., Chmura, G. L., Bouillon, S., Salm, R., Björk, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H., & Silliman, B. R. (2011). A blueprint for blue carbon: Toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. En Frontiers in Ecology and the Environment (Vol. 9, Número 10, pp. 552-560). John Wiley & Sons, Ltd. https://doi.org/10.1890/110004Medina-Calderón, J. H., Mancera-Pineda, J. E., Castañeda-Moya, E., & Rivera-Monroy, V. H. (2021). Hydroperiod and Salinity Interactions Control Mangrove Root Dynamics in a Karstic Oceanic Island in the Caribbean Sea (San Andres, Colombia). Frontiers in Marine Science, 7, 598132. https://doi.org/10.3389/FMARS.2020.598132/BIBTEXMedina-Contreras, D., Arenas-González, F., Cantera-Kintz, J., Sánchez-González, A., & Giraldo, A. (2020). Food web structure and isotopic niche in a fringe macro-tidal mangrove system, Tropical Eastern Pacific. Hydrobiologia, 847(15), 3185-3199. https://doi.org/10.1007/S10750-020-04295-X/FIGURES/3Medina Contreras, D., Cantera Kintz, J., Sánchez González, A., & Mancera, E. (2018). Food Web Structure and Trophic Relations in a Riverine Mangrove System of the Tropical Eastern Pacific, Central Coast of Colombia. Estuaries and Coasts, 41(5), 1511-1521. https://doi.org/10.1007/s12237-017-0350-yMejía-Rentería, J. C., Castellanos-Galindo, G. A., Cantera-Kintz, J. R., & Hamilton, S. E. (2018). A comparison of Colombian Pacific mangrove extent estimations: Implications for the conservation of a unique Neotropical tidal forest. Estuarine, Coastal and Shelf Science, 212, 233-240. https://doi.org/10.1016/j.ecss.2018.07.020Michigan State University. (2008, julio 1). Protocol - Particle Size Analysis ‒ Hydrometer Method. https://lter.kbs.msu.edu/protocols/108Monika, N., & Yadav, A. (2021). A Holistic Study on Impact of Anthropogenic Activities over the Mangrove Ecosystem and Their Conservation Strategies. En Coastal research library (pp. 265-284). https://doi.org/10.1007/978-3-030-84255-0_11Monsalve, A., Herrera, D., & Bolivar, J. (2015). Caracterización de la estructura y contenido de carbono de diez parcelas permanentes establecidas en el área de jurisdicción del consejo comunitario La Plata, Bahía Málaga, Valle del Cauca (p. 58). Centro de investigación en ecosistemas y cambio global. Carbono y Bosques.Montagut Cifuentes, E. A., & Cabrera Luna, E. E. (1997). Situación de Riesgo En La Ensenada de Tumaco. Boletín Científico Centro de Control de Contaminación del Pacifico (CERRADO EN 2009), 6, 7-28.Murdiyarso, D., Donato, D., Kauffman, J. B., Kurnianto, S., Stidham, M., & Kanninen, M. (2009). Carbon storage in mangrove and peatland ecosystems: A preliminary account from plots in Indonesia. Working paper 48. Bogor Banat, Indonesia: Center for International Forestry Research, 1-35. www.cifor.cgiar.orgMurdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., & Kurnianto, S. (2015). The potential of Indonesian mangrove forests for global climate change mitigation. Nature Climate Change, 5(12), 1089-1092. https://doi.org/10.1038/nclimate2734Nguyen, H. T., Stanton, D. E., Schmitz, N., Farquhar, G. D., & Ball, M. C. (2015). Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions. Annals of Botany, 115(3), 397-407. https://doi.org/10.1093/AOB/MCU257Nixon, S. (1980). Between coastal marshes and coastal waters: a review of 20 years of speculation and research on the role of salt marshes in estuarine productivity and water chemistry. En P. Hamilton & K. MacDonald (Eds.), Estuarine and Wetland Processes (pp. 437-525). Plenum Press.Nóbrega, G. N., Ferreira, T. O., Siqueira Neto, M., Mendonça, E. de S., Romero, R. E., & Otero, X. L. (2019). The importance of blue carbon soil stocks in tropical semiarid mangroves: a case study in Northeastern Brazil. Environmental Earth Sciences, 78(12), 1-10. https://doi.org/10.1007/S12665-019-8368-Z/TABLES/2Odum, E. P. (1980). The status of three ecosystem level hypotheses regarding salt marshes: tidal subsidy, outwelling and the detritus based food chain. En V. S. Kennedy (Ed.), Estuarine Perspectives (pp. 485-496). Academic Press.Odum, W. E., & Heald, E. . (1972). “Trophic analyses of an estuarine mangrove community”. Bulletin of Marine Science, 22, 671-738.Odum, W. E., & Heald, E. J. (1975). The detritus-based food web of an estuarine mangrove community. En L. E. Cronin (Ed.), Estuarine Research (pp. 265-286). Academic Press.Odum, W. E., McIvor, C. C., & Smith, T. J. (1982). The ecology of the mangroves of south Florida: A community profile. Fish and Wildlife Service/ Office of Biological Services.Osorio Garcés, C. E. (2018). Representaciones y Epistemes Locales sobre la naturaleza en el Pacifíco sur de Colombia. Universidad del Cauca.Otero, E., Mosquera, L., Silva, G., & Guzmán, J. (2007). Deltas y Estuarios de Colombia. Colección Ecológica del Banco de Occidente. https://www.imeditores.com/banocc/deltas/cap7.htmOtero, X. L., Méndez, A., Nóbrega, G. N., Ferreira, T. O., Santiso-Taboada, M. J., Meléndez, W., & Macías, F. (2017). High fragility of the soil organic C pools in mangrove forests. Marine Pollution Bulletin, 119(1), 460-464. https://doi.org/10.1016/J.MARPOLBUL.2017.03.074Ouyang, X., Guo, F., & Lee, S. Y. (2024). Multiple drivers for carbon stocks and fluxes in different types of mangroves. Science of The Total Environment, 906, 167511. https://doi.org/10.1016/J.SCITOTENV.2023.167511Palacios, M. L., & Cantera, J. R. (2017). Mangrove timber use as an ecosystem service in the Colombian Pacific. Hydrobiologia, 803(1), 345-358. https://doi.org/10.1007/s10750-017-3309-xPalacios Moreno, M. A., Vargas Polonia, E. L., & De la Pava, M. L. (1990). Determinación del aporte de materia orgánica del manglar en la zona de Bocagrande. Boletín Científico CCCP, 1, 55-72. https://ojs.dimar.mil.co/index.php/CCCP/article/download/297/403Palacios Peñaranda, M. L., Cantera Kintz, J. R., & Peña Salamanca, E. J. (2019). Carbon stocks in mangrove forests of the Colombian Pacific. Estuarine, Coastal and Shelf Science, 227, 106299. https://doi.org/10.1016/J.ECSS.2019.106299Pendleton, L., Donato, D. C., Murray, B. C., Crooks, S., Jenkins, W. A., Sifleet, S., Craft, C., Fourqurean, J. W., Kauffman, J. B., Marbà, N., Megonigal, P., Pidgeon, E., Herr, D., Gordon, D., & Baldera, A. (2012). Estimating Global «Blue Carbon» Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems. PLoS ONE, 7(9), e43542. https://doi.org/10.1371/journal.pone.0043542Perdomo-Trujillo, L. V. (2020). Biomasa y producción radicular en manglares de cuenca neotropicales a lo largo de una trayectoria de restauración y su contribucción a las reservas de carbono en el ecosistema. Universidad Nacional de Colombia.Perdomo-Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderón, J. H., Sánchez-Núñez, D. A., & Schnetter, M.-L. (2021). Effect of Restoration Actions on Organic Carbon Pools in the Lagoon—Delta Ciénaga Grande de Santa Marta, Colombian Caribbean. Water, 13(9), 1297. https://doi.org/10.3390/w13091297Perdomo Trujillo, L. V., Mancera-Pineda, J. E., Medina-Calderon, J. H., Zimmer, M., & Schnetter, M. L. (2021). Massive loss of aboveground biomass and its effect on sediment organic carbon concentration: Less mangrove, more carbon? Estuarine, Coastal and Shelf Science, 248, 106888. https://doi.org/10.1016/J.ECSS.2020.106888Perea-Ardila, M. A., Oviedo-Barrero, F., & Leal-Villamil, J. (2019). Mangrove forest mapping through remote sensing imagery: Study case for Buenaventura, Colombia. Revista de Teledeteccion, 2019(53), 73-86. https://doi.org/10.4995/raet.2019.11684Pérez, A., Machado, W., Gutiérrez, D., Borges, A. C., Patchineelam, S. R., & Sanders, C. J. (2018). Carbon accumulation and storage capacity in mangrove sediments three decades after deforestation within a eutrophic bay. Marine Pollution Bulletin, 126, 275-280. https://doi.org/10.1016/J.MARPOLBUL.2017.11.018Pérez, Alexander, Libardoni, B. G., & Sanders, C. J. (2018). Factors influencing organic carbon accumulation in mangrove ecosystems. Biology Letters, 14(10). https://doi.org/10.1098/RSBL.2018.0237Pickett, S. T. A., & White, P. S. (Eds.). (1985). The Ecology of Natural Disturbance and Patch Dynamics. Academic Press.Poveda, G., & Mesa, O. J. (2000). On the existence of Lloró (the rainiest locality on Earth): Enhanced ocean-land-atmosphere interaction by a low-level jet. Geophysical Research Letters, 27(11), 1675-1678. https://doi.org/10.1029/1999GL006091Queiroz, L. de S., Rossi, S., Calvet-Mir, L., Ruiz-Mallén, I., García-Betorz, S., Salvà-Prat, J., & Meireles, A. J. de A. (2017). Neglected ecosystem services: Highlighting the socio-cultural perception of mangroves in decision-making processes. Ecosystem Services, 26, 137-145. https://doi.org/10.1016/j.ecoser.2017.06.013Ragavan, P., Rahman, A., Sarkar, S., Verma, S., Jeeva, C., Mohan, P. M., & Kumar, S. (2023). Variability in soil organic carbon stock and isotopic signature in tropical island mangrove forests of India. Regional Environmental Change, 23(4), 1-12. https://doi.org/10.1007/S10113-023-02130-2/FIGURES/3Rahman, M. M., Zimmer, M., Ahmed, I., Donato, D., Kanzaki, M., & Xu, M. (2021). Co-benefits of protecting mangroves for biodiversity conservation and carbon storage. Nature Communications 2021 12:1, 12(1), 1-9. https://doi.org/10.1038/s41467-021-24207-4Ramanathan, A., Rajkumar, K., Majumdar, J., Singh, G., Behera, P., Santra, S., & Chidambaram, S. (2009). Textural characteristics of the surface sediments of a tropical mangrove Sundarban ecosystem India. Indian Journal of Marine Sciences.Rangel-Ch., J. O. (2011). Ecosistemas del Chocó Biogegráfico: Síntesis final. En J. O. Rangel-Ch. (Ed.), Colombia Diversidad Biótica IV: El Chocó biogeográfico/Costa Pacífica (pp. 937-976). Universidad Nacional de Colombia.Reef, R., Winter, K., Morales, J., Adame, M. F., Reef, D. L., & Lovelock, C. E. (2015). The effect of atmospheric carbon dioxide concentrations on the performance of the mangrove Avicennia germinans over a range of salinities. Physiologia Plantarum, 154(3), 358-368. https://doi.org/10.1111/PPL.12289Saintilan, N. (1997). Above- and below-ground biomasses of two species of mangrove on the Hawkesbury River estuary, New South Wales. Marine Freshwater Research, 48, 147-152.Saintilan, N., Rogers, K., Mazumder, D., & Woodroffe, C. (2013). Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands. Estuarine, Coastal and Shelf Science, 128, 84-92. https://doi.org/10.1016/J.ECSS.2013.05.010Saldarriaga, J. G., Duque, A. J., & Álvarez, E. (2011). Modelos para la estimación de la biomasa y el carbono en diferentes tipos de bosque del choco biogeográfico, Colombia: manglar, guandal y bosques de colina localizados en los Consejos Comunitarios de Bajo Mira y Concosta a partir de los datos colectados e (p. 22). Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM), Ministerio de Medio Ambiente, Vivienda y Desarrollo Territorial (MAVDT), Fundación Natura, Fundación Gordon y Betty Moore – USAID.Sánchez-Páez, H., Alvarez-León, R., Guevara-Mancera, O., Zamora-Guzmán, A., Rodríguez-Cruz, H., & Bravo-Pazmiño, H. (1997). Diagnostico y Zonificación preliminar de los manglares del Pacífico de Colombia (H. Sánchez-Páez & R. Alvarez-Leon (Eds.)). Ministerio del Medio Ambiente. http://www.itto.int/files/user/pdf/publications/PD171 91/pd171-91-p1-1 Rev1(F) s.pdfSasmito, S. D., Sillanpää, M., Hayes, M. A., Bachri, S., Saragi-Sasmito, M. F., Sidik, F., Hanggara, B. B., Mofu, W. Y., Rumbiak, V. I., Hendri, Taberima, S., Suhaemi, Nugroho, J. D., Pattiasina, T. F., Widagti, N., Barakalla, Rahajoe, J. S., Hartantri, H., Nikijuluw, V., … Murdiyarso, D. (2020). Mangrove blue carbon stocks and dynamics are controlled by hydrogeomorphic settings and land-use change. Global Change Biology, 26(5), 3028-3039. https://doi.org/10.1111/GCB.15056Sasmito, S. D., Taillardat, P., Clendenning, J. N., Cameron, C., Friess, D. A., Murdiyarso, D., & Hutley, L. B. (2019). Effect of land-use and land-cover change on mangrove blue carbon: A systematic review. Global Change Biology, 25(12), 4291-4302. https://doi.org/10.1111/GCB.14774Schelske, C., & Odum, E. (1961). Mechanisms maintaining high productivity in Georgia estuaries. Proceedings of the Gulf and Caribbean Fisheries Institute, 75-80.SGC- Servicio Geológico Colombiano. (2013). Anexo A susceptibilidad por geología. En Documento metodológico de la zonificación de susceptibilidad y amenaza relativa por movimientos en masa escala 1:100.000 (Versión 2, p. 12).Shaltout, K. H., Ahmed, M. T., Alrumman, S. A., Ahmed, D. A., & Eid, E. M. (2020). Evaluation of the carbon sequestration capacity of arid mangroves along nutrient availability and salinity gradients along the Red Sea coastline of Saudi Arabia. Oceanologia, 62(1), 56-69. https://doi.org/10.1016/J.OCEANO.2019.08.002Sherman, R. E., Fahey, T. J., & Martinez, P. (2003). Spatial Patterns of Biomass and Aboveground Net Primary Productivity in a Mangrove Ecosystem in the Dominican Republic. Ecosystems, 6(4), 384-398.Simard, M., Fatoyinbo, L., Smetanka, C., Rivera-Monroy, V. H., Castañeda-Moya, E., Thomas, N., & Van der Stocken, T. (2018). Mangrove canopy height globally related to precipitation, temperature and cyclone frequency. Nature Geoscience 2018 12:1, 12(1), 40-45. https://doi.org/10.1038/s41561-018-0279-1Simpson, L. T., Feller, I. C., & Chapman, S. K. (2013). Effects of competition and nutrient enrichemnt on Avicennia germinans in the salt marsh-mangrove ecotone. Aquatic Botany, 104, 55-59. https://doi.org/10.1016/J.AQUABOT.2012.09.006Sousa, W. P. (1984). The role of disturbance in natural communities. Annual review of ecology and systematics, 15(1), 353-391.Steinmetz, Z. (2007). Particle size estimation using the hydrometer method modified from ASTM D422-63 (2007) and Bouyoucos (1927). https://cran.r-project.org/web/packages/envalysis/vignettes/texture.htmlStokes, D. J., & Harris, R. J. (2015). Sediment properties and surface erodibility following a large-scale mangrove (Avicennia marina) removal. Continental Shelf Research, 107, 1-10. https://doi.org/10.1016/J.CSR.2015.07.011Suman, D. (2007). Development of an integrated coastal management plan for the Gulf of San Miguel and Darien Province, Panama: Lessons from the experience. Ocean & Coastal Management, 50(8), 634-660. https://doi.org/10.1016/J.OCECOAMAN.2007.03.007Sweetman, A. K., Middelburg, J. J., Berle, A. M., Bernardino, A. F., Schander, C., Demopoulos, A. W. J., & Smith, C. R. (2010). Impacts of exotic mangrove forests and mangrove deforestation on carbon remineralization and ecosystem functioning in marine sediments. Biogeosciences, 7(7), 2129-2145. https://doi.org/10.5194/BG-7-2129-2010Tamooh, F., Huxham, M., Karachi, M., Mencuccini, M., Kairo, J. G., & Kirui, B. (2008). Below-ground root yield and distribution in natural and replanted mangrove forests at Gazi bay, Kenya. Forest Ecology and Management, 256(6), 1290-1297. https://doi.org/10.1016/J.FORECO.2008.06.026Tanner, M. K., Moity, N., Costa, M. T., Marin Jarrin, J. R., Aburto-Oropeza, O., & Salinas-de-León, P. (2019). Mangroves in the Galapagos: Ecosystem services and their valuation. Ecological Economics, 160, 12-24. https://doi.org/10.1016/j.ecolecon.2019.01.024Tue, N. T., Thai, N. D., & Nhuan, M. T. (2020). Carbon storage potential of mangrove forests from Northeastern Vietnam. Regional Studies in Marine Science, 40, 101516. https://doi.org/10.1016/J.RSMA.2020.101516Twilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air, and Soil Pollution 1992 64:1, 64(1), 265-288. https://doi.org/10.1007/BF00477106Twilley, Robert R., Rovai, A. S., & Riul, P. (2018). Coastal morphology explains global blue carbon distributions. Frontiers in Ecology and the Environment, 16(9), 503-508. https://doi.org/10.1002/FEE.1937Valiela, I., Bowen, J. L., & York, J. K. (2001). Mangrove Forests: One of the World’s Threatened Major Tropical Environments. BioScience, 51(10), 807-815. https://doi.org/10.1641/0006-3568(2001)051[0807:MFOOTW]2.0.CO;2Vanacker, V., & Ortega, R. (2013). Dynamic soil properties in response to anthropogenic disturbance. EGUGA. https://ui.adsabs.harvard.edu/abs/2013EGUGA..15..908V/abstractWalkley, A., & Black, I. A. (1934). An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37(1), 29-38. https://doi.org/10.1097/00010694-193401000-00003Warner, R., Kaidonis, M., Dun, O., Rogers, K., Shi, Y., Nguyen, T. T. X., & Woodroffe, C. D. (2016). Opportunities and challenges for mangrove carbon sequestration in the Mekong River Delta in Vietnam. Sustainability Science, 11(4), 661-677. https://doi.org/10.1007/s11625-016-0359-3West, R. C. (1956). Mangrove swamps of the pacific coast of colombia. Annals of the Association of American Geographers, 46(1), 98-121. https://doi.org/10.1111/J.1467-8306.1956.TB01498.XWolanski, E., Huan, N. N., Dao, L. T., Nhan, N. H., & Thuy, N. N. (1996). Fine-sediment Dynamics in the Mekong River Estuary, Vietnam. Estuarine, Coastal and Shelf Science, 43(5), 565-582. https://doi.org/10.1006/ECSS.1996.0088Worthington, T. A., zu Ermgassen, P. S. E., Friess, D. A., Krauss, K. W., Lovelock, C. E., Thorley, J., Tingey, R., Woodroffe, C. D., Bunting, P., Cormier, N., Lagomasino, D., Lucas, R., Murray, N. J., Sutherland, W. J., & Spalding, M. (2020). A global biophysical typology of mangroves and its relevance for ecosystem structure and deforestation. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-71194-5Wu, J., & Loucks, O. L. (1995). From balance of nature to hierarchical patch dynamics: a paradigm shift in ecology. The Quarterly review of biology, 70(4), 439-466.Xiong, Y., Liu, X., Guan, W., Liao, B., Chen, Y., Li, M., & Zhong, C. (2017). Fine root functional group based estimates of fine root production and turnover rate in natural mangrove forests. Plant and Soil, 413(1-2), 83-95. https://doi.org/10.1007/S11104-016-3082-Z/FIGURES/7Yin, L., Zhang, T., Dijkstra, F. A., Huo, C., Wang, P., & Cheng, W. (2021). Priming effect varies with root order: A case of Cunninghamia lanceolata. Soil Biology and Biochemistry, 160, 108354. https://doi.org/10.1016/J.SOILBIO.2021.108354Zakaria, R. M., Chen, G., Chew, L. L., Sofawi, A. B., Moh, H. H., Chen, S., Teoh, H. W., & Adibah, S. Y. S. N. (2021). Carbon stock of disturbed and undisturbed mangrove ecosystems in Klang Straits, Malaysia. Journal of Sea Research, 176, 102113. https://doi.org/10.1016/J.SEARES.2021.102113Zarate-Barrera, T. G., & Maldonado, J. H. (2015). Valuing blue carbon: Carbon sequestration benefits provided by the marine protected areas in Colombia. PLoS ONE, 10(5), e0126627. https://doi.org/10.1371/journal.pone.0126627Zhang, J. P., Shen, C. De, Ren, H., Wang, J., & Han, W. D. (2012). Estimating Change in Sedimentary Organic Carbon Content During Mangrove Restoration in Southern China Using Carbon Isotopic Measurements. Pedosphere, 22(1), 58-66. https://doi.org/10.1016/S1002-0160(11)60191-4Público generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86924/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1032473518.2024.pdf1032473518.2024.pdfTesis de Maestría en Ciencias - Biologíaapplication/pdf3463859https://repositorio.unal.edu.co/bitstream/unal/86924/2/1032473518.2024.pdfc856cc335414d60dc7fe88a0f8ae6119MD52THUMBNAIL1032473518.2024.pdf.jpg1032473518.2024.pdf.jpgGenerated Thumbnailimage/jpeg5217https://repositorio.unal.edu.co/bitstream/unal/86924/3/1032473518.2024.pdf.jpg8d54ad4073fb7c711a4873d5d4070d9fMD53unal/86924oai:repositorio.unal.edu.co:unal/869242024-10-10 00:18:36.84Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |