Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa

Se sintetizaron sílices mesoporosas de tipo SBA-15 y se funcionalizaron con polianilina (SBA-15/PA), APTES (SBA-15/NH2) y EDTA (SBA-15/EDTA), a estos adsorbentes se les determinaron: parámetros texturales por medio de isotermas de N2, SEM, TGA. Se caracterizó su química superficial por titulaciones...

Full description

Autores:
Cárdenas Cuevas, Lady Johana
Tipo de recurso:
Fecha de publicación:
2021
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/81784
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/81784
https://repositorio.unal.edu.co/
Palabra clave:
540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
SBA-15
Funcionalización
Fenoles
Adsorción
Entalpía de inmersión
SBA-15
Functionalization
Phenols
Adsorption
Immersion enthalpy
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_d6b55152315e1ea0ad4b41b50a6552a1
oai_identifier_str oai:repositorio.unal.edu.co:unal/81784
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa
dc.title.translated.eng.fl_str_mv Synthesis, functionalization and characterization of SBA-15 for the adsorption of phenol, p-nitrophenol and p-chlorophenol from aqueous solution
title Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa
spellingShingle Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa
540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
SBA-15
Funcionalización
Fenoles
Adsorción
Entalpía de inmersión
SBA-15
Functionalization
Phenols
Adsorption
Immersion enthalpy
title_short Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa
title_full Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa
title_fullStr Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa
title_full_unstemmed Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa
title_sort Síntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosa
dc.creator.fl_str_mv Cárdenas Cuevas, Lady Johana
dc.contributor.advisor.none.fl_str_mv Giraldo Gutiérrez, Liliana
dc.contributor.author.none.fl_str_mv Cárdenas Cuevas, Lady Johana
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Calorimetría
dc.subject.ddc.spa.fl_str_mv 540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
topic 540 - Química y ciencias afines::541 - Química física
540 - Química y ciencias afines
540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materiales
SBA-15
Funcionalización
Fenoles
Adsorción
Entalpía de inmersión
SBA-15
Functionalization
Phenols
Adsorption
Immersion enthalpy
dc.subject.proposal.spa.fl_str_mv SBA-15
Funcionalización
Fenoles
Adsorción
Entalpía de inmersión
dc.subject.proposal.eng.fl_str_mv SBA-15
Functionalization
Phenols
Adsorption
Immersion enthalpy
description Se sintetizaron sílices mesoporosas de tipo SBA-15 y se funcionalizaron con polianilina (SBA-15/PA), APTES (SBA-15/NH2) y EDTA (SBA-15/EDTA), a estos adsorbentes se les determinaron: parámetros texturales por medio de isotermas de N2, SEM, TGA. Se caracterizó su química superficial por titulaciones Boehm, pHPCC, FTIR, calorimetría de inmersión en benceno, agua y soluciones de los fenoles de interés, por último, los sólidos fueron puestos a prueba en la remoción de fenol, p-clorofenol (PCF) y p-nitrofenol (PNF) en solución acuosa. El cambio de los parámetros texturales fue evidente en las muestras después de su modificación con los diferentes grupos funcionales, la SBA-15 exhibió valores de área superficial, volumen total y diámetro de poro de 655 m2g-1, 0,84 cm3g-1 y 6,08 nm respectivamente, después de la funcionalización hubo una disminución sustancial en el área BET, con valores entre 200 y 224 m2g-1, volumen total entre 0,25 y 0,35 cm3g-1 y diámetro de poro entre 4,45 y 5,58 nm para las sílices funcionalizadas evidenciando que las partículas de polianilina, NH2 y EDTA están dentro de los canales SBA-15. Así mismo, esta modificación en la superficie con los grupos anteriormente mencionados, son notables en las micrografías SEM, termogramas de TGA, y espectros infrarrojos. Se realizó un estudio de entalpía de inmersión en agua, benceno y las soluciones de 100 mg L-1 de fenol, PCF y PNF presentándose valores entálpicos entre -10,7 y -174,1 J g-1, donde fue evidente una interacción mayor de las soluciones y solventes con la SBA-15. Finalmente se ajustan los datos de adsorción aplicando los modelos de Langmuir y Freundlich, utilizados para interpretar el proceso fisicoquímico de adsorción de fenoles en la superficie de las sílices. La mayor capacidad de adsorción de fenol se obtuvo con SBA-15/NH2 (282 mg g-1), para PCF se obtuvo con SBA-15/PA (130 mg g-1) y para PNF se obtuvo con SBA-15/EDTA (205 mg g-1). (Texto tomado de la Fuente)
publishDate 2021
dc.date.issued.none.fl_str_mv 2021
dc.date.accessioned.none.fl_str_mv 2022-08-04T19:36:17Z
dc.date.available.none.fl_str_mv 2022-08-04T19:36:17Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv DataPaper
Image
Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/81784
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/81784
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv A. Tolosana-Moranchel, J. A. Anderson, J. A. Casas, M. Faraldos, and A. Bahamonde, “Defining the role of substituents on adsorption and photocatalytic degradation of phenolic compounds,” J. Environ. Chem. Eng., vol. 5, no. 5, pp. 4612–4620, 2017, doi: 10.1016/j.jece.2017.08.053.
X. xia Yang, X. fang Hou, X. ming Gao, and F. Fu, “Hierarchical porous carbon from semi-coke via a facile preparation method for p-nitrophenol adsorption,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 563, pp. 50–58, 2019, doi: 10.1016/j.colsurfa.2018.11.018.
X. Wang, H. Li, and J. Huang, “Adsorption of p-chlorophenol on three amino-modified hyper-cross-linked resins,” J. Colloid Interface Sci., vol. 505, pp. 585–592, 2017, doi: 10.1016/j.jcis.2017.06.053.
Y. M. Magdy, H. Altaher, and E. ElQada, “Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling,” Appl. Water Sci., vol. 8, no. 1, 2018, doi: 10.1007/s13201-018-0666-1.
N. Sarker and A. N. M. Fakhruddin, “Removal of phenol from aqueous solution using rice straw as adsorbent,” Appl. Water Sci., vol. 7, no. 3, pp. 1459–1465, 2017, doi: 10.1007/s13201-015-0324-9.
H. Biglari, M. Afsharnia, V. Alipour, R. Khosravi, K. Sharafi, and A. H. Mahvi, “A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry,” Environ. Sci. Pollut. Res., vol. 24, no. 4, pp. 4105–4116, 2017, doi: 10.1007/s11356-016-8079-x
O. Shmychkova, T. Luk’yanenko, A. Yakubenko, R. Amadelli, and A. Velichenko, “Electrooxidation of some phenolic compounds at Bi-doped PbO2,” Appl. Catal. B Environ., vol. 162, pp. 346–351, 2015, doi: 10.1016/j.apcatb.2014.07.011.
E. Hernández-Francisco, J. Peral, and L. M. Blanco-Jerez, “Removal of phenolic compounds from oil refinery wastewater by electrocoagulation and Fenton/photo-Fenton processes,” J. Water Process Eng., vol. 19, no. February, pp. 96–100, 2017, doi: 10.1016/j.jwpe.2017.07.010.
P. R. M. Cavalcante, R. P. F. Melo, T. N. Castro Dantas, A. A. Dantas Neto, E. L. Barros Neto, and M. C. P. A. Moura, “Removal of phenol from aqueous medium using micellar solubilization followed by ionic flocculation,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 2778–2784, 2018, doi: 10.1016/j.jece.2018.04.025.
M. D. Víctor-Ortega, J. M. Ochando-Pulido, and A. Martínez-Ferez, “Performance and modeling of continuous ion exchange processes for phenols recovery from olive mill wastewater,” Process Saf. Environ. Prot., vol. 100, pp. 242–251, 2016, doi: 10.1016/j.psep.2016.01.017.
D. P. Zagklis, A. I. Vavouraki, M. E. Kornaros, and C. A. Paraskeva, “Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption,” J. Hazard. Mater., vol. 285, pp. 69–76, 2015, doi: 10.1016/j.jhazmat.2014.11.038.
F. Rouquerol, J. Rouquerol, K. S. W. Sing, P. Llewellyn, and G. Maurin, Adsorption by powders and porous solids: Principles, Methodology and Applications. 2014.
X. Gao, Y. Dai, Y. Zhang, and F. Fu, “Effective adsorption of phenolic compound from aqueous solutions on activated semi coke,” J. Phys. Chem. Solids, vol. 102, pp. 142–150, 2017, doi: 10.1016/j.jpcs.2016.11.023.
L. Zhang, B. Zhang, T. Wu, D. Sun, and Y. Li, “Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 484, no. August, pp. 118–129, 2015, doi: 10.1016/j.colsurfa.2015.07.055.
Q. Qin, K. Liu, D. Fu, and H. Gao, “Effect of chlorine content of chlorophenols on their adsorption by mesoporous SBA-15,” J. Environ. Sci. (China), vol. 24, no. 8, pp. 1411–1417, 2012, doi: 10.1016/S1001-0742(11)60924-8.
D. Zhao, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores,” Science (80-. )., vol. 279, no. 5350, pp. 548–552, 1998, doi: 10.1126/science.279.5350.548.
J. P. Thielemann, F. Girgsdies, R. Schlögl, and C. Hess, “Pore structure and surface area of silica SBA-15: influence of washing and scale-up,” Beilstein J. Nanotechnol., vol. 2, no. 1, pp. 110–118, 2011, doi: 10.3762/bjnano.2.13.
M. S. Cho, H. J. Choi, K. Y. Kim, and W. S. Ahn, “Synthesis and characterization of polyaniline/mesoporous SBA-15 nanocomposite,” Macromol. Rapid Commun., vol. 23, no. 12, 2002, doi: 10.1002/1521-3927(20020801)23:12<713::AID-MARC713>3.0.CO;2-Y.
V. L. Zholobenko, A. Y. Khodakov, M. Impéror-Clerc, D. Durand, and I. Grillo, “Initial stages of SBA-15 synthesis: An overview,” Advances in Colloid and Interface Science, vol. 142, no. 1–2. 2008, doi: 10.1016/j.cis.2008.05.003.
V. Chaudhary and S. Sharma, “An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions,” J. Porous Mater., vol. 24, no. 3, 2017, doi: 10.1007/s10934-016-0311-z.
M. A. U. Martines, E. Yeong, A. Larbot, and E. Prouzet, “Temperature dependence in the synthesis of hexagonal MSU-3 type mesoporous silica synthesized with Pluronic P123 block copolymer,” Microporous Mesoporous Mater., vol. 74, no. 1–3, 2004, doi: 10.1016/j.micromeso.2004.06.021
Q. Li et al., “Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution,” Appl. Surf. Sci., vol. 290, pp. 260–266, 2014, doi: 10.1016/j.apsusc.2013.11.065.
S. Huh, J. W. Wiench, J. C. Yoo, M. Pruski, and V. S. Y. Lin, “Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method,” Chem. Mater., vol. 15, no. 22, 2003, doi: 10.1021/cm0210041.
A. S. Maria Chong and X. S. Zhao, “Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials,” J. Phys. Chem. B, vol. 107, no. 46, 2003, doi: 10.1021/jp035877+.
S. L. Burkett, S. D. Sims, and S. Mann, “Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors,” Chem. Commun., no. 11, 1996, doi: 10.1039/CC9960001367.
D. J. Macquarrie, “Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM,” Chem. Commun., no. 16, 1996, doi: 10.1039/CC9960001961.
T. Yokoi, H. Yoshitake, and T. Tatsumi, “Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes,” J. Mater. Chem., 2004, doi: 10.1039/b310576h.
D. Y. Takamori, M. A. Bizeto, M. C. de A. Fantini, C. P. L. Rubinger, R. Faez, and T. S. Martins, “Polyaniline inclusion into ordered mesoporous silica matrices: Synthesis, characterization and electrical transport mechanism,” Microporous Mesoporous Mater., vol. 274, pp. 212–219, 2019, doi: 10.1016/j.micromeso.2018.07.045.
M. S. Lashkenari, M. Ghorbani, M. Safabakhsh, B. Shahrokhi, J. fallah, and S. Rezaei, “Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation,” J. Appl. Electrochem., vol. 50, no. 5, 2020, doi: 10.1007/s10800-020-01400-9.
L. Munguía-Cortés et al., “APTES-functionalization of SBA-15 using ethanol or toluene: Textural characterization and sorption performance of carbon dioxide,” J. Mex. Chem. Soc., vol. 61, no. 4, 2017, doi: 10.29356/jmcs.v61i4.457.
J. Huang et al., “Pb (II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15,” J. Colloid Interface Sci., vol. 385, no. 1, pp. 137–146, 2012, doi: 10.1016/j.jcis.2012.06.054.
P. Rodríguez-Estupiñán, L. Giraldo, and J. C. Moreno-Piraján, “Calorimetric study of amino-functionalised SBA-15,” J. Therm. Anal. Calorim., vol. 121, no. 1, pp. 127–134, 2015, doi: 10.1007/s10973-015-4562-8.
M. Anbia and S. Amirmahmoodi, “Adsorption of phenolic compounds from aqueous solutions using functionalized SBA-15 as a nano-sorbent,” Sci. Iran., vol. 18, no. 3 C, pp. 446–452, 2011, doi: 10.1016/j.scient.2011.05.007.
P. S. Liu and G. F. Chen, “Chapter Nine - Characterization Methods: Basic Factors,” in Porous Materials, 2014.
F. Ambroz, T. J. Macdonald, V. Martis, and I. P. Parkin, “Evaluation of the BET theory for the characterization of meso and microporous MOFs,” Small Methods, vol. 2, no. 11. 2018, doi: 10.1002/smtd.201800173.
D. Dollimore, P. Spooner, and A. Turner, “The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas,” Surface Technology, vol. 4, no. 2. 1976, doi: 10.1016/0376-4583(76)90024-8.
K. S. W. Sing, “Reporting physisorption data for gas/solid systems,” Pure Appl. Chem., vol. 54, no. 11, 1982, doi: 10.1351/pac198254112201.
M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, 2015, doi: 10.1515/pac-2014-1117.
B. J. Inkson, “Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016.
N. Rahmat, N. Sadon, and M. A. Yusof, “Thermogravimetric Analysis (TGA) Profile at Different Calcination Conditions for Synthesis of PTES-SBA-15,” Am. J. Appl. Sci., 2017, doi: 10.3844/ajassp.2017.938.944.
N. Saadatkhah et al., “Experimental methods in chemical engineering: Thermogravimetric analysis—TGA,” Canadian Journal of Chemical Engineering, vol. 98, no. 1. 2020, doi: 10.1002/cjce.23673.
M. Ghanei, A. Rashidi, H. A. Tayebi, and M. E. Yazdanshenas, “Removal of Acid Blue 25 from Aqueous Media by Magnetic-SBA-15/CPAA Super Adsorbent: Adsorption Isotherm, Kinetic, and Thermodynamic Studies,” J. Chem. Eng. Data, vol. 63, no. 9, 2018, doi: 10.1021/acs.jced.8b00474.
V. Alfredsson and H. Wennerström, “The Dynamic Association Processes Leading from a Silica Precursor to a Mesoporous SBA-15 Material,” Acc. Chem. Res., vol. 48, no. 7, 2015, doi: 10.1021/acs.accounts.5b00165.
T. Kjellman, S. Asahina, J. Schmitt, M. Impéror-Clerc, O. Terasaki, and V. Alfredsson, “Direct observation of plugs and intrawall pores in SBA-15 using low voltage high resolution scanning electron microscopy and the influence of solvent properties on plug-formation,” Chem. Mater., vol. 25, no. 20, 2013, doi: 10.1021/cm402635m.
S. Mohammadi and H. Faghihian, “Elimination of Cs + from aquatic systems by an adsorbent prepared by immobilization of potassium copper hexacyanoferrate on the SBA-15 surface: kinetic, thermodynamic, and isotherm studies,” Environ. Sci. Pollut. Res., vol. 26, no. 12, 2019, doi: 10.1007/s11356-019-04623-2.
A. L. Doadrio, J. M. Sánchez-Montero, J. C. Doadrio, A. J. Salinas, and M. Vallet-Regí, “A molecular model to explain the controlled release from SBA-15 functionalized with APTES,” Microporous Mesoporous Mater., vol. 195, 2014, doi: 10.1016/j.micromeso.2014.04.019.
M. Kokunešoski et al., “Influence of synthesis conditions on morphological features of the SBA-15 containing only elongated and rounded/spherical grains,” Sci. Sinter., vol. 50, no. 1, 2018, doi: 10.2298/SOS1801111K.
S. Weng, Z. Lin, Y. Zhang, L. Chen, and J. Zhou, “Facile synthesis of SBA-15/polyaniline nanocomposites with high electrochemical activity under neutral and acidic conditions,” React. Funct. Polym., vol. 69, no. 2, pp. 130–136, 2009, doi: 10.1016/j.reactfunctpolym.2008.12.001.
C. C. S. Pedroso, V. Junqueira, C. P. L. Rubinger, T. S. Martins, and R. Faez, “Preparation, characterization and electrical conduction mechanism of polyaniline/ordered mesoporous silica composites,” Synth. Met., vol. 170, no. 1, 2013, doi: 10.1016/j.synthmet.2013.02.014.
M. Abboud et al., “Synthesis and characterization of lignosulfonate/amino-functionalized SBA-15 nanocomposites for the adsorption of methylene blue from wastewater,” New J. Chem., vol. 44, no. 6, 2020, doi: 10.1039/d0nj00076k.
A.-D. Bendrea, A.-M. Catargiu, and M. Grigoras, “Hybrid Organic-Inorganic Composite Materials for Application in Chemical Sensors,” Chem. J. Mold., vol. 4, no. 2, 2021, doi: 10.19261/cjm.2009.04(2).03.
T. M. Albayati, I. K. Salih, and H. F. Alazzawi, “Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system,” Heliyon, vol. 5, no. 10, 2019, doi: 10.1016/j.heliyon.2019.e02539.
D. Lv et al., “Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions,” Appl. Surf. Sci., vol. 428, 2018, doi: 10.1016/j.apsusc.2017.09.151.
H. P. Boehm, “Some aspects of the surface chemistry of carbon blacks and other carbons,” Carbon, vol. 32, no. 5. 1994, doi: 10.1016/0008-6223(94)90031-0.
R. B. Fidel, D. A. Laird, and M. L. Thompson, “Evaluation of Modified Boehm Titration Methods for Use with Biochars,” J. Environ. Qual., vol. 42, no. 6, 2013, doi: 10.2134/jeq2013.07.0285.
A. M. Oickle, S. L. Goertzen, K. R. Hopper, Y. O. Abdalla, and H. A. Andreas, “Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant,” Carbon N. Y., vol. 48, no. 12, 2010, doi: 10.1016/j.carbon.2010.05.004.
H. Wu, W. Lu, Y. Chen, P. Zhang, and X. Cheng, “Application of Boehm Titration for the Quantitative Measurement of Soot Oxygen Functional Groups,” Energy and Fuels, vol. 34, no. 6, 2020, doi: 10.1021/acs.energyfuels.0c00904.
Y. El-Sayed, K. Loughlin, S. Ur Rehman, D. Abouelnasr, and I. Al-Zubaidy, “Development of semi-static steam process for the production of sludge-based adsorbents,” Adsorpt. Sci. Technol., vol. 32, no. 4, 2014, doi: 10.1260/0263-6174.32.4.291.
G. A. Parks, “The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems,” Chem. Rev., vol. 65, no. 2, 1965, doi: 10.1021/cr60234a002.
M. Kosmulski, “The pH dependent surface charging and points of zero charge. VIII. Update,” Advances in Colloid and Interface Science, vol. 275. 2020, doi: 10.1016/j.cis.2019.102064.
S. Z. N. Ahmad, R. Hamdan, W. A. W. Mohamed, N. Othman, and N. S. M. Zin, “Chemical composition, pH value, and points of zero charge of high calcium and high iron electric arc furnace slag,” Int. J. Eng. Technol., vol. 7, no. 3.23 Special Issue 23, 2018, doi: 10.14419/ijet.v7i3.23.17249.
J. S. Noh and J. A. Schwarz, “Effect of HNO3 treatment on the surface acidity of activated carbons,” Carbon N. Y., vol. 28, no. 5, 1990, doi: 10.1016/0008-6223(90)90069-B.
A. Dutta, “Fourier Transform Infrared Spectroscopy,” in Spectroscopic Methods for Nanomaterials Characterization, vol. 2, 2017.
R. Ojeda-López, I. J. Pérez-Hermosillo, J. Marcos Esparza-Schulz, A. Cervantes-Uribe, and A. Domínguez-Ortiz, “SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio,” Adsorption, 2015, doi: 10.1007/s10450-015-9716-2.
J. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, and M. Lindén, “On the nature of the Brønsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution,” Langmuir, vol. 23, no. 8, 2007, doi: 10.1021/la062450w.
Q. N. K. Nguyen, N. T. Yen, N. D. Hau, and H. L. Tran, “Synthesis and Characterization of Mesoporous Silica SBA-15 and ZnO/SBA-15 Photocatalytic Materials from the Ash of Brickyards,” J. Chem., vol. 2020, 2020, doi: 10.1155/2020/8456194.
S. Iqbal and J. Il Yun, “EDTA-functionalized mesoporous silica for the removal of corrosion products: Adsorption studies and performance evaluation under gamma irradiation,” Microporous Mesoporous Mater., vol. 248, 2017, doi: 10.1016/j.micromeso.2017.04.028.
J. Silvestre-Albero, C. Gómez de Salazar, A. Sepúlveda-Escribano, and F. Rodríguez-Reinoso, “Characterization of microporous solids by immersion calorimetry,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 187, no. 188, 2001, doi: 10.1016/S0927-7757(01)00620-3.
F. Stoeckli, T. A. Centeno, J. B. Donnet, N. Pusset, and E. Papirer, “Characterization of industrial activated carbons by adsorption and immersion techniques and by STM,” Fuel, vol. 74, no. 11, 1995, doi: 10.1016/0016-2361(95)00168-5.
J. C. Moreno and L. Giraldo, “Determination of the immersion enthalpy of activated carbon by microcalorimetry of the heat conduction,” Instrum. Sci. Technol., vol. 28, no. 2, pp. 171–178, 2000, doi: 10.1081/CI-100100970.
J. A. Menéndez, “On the use of calorimetric techniques for the characterization of carbons: A brief review,” Thermochim. Acta, vol. 312, no. 1–2, 1998, doi: 10.1016/s0040-6031(97)00441-3.
R. Denoyel, F. Rouquerol, and J. Rouquerol, “Porous texture and surface characterization from liquid-solid interactions: Immersion calorimetry and adsorption from solution,” in Adsorption by Carbons, 2008.
A. M. Carvajal-Bernal, F. Gómez-Granados, L. Giraldo, and J. C. Moreno-Piraján, “A study of the interactions of activated carbon-phenol in aqueous solution using the determination of immersion enthalpy,” Appl. Sci., vol. 8, no. 6, p. 843, 2018, doi: 10.3390/app8060843.
L. Giraldo, P. Rodríguez-Estupiñán, and J. C. Moreno-Piraján, “Calorimetry of Immersion in the Energetic Characterization of Porous Solids,” in Calorimetry - Design, Theory and Applications in Porous Solids, 2018.
S. M. Sarge, G. W. H. Höhne, and W. Hemminger, Calorimetry: Fundamentals, Instrumentation and Applications, vol. 9783527327614. 2014.
I. Wadsö and R. N. Goldberg, “Standards in isothermal microcalorimetry: (IUPAC Technical Report),” Pure Appl. Chem., vol. 73, no. 10, 2001, doi: 10.1351/pac200173101625.
W. Zielenkiewicz, “Comparative measurements in isoperibol calorimetry: Uses and misuses,” Thermochim. Acta, vol. 347, no. 1–2, 2000, doi: 10.1016/s0040-6031(99)00425-6.
J. C. Moreno and L. Giraldo, “Influence of thermal insulation of the surroundings on the response of the output electric signal in a heat conduction calorimetric unit,” Instrum. Sci. Technol., vol. 33, no. 4, 2005, doi: 10.1081/CI-200063709.
P. J. van Ekeren, “Handbook of Thermal Analysis and Calorimetry,” Thermochim. Acta, vol. 407, no. 1–2, 2003, doi: 10.1016/s0040-6031(03)00283-1.
D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “Characterisation of granular activated carbon prepared by activation with CaCl2 by means of gas adsorption and immersion calorimetry,” Adsorption, vol. 22, no. 4–6, pp. 717–723, 2016, doi: 10.1007/s10450-016-9764-2.
L. Navarrete, L. Giraldo, and J. Moreno, “Influencia de la química superficial en la entalpía de inmersión de carbones activados en soluciones acuosas de fenol y 4-nitro fenol,” Rev. Colomb. Química, vol. 35, no. 2, pp. 215–224, 2006.
P. Rodríguez Estupiñán, L. Giraldo Gutiérrez, and J. Moreno Piraján, “Relación entre entalpías de inmersión de carbones activados modificados en su química superficial en diferentes líquidos y sus características fisicoquímicas,” Afinidad Rev. química teórica y Apl., vol. 72, no. 570, pp. 114–119, 2015.
A. Da̧browski, P. Podkościelny, Z. Hubicki, and M. Barczak, “Adsorption of phenolic compounds by activated carbon - A critical review,” Chemosphere, vol. 58, no. 8, 2005, doi: 10.1016/j.chemosphere.2004.09.067.
K. Sharafi et al., “Phenol adsorption on scoria stone as adsorbent - Application of response surface method and artificial neural networks,” J. Mol. Liq., vol. 274, 2019, doi: 10.1016/j.molliq.2018.11.006.
H. T. Hamad, “Removal of phenol and inorganic metals from wastewater using activated ceramic,” J. King Saud Univ. - Eng. Sci., vol. 33, no. 4, 2021, doi: 10.1016/j.jksues.2020.04.006.
B. K. Singh and P. S. Nayak, “Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash,” Adsorpt. Sci. Technol., vol. 22, no. 4, 2004, doi: 10.1260/0263617041514901.
B. Chakraborty, “Kinetic study of degradation of p-nitro phenol by a mixed bacterial culture and its constituent pure strains,” in Materials Today: Proceedings, 2016, vol. 3, no. 10, doi: 10.1016/j.matpr.2016.10.034.
M. J. Ahmed and S. K. Theydan, “Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones,” Ecotoxicol. Environ. Saf., vol. 84, 2012, doi: 10.1016/j.ecoenv.2012.06.019.
D. Wei et al., “Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: A DFT and MD simulation study,” Chem. Eng. J., vol. 375, 2019, doi: 10.1016/j.cej.2019.121964.
A. Shokri, “Degradation of 4-Chloro phenol in aqueous media thru UV/Persulfate method by Artificial Neural Network and full factorial design method,” Int. J. Environ. Anal. Chem., 2020, doi: 10.1080/03067319.2020.1791328.
I. Abay, A. Denizli, E. Bişkin, and B. Salih, “Removal and pre-concentration of phenolic species onto β-cyclodextrin modified poly(hydroxyethylmethacrylate-ethyleneglycoldimethacrylate) microbeads,” Chemosphere, vol. 61, no. 9, 2005, doi: 10.1016/j.chemosphere.2005.03.079.
M. A. Al-Ghouti and D. A. Da’ana, “Guidelines for the use and interpretation of adsorption isotherm models: A review,” Journal of Hazardous Materials, vol. 393. 2020, doi: 10.1016/j.jhazmat.2020.122383
H. A. Asmaly et al., “Adsorption of phenol on aluminum oxide impregnated fly ash,” Desalin. Water Treat., vol. 57, no. 15, pp. 6801–6808, 2016, doi: 10.1080/19443994.2015.1010238
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 90 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/81784/3/1026286635.2022.pdf
https://repositorio.unal.edu.co/bitstream/unal/81784/4/license.txt
https://repositorio.unal.edu.co/bitstream/unal/81784/5/1026286635.2022.pdf.jpg
bitstream.checksum.fl_str_mv 3dad9eaa1fd5db5b2cb8ba28c6ffeaac
8153f7789df02f0a4c9e079953658ab2
a7c7afc7fb3e117719d40e63b5f0aeff
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089352619229184
spelling Atribución-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Giraldo Gutiérrez, Liliana2e06ab89675c8eefeb27f5db86c4a5ccCárdenas Cuevas, Lady Johanac102df40e8b32295ac4c8090b19a7733Grupo de Calorimetría2022-08-04T19:36:17Z2022-08-04T19:36:17Z2021https://repositorio.unal.edu.co/handle/unal/81784Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Se sintetizaron sílices mesoporosas de tipo SBA-15 y se funcionalizaron con polianilina (SBA-15/PA), APTES (SBA-15/NH2) y EDTA (SBA-15/EDTA), a estos adsorbentes se les determinaron: parámetros texturales por medio de isotermas de N2, SEM, TGA. Se caracterizó su química superficial por titulaciones Boehm, pHPCC, FTIR, calorimetría de inmersión en benceno, agua y soluciones de los fenoles de interés, por último, los sólidos fueron puestos a prueba en la remoción de fenol, p-clorofenol (PCF) y p-nitrofenol (PNF) en solución acuosa. El cambio de los parámetros texturales fue evidente en las muestras después de su modificación con los diferentes grupos funcionales, la SBA-15 exhibió valores de área superficial, volumen total y diámetro de poro de 655 m2g-1, 0,84 cm3g-1 y 6,08 nm respectivamente, después de la funcionalización hubo una disminución sustancial en el área BET, con valores entre 200 y 224 m2g-1, volumen total entre 0,25 y 0,35 cm3g-1 y diámetro de poro entre 4,45 y 5,58 nm para las sílices funcionalizadas evidenciando que las partículas de polianilina, NH2 y EDTA están dentro de los canales SBA-15. Así mismo, esta modificación en la superficie con los grupos anteriormente mencionados, son notables en las micrografías SEM, termogramas de TGA, y espectros infrarrojos. Se realizó un estudio de entalpía de inmersión en agua, benceno y las soluciones de 100 mg L-1 de fenol, PCF y PNF presentándose valores entálpicos entre -10,7 y -174,1 J g-1, donde fue evidente una interacción mayor de las soluciones y solventes con la SBA-15. Finalmente se ajustan los datos de adsorción aplicando los modelos de Langmuir y Freundlich, utilizados para interpretar el proceso fisicoquímico de adsorción de fenoles en la superficie de las sílices. La mayor capacidad de adsorción de fenol se obtuvo con SBA-15/NH2 (282 mg g-1), para PCF se obtuvo con SBA-15/PA (130 mg g-1) y para PNF se obtuvo con SBA-15/EDTA (205 mg g-1). (Texto tomado de la Fuente)SBA-15 mesoporous silices was synthesized and functionalized with polyaniline (SBA-15/PA), APTES (SBA-15/NH2) y EDTA (SBA-15/EDTA). The solids obtained were determined: textural parameters through isotherms of N2, SEM, TGA. The surface chemistry was characterized by Boehm tritation, the point of zero charge pH (pHpzc), FTIR, immersion calorimetry in benzene, water and solutions of the phenols of interest, finally, the solids were tested in adsorption of phenol, p-chlorophenol (PCF) and p-nitrophenol (PNF) in aqueous solution. The change of the textural parameters is evident in the samples after their modification with the different functional groups, the SBA-15 exhibited values of surface area, total volume and pore diameter of 655 m2g-1, 0.84 cm3g-1 and 6.08 nm respectively, after functionalization there is a substantial decrease in the BET area, with values between 200 and 224 m2g-1, total volume between 0.25 and 0.35 cm3g-1 and pore diameter between 4.45 and 5.58 nm for the functionalized silicas showing that the polyaniline, NH2 and EDTA particles are within the SBA-15 channels. In addition, this modification on the surface with the functional groups is notable in SEM micrographs, TGA thermograms, and infrared spectra. A study of immersion enthalpy in water, benzene and solutions of 100 mg L-1 of phenol, pcf and pnf was carried out, presenting enthalpic values between -10.7 and -174.1 J g-1, where a greater interaction of solutions and solvents with SBA-15. Finally, the adsorption data are adjusted by applying the Langmuir and Freundlich models, used to interpret the physicochemical process of phenols adsorption on the surface of silicas. The highest phenol adsorption capacity was obtained with SBA-15/NH2 (282 mg g-1), for PCF it was obtained with SBA-15/PA (130 mg g-1) and for PNF it was obtained with SBA-15/ EDTA (205 mg g-1). (Text taken from the Source)MaestríaMagister en Ciencias – QuímicaTermodinámicaxvi, 90 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá540 - Química y ciencias afines::541 - Química física540 - Química y ciencias afines540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesSBA-15FuncionalizaciónFenolesAdsorciónEntalpía de inmersiónSBA-15FunctionalizationPhenolsAdsorptionImmersion enthalpySíntesis, funcionalización y caracterización de SBA-15 para la adsorción de fenol, p-nitrofenol y p-clorofenol desde solución acuosaSynthesis, functionalization and characterization of SBA-15 for the adsorption of phenol, p-nitrophenol and p-chlorophenol from aqueous solutionTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionDataPaperImageTexthttp://purl.org/redcol/resource_type/TMA. Tolosana-Moranchel, J. A. Anderson, J. A. Casas, M. Faraldos, and A. Bahamonde, “Defining the role of substituents on adsorption and photocatalytic degradation of phenolic compounds,” J. Environ. Chem. Eng., vol. 5, no. 5, pp. 4612–4620, 2017, doi: 10.1016/j.jece.2017.08.053.X. xia Yang, X. fang Hou, X. ming Gao, and F. Fu, “Hierarchical porous carbon from semi-coke via a facile preparation method for p-nitrophenol adsorption,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 563, pp. 50–58, 2019, doi: 10.1016/j.colsurfa.2018.11.018.X. Wang, H. Li, and J. Huang, “Adsorption of p-chlorophenol on three amino-modified hyper-cross-linked resins,” J. Colloid Interface Sci., vol. 505, pp. 585–592, 2017, doi: 10.1016/j.jcis.2017.06.053.Y. M. Magdy, H. Altaher, and E. ElQada, “Removal of three nitrophenols from aqueous solutions by adsorption onto char ash: equilibrium and kinetic modeling,” Appl. Water Sci., vol. 8, no. 1, 2018, doi: 10.1007/s13201-018-0666-1.N. Sarker and A. N. M. Fakhruddin, “Removal of phenol from aqueous solution using rice straw as adsorbent,” Appl. Water Sci., vol. 7, no. 3, pp. 1459–1465, 2017, doi: 10.1007/s13201-015-0324-9.H. Biglari, M. Afsharnia, V. Alipour, R. Khosravi, K. Sharafi, and A. H. Mahvi, “A review and investigation of the effect of nanophotocatalytic ozonation process for phenolic compound removal from real effluent of pulp and paper industry,” Environ. Sci. Pollut. Res., vol. 24, no. 4, pp. 4105–4116, 2017, doi: 10.1007/s11356-016-8079-xO. Shmychkova, T. Luk’yanenko, A. Yakubenko, R. Amadelli, and A. Velichenko, “Electrooxidation of some phenolic compounds at Bi-doped PbO2,” Appl. Catal. B Environ., vol. 162, pp. 346–351, 2015, doi: 10.1016/j.apcatb.2014.07.011.E. Hernández-Francisco, J. Peral, and L. M. Blanco-Jerez, “Removal of phenolic compounds from oil refinery wastewater by electrocoagulation and Fenton/photo-Fenton processes,” J. Water Process Eng., vol. 19, no. February, pp. 96–100, 2017, doi: 10.1016/j.jwpe.2017.07.010.P. R. M. Cavalcante, R. P. F. Melo, T. N. Castro Dantas, A. A. Dantas Neto, E. L. Barros Neto, and M. C. P. A. Moura, “Removal of phenol from aqueous medium using micellar solubilization followed by ionic flocculation,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 2778–2784, 2018, doi: 10.1016/j.jece.2018.04.025.M. D. Víctor-Ortega, J. M. Ochando-Pulido, and A. Martínez-Ferez, “Performance and modeling of continuous ion exchange processes for phenols recovery from olive mill wastewater,” Process Saf. Environ. Prot., vol. 100, pp. 242–251, 2016, doi: 10.1016/j.psep.2016.01.017.D. P. Zagklis, A. I. Vavouraki, M. E. Kornaros, and C. A. Paraskeva, “Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption,” J. Hazard. Mater., vol. 285, pp. 69–76, 2015, doi: 10.1016/j.jhazmat.2014.11.038.F. Rouquerol, J. Rouquerol, K. S. W. Sing, P. Llewellyn, and G. Maurin, Adsorption by powders and porous solids: Principles, Methodology and Applications. 2014.X. Gao, Y. Dai, Y. Zhang, and F. Fu, “Effective adsorption of phenolic compound from aqueous solutions on activated semi coke,” J. Phys. Chem. Solids, vol. 102, pp. 142–150, 2017, doi: 10.1016/j.jpcs.2016.11.023.L. Zhang, B. Zhang, T. Wu, D. Sun, and Y. Li, “Adsorption behavior and mechanism of chlorophenols onto organoclays in aqueous solution,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 484, no. August, pp. 118–129, 2015, doi: 10.1016/j.colsurfa.2015.07.055.Q. Qin, K. Liu, D. Fu, and H. Gao, “Effect of chlorine content of chlorophenols on their adsorption by mesoporous SBA-15,” J. Environ. Sci. (China), vol. 24, no. 8, pp. 1411–1417, 2012, doi: 10.1016/S1001-0742(11)60924-8.D. Zhao, “Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50&amp;nbsp;to 300&amp;nbsp;Angstrom Pores,” Science (80-. )., vol. 279, no. 5350, pp. 548–552, 1998, doi: 10.1126/science.279.5350.548.J. P. Thielemann, F. Girgsdies, R. Schlögl, and C. Hess, “Pore structure and surface area of silica SBA-15: influence of washing and scale-up,” Beilstein J. Nanotechnol., vol. 2, no. 1, pp. 110–118, 2011, doi: 10.3762/bjnano.2.13.M. S. Cho, H. J. Choi, K. Y. Kim, and W. S. Ahn, “Synthesis and characterization of polyaniline/mesoporous SBA-15 nanocomposite,” Macromol. Rapid Commun., vol. 23, no. 12, 2002, doi: 10.1002/1521-3927(20020801)23:12<713::AID-MARC713>3.0.CO;2-Y.V. L. Zholobenko, A. Y. Khodakov, M. Impéror-Clerc, D. Durand, and I. Grillo, “Initial stages of SBA-15 synthesis: An overview,” Advances in Colloid and Interface Science, vol. 142, no. 1–2. 2008, doi: 10.1016/j.cis.2008.05.003.V. Chaudhary and S. Sharma, “An overview of ordered mesoporous material SBA-15: synthesis, functionalization and application in oxidation reactions,” J. Porous Mater., vol. 24, no. 3, 2017, doi: 10.1007/s10934-016-0311-z.M. A. U. Martines, E. Yeong, A. Larbot, and E. Prouzet, “Temperature dependence in the synthesis of hexagonal MSU-3 type mesoporous silica synthesized with Pluronic P123 block copolymer,” Microporous Mesoporous Mater., vol. 74, no. 1–3, 2004, doi: 10.1016/j.micromeso.2004.06.021Q. Li et al., “Synthesis of SBA-15/polyaniline mesoporous composite for removal of resorcinol from aqueous solution,” Appl. Surf. Sci., vol. 290, pp. 260–266, 2014, doi: 10.1016/j.apsusc.2013.11.065.S. Huh, J. W. Wiench, J. C. Yoo, M. Pruski, and V. S. Y. Lin, “Organic Functionalization and Morphology Control of Mesoporous Silicas via a Co-Condensation Synthesis Method,” Chem. Mater., vol. 15, no. 22, 2003, doi: 10.1021/cm0210041.A. S. Maria Chong and X. S. Zhao, “Functionalization of SBA-15 with APTES and Characterization of Functionalized Materials,” J. Phys. Chem. B, vol. 107, no. 46, 2003, doi: 10.1021/jp035877+.S. L. Burkett, S. D. Sims, and S. Mann, “Synthesis of hybrid inorganic-organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors,” Chem. Commun., no. 11, 1996, doi: 10.1039/CC9960001367.D. J. Macquarrie, “Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl-MCM and 2-cyanoethyl-MCM,” Chem. Commun., no. 16, 1996, doi: 10.1039/CC9960001961.T. Yokoi, H. Yoshitake, and T. Tatsumi, “Synthesis of amino-functionalized MCM-41 via direct co-condensation and post-synthesis grafting methods using mono-, di- and tri-amino-organoalkoxysilanes,” J. Mater. Chem., 2004, doi: 10.1039/b310576h.D. Y. Takamori, M. A. Bizeto, M. C. de A. Fantini, C. P. L. Rubinger, R. Faez, and T. S. Martins, “Polyaniline inclusion into ordered mesoporous silica matrices: Synthesis, characterization and electrical transport mechanism,” Microporous Mesoporous Mater., vol. 274, pp. 212–219, 2019, doi: 10.1016/j.micromeso.2018.07.045.M. S. Lashkenari, M. Ghorbani, M. Safabakhsh, B. Shahrokhi, J. fallah, and S. Rezaei, “Fabrication of polyaniline/SBA-15-supported platinum/cobalt nanocomposites as promising electrocatalyst for formic acid oxidation,” J. Appl. Electrochem., vol. 50, no. 5, 2020, doi: 10.1007/s10800-020-01400-9.L. Munguía-Cortés et al., “APTES-functionalization of SBA-15 using ethanol or toluene: Textural characterization and sorption performance of carbon dioxide,” J. Mex. Chem. Soc., vol. 61, no. 4, 2017, doi: 10.29356/jmcs.v61i4.457.J. Huang et al., “Pb (II) removal from aqueous media by EDTA-modified mesoporous silica SBA-15,” J. Colloid Interface Sci., vol. 385, no. 1, pp. 137–146, 2012, doi: 10.1016/j.jcis.2012.06.054.P. Rodríguez-Estupiñán, L. Giraldo, and J. C. Moreno-Piraján, “Calorimetric study of amino-functionalised SBA-15,” J. Therm. Anal. Calorim., vol. 121, no. 1, pp. 127–134, 2015, doi: 10.1007/s10973-015-4562-8.M. Anbia and S. Amirmahmoodi, “Adsorption of phenolic compounds from aqueous solutions using functionalized SBA-15 as a nano-sorbent,” Sci. Iran., vol. 18, no. 3 C, pp. 446–452, 2011, doi: 10.1016/j.scient.2011.05.007.P. S. Liu and G. F. Chen, “Chapter Nine - Characterization Methods: Basic Factors,” in Porous Materials, 2014.F. Ambroz, T. J. Macdonald, V. Martis, and I. P. Parkin, “Evaluation of the BET theory for the characterization of meso and microporous MOFs,” Small Methods, vol. 2, no. 11. 2018, doi: 10.1002/smtd.201800173.D. Dollimore, P. Spooner, and A. Turner, “The bet method of analysis of gas adsorption data and its relevance to the calculation of surface areas,” Surface Technology, vol. 4, no. 2. 1976, doi: 10.1016/0376-4583(76)90024-8.K. S. W. Sing, “Reporting physisorption data for gas/solid systems,” Pure Appl. Chem., vol. 54, no. 11, 1982, doi: 10.1351/pac198254112201.M. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure Appl. Chem., vol. 87, no. 9–10, pp. 1051–1069, 2015, doi: 10.1515/pac-2014-1117.B. J. Inkson, “Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for Materials Characterization,” in Materials Characterization Using Nondestructive Evaluation (NDE) Methods, 2016.N. Rahmat, N. Sadon, and M. A. Yusof, “Thermogravimetric Analysis (TGA) Profile at Different Calcination Conditions for Synthesis of PTES-SBA-15,” Am. J. Appl. Sci., 2017, doi: 10.3844/ajassp.2017.938.944.N. Saadatkhah et al., “Experimental methods in chemical engineering: Thermogravimetric analysis—TGA,” Canadian Journal of Chemical Engineering, vol. 98, no. 1. 2020, doi: 10.1002/cjce.23673.M. Ghanei, A. Rashidi, H. A. Tayebi, and M. E. Yazdanshenas, “Removal of Acid Blue 25 from Aqueous Media by Magnetic-SBA-15/CPAA Super Adsorbent: Adsorption Isotherm, Kinetic, and Thermodynamic Studies,” J. Chem. Eng. Data, vol. 63, no. 9, 2018, doi: 10.1021/acs.jced.8b00474.V. Alfredsson and H. Wennerström, “The Dynamic Association Processes Leading from a Silica Precursor to a Mesoporous SBA-15 Material,” Acc. Chem. Res., vol. 48, no. 7, 2015, doi: 10.1021/acs.accounts.5b00165.T. Kjellman, S. Asahina, J. Schmitt, M. Impéror-Clerc, O. Terasaki, and V. Alfredsson, “Direct observation of plugs and intrawall pores in SBA-15 using low voltage high resolution scanning electron microscopy and the influence of solvent properties on plug-formation,” Chem. Mater., vol. 25, no. 20, 2013, doi: 10.1021/cm402635m.S. Mohammadi and H. Faghihian, “Elimination of Cs + from aquatic systems by an adsorbent prepared by immobilization of potassium copper hexacyanoferrate on the SBA-15 surface: kinetic, thermodynamic, and isotherm studies,” Environ. Sci. Pollut. Res., vol. 26, no. 12, 2019, doi: 10.1007/s11356-019-04623-2.A. L. Doadrio, J. M. Sánchez-Montero, J. C. Doadrio, A. J. Salinas, and M. Vallet-Regí, “A molecular model to explain the controlled release from SBA-15 functionalized with APTES,” Microporous Mesoporous Mater., vol. 195, 2014, doi: 10.1016/j.micromeso.2014.04.019.M. Kokunešoski et al., “Influence of synthesis conditions on morphological features of the SBA-15 containing only elongated and rounded/spherical grains,” Sci. Sinter., vol. 50, no. 1, 2018, doi: 10.2298/SOS1801111K.S. Weng, Z. Lin, Y. Zhang, L. Chen, and J. Zhou, “Facile synthesis of SBA-15/polyaniline nanocomposites with high electrochemical activity under neutral and acidic conditions,” React. Funct. Polym., vol. 69, no. 2, pp. 130–136, 2009, doi: 10.1016/j.reactfunctpolym.2008.12.001.C. C. S. Pedroso, V. Junqueira, C. P. L. Rubinger, T. S. Martins, and R. Faez, “Preparation, characterization and electrical conduction mechanism of polyaniline/ordered mesoporous silica composites,” Synth. Met., vol. 170, no. 1, 2013, doi: 10.1016/j.synthmet.2013.02.014.M. Abboud et al., “Synthesis and characterization of lignosulfonate/amino-functionalized SBA-15 nanocomposites for the adsorption of methylene blue from wastewater,” New J. Chem., vol. 44, no. 6, 2020, doi: 10.1039/d0nj00076k.A.-D. Bendrea, A.-M. Catargiu, and M. Grigoras, “Hybrid Organic-Inorganic Composite Materials for Application in Chemical Sensors,” Chem. J. Mold., vol. 4, no. 2, 2021, doi: 10.19261/cjm.2009.04(2).03.T. M. Albayati, I. K. Salih, and H. F. Alazzawi, “Synthesis and characterization of a modified surface of SBA-15 mesoporous silica for a chloramphenicol drug delivery system,” Heliyon, vol. 5, no. 10, 2019, doi: 10.1016/j.heliyon.2019.e02539.D. Lv et al., “Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(II) and Cu(II) removal from aqueous solutions,” Appl. Surf. Sci., vol. 428, 2018, doi: 10.1016/j.apsusc.2017.09.151.H. P. Boehm, “Some aspects of the surface chemistry of carbon blacks and other carbons,” Carbon, vol. 32, no. 5. 1994, doi: 10.1016/0008-6223(94)90031-0.R. B. Fidel, D. A. Laird, and M. L. Thompson, “Evaluation of Modified Boehm Titration Methods for Use with Biochars,” J. Environ. Qual., vol. 42, no. 6, 2013, doi: 10.2134/jeq2013.07.0285.A. M. Oickle, S. L. Goertzen, K. R. Hopper, Y. O. Abdalla, and H. A. Andreas, “Standardization of the Boehm titration: Part II. Method of agitation, effect of filtering and dilute titrant,” Carbon N. Y., vol. 48, no. 12, 2010, doi: 10.1016/j.carbon.2010.05.004.H. Wu, W. Lu, Y. Chen, P. Zhang, and X. Cheng, “Application of Boehm Titration for the Quantitative Measurement of Soot Oxygen Functional Groups,” Energy and Fuels, vol. 34, no. 6, 2020, doi: 10.1021/acs.energyfuels.0c00904.Y. El-Sayed, K. Loughlin, S. Ur Rehman, D. Abouelnasr, and I. Al-Zubaidy, “Development of semi-static steam process for the production of sludge-based adsorbents,” Adsorpt. Sci. Technol., vol. 32, no. 4, 2014, doi: 10.1260/0263-6174.32.4.291.G. A. Parks, “The Isoelectric Points of Solid Oxides, Solid Hydroxides, and Aqueous Hydroxo Complex Systems,” Chem. Rev., vol. 65, no. 2, 1965, doi: 10.1021/cr60234a002.M. Kosmulski, “The pH dependent surface charging and points of zero charge. VIII. Update,” Advances in Colloid and Interface Science, vol. 275. 2020, doi: 10.1016/j.cis.2019.102064.S. Z. N. Ahmad, R. Hamdan, W. A. W. Mohamed, N. Othman, and N. S. M. Zin, “Chemical composition, pH value, and points of zero charge of high calcium and high iron electric arc furnace slag,” Int. J. Eng. Technol., vol. 7, no. 3.23 Special Issue 23, 2018, doi: 10.14419/ijet.v7i3.23.17249.J. S. Noh and J. A. Schwarz, “Effect of HNO3 treatment on the surface acidity of activated carbons,” Carbon N. Y., vol. 28, no. 5, 1990, doi: 10.1016/0008-6223(90)90069-B.A. Dutta, “Fourier Transform Infrared Spectroscopy,” in Spectroscopic Methods for Nanomaterials Characterization, vol. 2, 2017.R. Ojeda-López, I. J. Pérez-Hermosillo, J. Marcos Esparza-Schulz, A. Cervantes-Uribe, and A. Domínguez-Ortiz, “SBA-15 materials: calcination temperature influence on textural properties and total silanol ratio,” Adsorption, 2015, doi: 10.1007/s10450-015-9716-2.J. M. Rosenholm, T. Czuryszkiewicz, F. Kleitz, J. B. Rosenholm, and M. Lindén, “On the nature of the Brønsted acidic groups on native and functionalized mesoporous siliceous SBA-15 as studied by benzylamine adsorption from solution,” Langmuir, vol. 23, no. 8, 2007, doi: 10.1021/la062450w.Q. N. K. Nguyen, N. T. Yen, N. D. Hau, and H. L. Tran, “Synthesis and Characterization of Mesoporous Silica SBA-15 and ZnO/SBA-15 Photocatalytic Materials from the Ash of Brickyards,” J. Chem., vol. 2020, 2020, doi: 10.1155/2020/8456194.S. Iqbal and J. Il Yun, “EDTA-functionalized mesoporous silica for the removal of corrosion products: Adsorption studies and performance evaluation under gamma irradiation,” Microporous Mesoporous Mater., vol. 248, 2017, doi: 10.1016/j.micromeso.2017.04.028.J. Silvestre-Albero, C. Gómez de Salazar, A. Sepúlveda-Escribano, and F. Rodríguez-Reinoso, “Characterization of microporous solids by immersion calorimetry,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 187, no. 188, 2001, doi: 10.1016/S0927-7757(01)00620-3.F. Stoeckli, T. A. Centeno, J. B. Donnet, N. Pusset, and E. Papirer, “Characterization of industrial activated carbons by adsorption and immersion techniques and by STM,” Fuel, vol. 74, no. 11, 1995, doi: 10.1016/0016-2361(95)00168-5.J. C. Moreno and L. Giraldo, “Determination of the immersion enthalpy of activated carbon by microcalorimetry of the heat conduction,” Instrum. Sci. Technol., vol. 28, no. 2, pp. 171–178, 2000, doi: 10.1081/CI-100100970.J. A. Menéndez, “On the use of calorimetric techniques for the characterization of carbons: A brief review,” Thermochim. Acta, vol. 312, no. 1–2, 1998, doi: 10.1016/s0040-6031(97)00441-3.R. Denoyel, F. Rouquerol, and J. Rouquerol, “Porous texture and surface characterization from liquid-solid interactions: Immersion calorimetry and adsorption from solution,” in Adsorption by Carbons, 2008.A. M. Carvajal-Bernal, F. Gómez-Granados, L. Giraldo, and J. C. Moreno-Piraján, “A study of the interactions of activated carbon-phenol in aqueous solution using the determination of immersion enthalpy,” Appl. Sci., vol. 8, no. 6, p. 843, 2018, doi: 10.3390/app8060843.L. Giraldo, P. Rodríguez-Estupiñán, and J. C. Moreno-Piraján, “Calorimetry of Immersion in the Energetic Characterization of Porous Solids,” in Calorimetry - Design, Theory and Applications in Porous Solids, 2018.S. M. Sarge, G. W. H. Höhne, and W. Hemminger, Calorimetry: Fundamentals, Instrumentation and Applications, vol. 9783527327614. 2014.I. Wadsö and R. N. Goldberg, “Standards in isothermal microcalorimetry: (IUPAC Technical Report),” Pure Appl. Chem., vol. 73, no. 10, 2001, doi: 10.1351/pac200173101625.W. Zielenkiewicz, “Comparative measurements in isoperibol calorimetry: Uses and misuses,” Thermochim. Acta, vol. 347, no. 1–2, 2000, doi: 10.1016/s0040-6031(99)00425-6.J. C. Moreno and L. Giraldo, “Influence of thermal insulation of the surroundings on the response of the output electric signal in a heat conduction calorimetric unit,” Instrum. Sci. Technol., vol. 33, no. 4, 2005, doi: 10.1081/CI-200063709.P. J. van Ekeren, “Handbook of Thermal Analysis and Calorimetry,” Thermochim. Acta, vol. 407, no. 1–2, 2003, doi: 10.1016/s0040-6031(03)00283-1.D. P. Vargas, L. Giraldo, and J. C. Moreno-Piraján, “Characterisation of granular activated carbon prepared by activation with CaCl2 by means of gas adsorption and immersion calorimetry,” Adsorption, vol. 22, no. 4–6, pp. 717–723, 2016, doi: 10.1007/s10450-016-9764-2.L. Navarrete, L. Giraldo, and J. Moreno, “Influencia de la química superficial en la entalpía de inmersión de carbones activados en soluciones acuosas de fenol y 4-nitro fenol,” Rev. Colomb. Química, vol. 35, no. 2, pp. 215–224, 2006.P. Rodríguez Estupiñán, L. Giraldo Gutiérrez, and J. Moreno Piraján, “Relación entre entalpías de inmersión de carbones activados modificados en su química superficial en diferentes líquidos y sus características fisicoquímicas,” Afinidad Rev. química teórica y Apl., vol. 72, no. 570, pp. 114–119, 2015.A. Da̧browski, P. Podkościelny, Z. Hubicki, and M. Barczak, “Adsorption of phenolic compounds by activated carbon - A critical review,” Chemosphere, vol. 58, no. 8, 2005, doi: 10.1016/j.chemosphere.2004.09.067.K. Sharafi et al., “Phenol adsorption on scoria stone as adsorbent - Application of response surface method and artificial neural networks,” J. Mol. Liq., vol. 274, 2019, doi: 10.1016/j.molliq.2018.11.006.H. T. Hamad, “Removal of phenol and inorganic metals from wastewater using activated ceramic,” J. King Saud Univ. - Eng. Sci., vol. 33, no. 4, 2021, doi: 10.1016/j.jksues.2020.04.006.B. K. Singh and P. S. Nayak, “Sorption equilibrium studies of toxic nitro-substituted phenols on fly ash,” Adsorpt. Sci. Technol., vol. 22, no. 4, 2004, doi: 10.1260/0263617041514901.B. Chakraborty, “Kinetic study of degradation of p-nitro phenol by a mixed bacterial culture and its constituent pure strains,” in Materials Today: Proceedings, 2016, vol. 3, no. 10, doi: 10.1016/j.matpr.2016.10.034.M. J. Ahmed and S. K. Theydan, “Equilibrium isotherms, kinetics and thermodynamics studies of phenolic compounds adsorption on palm-tree fruit stones,” Ecotoxicol. Environ. Saf., vol. 84, 2012, doi: 10.1016/j.ecoenv.2012.06.019.D. Wei et al., “Sorption mechanism and dynamic behavior of graphene oxide as an effective adsorbent for the removal of chlorophenol based environmental-hormones: A DFT and MD simulation study,” Chem. Eng. J., vol. 375, 2019, doi: 10.1016/j.cej.2019.121964.A. Shokri, “Degradation of 4-Chloro phenol in aqueous media thru UV/Persulfate method by Artificial Neural Network and full factorial design method,” Int. J. Environ. Anal. Chem., 2020, doi: 10.1080/03067319.2020.1791328.I. Abay, A. Denizli, E. Bişkin, and B. Salih, “Removal and pre-concentration of phenolic species onto β-cyclodextrin modified poly(hydroxyethylmethacrylate-ethyleneglycoldimethacrylate) microbeads,” Chemosphere, vol. 61, no. 9, 2005, doi: 10.1016/j.chemosphere.2005.03.079.M. A. Al-Ghouti and D. A. Da’ana, “Guidelines for the use and interpretation of adsorption isotherm models: A review,” Journal of Hazardous Materials, vol. 393. 2020, doi: 10.1016/j.jhazmat.2020.122383H. A. Asmaly et al., “Adsorption of phenol on aluminum oxide impregnated fly ash,” Desalin. Water Treat., vol. 57, no. 15, pp. 6801–6808, 2016, doi: 10.1080/19443994.2015.1010238EstudiantesInvestigadoresMaestrosPúblico generalORIGINAL1026286635.2022.pdf1026286635.2022.pdfTesis de Maestría en Ciencias-Químicaapplication/pdf2546993https://repositorio.unal.edu.co/bitstream/unal/81784/3/1026286635.2022.pdf3dad9eaa1fd5db5b2cb8ba28c6ffeaacMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81784/4/license.txt8153f7789df02f0a4c9e079953658ab2MD54THUMBNAIL1026286635.2022.pdf.jpg1026286635.2022.pdf.jpgGenerated Thumbnailimage/jpeg5358https://repositorio.unal.edu.co/bitstream/unal/81784/5/1026286635.2022.pdf.jpga7c7afc7fb3e117719d40e63b5f0aeffMD55unal/81784oai:repositorio.unal.edu.co:unal/817842024-08-07 23:11:03.298Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK