Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon
ilustraciones, fotografías a color, gráficas, tablas
- Autores:
-
Castro Torres, Jose Daniel
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/80457
- Palabra clave:
- 570 - Biología
Rubber plants
Reclamation of land
Termites
Comejenes
Plantas caucheras
Recuperación de tierras
Clonal field
Indicator species
Land uses
Organic carbon
Soil-feeders
Campo clonal
Carbón orgánico
Consumidores de suelo
Especies indicadoras
Usos del suelo
- Rights
- openAccess
- License
- Reconocimiento 4.0 Internacional
id |
UNACIONAL2_d64563915fef343768dc8b64522512af |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/80457 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon |
dc.title.translated.spa.fl_str_mv |
Estructura funcional de los ensamblajes de termitas asociados con sistemas productivos de caucho en el noroeste de la amazonía colombiana |
title |
Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon |
spellingShingle |
Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon 570 - Biología Rubber plants Reclamation of land Termites Comejenes Plantas caucheras Recuperación de tierras Clonal field Indicator species Land uses Organic carbon Soil-feeders Campo clonal Carbón orgánico Consumidores de suelo Especies indicadoras Usos del suelo |
title_short |
Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon |
title_full |
Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon |
title_fullStr |
Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon |
title_full_unstemmed |
Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon |
title_sort |
Functional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian Amazon |
dc.creator.fl_str_mv |
Castro Torres, Jose Daniel |
dc.contributor.advisor.none.fl_str_mv |
Fernandes Carrijo, Tiago Serna Cardona, Francisco Javier |
dc.contributor.author.none.fl_str_mv |
Castro Torres, Jose Daniel |
dc.subject.ddc.spa.fl_str_mv |
570 - Biología |
topic |
570 - Biología Rubber plants Reclamation of land Termites Comejenes Plantas caucheras Recuperación de tierras Clonal field Indicator species Land uses Organic carbon Soil-feeders Campo clonal Carbón orgánico Consumidores de suelo Especies indicadoras Usos del suelo |
dc.subject.lemb.eng.fl_str_mv |
Rubber plants Reclamation of land |
dc.subject.lemb.spa.fl_str_mv |
Termites Comejenes Plantas caucheras Recuperación de tierras |
dc.subject.proposal.eng.fl_str_mv |
Clonal field Indicator species Land uses Organic carbon Soil-feeders |
dc.subject.proposal.spa.fl_str_mv |
Campo clonal Carbón orgánico Consumidores de suelo Especies indicadoras Usos del suelo |
description |
ilustraciones, fotografías a color, gráficas, tablas |
publishDate |
2021 |
dc.date.accessioned.none.fl_str_mv |
2021-10-08T20:17:18Z |
dc.date.available.none.fl_str_mv |
2021-10-08T20:17:18Z |
dc.date.issued.none.fl_str_mv |
2021-09-28 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/80457 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/80457 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Abadía., J.C., Arcila, Á.M. & Chacón, P. (2013) Incidencia y distribución de termitas (Isoptera) en cultivos de cítricos de la costa caribe de Colombia. Revista Colombiana de Entomologia 39, 1–8. Abadía, J.C. & Arcila, A. (2009) Termitas en cultivos de limón en los departamentos del Atlántico y Magdalena, Colombia. Boletin del Museo de Entomologia de la Universidad del Valle 10, 36–46. Abe, T. (1987) Evolution of life types in termites. In: S. Kawano, J. Connel, and T. Hidata (Eds), Evolution and Coadaptation in Biotic Communities. University of Tokyo Press, Tokyo, Japan, pp. 126–148. Ackerman, I.L., Constantino, R., Gauch, H.G., Lehmann, J., Riha, S.J. & Fernandes, E.C.M. (2009) Termite (Insecta: Isoptera) species composition in a primary rain forest and agroforests in central Amazonia. Biotropica 41, 226–233. https://doi.org/10.1111/j.1744-7429.2008.00479.x Ali, M.F., Akber, M.A., Smith, C. & Aziz, A.A. (2021) The dynamics of rubber production in Malaysia: Potential impacts, challenges and proposed interventions. Forest Policy and Economics 127, 102449. https://doi.org/10.1016/j.forpol.2021.102449 Arcila, A., Abadia, J., Achury, R., Carrascal, F. & Yacomelo, M. (2013) Manual para la identificación y manejo de termitas y otros insectos plagas de los cítricos en la Región Caribe de Colombia Manual para la identificación y manejo de termitas y otros insectos plagas de los cítricos en la Región Caribe de Colombia. Corpoica, Bogotá D.C., 68 pp. Arévalo-Gardini, E., Canto, M., Alegre, J., Loli, O., Julca, A. & Baligar, V. (2015) Changes in soil hysical and chemical properties in long term improved natural and traditional agroforestry management systems of Cacao genotypes in Peruvian Amazon. PLoS ONE 10, 132147. https://doi.org/10.1371/journal.pone.0132147 Ashton, L.A., Griffiths, H.M., Parr, C.L., Evans, T.A., Didham, R.K., Hasan, F., Teh, Y.A., Tin, H.S., Vairappan, C.S. & Eggleton, P. (2019) Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177. https://doi.org/10.1126/science.aau9565 Attignon, S.E., Lachat, T., Sinsin, B., Nagel, P. & Peveling, R. (2005) Termite assemblages in a West-African semi-deciduous forest and teak plantations. Agriculture, Ecosystems and Environment 110, 318–326. https://doi.org/10.1016/j.agee.2005.04.020 Bandeira, A.G. (1989) Analise da termitofauna (Insecta: Isoptera) de uma Floresta primária e de uma pastagem na Amazônia oriental, Brasil. Bol. Mus. Para. Emílio Goeldi, sér. Zool 5, 225–241. Bandeira, A.G., Vasconcellos, A., Silva, M.P. & Constantino, R. (2003) Effects of habitat disturbance on the termite fauna in a highland humid forest in the Caatinga Domain, Brazil. Sociobiology 42, 1–11. Barros, E., Grimaldi, M., Sarrazin, M., Chauvel, A., Mitja, D., Desjardins, T. & Lavelle, P. (2004) Soil physical degradation and changes in macrofaunal communities in Central Amazon. Applied Soil Ecology 26, 157–168. https://doi.org/10.1016/j.apsoil.2003.10.012 Barros, E., Mathieu, J., Tapia-Coral, S., Nascimentol, A.R.L. & Lavelle, P. (2006) Soil macrofauna communities in Brazilian Amazonia. In: F. Moreira, J. Siqueira, and L. Brussaard (Eds), Soil Biodiversity in Amazonian and other Brazilian Ecosystems. CABI Publishing, pp. 43–55. Barros, E., Neves, A., Blanchart, E., Fernandes, E.C.M., Wandelli, E. & Lavelle, P. (2003) Development of the soil macrofauna community under silvopastoral and agrosilvicultural systems in Amazonia. Pedobiologia 47, 273–280. https://doi.org/10.1078/0031-4056-00190 Barros, E., Pashanasi, B., Constantino, R. & Lavelle, P. (2002) Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biology and Fertility of Soils 35, 338–347. https://doi.org/10.1007/s00374-002-0479-z Begon, M., Townsend, C. & Harper, J. (2007) Ecologia de Indivíduos a Ecossistemas. 4th ed. Artmed, Porto Alegre, 752 pp. Available from: https://www.editoraufv.com.br/produto/ecologia-de-individuos-a-ecossistemas-4-edicao/1109570 (April 25, 2021) Beketov, M.A., Kefford, B.J., Schäfer, R.B. & Liess, M. (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences of the United States of America 110, 11039–11043. https://doi.org/10.1073/pnas.1305618110 Bellamy, A.S., Svensson, O., van den Brink, P.J., Gunnarsson, J. & Tedengren, M. (2018) Insect community composition and functional roles along a tropical agricultural production gradient. Environmental Science and Pollution Research 25, 13426–13438. https://doi.org/10.1007/s11356-018-1818-4 Beltrán-Díaz, M.A. & Pinzón-Florián, O.P. (2018) Termites (Isoptera: Termitidae, rhinotermitidae) in <i>Pinus caribaea<i> plantations in the Colombian orinoco basin. Revista Colombiana de Entomologia 44, 61–71. https://doi.org/10.25100/socolen.v44i1.6544 Benito, N.P., Brossard, M., Pasini, A., Guimarães, M.D.F. & Bobillier, B. (2004) Transformations of soil macroinvertebrate populations after native vegetation conversion to pasture cultivation (Brazilian Cerrado). European Journal of Soil Biology 40, 147–154. https://doi.org/10.1016/j.ejsobi.2005.02.002 Bignell, D.E. (2005) Termites as soil engineers and soil processors. In: K. H. and V. A. (Eds), Intestinal Microorganisms of Termites and Other Invertebrates. Soil Biology, vol 6. Springer, Berlin, Heidelberg, pp. 183–220. Bizuti, D.T.G., Casagrande, J.C., Soares, M.R., Sartorio, S.D., Brugnaro, C. & César, R.G. (2018) The effect of calcium on the growth of native species in a tropical forest hotspot. IForest 11, 221–226. https://doi.org/10.3832/ifor2074-010 Bourguignon, T., Drouet, T., Šobotník, J., Hanus, R. & Roisin, Y. (2015) Influence of Soil Properties on Soldierless Termite Distribution N. Chaline (Ed). PLOS ONE 10, e0135341. https://doi.org/10.1371/journal.pone.0135341 Bourguignon, T., Leponce, M. & Roisin, Y. (2011a) Beta-Diversity of termite assemblages among primary French Guiana rain forests. Biotropica 43, 473–479. https://doi.org/10.1111/j.1744-7429.2010.00729.x Bourguignon, T., Scheffrahn, R.H., Krecek, J., Nagy, Z.T., Sonet, G. & Roisin, Y. (2010) Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): redescription of the genus Anoplotermes and description of Longustitermes, gen. nov. Invertebrate Systematics 24, 357–370. https://doi.org/10.1111/zoj.12305 Bourguignon, T., Scheffrahn, R.H., Nagy, Z.T., Sonet, G., Host, B. & Roisin, Y. (2016a) Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): Redescription of the genus Grigiotermes Mathews and description of five new genera. Zoological Journal of the Linnean Society 176, 15–35. https://doi.org/10.1111/zoj.12305 Bourguignon, T., Sobotnik, J., Dahlsjo, C.A.L. & Roisin, Y. (2016b) The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insectes Sociaux 63, 39–50. https://doi.org/10.1007/s00040-015-0446-y Bourguignon, T., Šobotník, J., Lepoint, G., Martin, J.M., Hardy, O.J., Dejean, A. & Roisin, Y. (2011b) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecological Entomology 36, 261–269. https://doi.org/10.1111/j.1365-2311.2011.01265.x Bourguignon, T., Sobotník, J., Lepoint, G., Martin, J.M. & Roisin, Y. (2009) Niche differentiation among neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biology & Biochemistry 41, 2038–2043. https://doi.org/10.1016/j.soilbio.2009.07.005 Bouyoucos, G.. (1936) Directions for Making Mechanical Analysis of Soils by the Hydrometer Method. Soil Science 4, 225–228. Braak, C.J.F. ter & Smilauer, P. (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). www.canoco.com. Brauman, A. (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. Eur. J. Soil Biol. 36, 117–125. https://doi.org/https://doi.org/10.1016/S1164-5563(00)01058-X De Cáceres, M., Jansen, F. & Dell, N. (2020) Package “indicspecies” Type Package Title Relationship Between Species and Groups of Sites. Package Version 1.7.9. De Cáceres, M. & Legendre, P. (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574. https://doi.org/10.1890/08-1823.1 De Cáceres, M., Legendre, P., Wiser, S.K. & Brotons, L. (2012) Using species combinations in indicator value analyses R. B. O’Hara (Ed). Methods in Ecology and Evolution 3, 973–982. https://doi.org/10.1111/j.2041-210X.2012.00246.x Cancello, E.M. & Cuezzo, C. (2007) A new species of Ereymatermes Constantino (Isoptera, Termitidae, Nasutitermitinae) from the northeastern Atlantic Forest, Brazil. Papeis Avulsos de Zoologia 47, 283–288. https://doi.org/10.1590/S0031-10492007002300001 Cancello, E.M., Silva, R.R., Vasconcellos, A., Reis, Y.T. & Oliveira, L.M. (2014) Latitudinal variation in termite species richness and abundance along the brazilian atlantic forest hotspot. Biotropica 46, 441–450. https://doi.org/10.1111/btp.12120 Carneiro, M.A.C., de Souza, E.D., dos Reis, E.F., Pereira, H.S. & de Azevedo, W.R. (2009) Atributos físicos, químicos e biológicos de solo de cerrado sob diferentes sistemas de uso e manejo. Revista Brasileira de Ciencia do Solo 33, 147–157. https://doi.org/10.1590/s0100-06832009000100016 Carrijo, T.F., Brandão, D., Oliveira, D.E., Costa, D.A. & Santos, T. (2009) Effects of pasture implantation on the termite (Isoptera) fauna in the Central Brazilian Savanna (Cerrado). Journal of Insect Conservation 13, 575–581. https://doi.org/10.1007/s10841-008-9205-y Casalla, R. & Korb, J. (2019a) Phylogenetic community structure and niche differentiation in termites of the tropical dry forests of colombia. Insects 10. https://doi.org/10.3390/insects10040103 Casalla, R. & Korb, J. (2019b) Termite diversity in Neotropical dry forests of Colombia and the potential role of rainfall in structuring termite diversity. Biotropica 2019, 1–13. https://doi.org/10.1111/btp.12626 Casalla, R., Scheffrahn, R.H. & Korb, J. (2016) Proneotermes macondianus, a new drywood termite from Colombia and expanded distribution of Proneotermes in the Neotropics (Isoptera, Kalotermitidae). ZooKeys 2016, 43–60. https://doi.org/10.3897/zookeys.623.9677 Castellanos, D., Fonseca, R. & Barón, N. (2009) Agenda prospectiva de investigación y desarrollo Tecnológico para la cadena Productiva de caucho natural y su industria en Colombia. Ministerio de Agricultura y Desarrollo Rural, Bogotá D.C., 208 pp. Castro, D., Constantini, J.P., Scheffrahn, R.H., Carrijo, T.F. & Cancello, E.M. (2020) Rustitermes boteroi, a new genus and species of soldierless termites (Blattodea, Isoptera, Apicotermitinae) from South America. ZooKeys 922, 35–49. https://doi.org/10.3897/zookeys.922.47347 Castro, D. & Scheffrahn, R.H. (2019) A new species of Acorhinotermes Emerson , 1949 ( Blattodea , Isoptera , Rhinotermitidae ) from Colombia , with a key to Neotropical Rhinotermitinae species based on minor soldiers. ZooKeys 891, 61–70. https://doi.org/https://doi.org/10.3897/zookeys.891.37523 Castro, D., Scheffrahn, R.H. & Carrijo, T.F. (2018) Echinotermes biriba, a new genus and species of soldierless termite from the Colombian and Peruvian Amazon (Termitidae, Apicotermitinae). ZooKeys 2018, 21–30. https://doi.org/10.3897/zookeys.748.24253 CCC - Confederación Cauchera Colombiana (2016) Informe de resultados censo de plantaciones de caucho natural (Hevea brasiliensis) a año 2015. Bogotá D.C. Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M. (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67. Charity, S., Dudley, N., Oliveira, D. & Stolon, S. (2016) Living Amazon Report 2016: A regional approach to conservation in the Amazon. WWF Living Amazon Initiative, Basilia & Quito, 113 pp. Cherubin, M.R., Chavarro-Bermeo, J.P. & Silva-Olaya, A.M. (2019) Agroforestry systems improve soil physical quality in northwestern Colombian Amazon. Agroforestry Systems 93, 1741–1753. https://doi.org/10.1007/s10457-018-0282-y Compagnon, P. (1998) El caucho natural, biología, cultivo, producción. Consejo Mexicano del Hule y CIRAD, México, DF, 701 pp. Constantini, J.P. & Cancello, E.M. (2016) A taxonomic revision of the Neotropical termite genus Rhynchotermes (Isoptera, Termitidae, Syntermitinae). Zootaxa 4109, 501. https://doi.org/10.11646/zootaxa.4109.5.1 Constantino, R. (1991) Termites (Isoptera) from the lower Japurá River, Amazonas State, Brazil. Boletim do Museu Paraense Emílio Goeldi, série Zoologia 7, 189–224. Constantino, R. (1992) Abundance and diversity of termites (Insecta: Isoptera) in two sites of primary rain forest in Brazilian Amazonia. Biotropica 24, 420–430. https://doi.org/10.1017/CBO9781107415324.004 Constantino, R. (1995) Revision of the neotropical termite genus Syntermes Holmgren (Isoptera: Termitidae). The University of Kansas science bulletin 55, 455–518. Constantino, R. (1998) Description of a New Planicapritermes from Central Amazonia, with Notes on the Morphology of the Digestive Tube of the Neocapritermes-Planicapritermes Group (Isoptera: Termitidae: Termitinae). Sociobiology 32, 109–118. Constantino, R. (2000) Key to the soldiers of South American Heterotermes with a new species from Brazil (Isoptera: Rhinotermitidae). Insect Systematics and Evolution 31, 463–472. Constantino, R. (2002a) An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa 40, 1–40. Constantino, R. (2002b) The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology 126, 355–365. Constantino, R. (2021) Termite Database. University of Brasília. Available from: http://164.41.140.9/catal/about.php (March 25, 2021) Constantino, R., Acioli, A.N.S., Schmidt, K., Cuezzo, C., Carvalho, S.H.C. & Vasconcellos, A. (2006) A taxonomic revision of the Neotropical termite genera Labiotermes Holmgren and Paracornitermes Emerson (Isoptera: Termitidae: Nasutitermitinae). Zootaxa 1340, 1–44. Constantino, R. & Cancello, E.M. (1992) Cupins (Insecta, Isoptera) da Amazônia Brasileira : distribuição e esforço de coleta. Revista Brasileira de Biologia 52, 401–413. Constantino, R. & De Souza, O.F.F. (1997) Key to the soldiers of Atlantitermes Fontes 1979, with a new species from Brazil (Isoptera Termitidae Nasutitermitinae). Tropical Zoology 10, 205–213. Corwin, D.L. & Yemoto, K. (2017) Salinity: electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. Soil Science Society of America, Madison, WI, p. 16. Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R.G., Sutton, P. & Van Den Belt, M. (1997) The value of the world’s ecosystem services and natural capital. Nature 387, 253–260. https://doi.org/10.1038/387253a0 Coulibaly, T., Akpesse, A.A.M., Boga, J.P., Yapi, A., Kouassi, K.P. & Roisin, Y. (2016) Change in termite communities along a chronosequence of mango tree orchards in the north of Côte d’Ivoire. Journal of Insect Conservation 20, 1011–1019. https://doi.org/10.1007/s10841-016-9935-1 Crespo-Pérez, V., Kazakou, E., Roubik, D.W. & Cárdenas, R.E. (2020) The importance of insects on land and in water: a tropical view. Current opinion in insect science 40, 31–38. Culliney, T. (2013) Role of arthropods in maintaining soil fertility. Agriculture 3, 629–659. https://doi.org/10.3390/agriculture3040629 Cunha, H.F., Costa, D.A., Silva, A.P.T., Nicacio, J. & Abot, A.R. (2020) Termite functional diversity along an elevational gradient in the Cerrado of Mato Grosso do Sul. International Journal of Tropical Insect Science. https://doi.org/10.1007/s42690-020-00240-6 da Cunha, H.F. & Orlando, T.Y. da S. (2011) Functional composition of termite species in areas of abandoned pasture and in secondary succession of the Parque Estadual Altamiro de Moura Pacheco, GoiáS, Brazil. Bioscience Journal 27, 986–992. Dahlsjö, C. AL, Parr, C.L., Malhi, Y., Rahman, H., Meir, P., Jones, D.T., Eggleton Journal, P. & Eggleton, P. (2014) First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. Journal of Tropical Ecology 30, 143–152. https://doi.org/10.1017/S0266467413000898 Dambros, C. de S., da Silva, V.N.V., Azevedo, R. & de Morais, J.W. (2013) Road-associated edge effects in Amazonia change termite community composition by modifying environmental conditions. Journal for Nature Conservation 21, 279–285. https://doi.org/10.1016/j.jnc.2013.02.003 Dangles, O. & Casas, J. (2019) Ecosystem services provided by insects for achieving sustainable development goals. Ecosystem Services 35, 109–115. Davies, R.G. (2002) Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133, 233–242. https://doi.org/10.1007/s00442-002-1011-8 Davies, R.G., Hernández, L.M., Eggleton, P., Didham, R.K., Fagan, L.L. & Winchester, N.N. (2003) Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. Journal of Tropical Ecology 19, 509–524. https://doi.org/10.1017/S0266467403003560 Decaëns, T., Jiménez, J.J., Barros, E., Chauvel, A., Blanchart, E., Fragoso, C. & Lavelle, P. (2004) Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna. Agriculture, Ecosystems & Environment 103, 301–312. https://doi.org/10.1016/J.AGEE.2003.12.005 Decaëns, T., Lavelle, P., Jimenez, J., Rippstein, G. & Escobar, G. (1994) Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. 30, 157–168. Decaëns, T., Mariani, L. & Lavelle, P. (1999) Soil surface macrofaunal communities associated with earthworm casts in grasslands of the Eastern Plains of Colombia. Applied Soil Ecology 13, 87–100. https://doi.org/10.1016/S0929-1393(99)00024-4 Donovan, S.E., Eggleton, P. & Bignell, D.E. (2001) Gut content analysis and a new feeding group classification of termites. Ecological Entomology 26, 356–366. https://doi.org/10.1046/j.1365-2311.2001.00342.x Dosso, K., Deligne, J., Yéo, K., Konaté, S. & Linsenmair, K.E. (2013) Changes in the termite assemblage across a sequence of land-use systems in the rural area around Lamto Reserve in central Côte d’Ivoire. Journal of Insect Conservation 17, 1047–1057. https://doi.org/10.1007/s10841-013-9588-2 Duran-Bautista, E.H., Armbrecht, I., Acioli, A.N.S., Suárez, J.C., Romero, M., Quintero, M. & Lavelle, P. (2020a) Termites as indicators of soil ecosystem services in transformed amazon landscapes. Ecological Indicators 117, 106550. https://doi.org/10.1016/j.ecolind.2020.106550 Duran-Bautista, E.H., Muñoz, Y., Galindo, J.D., Ortiz, T. & Bermúdez, M. (2020b) Soil physical quality and relationship to changes in termite community in northwestern Colombian Amazon. Frontiers in Ecology and Evolution 8:598134. https://doi.org/10.3389/fevo.2020.598134 Eggleton, P. (2011) An introduction to termites: Biology, taxonomy and functional morphology. In: Biology of Termites: A Modern Synthesis. Springer Netherlands, pp. 1–26. Eggleton, P., Bignell, D.E., Sands, W.A., Mawdsley, N.A., Lawton, J.H., Wood, T.G. & Bignell, N.C. (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Fores Reserve, southern Cameroon. Phil.Trans.R.Soc.Lond.B. 351, 51–68. Eggleton, P., Bignell, D.E., Sands, W.A., Waite, B., Wood, T.G. & Lawton, J.H. (1995) The species richness of Termites under differing levels of forest disturbance in the Mbalmayo Forest Reserve, Camerron. Journal of Tropical Ecology 11, 85–98. Eggleton, P., Eggleton, P., Homathevi, R., Homathevi, R., Jeeva, D., Jeeva, D., Jones, D.T., Jones, D.T., Davies, R.G., Davies, R.G., Maryati, M. & Maryati, M. (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica 3, 119–128. Eggleton, P., Hauser, S., Norgrove, L., Eggletona, P., Bignellb, D.E., Hauserc, S., Diboga, L., Norgrovec, L. & Madonge, B. (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture, Ecosystems & Environment 90, 189–202. https://doi.org/10.1016/S0167-8809(01)00206-7 Eggleton, P. & Tayasu, I. (2001) Feeding groups, lifetypes and the global ecology of termites. Ecological Research 16, 941–960. Emerson, A.E. (1925) The Termites of Kartabo, Bartica District, British Guiana. Zoologica : scientific contributions of the New York Zoological Society 6, 291–459. Evans, T.A., Dawes, T.Z., Ward, P.R. & Lo, N. (2011) Ants and termites increase crop yield in a dry climate. Nature Communications 2, 262–267. https://doi.org/10.1038/ncomms1257 Fallah, M., Farzam, M., Hosseini, V., Moravej, G. & Eldridge, D.J. (2017) Termite effects on soils and plants are generally consistent along a gradient in livestock grazing. Arid Land Research and Management 31, 159–168. https://doi.org/10.1080/15324982.2017.1288177 Fernández, F. (2003) Introducción a las hormigas de la región Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humbold, Bogotá, 398 pp. Fernández, F., Guerrero Flórez, R.J. & Delsinne, T. (2019) Hormigas de Colombia Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá D.C., 1200 pp. Fittkau, E.J. & Klinge, H. (1973) On Biomass and Trophic Structure of the Central Amazonian Rain Forest Ecosystem. Biotropica 5, 2. https://doi.org/10.2307/2989676 Fox, J. & Castella, J.C. (2013) Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for smallholders? Journal of Peasant Studies 40, 155–170. https://doi.org/10.1080/03066150.2012.750605 Galili, T. (2015) dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720. https://doi.org/10.1093/bioinformatics/btv428 Galvis, C. (1984) Termites del valle geográfico del río Cauca y su impacto sobre la economía del departamento del Valle. Cespedesia 13, 257–276. Galvis, C. & Flórez, E. (1991) Zoogeografía de termites (comejenes - Isópteros) en Colombia y sus repercusiones en la Economía Nacional, Provincia Zoogeográfica de San Andrés y Providencia. Cespedesia 18, 161–163. Galvis, C., Flórez, E. & Ríos, O. (1991) Zoogeografía de termites (comejenes) en Colombia y sus repercusiones en la Economía nacional Provincia Zoogeográfica Pacífico-Centro Americana. Cespedesia 18, 157–159. Gasparotto, L.., Ferreira, F.A.., dos Santo, A.F.., Rezende, P.J.C.. & Furtado, E.. (2012) Capítulo 3: Doenças das folha. In: L. Gasparotto and R. . Pereira (Eds), Doenças da seringueira no Brasil. EMBRAPA Amazônia Occidental, Brasilia. D.F., p. 255. Ghosal, A. & Hati, A. (2019) Impact of some new generation insecticides on soil arthropods in rice maize cropping system. The Journal of Basic and Applied Zoology 80, 1–8. https://doi.org/10.1186/s41936-019-0077-3 Guillaume, T., Holtkamp, A.M., Damris, M., Brümmer, B. & Kuzyakov, Y. (2016) Soil degradation in oil palm and rubber plantations under land resource scarcity. Agriculture, Ecosystems and Environment 232, 110–118. https://doi.org/10.1016/j.agee.2016.07.002 Gutierrez-Sarmiento, M.C. & Cardona, C.M. (2014) Caracterización ecológica de las lombrices (Pontoscolex corethrurus) como bioindicadoras de suelos compactados bajo condiciones de alta humedad del suelo con diferentes coberturas vegetales (Zipacón, Cundinamarca). Revista científica 2, 55. https://doi.org/10.14483/23448350.6493 Gutiérrez, A.I., Uribe, S. & Quiroz, J. (2004) Termitas asociadas a plantaciones de Eucalyptus spp. en una reforestadora en Magdalena, Colombia. Manejo Integrado de Plagas y Agroecología, 54–59. Gutierrez, F., Acosta, L.E. & Salazar, C.A. (2003) Perfiles urbanos en la Amazonía Colombiana: un enfoque para el desarrollo sostenible. Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá, Colombia, 260 pp. Hidayat, M.R., Endris, W.M. & Dwiyanti, Y. (2018) Effect of a rubber plantation on termite diversity in Melawi, West Kalimantan, Indonesia. Agriculture and Natural Resources 52, 439–444. https://doi.org/10.1016/j.anres.2018.10.016 Higashi, M., Abe, T. & Burns, T.P. (1992) Carbon-nitrogen balance and termite ecology. Proceedings of the Royal Society B: Biological Sciences 249, 303–308. https://doi.org/10.1098/rspb.1992.0119 Hölldobler, B. & Wilson, W.. (1990) The Ants . Springer, 746 pp. Available from: https://www.hup.harvard.edu/catalog.php?isbn=9780674040755 (March 31, 2021) Houston, W.A., Wormington, K.R. & Black, R.L. (2015) Termite (Isoptera) diversity of riparian forests, adjacent woodlands and cleared pastures in tropical eastern Australia. Austral Entomology 54, 221–230. https://doi.org/10.1111/aen.12115 Hsieh, T.C., Ma, K.H. & Chao, A. (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613 Husson, F., Josse, J., Le, S. & Maintainer, J.M. (2020) Package “FactoMineR” Title Multivariate Exploratory Data Analysis and Data Mining. Version 2.3. ICONTEC (2007) Calidad de suelo. Determinacion de micronutrientes disponibles: cobre, zinc, hierro y manganeso. Bogotá D.C. ICONTEC (2016a) Calidad de suelo. Determinación de las bases cambiables: método del acetato amonio 1m, ph 7,0. Bogotá D.C. ICONTEC (2016b) NTC 5350. Calidad de suelo. Determinacion de fósforo disponible. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá D.C., 19 pp. IDEAM, PNUD, MADS, DNP & CANCILLERÍA (2016) Inventario nacional y departamental de gases de efecto invernadero. Tercera comunicación nacional de Cambio Climático. Bogotá D.C. Inoue, T., Takematsu, Y., Yamada, A., Hongoh, Y., Johjima, T., Moriya, S., Sornnuwat, Y., Vongkaluang, C., Ohkuma, M. & Kudo, T. (2006) Diversity and abundance of termites along an altitudinal gradient in Khao Kitchagoot National Park, Thailand. Journal of Tropical Ecology 22, 609. https://doi.org/10.1017/S0266467406003403 Inward, D.J.G., Vogler, A.P. & Eggleton, P. (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution 44, 953–967. https://doi.org/10.1016/j.ympev.2007.05.014 Jankielsohn, A. (2018) The Importance of Insects in Agricultural Ecosystems. Advances in Entomology 06, 62–73. https://doi.org/10.4236/ae.2018.62006 Jones, C.G., Lawton, J.H. & Shachak, M. (1994) Organisms as Ecosystem Engineers. Oikos 69, 373. https://doi.org/10.2307/3545850 Jones, D.T. & Eggleton, P. (2000) Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Journal of Applied Ecology 37, 191–203. Jones, D.T., Susilo, F.X., Bignell, D.E., Hardiwinoto, S., Gillison, A.N. & Eggleton, P. (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology 40, 380–391. Jones, J.A. (1990) Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis. Journal of Tropical Ecology 6, 291–305. https://doi.org/10.1017/S0266467400004533 Jouquet, P., Blanchart, E. & Capowiez, Y. (2014) Utilization of earthworms and termites for the restoration of ecosystem functioning. Applied Soil Ecology 73, 34–40. https://doi.org/10.1016/j.apsoil.2013.08.004 Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology 47, 215–222. https://doi.org/10.1016/j.ejsobi.2011.05.005 Junqueira, L.K., Diehl, E. & Filho, E.B. (2009) Termite (isoptera) diversity in eucalyptus-growth areas and in forest fragments. Sociobiology 53, 805–828. Kassambara, A. (2020) ggpubr: “ggplot2” Based Publication Ready Plots. R package version 0.4.0. Kassambara, A. & Mundt, F. (2020) factoextra: extract and visualize the results of multivariate data analyses. Package Version 1.0.7. Keenan, R.J., Lamb, D., Parrotta, J. & Kikkawa, & J. (1999) Ecosystem management in tropical timber plantations. Journal of Sustainable Forestry 9, 1–2. https://doi.org/10.1300/J091v09n01_10 König, H., Li, L. & Fröhlich, J. (2013) The cellulolytic system of the termite gut. Applied Microbiology and Biotechnology 97, 7943–7962. https://doi.org/10.1007/s00253-013-5119-z Krishna, K. (2003) A new species, Cavitermes rozeni (Isoptera: Termitidae: Termitinae), from Brazil. Journal of the Kansas Entomological Society 76, 92–95. https://doi.org/10.2307/25086093 Krishna, K. & Araujo, R.L. (1968) A revision of the Neotropical termite genus Neocapritermes (Isoptera, Termitidae, Termitinae). Bulletin of the American Museum of Natural History 138, 83–130. Krishna, K. & Emerson, A.E. (1962) New species of the genus Glyptotermes Froggatt from the Papuan, Oriental, Ethiopian, and Neotropical regions (Isoptera, Kalotermitidae). American Museum Novitates 2089, 1–66. Krishna, K., Grimaldi, D.A. & Krishna, V. (2014) Treatise on the Isoptera of the world. Vol 1. Bulletin of the American Museum of Natural History 377, 200. Lamarre, G.P.A., Erault, B.H., Fine, P.V.A., Vedel, V., Lupoli, R., Mesones, I. & Baraloto, C. (2016) Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. Journal of Animal Ecology 85, 227–239. https://doi.org/10.1111/1365-2656.12445 Lamb, D. (1998) Large-scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations. Restoration Ecology 6, 271–279. https://doi.org/10.1046/j.1526-100X.1998.00632.x Lavelle, P. (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research 27, 93–132. https://doi.org/10.1016/S0065-2504(08)60007-0 Lavelle, P., Rodríguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gómez, Y., Gutiérrez, A., Hurtado, M. del P., Loaiza, S., Pullido, S.X., Rodríguez, E., Sanabria, C., Velásquez, E. & Fonte, S.J. (2014) Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment 185, 106–117. https://doi.org/10.1016/j.agee.2013.12.020 Lê, S., Josse, J. & Husson, F. (2008) FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25, 1–18. https://doi.org/10.18637/jss.v025.i01 LeClare, S.K., Mdluli, M., Wisely, S.M. & Stevens, N. (2020) Land-use diversity within an agricultural landscape promotes termite nutrient cycling services in a southern African savanna. Global Ecology and Conservation 21, e00885. https://doi.org/10.1016/j.gecco.2019.e00885 Legendre, F., Nel, A., Svenson, G.J., Robillard, T., Pellens, R. & Grandcolas, P. (2015) Phylogeny of dictyoptera: Dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS ONE 10, 1–27. https://doi.org/10.1371/journal.pone.0130127 Legendre, F., Whiting, M.F., Bordereau, C., Cancello, E.M., Evans, T.A. & Grandcolas, P. (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Molecular Phylogenetics and Evolution 48, 615–627. https://doi.org/10.1016/j.ympev.2008.04.017 Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280. https://doi.org/10.1007/s004420100716 Legendre, P. & Legendre, L. (2012) Numerical Ecology. 3rd ed. Elsevier, 1006 pp. Available from: https://www.elsevier.com/books/numerical-ecology/legendre/978-0-444-53868-0 (April 17, 2021) Lemos, L.N., Pedrinho, A., Vasconcelos, A.T.R. de, Tsai, S.M. & Mendes, L.W. (2021) Amazon deforestation enriches antibiotic resistance genes. Soil Biology and Biochemistry 153, 108110. https://doi.org/10.1016/J.SOILBIO.2020.108110 Leon, G., Martinez, A., Molina, J. & Zuluaga, J. (2009) Manejo de termitas o comejenes en el cultivo del caucho Manejo de termitas o comejenes en el cultivo del caucho. Corpoica, Colombia, 1–20 pp. Letourneau, D.K. & Altieri, M.A. (1999) Environmental Management to Enhance Biological Control in Agroecosystems. Handbook of Biological Control, 319–354. https://doi.org/10.1016/B978-012257305-7/50061-8 Lima, J.T. & Costa-Leonardo, A.M. (2007) Recursos alimentares explorados pelos cupins (Insecta: Isoptera). Biota Neotropica 7, 243–250. https://doi.org/10.1590/s1676-06032007000200027 Lima, S.S., Pereira, M.G., Pereira, R.N., Pontes, R.M. & Rossi, C.Q. (2018) Termite mounds effects on soil properties in the atlantic forest biome. Revista Brasileira de Ciencia do Solo 42, e0160564. https://doi.org/10.1590/18069657rbcs20160564 Liu, S., Lin, X., Behm, J.E., Yuan, H., Stiblik, P., Šobotník, J., Gan, J., Xia, S. & Yang, X. (2019) Comparative responses of termite functional and taxonomic diversity to land-use change. Ecological Entomology 44, 762–770. https://doi.org/10.1111/een.12755 Losey, J.E. & Vaughan, M. (2006) The Economic value of ecological services provided by insects. BioScience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56 Lu, X., Taylor, A.E., Myrold, D.D. & Neufeld, J.D. (2020) Expanding perspectives of soil nitrification to include ammonia-oxidizing archaea and comammox bacteria. Soil Science Society of America Journal 84, 287–302. https://doi.org/10.1002/SAJ2.20029 Luke, S.H., Fayle, T.M., Eggleton, P., Turner, E.C. & Davies, R.G. (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodiversity and Conservation 23, 2817–2832. https://doi.org/10.1007/s10531-014-0750-2 Mando, A. & Miedena, R. (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Applied Soil Ecology 6, 241–249. Mando, A., Stroosnijder, L. & Brussaard, L. (1996) Effects of termites on infiltration into crusted soil. Geoderma 74, 107–113. https://doi.org/10.1016/S0016-7061(96)00058-4 Marichal, R., Grimaldi, M., Feijoo, M.A., Oszwald, J., Praxedes, C., Ruiz Cobo, D.H., del Pilar Hurtado, M., Desjardins, T., da Silva Junior, M.L., da Silva Costa, L.G., Miranda, I.S., Delgado Oliveira, M.N., Brown, G.G., Tsélouiko, S., Martins, M.B., Decaëns, T., Velasquez, E. & Lavelle, P. (2014) Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Applied Soil Ecology 83, 177–185. https://doi.org/10.1016/j.apsoil.2014.05.006 Marichal, R., Martinez, A.F., Praxedes, C., Ruiz, D., Carvajal, A.F., Oszwald, J., del Pilar Hurtado, M., Brown, G.G., Grimaldi, M., Desjardins, T., Sarrazin, M., Decaëns, T., Velasquez, E. & Lavelle, P. (2010) Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc. Applied Soil Ecology 46, 443–449. https://doi.org/10.1016/j.apsoil.2010.09.001 Mathews, A.G.A. (1977) Academia Brasileira de Ciências Studies on termites from the Mato Grosso State, Brazil. Academia Brasileira de Ciências, Rio de Janeiro, 267 pp. Mathieu, J., Rossi, J.-P., Mora, P., Lavelle, P., Martins, P.F.D.S., Rouland, C. & Grimaldi, M. (2005) Recovery of Soil Macrofauna Communities after Forest Clearance in Eastern Amazonia, Brazil. Conservation Biology 19, 1598–1605. https://doi.org/10.1111/j.1523-1739.2005.00200.x Mill, A.E. (1992) Termites as Agricultural Pests in Amazônia, Brazil. Outlook on Agriculture 21, 41–46. https://doi.org/10.1177/003072709202100107 Moreira, F.M. de S., Nóbrega, R.S.A., Jesus, E. da C., Ferreira, D.F. & Pérez, D.V. (2009) Differentiation in the fertility of Inceptisols as related to land use in the upper Solimões river region, western Amazon. Science of The Total Environment 408, 349–355. https://doi.org/10.1016/J.SCITOTENV.2009.09.007 Murcia, U., Medina, R., Rodriguez, J., Hernández, A., Herrera, A., Herrera, E. & Castellanos, H. (2014) Monitoreo de los bosques y otras coberturas de la Amazonia Colombiana, a escala 1:100.000. U. Murcia (Ed). Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá D.C., 144 pp. Murtagh, F. & Legendre, P. (2014) Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification 31, 274–295. https://doi.org/10.1007/s00357-014-9161-z Ndiaye, D., Lepage, M., Sall, C.E. & Brauman, A. (2004) Nitrogen transformations associated with termite biogenic structures in a dry savanna ecosystem. Plant and Soil 265, 189–196. https://doi.org/10.1007/s11104-005-0892-9 Neoh, K.B., Nguyen, M.T., Nguyen, V.T., Itoh, M., Kozan, O. & Yoshimura, T. (2018) Intermediate disturbance promotes termite functional diversity in intensively managed Vietnamese coffee agroecosystems. Journal of Insect Conservation 22, 197–208. https://doi.org/10.1007/s10841-018-0053-0 Noriega, J.A., Hortal, J., Azcárate, F.M., Berg, M.P., Bonada, N., Briones, M.J.I., Del Toro, I., Goulson, D., Ibanez, S., Landis, D.A., Moretti, M., Potts, S.G., Slade, E.M., Stout, J.C., Ulyshen, M.D., Wackers, F.L., Woodcock, B.A. & Santos, A.M.C. (2018) Research trends in ecosystem services provided by insects. Basic and Applied Ecology 26, 8–23. Officer, S.J., Kravchenko, A., Bollero, G.A., Sudduth, K.A., Kitchen, N.R., Wiebold, W.J., Palm, H.L. & Bullock, & D.G. (2004) 258 Plant and Soil Relationships between soil bulk electrical conductivity and the principal component analysis of topography and soil fertility values. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E. & Maintainer, H.W. (2019) Package “vegan” Title Community Ecology Package Version 2.5-6. Oliveira, D.E., Carrijo, T.F. & Brandão, D. (2013) Species composition of termites (Isoptera) in different Cerrado vegetation physiognomies. Sociobiology 60, 190–197. https://doi.org/10.13102/sociobiology.v60i2.190-197 Palin, O.F., Eggleton, P., Malhi, Y., Girardin, C.A.J., Rozas-Dávila, A. & Parr, C.L. (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43, 100–107. https://doi.org/10.1111/j.1744-7429.2010.00650.x de Paula, R.C., de Moraes Lima Silveira, R., da Rocha, M.M. & Izzo, T.J. (2016) The restoration of termite diversity in different reforestated forests. Agroforestry Systems 90, 395–404. https://doi.org/10.1007/s10457-015-9862-2 Peña-Venegas, C., Mendoza, E., Rodríguez, C., Cardona, G., Betancurt, B. & Garzón, M. (2015) Carbon fixing capacity of Amazonian soils in relation to its degradation conditions. Revista EIA, 47–53. https://doi.org/10.14508/reia.2014.11.E2.47-53 Peña-Venegas, C.P., Cardona, G.I., Mazorra, A., Arguellez, J. & Arcos, A. (2006) Micorrizas arbusculares de la Amazonia colombiana Catálogo ilustrado. Instituto Amazónico de Investigaciones Científicas, SINCHI, Bogotá D.C., 90 pp. Peña-Venegas, C.P., Kuyper, T.W., Davison, J., Jairus, T., Vasar, M., Stomph, T.J., Struik, P.C. & Öpik, M. (2019) Distinct arbuscular mycorrhizal fungal communities associate with different manioc landraces and Amazonian soils. Mycorrhiza 29, 263–275. https://doi.org/10.1007/s00572-019-00891-5 Pinzón, O.P., Baquero, L.S. & Beltran, M.A. (2017) Termite (isoptera) diversity in a gallery forest relict in the Colombian eastern plains. Sociobiology 64, 92–100. https://doi.org/10.13102/sociobiology.v64i1.1184 Pinzón, O.P. & Castro, J.D. (2018) New records of termites (Blattodea: Termitidae: Syntermitinae) from Colombia. Journal of Threatened Taxa 10. https://doi.org/10.11609/jot.3909.10.9.12218-12225 Pinzón, O.P., Hernández, A.M. & Malagón, L.A. (2012) Diversidad de termitas (Isoptera: Termitidae, Rhinotermitidae) en plantaciones de caucho en Puerto López (Meta, Colombia). Revista Colombiana de Entomologia 38, 291–298. Pinzón, O.P., Scheffrahn, R.H. & Carrijo, T.F. (2019) Aparatermes thornatus (Isoptera: Termitidae: Apicotermitinae), a New Species of Soldierless Termite from Northern Amazonia. Florida Entomologist 102, 141. https://doi.org/10.1653/024.102.0123 Piotto, D., Flesher, K., Nunes, A.C.P., Rolim, S., Ashton, M. & Montagnini, F. (2020) Restoration plantings of non-pioneer tree species in open fields, young secondary forests, and rubber plantations in Bahia, Brazil. Forest Ecology and Management 474, 118389. https://doi.org/10.1016/j.foreco.2020.118389 Pisco, R.R., María, ;, Guzmán Álvarez, E., Ivonne, E. & Rojas, L. (2013) Population dynamics of earthworms in an andisol under different soil use systems. Rev.Fac.Nal.Agr.Medellín, 7045–7055. Quesada, C.A., Lloyd, J., Schwarz, M., Patiño, S., Patiño, P., Baker, T.R., Czimczik, C., Fyllas, N.M., Martinelli, L., Nardoto, G.B., Schmerler, J., Santos, A.J.B., Hodnett, M.G., Herrera, R., Luizão, F.J., Arneth, A., Lloyd, G., Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Brand, W.A., Geilmann, H., Filho, J.O.M., Carvalho, F.P., Filho, R.N.A., Chaves, J.E., Cruz Junior, O.F., Pimentel, T.P. & Paiva, R. (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541. https://doi.org/10.5194/bg-7-1515-2010 R Development Core Team (2021) R: A language and environment for statistical computing. Ramírez, U., Charry, A., Jäger, M., Hurtado, J., Rosas, G., Sterling, A., Romero, M., Sierra, L. & Quintero, M. (2018) Estrategia Sectorial de la Cadena de Caucho en Caquetá, con Enfoque Agroambiental y Cero Deforestación. Publicación CIAT No. 451. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, 82 pp. Available from: http://bit.ly/2tnFv7R (April 22, 2020) Rocha, M.M., Cancello, E.M. & Carrijo, T.F. (2012) Neotropical termites: Revision of Armitermes Wasmann (Isoptera, Termitidae, Syntermitinae) and phylogeny of the Syntermitinae. Systematic Entomology 37, 793–827. https://doi.org/10.1111/j.1365-3113.2012.00645.x Rocha, M.M., Cuezzo, C., Constantini, J.P., Oliveira, D.E., Santos, R.G., Carrijo, T.F. & Cancello, E.M. (2019) Overview of the morphology of Neotropical termite workers: history and practice. Sociobiology 66, 1–32. https://doi.org/10.13102/sociobiology.v66i1.2067 Rocha, M.M. Da & Cancello, E.M. (2007) Estudo taxonômico de Cylindrotermes Holmegren (Isoptera, Termitidae Termitinae). Papéis Avulsos de Zoologia da Universidade de São Paulo 47, 137–152. Rocha, M.M. Da & Cancello, E.M. (2009) Revision of the Neotropical termite genus Orthognathotermes Holmgren ( Isoptera : Termitidae : Termitinae ). Zootaxa 2280, 1–26. Roisin, Y. (1996) Castes in humivorous and litter-dwelling neotropical nasute termites (Isoptera, Termitidae). Insectes Sociaux 43, 375–389. https://doi.org/10.1007/BF01258410 Roisin, Y., Dejean, A., Corbara, B., Orivel, J., Samaniego, M. & Leponce, M. (2006) Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia 149, 301–311. https://doi.org/10.1007/s00442-006-0449-5 Rossi, J.P., Mathieu, J., Cooper, M. & Grimaldi, M. (2006) Soil macrofaunal biodiversity in Amazonian pastures: Matching sampling with patterns. Soil Biology and Biochemistry 38, 2178–2187. https://doi.org/10.1016/j.soilbio.2006.01.020 Sanabria, C., Dubs, F., Lavelle, P., Fonte, S.J. & Barot, S. (2016) Influence of regions, land uses and soil properties on termite and ant communities in agricultural landscapes of the Colombian Llanos. European Journal of Soil Biology 74, 81–92. https://doi.org/10.1016/j.ejsobi.2016.03.008 Sánchez-Cuervo, A.M., Aide, T.M., Clark, M.L. & Etter, A. (2012) Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010 B. Bond-Lamberty (Ed). PLoS ONE 7, e43943. https://doi.org/10.1371/journal.pone.0043943 Sanjeeva Rao, P., Saraswathyamma, C.K. & Sethuraj, M.R. (1998) Studies on the relationship between yield and meteorological parameters of para rubber tree (Hevea brasiliensis). Agricultural and Forest Meteorology 90, 235–245. https://doi.org/10.1016/S0168-1923(98)00051-3 Schaefer, C., Marins, A., Redende, G., De Souza, O.F.F. & Nunes, J. (2016) Termite role in soil nutrient cycling in ironstone rupestrian grasslands (Canga) in Carajás, Brazilian Amazonia. In: G. Fernandes (Ed), Ecology and Conservation of Mountaintop Grasslands in Brazil. Springer, pp. 1–567. Scheffrahn, R.H. (2013) Compositermes vindai (Isoptera: Termitidae: Apicotermitinae), a new genus and species of soldierless termite from the Neotropics. Zootaxa 3652, 381–391. https://doi.org/10.11646/zootaxa.3652.3.6 Scheffrahn, R.H., Carrijo, T.F., Postle, A.C. & Tonini, F. (2017) Disjunctitermes insularis, a new soldierless termite genus and species (Isoptera, Termitidae, Apicotermitinae) from Guadeloupe and Peru. ZooKeys 665, 71–84. https://doi.org/10.3897/zookeys.665.11599 Schroth, G. (1999) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agroforestry systems 43, 5–34. Scudder, G.G.E. (2017) The Importance of Insects. In: Insect Biodiversity. John Wiley & Sons, Ltd, Chichester, UK, pp. 9–43. Shigematsu, A., Mizoue, N., Kakada, K., Muthavy, P., Kajisa, T. & Yoshida, S. (2013) Financial potential of rubber plantations considering rubberwood production: Wood and crop production nexus. Biomass and Bioenergy 49, 131–142. https://doi.org/10.1016/j.biombioe.2012.12.011 Siebers, N., Martius, C., Eckhardt, K.U., Garcia, M.V.B., Leinweber, P. & Amelung, W. (2015) Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests. PLoS ONE 10, e0123790. https://doi.org/10.1371/journal.pone.0123790 Sierra, G. (2011) La fiebre del caucho en Colombia. Revista Credencial. Snyder, T.E. (1924) Descriptions of new species and hitherto unknown castes of termites from America and Hawaii. Proceedings of the U.S. National Museum 64, 1–45. Snyder, T.E. (1949) Catalog of the termites (Isoptera) of the world. Smithsonian Miscellaneous Collections 112, 9–378. Souty-Grosset, C. & Faberi, A. (2018) Effect of agricultural practices on terrestrial isopods: a review. ZooKeys 2018, 63. https://doi.org/10.3897/ZOOKEYS.801.24680 De Souza, O.F.F. & Brown, V.K. (1994) Effects of habitat fagmentation on amazonian termite communities effects of habitat fragmentation on Amazonian termite communities. Journal ofTropical Ecology 10, 197–206. De Souza, S.T., Cassol, P., Baretta, D., Bartz, M., Klauberg Filho, O., Mafra, Á. & da Rosa, M. (2016) Abundance and diversity of soil macrofauna in native forest, eucalyptus plantations, perennial pasture, integrated crop-livestock, and no-tillage cropping. Revista Brasileira de Ciencia do Solo 40, e0150248. https://doi.org/10.1590/18069657rbcs20150248 Sterling, A., Gómez, C.A. & Campo, A.A. (2011a) Patogenicidad de Metarhizium anisopliae (Deuteromycota: Hyphomycetes) sobre Heterotermes tenuis (Isoptera: Rhinotermitidae) en Hevea brasiliensis. Revista Colombiana de Entomologia 37, 36–42. Sterling, A., Pimentel-Parra, G.A., Virguez-Díaz, Y.R., Suárez-Córdoba, Y.D., Hoyos-Duarte, J.D. & Fonseca-Restrepo, J.A. (2021) Long-term resistance in promising rubber tree genotypes as a breeding source for improving South American leaf blight management under high disease incidence in the Colombian Amazon. Crop Protection 150, 105817. https://doi.org/10.1016/J.CROPRO.2021.105817 Sterling, A., Rodriguez-León, C.H., Betancurt, B., Dussan, I., Bonilla, N., Mazorra, A., Ossa, E., Gamboa, A., Caicedo, D. & Lllanos, H. (2011b) Bases técnicas para la identificación y selección de árboles elite-francos de caucho natural en el Departamento del Caquetá. In: A. Sterling and C. H. Rodriguez-León (Eds), Nuevos clones de caucho natural para la Amazonia colombiana: énfasis en la resistencia al mal suramericano de las hojas (Microcyclus ulei). Instituto Amazonico de Investigaciones Cientificas SINCHI, Bogotá D.C., p. 195. Sterling, A. & Rodríguez, C.H. (2012) Ampliación de la base genética de caucho natural con proyección para la Amazonia colombiana : fase de evaluación en periodo improductivo a gran escala. Instituto Amazónico de Investigaciones Científicas- Sinchi, Bogotá D.C., 147 pp. Sterling Cuéllar, A. & Rodríguez León, C.H. (2014) Agroforestería en el Caquetá : clones promisorios de caucho en asocio con copoazú y pátano hartón con potencial para la Amazonia colombiana. Instituto Amazónico de Investigaciones Científicas - SINCHI, Bogotá, D.C., 220 pp. Tokuda, G. & Watanabe, H. (2007) Hidden cellulases in termites: Revision of an old hypothesis. Biology Letters 3, 336–339. https://doi.org/10.1098/rsbl.2007.0073 Tokuda, G., Watanabe, H., Matsumoto, T. & Noda, H. (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-β-1,4-glucanase. Zoological sciense 14, 83–93. Vargas-Niño, a. P., Sánchez-Muñoz, O.D. & Serna-Cardona, F.J. (2005) Lista de los géneros de Termitidae (Insecta: Isoptera) de Colombia. Biota Colombiana 6, 181–190. Veresoglou, S.D., Chen, B. & Rillig, M.C. (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry 46, 53–62. https://doi.org/10.1016/J.SOILBIO.2011.11.018 Viana, A.B., Souza, V.B., Reis, Y.T. & Marques-Costa, A.P. (2014) Termite assemblages in dry tropical forests of Northeastern Brazil: Are termites bioindicators of environmental disturbances? Sociobiology 61, 324–331. https://doi.org/10.13102/sociobiology.v61i3.324-331 Walkley, A. & Black, I.A. (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003 Wei, T. & Simko, V. (2017) R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). Available from: https://github.com/taiyun/corrplot Weidner, H. (1980) Termiten aus Kolumbien nach Beobachtungen von German O. Valenzuela und Fritz Schremmer. Anzeiger für Schädlingskunde Pflanzenschutz Umweltschutz 53, 65–69. https://doi.org/10.1007/BF01965892 White, P.J. (1998) Calcium channels in the plasma membrane of root cells. Annals of Botany 81, 173–183. Yamada, A., Inoue, T., Wiwatwitaya, D., Ohkuma, M., Kudo, T. & Sugimoto, A. (2006) Nitrogen fixation by termites in tropical forests, Thailand. Ecosystems 9, 75–83. https://doi.org/10.1007/s10021-005-0024-7 Zaller, J.G. & Brühl, C.A. (2019) Non-target effects of pesticides on organisms inhabiting agroecosystems. Frontiers in Environmental Science 7, 75. https://doi.org/10.3389/fenvs.2019.00075 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Reconocimiento 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Reconocimiento 4.0 Internacional http://creativecommons.org/licenses/by/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
x, 102 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.coverage.country.none.fl_str_mv |
Colombia |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias Agrarias - Maestría en Ciencias Agrarias |
dc.publisher.department.spa.fl_str_mv |
Escuela de posgrados |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias Agrarias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/80457/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/80457/2/1015428889.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/80457/3/1015428889.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
cccfe52f796b7c63423298c2d3365fc6 051f0813a3e85117852fc3bcec123179 f97c7bad0c33ae504fae3eb163c7c342 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089648070197248 |
spelling |
Reconocimiento 4.0 Internacionalhttp://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Fernandes Carrijo, Tiagodd4644243f78ad18c651c0ee31a8e1f4Serna Cardona, Francisco Javier912dd83652fae7ab85c9dfed167e5d73Castro Torres, Jose Daniele7d9c8b5f752ed9c8a350718a7ac8c7b6002021-10-08T20:17:18Z2021-10-08T20:17:18Z2021-09-28https://repositorio.unal.edu.co/handle/unal/80457Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, fotografías a color, gráficas, tablasLivestock production extension in Amazon has caused deforestation and soil degradation, with negative consequences on biodiversity and environmental services. While the rubber plantations establishment has arisen as a productive and restoration alternative degraded livestock soils. This study evaluated differences in termite assemblage and functional structure in three different rubber crop systems as an indirect way of evaluating soil diversity restoring. Three rubber crop systems were sampled: clonal fields (CF), traditional commercial rubber plantations (CR), and mixed plantations (MX). Additionally, livestock pastures (PA) and natural forest relicts (NF) were compared to rubber crop systems, to serve as reference habitats. Termites were sampled using the transect method. From 80 species collected, 3.8% corresponded to Rhinotermitidae family, and 96.2% to Termitidae family. The natural forest was the land use with the highest richness (54 species) and species occurrence (437 occurrences). Species richness in rubber crop systems were 39% higher than in pastures and included 72% of the termite species found in natural forests. The land uses were clustered according to their diversity: group I of high diversity (CR and NF) and group II of low diversity (CF, MX and PA). Among the 14 soil variables that were evaluated, organic carbon, bulk density and electrical conductivity were the variables that most influenced the termite communities. Soil-feeders termites were associated with less diverse land uses and wood-feeders were associated with high diverse land uses. Pastures and MX presented the lowest values in diversity, but each functional structure was different. Elseways, functional structure of CR was similar to the natural forests. Our results demonstrate that termite diversity and functional structure recovery is possible and will depend on the rubber crop system selected.La ganadería extensiva en la amazonia ha causado deforestación y degradación en el suelo, con consecuencias negativas en la biodiversidad y servicios ambientales. Mientras el establecimiento de plantaciones de caucho ha surgido como una alternativa productiva y de restauración para suelos degradados por la ganadería. Este estudio evaluó las diferencias en los ensamblajes y la estructura funcional de las termitas en tres diferentes cultivos de caucho como una forma indirecta de evaluar la restauración de la diversidad del suelo. Tres sistemas de cultivos de caucho fueron muestreados: campos clonales (CF), plantaciones comerciales (CR) y plantaciones mixtas (MX). Adicionalmente, pasturas ganaderas (PA) y bosques naturales (NF) sirvieron como ecosistemas de referencia. Las termitas se muestrearon usando el método de transecto. De las 80 especies colectadas, 3.8% correspondía a la familia Rhinotermitidae y el 96.2% a la familia Termitidae. El bosque natural fue el uso de la tierra con mayor riqueza (54 especies) y ocurrencia de especies (437 ocurrencias). En los sistemas de cultivo de caucho fue 39% mayor que en pasturas e incluyeron el 72% del total de especies encontradas en los bosques naturales. Los usos de suelo fueron agrupados de acuerdo con su diversidad: grupo I de alta diversidad (CR y NF) y grupo II de baja diversidad (CF, MX y PA). Dentro de las 14 variables de suelo que se evaluaron, carbón orgánico, densidad aparente y conductividad eléctrica fueron las variables que más influenciaron sobre las comunidades de termitas. Las termitas consumidoras de suelo estuvieron asociadas con usos de suelo de baja diversidad y las xilófagas estuvieron asociados con usos de suelo de alta diversidad. Pasturas y MX presentaron la diversidad más baja, pero sus estructuras funcionales fueron diferentes en sí. Por otro lado, la estructura funcional de CR fue similar a la de NF. Nuestros resultados demostraron que recuperar la diversidad y la estructura funcional de las termitas es posible y dependerá de las prácticas de manejo del cultivo de caucho. (Texto tomado de la fuente).Incluye anexosMaestríaMagíster en Ciencias AgrariasEntomologíax, 102 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ciencias Agrarias - Maestría en Ciencias AgrariasEscuela de posgradosFacultad de Ciencias AgrariasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá570 - BiologíaRubber plantsReclamation of landTermitesComejenesPlantas caucherasRecuperación de tierrasClonal fieldIndicator speciesLand usesOrganic carbonSoil-feedersCampo clonalCarbón orgánicoConsumidores de sueloEspecies indicadorasUsos del sueloFunctional structure of termite assemblages associated with productive rubber crop systems in the northwestern colombian AmazonEstructura funcional de los ensamblajes de termitas asociados con sistemas productivos de caucho en el noroeste de la amazonía colombianaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMColombiaAbadía., J.C., Arcila, Á.M. & Chacón, P. (2013) Incidencia y distribución de termitas (Isoptera) en cultivos de cítricos de la costa caribe de Colombia. Revista Colombiana de Entomologia 39, 1–8.Abadía, J.C. & Arcila, A. (2009) Termitas en cultivos de limón en los departamentos del Atlántico y Magdalena, Colombia. Boletin del Museo de Entomologia de la Universidad del Valle 10, 36–46.Abe, T. (1987) Evolution of life types in termites. In: S. Kawano, J. Connel, and T. Hidata (Eds), Evolution and Coadaptation in Biotic Communities. University of Tokyo Press, Tokyo, Japan, pp. 126–148.Ackerman, I.L., Constantino, R., Gauch, H.G., Lehmann, J., Riha, S.J. & Fernandes, E.C.M. (2009) Termite (Insecta: Isoptera) species composition in a primary rain forest and agroforests in central Amazonia. Biotropica 41, 226–233. https://doi.org/10.1111/j.1744-7429.2008.00479.xAli, M.F., Akber, M.A., Smith, C. & Aziz, A.A. (2021) The dynamics of rubber production in Malaysia: Potential impacts, challenges and proposed interventions. Forest Policy and Economics 127, 102449. https://doi.org/10.1016/j.forpol.2021.102449Arcila, A., Abadia, J., Achury, R., Carrascal, F. & Yacomelo, M. (2013) Manual para la identificación y manejo de termitas y otros insectos plagas de los cítricos en la Región Caribe de Colombia Manual para la identificación y manejo de termitas y otros insectos plagas de los cítricos en la Región Caribe de Colombia. Corpoica, Bogotá D.C., 68 pp.Arévalo-Gardini, E., Canto, M., Alegre, J., Loli, O., Julca, A. & Baligar, V. (2015) Changes in soil hysical and chemical properties in long term improved natural and traditional agroforestry management systems of Cacao genotypes in Peruvian Amazon. PLoS ONE 10, 132147. https://doi.org/10.1371/journal.pone.0132147Ashton, L.A., Griffiths, H.M., Parr, C.L., Evans, T.A., Didham, R.K., Hasan, F., Teh, Y.A., Tin, H.S., Vairappan, C.S. & Eggleton, P. (2019) Termites mitigate the effects of drought in tropical rainforest. Science 363, 174–177. https://doi.org/10.1126/science.aau9565Attignon, S.E., Lachat, T., Sinsin, B., Nagel, P. & Peveling, R. (2005) Termite assemblages in a West-African semi-deciduous forest and teak plantations. Agriculture, Ecosystems and Environment 110, 318–326. https://doi.org/10.1016/j.agee.2005.04.020Bandeira, A.G. (1989) Analise da termitofauna (Insecta: Isoptera) de uma Floresta primária e de uma pastagem na Amazônia oriental, Brasil. Bol. Mus. Para. Emílio Goeldi, sér. Zool 5, 225–241.Bandeira, A.G., Vasconcellos, A., Silva, M.P. & Constantino, R. (2003) Effects of habitat disturbance on the termite fauna in a highland humid forest in the Caatinga Domain, Brazil. Sociobiology 42, 1–11.Barros, E., Grimaldi, M., Sarrazin, M., Chauvel, A., Mitja, D., Desjardins, T. & Lavelle, P. (2004) Soil physical degradation and changes in macrofaunal communities in Central Amazon. Applied Soil Ecology 26, 157–168. https://doi.org/10.1016/j.apsoil.2003.10.012Barros, E., Mathieu, J., Tapia-Coral, S., Nascimentol, A.R.L. & Lavelle, P. (2006) Soil macrofauna communities in Brazilian Amazonia. In: F. Moreira, J. Siqueira, and L. Brussaard (Eds), Soil Biodiversity in Amazonian and other Brazilian Ecosystems. CABI Publishing, pp. 43–55.Barros, E., Neves, A., Blanchart, E., Fernandes, E.C.M., Wandelli, E. & Lavelle, P. (2003) Development of the soil macrofauna community under silvopastoral and agrosilvicultural systems in Amazonia. Pedobiologia 47, 273–280. https://doi.org/10.1078/0031-4056-00190Barros, E., Pashanasi, B., Constantino, R. & Lavelle, P. (2002) Effects of land-use system on the soil macrofauna in western Brazilian Amazonia. Biology and Fertility of Soils 35, 338–347. https://doi.org/10.1007/s00374-002-0479-zBegon, M., Townsend, C. & Harper, J. (2007) Ecologia de Indivíduos a Ecossistemas. 4th ed. Artmed, Porto Alegre, 752 pp. Available from: https://www.editoraufv.com.br/produto/ecologia-de-individuos-a-ecossistemas-4-edicao/1109570 (April 25, 2021)Beketov, M.A., Kefford, B.J., Schäfer, R.B. & Liess, M. (2013) Pesticides reduce regional biodiversity of stream invertebrates. Proceedings of the National Academy of Sciences of the United States of America 110, 11039–11043. https://doi.org/10.1073/pnas.1305618110Bellamy, A.S., Svensson, O., van den Brink, P.J., Gunnarsson, J. & Tedengren, M. (2018) Insect community composition and functional roles along a tropical agricultural production gradient. Environmental Science and Pollution Research 25, 13426–13438. https://doi.org/10.1007/s11356-018-1818-4Beltrán-Díaz, M.A. & Pinzón-Florián, O.P. (2018) Termites (Isoptera: Termitidae, rhinotermitidae) in <i>Pinus caribaea<i> plantations in the Colombian orinoco basin. Revista Colombiana de Entomologia 44, 61–71. https://doi.org/10.25100/socolen.v44i1.6544Benito, N.P., Brossard, M., Pasini, A., Guimarães, M.D.F. & Bobillier, B. (2004) Transformations of soil macroinvertebrate populations after native vegetation conversion to pasture cultivation (Brazilian Cerrado). European Journal of Soil Biology 40, 147–154. https://doi.org/10.1016/j.ejsobi.2005.02.002Bignell, D.E. (2005) Termites as soil engineers and soil processors. In: K. H. and V. A. (Eds), Intestinal Microorganisms of Termites and Other Invertebrates. Soil Biology, vol 6. Springer, Berlin, Heidelberg, pp. 183–220.Bizuti, D.T.G., Casagrande, J.C., Soares, M.R., Sartorio, S.D., Brugnaro, C. & César, R.G. (2018) The effect of calcium on the growth of native species in a tropical forest hotspot. IForest 11, 221–226. https://doi.org/10.3832/ifor2074-010Bourguignon, T., Drouet, T., Šobotník, J., Hanus, R. & Roisin, Y. (2015) Influence of Soil Properties on Soldierless Termite Distribution N. Chaline (Ed). PLOS ONE 10, e0135341. https://doi.org/10.1371/journal.pone.0135341Bourguignon, T., Leponce, M. & Roisin, Y. (2011a) Beta-Diversity of termite assemblages among primary French Guiana rain forests. Biotropica 43, 473–479. https://doi.org/10.1111/j.1744-7429.2010.00729.xBourguignon, T., Scheffrahn, R.H., Krecek, J., Nagy, Z.T., Sonet, G. & Roisin, Y. (2010) Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): redescription of the genus Anoplotermes and description of Longustitermes, gen. nov. Invertebrate Systematics 24, 357–370. https://doi.org/10.1111/zoj.12305Bourguignon, T., Scheffrahn, R.H., Nagy, Z.T., Sonet, G., Host, B. & Roisin, Y. (2016a) Towards a revision of the Neotropical soldierless termites (Isoptera: Termitidae): Redescription of the genus Grigiotermes Mathews and description of five new genera. Zoological Journal of the Linnean Society 176, 15–35. https://doi.org/10.1111/zoj.12305Bourguignon, T., Sobotnik, J., Dahlsjo, C.A.L. & Roisin, Y. (2016b) The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insectes Sociaux 63, 39–50. https://doi.org/10.1007/s00040-015-0446-yBourguignon, T., Šobotník, J., Lepoint, G., Martin, J.M., Hardy, O.J., Dejean, A. & Roisin, Y. (2011b) Feeding ecology and phylogenetic structure of a complex neotropical termite assemblage, revealed by nitrogen stable isotope ratios. Ecological Entomology 36, 261–269. https://doi.org/10.1111/j.1365-2311.2011.01265.xBourguignon, T., Sobotník, J., Lepoint, G., Martin, J.M. & Roisin, Y. (2009) Niche differentiation among neotropical soldierless soil-feeding termites revealed by stable isotope ratios. Soil Biology & Biochemistry 41, 2038–2043. https://doi.org/10.1016/j.soilbio.2009.07.005Bouyoucos, G.. (1936) Directions for Making Mechanical Analysis of Soils by the Hydrometer Method. Soil Science 4, 225–228.Braak, C.J.F. ter & Smilauer, P. (2002) CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). www.canoco.com.Brauman, A. (2000) Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: A review. Eur. J. Soil Biol. 36, 117–125. https://doi.org/https://doi.org/10.1016/S1164-5563(00)01058-XDe Cáceres, M., Jansen, F. & Dell, N. (2020) Package “indicspecies” Type Package Title Relationship Between Species and Groups of Sites. Package Version 1.7.9.De Cáceres, M. & Legendre, P. (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574. https://doi.org/10.1890/08-1823.1De Cáceres, M., Legendre, P., Wiser, S.K. & Brotons, L. (2012) Using species combinations in indicator value analyses R. B. O’Hara (Ed). Methods in Ecology and Evolution 3, 973–982. https://doi.org/10.1111/j.2041-210X.2012.00246.xCancello, E.M. & Cuezzo, C. (2007) A new species of Ereymatermes Constantino (Isoptera, Termitidae, Nasutitermitinae) from the northeastern Atlantic Forest, Brazil. Papeis Avulsos de Zoologia 47, 283–288. https://doi.org/10.1590/S0031-10492007002300001Cancello, E.M., Silva, R.R., Vasconcellos, A., Reis, Y.T. & Oliveira, L.M. (2014) Latitudinal variation in termite species richness and abundance along the brazilian atlantic forest hotspot. Biotropica 46, 441–450. https://doi.org/10.1111/btp.12120Carneiro, M.A.C., de Souza, E.D., dos Reis, E.F., Pereira, H.S. & de Azevedo, W.R. (2009) Atributos físicos, químicos e biológicos de solo de cerrado sob diferentes sistemas de uso e manejo. Revista Brasileira de Ciencia do Solo 33, 147–157. https://doi.org/10.1590/s0100-06832009000100016Carrijo, T.F., Brandão, D., Oliveira, D.E., Costa, D.A. & Santos, T. (2009) Effects of pasture implantation on the termite (Isoptera) fauna in the Central Brazilian Savanna (Cerrado). Journal of Insect Conservation 13, 575–581. https://doi.org/10.1007/s10841-008-9205-yCasalla, R. & Korb, J. (2019a) Phylogenetic community structure and niche differentiation in termites of the tropical dry forests of colombia. Insects 10. https://doi.org/10.3390/insects10040103Casalla, R. & Korb, J. (2019b) Termite diversity in Neotropical dry forests of Colombia and the potential role of rainfall in structuring termite diversity. Biotropica 2019, 1–13. https://doi.org/10.1111/btp.12626Casalla, R., Scheffrahn, R.H. & Korb, J. (2016) Proneotermes macondianus, a new drywood termite from Colombia and expanded distribution of Proneotermes in the Neotropics (Isoptera, Kalotermitidae). ZooKeys 2016, 43–60. https://doi.org/10.3897/zookeys.623.9677Castellanos, D., Fonseca, R. & Barón, N. (2009) Agenda prospectiva de investigación y desarrollo Tecnológico para la cadena Productiva de caucho natural y su industria en Colombia. Ministerio de Agricultura y Desarrollo Rural, Bogotá D.C., 208 pp.Castro, D., Constantini, J.P., Scheffrahn, R.H., Carrijo, T.F. & Cancello, E.M. (2020) Rustitermes boteroi, a new genus and species of soldierless termites (Blattodea, Isoptera, Apicotermitinae) from South America. ZooKeys 922, 35–49. https://doi.org/10.3897/zookeys.922.47347Castro, D. & Scheffrahn, R.H. (2019) A new species of Acorhinotermes Emerson , 1949 ( Blattodea , Isoptera , Rhinotermitidae ) from Colombia , with a key to Neotropical Rhinotermitinae species based on minor soldiers. ZooKeys 891, 61–70. https://doi.org/https://doi.org/10.3897/zookeys.891.37523Castro, D., Scheffrahn, R.H. & Carrijo, T.F. (2018) Echinotermes biriba, a new genus and species of soldierless termite from the Colombian and Peruvian Amazon (Termitidae, Apicotermitinae). ZooKeys 2018, 21–30. https://doi.org/10.3897/zookeys.748.24253CCC - Confederación Cauchera Colombiana (2016) Informe de resultados censo de plantaciones de caucho natural (Hevea brasiliensis) a año 2015. Bogotá D.C.Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. & Ellison, A.M. (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecological Monographs 84, 45–67.Charity, S., Dudley, N., Oliveira, D. & Stolon, S. (2016) Living Amazon Report 2016: A regional approach to conservation in the Amazon. WWF Living Amazon Initiative, Basilia & Quito, 113 pp.Cherubin, M.R., Chavarro-Bermeo, J.P. & Silva-Olaya, A.M. (2019) Agroforestry systems improve soil physical quality in northwestern Colombian Amazon. Agroforestry Systems 93, 1741–1753. https://doi.org/10.1007/s10457-018-0282-yCompagnon, P. (1998) El caucho natural, biología, cultivo, producción. Consejo Mexicano del Hule y CIRAD, México, DF, 701 pp.Constantini, J.P. & Cancello, E.M. (2016) A taxonomic revision of the Neotropical termite genus Rhynchotermes (Isoptera, Termitidae, Syntermitinae). Zootaxa 4109, 501. https://doi.org/10.11646/zootaxa.4109.5.1Constantino, R. (1991) Termites (Isoptera) from the lower Japurá River, Amazonas State, Brazil. Boletim do Museu Paraense Emílio Goeldi, série Zoologia 7, 189–224.Constantino, R. (1992) Abundance and diversity of termites (Insecta: Isoptera) in two sites of primary rain forest in Brazilian Amazonia. Biotropica 24, 420–430. https://doi.org/10.1017/CBO9781107415324.004Constantino, R. (1995) Revision of the neotropical termite genus Syntermes Holmgren (Isoptera: Termitidae). The University of Kansas science bulletin 55, 455–518.Constantino, R. (1998) Description of a New Planicapritermes from Central Amazonia, with Notes on the Morphology of the Digestive Tube of the Neocapritermes-Planicapritermes Group (Isoptera: Termitidae: Termitinae). Sociobiology 32, 109–118.Constantino, R. (2000) Key to the soldiers of South American Heterotermes with a new species from Brazil (Isoptera: Rhinotermitidae). Insect Systematics and Evolution 31, 463–472.Constantino, R. (2002a) An illustrated key to Neotropical termite genera (Insecta: Isoptera) based primarily on soldiers. Zootaxa 40, 1–40.Constantino, R. (2002b) The pest termites of South America: taxonomy, distribution and status. Journal of Applied Entomology 126, 355–365.Constantino, R. (2021) Termite Database. University of Brasília. Available from: http://164.41.140.9/catal/about.php (March 25, 2021)Constantino, R., Acioli, A.N.S., Schmidt, K., Cuezzo, C., Carvalho, S.H.C. & Vasconcellos, A. (2006) A taxonomic revision of the Neotropical termite genera Labiotermes Holmgren and Paracornitermes Emerson (Isoptera: Termitidae: Nasutitermitinae). Zootaxa 1340, 1–44.Constantino, R. & Cancello, E.M. (1992) Cupins (Insecta, Isoptera) da Amazônia Brasileira : distribuição e esforço de coleta. Revista Brasileira de Biologia 52, 401–413.Constantino, R. & De Souza, O.F.F. (1997) Key to the soldiers of Atlantitermes Fontes 1979, with a new species from Brazil (Isoptera Termitidae Nasutitermitinae). Tropical Zoology 10, 205–213.Corwin, D.L. & Yemoto, K. (2017) Salinity: electrical conductivity and total dissolved solids. In: Methods of Soil Analysis. Soil Science Society of America, Madison, WI, p. 16.Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R.G., Sutton, P. & Van Den Belt, M. (1997) The value of the world’s ecosystem services and natural capital. Nature 387, 253–260. https://doi.org/10.1038/387253a0Coulibaly, T., Akpesse, A.A.M., Boga, J.P., Yapi, A., Kouassi, K.P. & Roisin, Y. (2016) Change in termite communities along a chronosequence of mango tree orchards in the north of Côte d’Ivoire. Journal of Insect Conservation 20, 1011–1019. https://doi.org/10.1007/s10841-016-9935-1Crespo-Pérez, V., Kazakou, E., Roubik, D.W. & Cárdenas, R.E. (2020) The importance of insects on land and in water: a tropical view. Current opinion in insect science 40, 31–38.Culliney, T. (2013) Role of arthropods in maintaining soil fertility. Agriculture 3, 629–659. https://doi.org/10.3390/agriculture3040629Cunha, H.F., Costa, D.A., Silva, A.P.T., Nicacio, J. & Abot, A.R. (2020) Termite functional diversity along an elevational gradient in the Cerrado of Mato Grosso do Sul. International Journal of Tropical Insect Science. https://doi.org/10.1007/s42690-020-00240-6da Cunha, H.F. & Orlando, T.Y. da S. (2011) Functional composition of termite species in areas of abandoned pasture and in secondary succession of the Parque Estadual Altamiro de Moura Pacheco, GoiáS, Brazil. Bioscience Journal 27, 986–992.Dahlsjö, C. AL, Parr, C.L., Malhi, Y., Rahman, H., Meir, P., Jones, D.T., Eggleton Journal, P. & Eggleton, P. (2014) First comparison of quantitative estimates of termite biomass and abundance reveals strong intercontinental differences. Journal of Tropical Ecology 30, 143–152. https://doi.org/10.1017/S0266467413000898Dambros, C. de S., da Silva, V.N.V., Azevedo, R. & de Morais, J.W. (2013) Road-associated edge effects in Amazonia change termite community composition by modifying environmental conditions. Journal for Nature Conservation 21, 279–285. https://doi.org/10.1016/j.jnc.2013.02.003Dangles, O. & Casas, J. (2019) Ecosystem services provided by insects for achieving sustainable development goals. Ecosystem Services 35, 109–115.Davies, R.G. (2002) Feeding group responses of a Neotropical termite assemblage to rain forest fragmentation. Oecologia 133, 233–242. https://doi.org/10.1007/s00442-002-1011-8Davies, R.G., Hernández, L.M., Eggleton, P., Didham, R.K., Fagan, L.L. & Winchester, N.N. (2003) Environmental and spatial influences upon species composition of a termite assemblage across neotropical forest islands. Journal of Tropical Ecology 19, 509–524. https://doi.org/10.1017/S0266467403003560Decaëns, T., Jiménez, J.J., Barros, E., Chauvel, A., Blanchart, E., Fragoso, C. & Lavelle, P. (2004) Soil macrofaunal communities in permanent pastures derived from tropical forest or savanna. Agriculture, Ecosystems & Environment 103, 301–312. https://doi.org/10.1016/J.AGEE.2003.12.005Decaëns, T., Lavelle, P., Jimenez, J., Rippstein, G. & Escobar, G. (1994) Impact of land management on soil macrofauna in the Oriental Llanos of Colombia. 30, 157–168.Decaëns, T., Mariani, L. & Lavelle, P. (1999) Soil surface macrofaunal communities associated with earthworm casts in grasslands of the Eastern Plains of Colombia. Applied Soil Ecology 13, 87–100. https://doi.org/10.1016/S0929-1393(99)00024-4Donovan, S.E., Eggleton, P. & Bignell, D.E. (2001) Gut content analysis and a new feeding group classification of termites. Ecological Entomology 26, 356–366. https://doi.org/10.1046/j.1365-2311.2001.00342.xDosso, K., Deligne, J., Yéo, K., Konaté, S. & Linsenmair, K.E. (2013) Changes in the termite assemblage across a sequence of land-use systems in the rural area around Lamto Reserve in central Côte d’Ivoire. Journal of Insect Conservation 17, 1047–1057. https://doi.org/10.1007/s10841-013-9588-2Duran-Bautista, E.H., Armbrecht, I., Acioli, A.N.S., Suárez, J.C., Romero, M., Quintero, M. & Lavelle, P. (2020a) Termites as indicators of soil ecosystem services in transformed amazon landscapes. Ecological Indicators 117, 106550. https://doi.org/10.1016/j.ecolind.2020.106550Duran-Bautista, E.H., Muñoz, Y., Galindo, J.D., Ortiz, T. & Bermúdez, M. (2020b) Soil physical quality and relationship to changes in termite community in northwestern Colombian Amazon. Frontiers in Ecology and Evolution 8:598134. https://doi.org/10.3389/fevo.2020.598134Eggleton, P. (2011) An introduction to termites: Biology, taxonomy and functional morphology. In: Biology of Termites: A Modern Synthesis. Springer Netherlands, pp. 1–26.Eggleton, P., Bignell, D.E., Sands, W.A., Mawdsley, N.A., Lawton, J.H., Wood, T.G. & Bignell, N.C. (1996) The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Fores Reserve, southern Cameroon. Phil.Trans.R.Soc.Lond.B. 351, 51–68.Eggleton, P., Bignell, D.E., Sands, W.A., Waite, B., Wood, T.G. & Lawton, J.H. (1995) The species richness of Termites under differing levels of forest disturbance in the Mbalmayo Forest Reserve, Camerron. Journal of Tropical Ecology 11, 85–98.Eggleton, P., Eggleton, P., Homathevi, R., Homathevi, R., Jeeva, D., Jeeva, D., Jones, D.T., Jones, D.T., Davies, R.G., Davies, R.G., Maryati, M. & Maryati, M. (1997) The species richness and composition of termites (Isoptera) in primary and regenerating lowland dipterocarp forest in Sabah, east Malaysia. Ecotropica 3, 119–128.Eggleton, P., Hauser, S., Norgrove, L., Eggletona, P., Bignellb, D.E., Hauserc, S., Diboga, L., Norgrovec, L. & Madonge, B. (2002) Termite diversity across an anthropogenic disturbance gradient in the humid forest zone of West Africa. Agriculture, Ecosystems & Environment 90, 189–202. https://doi.org/10.1016/S0167-8809(01)00206-7Eggleton, P. & Tayasu, I. (2001) Feeding groups, lifetypes and the global ecology of termites. Ecological Research 16, 941–960.Emerson, A.E. (1925) The Termites of Kartabo, Bartica District, British Guiana. Zoologica : scientific contributions of the New York Zoological Society 6, 291–459.Evans, T.A., Dawes, T.Z., Ward, P.R. & Lo, N. (2011) Ants and termites increase crop yield in a dry climate. Nature Communications 2, 262–267. https://doi.org/10.1038/ncomms1257Fallah, M., Farzam, M., Hosseini, V., Moravej, G. & Eldridge, D.J. (2017) Termite effects on soils and plants are generally consistent along a gradient in livestock grazing. Arid Land Research and Management 31, 159–168. https://doi.org/10.1080/15324982.2017.1288177Fernández, F. (2003) Introducción a las hormigas de la región Neotropical. Instituto de Investigación de Recursos Biológicos Alexander von Humbold, Bogotá, 398 pp.Fernández, F., Guerrero Flórez, R.J. & Delsinne, T. (2019) Hormigas de Colombia Hormigas de Colombia. Universidad Nacional de Colombia, Bogotá D.C., 1200 pp.Fittkau, E.J. & Klinge, H. (1973) On Biomass and Trophic Structure of the Central Amazonian Rain Forest Ecosystem. Biotropica 5, 2. https://doi.org/10.2307/2989676Fox, J. & Castella, J.C. (2013) Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for smallholders? Journal of Peasant Studies 40, 155–170. https://doi.org/10.1080/03066150.2012.750605Galili, T. (2015) dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720. https://doi.org/10.1093/bioinformatics/btv428Galvis, C. (1984) Termites del valle geográfico del río Cauca y su impacto sobre la economía del departamento del Valle. Cespedesia 13, 257–276.Galvis, C. & Flórez, E. (1991) Zoogeografía de termites (comejenes - Isópteros) en Colombia y sus repercusiones en la Economía Nacional, Provincia Zoogeográfica de San Andrés y Providencia. Cespedesia 18, 161–163.Galvis, C., Flórez, E. & Ríos, O. (1991) Zoogeografía de termites (comejenes) en Colombia y sus repercusiones en la Economía nacional Provincia Zoogeográfica Pacífico-Centro Americana. Cespedesia 18, 157–159.Gasparotto, L.., Ferreira, F.A.., dos Santo, A.F.., Rezende, P.J.C.. & Furtado, E.. (2012) Capítulo 3: Doenças das folha. In: L. Gasparotto and R. . Pereira (Eds), Doenças da seringueira no Brasil. EMBRAPA Amazônia Occidental, Brasilia. D.F., p. 255.Ghosal, A. & Hati, A. (2019) Impact of some new generation insecticides on soil arthropods in rice maize cropping system. The Journal of Basic and Applied Zoology 80, 1–8. https://doi.org/10.1186/s41936-019-0077-3Guillaume, T., Holtkamp, A.M., Damris, M., Brümmer, B. & Kuzyakov, Y. (2016) Soil degradation in oil palm and rubber plantations under land resource scarcity. Agriculture, Ecosystems and Environment 232, 110–118. https://doi.org/10.1016/j.agee.2016.07.002Gutierrez-Sarmiento, M.C. & Cardona, C.M. (2014) Caracterización ecológica de las lombrices (Pontoscolex corethrurus) como bioindicadoras de suelos compactados bajo condiciones de alta humedad del suelo con diferentes coberturas vegetales (Zipacón, Cundinamarca). Revista científica 2, 55. https://doi.org/10.14483/23448350.6493Gutiérrez, A.I., Uribe, S. & Quiroz, J. (2004) Termitas asociadas a plantaciones de Eucalyptus spp. en una reforestadora en Magdalena, Colombia. Manejo Integrado de Plagas y Agroecología, 54–59.Gutierrez, F., Acosta, L.E. & Salazar, C.A. (2003) Perfiles urbanos en la Amazonía Colombiana: un enfoque para el desarrollo sostenible. Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá, Colombia, 260 pp.Hidayat, M.R., Endris, W.M. & Dwiyanti, Y. (2018) Effect of a rubber plantation on termite diversity in Melawi, West Kalimantan, Indonesia. Agriculture and Natural Resources 52, 439–444. https://doi.org/10.1016/j.anres.2018.10.016Higashi, M., Abe, T. & Burns, T.P. (1992) Carbon-nitrogen balance and termite ecology. Proceedings of the Royal Society B: Biological Sciences 249, 303–308. https://doi.org/10.1098/rspb.1992.0119Hölldobler, B. & Wilson, W.. (1990) The Ants . Springer, 746 pp. Available from: https://www.hup.harvard.edu/catalog.php?isbn=9780674040755 (March 31, 2021)Houston, W.A., Wormington, K.R. & Black, R.L. (2015) Termite (Isoptera) diversity of riparian forests, adjacent woodlands and cleared pastures in tropical eastern Australia. Austral Entomology 54, 221–230. https://doi.org/10.1111/aen.12115Hsieh, T.C., Ma, K.H. & Chao, A. (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613Husson, F., Josse, J., Le, S. & Maintainer, J.M. (2020) Package “FactoMineR” Title Multivariate Exploratory Data Analysis and Data Mining. Version 2.3.ICONTEC (2007) Calidad de suelo. Determinacion de micronutrientes disponibles: cobre, zinc, hierro y manganeso. Bogotá D.C.ICONTEC (2016a) Calidad de suelo. Determinación de las bases cambiables: método del acetato amonio 1m, ph 7,0. Bogotá D.C.ICONTEC (2016b) NTC 5350. Calidad de suelo. Determinacion de fósforo disponible. Instituto Colombiano de Normas Técnicas y Certificación (ICONTEC), Bogotá D.C., 19 pp.IDEAM, PNUD, MADS, DNP & CANCILLERÍA (2016) Inventario nacional y departamental de gases de efecto invernadero. Tercera comunicación nacional de Cambio Climático. Bogotá D.C.Inoue, T., Takematsu, Y., Yamada, A., Hongoh, Y., Johjima, T., Moriya, S., Sornnuwat, Y., Vongkaluang, C., Ohkuma, M. & Kudo, T. (2006) Diversity and abundance of termites along an altitudinal gradient in Khao Kitchagoot National Park, Thailand. Journal of Tropical Ecology 22, 609. https://doi.org/10.1017/S0266467406003403Inward, D.J.G., Vogler, A.P. & Eggleton, P. (2007) A comprehensive phylogenetic analysis of termites (Isoptera) illuminates key aspects of their evolutionary biology. Molecular Phylogenetics and Evolution 44, 953–967. https://doi.org/10.1016/j.ympev.2007.05.014Jankielsohn, A. (2018) The Importance of Insects in Agricultural Ecosystems. Advances in Entomology 06, 62–73. https://doi.org/10.4236/ae.2018.62006Jones, C.G., Lawton, J.H. & Shachak, M. (1994) Organisms as Ecosystem Engineers. Oikos 69, 373. https://doi.org/10.2307/3545850Jones, D.T. & Eggleton, P. (2000) Sampling termite assemblages in tropical forests: testing a rapid biodiversity assessment protocol. Journal of Applied Ecology 37, 191–203.Jones, D.T., Susilo, F.X., Bignell, D.E., Hardiwinoto, S., Gillison, A.N. & Eggleton, P. (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. Journal of Applied Ecology 40, 380–391.Jones, J.A. (1990) Termites, soil fertility and carbon cycling in dry tropical Africa: a hypothesis. Journal of Tropical Ecology 6, 291–305. https://doi.org/10.1017/S0266467400004533Jouquet, P., Blanchart, E. & Capowiez, Y. (2014) Utilization of earthworms and termites for the restoration of ecosystem functioning. Applied Soil Ecology 73, 34–40. https://doi.org/10.1016/j.apsoil.2013.08.004Jouquet, P., Traoré, S., Choosai, C., Hartmann, C. & Bignell, D. (2011) Influence of termites on ecosystem functioning. Ecosystem services provided by termites. European Journal of Soil Biology 47, 215–222. https://doi.org/10.1016/j.ejsobi.2011.05.005Junqueira, L.K., Diehl, E. & Filho, E.B. (2009) Termite (isoptera) diversity in eucalyptus-growth areas and in forest fragments. Sociobiology 53, 805–828.Kassambara, A. (2020) ggpubr: “ggplot2” Based Publication Ready Plots. R package version 0.4.0.Kassambara, A. & Mundt, F. (2020) factoextra: extract and visualize the results of multivariate data analyses. Package Version 1.0.7.Keenan, R.J., Lamb, D., Parrotta, J. & Kikkawa, & J. (1999) Ecosystem management in tropical timber plantations. Journal of Sustainable Forestry 9, 1–2. https://doi.org/10.1300/J091v09n01_10König, H., Li, L. & Fröhlich, J. (2013) The cellulolytic system of the termite gut. Applied Microbiology and Biotechnology 97, 7943–7962. https://doi.org/10.1007/s00253-013-5119-zKrishna, K. (2003) A new species, Cavitermes rozeni (Isoptera: Termitidae: Termitinae), from Brazil. Journal of the Kansas Entomological Society 76, 92–95. https://doi.org/10.2307/25086093Krishna, K. & Araujo, R.L. (1968) A revision of the Neotropical termite genus Neocapritermes (Isoptera, Termitidae, Termitinae). Bulletin of the American Museum of Natural History 138, 83–130.Krishna, K. & Emerson, A.E. (1962) New species of the genus Glyptotermes Froggatt from the Papuan, Oriental, Ethiopian, and Neotropical regions (Isoptera, Kalotermitidae). American Museum Novitates 2089, 1–66.Krishna, K., Grimaldi, D.A. & Krishna, V. (2014) Treatise on the Isoptera of the world. Vol 1. Bulletin of the American Museum of Natural History 377, 200.Lamarre, G.P.A., Erault, B.H., Fine, P.V.A., Vedel, V., Lupoli, R., Mesones, I. & Baraloto, C. (2016) Taxonomic and functional composition of arthropod assemblages across contrasting Amazonian forests. Journal of Animal Ecology 85, 227–239. https://doi.org/10.1111/1365-2656.12445Lamb, D. (1998) Large-scale ecological restoration of degraded tropical forest lands: the potential role of timber plantations. Restoration Ecology 6, 271–279. https://doi.org/10.1046/j.1526-100X.1998.00632.xLavelle, P. (1997) Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Advances in Ecological Research 27, 93–132. https://doi.org/10.1016/S0065-2504(08)60007-0Lavelle, P., Rodríguez, N., Arguello, O., Bernal, J., Botero, C., Chaparro, P., Gómez, Y., Gutiérrez, A., Hurtado, M. del P., Loaiza, S., Pullido, S.X., Rodríguez, E., Sanabria, C., Velásquez, E. & Fonte, S.J. (2014) Soil ecosystem services and land use in the rapidly changing Orinoco River Basin of Colombia. Agriculture, Ecosystems & Environment 185, 106–117. https://doi.org/10.1016/j.agee.2013.12.020Lê, S., Josse, J. & Husson, F. (2008) FactoMineR: An R package for multivariate analysis. Journal of Statistical Software 25, 1–18. https://doi.org/10.18637/jss.v025.i01LeClare, S.K., Mdluli, M., Wisely, S.M. & Stevens, N. (2020) Land-use diversity within an agricultural landscape promotes termite nutrient cycling services in a southern African savanna. Global Ecology and Conservation 21, e00885. https://doi.org/10.1016/j.gecco.2019.e00885Legendre, F., Nel, A., Svenson, G.J., Robillard, T., Pellens, R. & Grandcolas, P. (2015) Phylogeny of dictyoptera: Dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS ONE 10, 1–27. https://doi.org/10.1371/journal.pone.0130127Legendre, F., Whiting, M.F., Bordereau, C., Cancello, E.M., Evans, T.A. & Grandcolas, P. (2008) The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Molecular Phylogenetics and Evolution 48, 615–627. https://doi.org/10.1016/j.ympev.2008.04.017Legendre, P. & Gallagher, E.D. (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280. https://doi.org/10.1007/s004420100716Legendre, P. & Legendre, L. (2012) Numerical Ecology. 3rd ed. Elsevier, 1006 pp. Available from: https://www.elsevier.com/books/numerical-ecology/legendre/978-0-444-53868-0 (April 17, 2021)Lemos, L.N., Pedrinho, A., Vasconcelos, A.T.R. de, Tsai, S.M. & Mendes, L.W. (2021) Amazon deforestation enriches antibiotic resistance genes. Soil Biology and Biochemistry 153, 108110. https://doi.org/10.1016/J.SOILBIO.2020.108110Leon, G., Martinez, A., Molina, J. & Zuluaga, J. (2009) Manejo de termitas o comejenes en el cultivo del caucho Manejo de termitas o comejenes en el cultivo del caucho. Corpoica, Colombia, 1–20 pp.Letourneau, D.K. & Altieri, M.A. (1999) Environmental Management to Enhance Biological Control in Agroecosystems. Handbook of Biological Control, 319–354. https://doi.org/10.1016/B978-012257305-7/50061-8Lima, J.T. & Costa-Leonardo, A.M. (2007) Recursos alimentares explorados pelos cupins (Insecta: Isoptera). Biota Neotropica 7, 243–250. https://doi.org/10.1590/s1676-06032007000200027Lima, S.S., Pereira, M.G., Pereira, R.N., Pontes, R.M. & Rossi, C.Q. (2018) Termite mounds effects on soil properties in the atlantic forest biome. Revista Brasileira de Ciencia do Solo 42, e0160564. https://doi.org/10.1590/18069657rbcs20160564Liu, S., Lin, X., Behm, J.E., Yuan, H., Stiblik, P., Šobotník, J., Gan, J., Xia, S. & Yang, X. (2019) Comparative responses of termite functional and taxonomic diversity to land-use change. Ecological Entomology 44, 762–770. https://doi.org/10.1111/een.12755Losey, J.E. & Vaughan, M. (2006) The Economic value of ecological services provided by insects. BioScience 56, 311–323. https://doi.org/10.1641/0006-3568(2006)56Lu, X., Taylor, A.E., Myrold, D.D. & Neufeld, J.D. (2020) Expanding perspectives of soil nitrification to include ammonia-oxidizing archaea and comammox bacteria. Soil Science Society of America Journal 84, 287–302. https://doi.org/10.1002/SAJ2.20029Luke, S.H., Fayle, T.M., Eggleton, P., Turner, E.C. & Davies, R.G. (2014) Functional structure of ant and termite assemblages in old growth forest, logged forest and oil palm plantation in Malaysian Borneo. Biodiversity and Conservation 23, 2817–2832. https://doi.org/10.1007/s10531-014-0750-2Mando, A. & Miedena, R. (1997) Termite-induced change in soil structure after mulching degraded (crusted) soil in the Sahel. Applied Soil Ecology 6, 241–249.Mando, A., Stroosnijder, L. & Brussaard, L. (1996) Effects of termites on infiltration into crusted soil. Geoderma 74, 107–113. https://doi.org/10.1016/S0016-7061(96)00058-4Marichal, R., Grimaldi, M., Feijoo, M.A., Oszwald, J., Praxedes, C., Ruiz Cobo, D.H., del Pilar Hurtado, M., Desjardins, T., da Silva Junior, M.L., da Silva Costa, L.G., Miranda, I.S., Delgado Oliveira, M.N., Brown, G.G., Tsélouiko, S., Martins, M.B., Decaëns, T., Velasquez, E. & Lavelle, P. (2014) Soil macroinvertebrate communities and ecosystem services in deforested landscapes of Amazonia. Applied Soil Ecology 83, 177–185. https://doi.org/10.1016/j.apsoil.2014.05.006Marichal, R., Martinez, A.F., Praxedes, C., Ruiz, D., Carvajal, A.F., Oszwald, J., del Pilar Hurtado, M., Brown, G.G., Grimaldi, M., Desjardins, T., Sarrazin, M., Decaëns, T., Velasquez, E. & Lavelle, P. (2010) Invasion of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta) in landscapes of the Amazonian deforestation arc. Applied Soil Ecology 46, 443–449. https://doi.org/10.1016/j.apsoil.2010.09.001Mathews, A.G.A. (1977) Academia Brasileira de Ciências Studies on termites from the Mato Grosso State, Brazil. Academia Brasileira de Ciências, Rio de Janeiro, 267 pp.Mathieu, J., Rossi, J.-P., Mora, P., Lavelle, P., Martins, P.F.D.S., Rouland, C. & Grimaldi, M. (2005) Recovery of Soil Macrofauna Communities after Forest Clearance in Eastern Amazonia, Brazil. Conservation Biology 19, 1598–1605. https://doi.org/10.1111/j.1523-1739.2005.00200.xMill, A.E. (1992) Termites as Agricultural Pests in Amazônia, Brazil. Outlook on Agriculture 21, 41–46. https://doi.org/10.1177/003072709202100107Moreira, F.M. de S., Nóbrega, R.S.A., Jesus, E. da C., Ferreira, D.F. & Pérez, D.V. (2009) Differentiation in the fertility of Inceptisols as related to land use in the upper Solimões river region, western Amazon. Science of The Total Environment 408, 349–355. https://doi.org/10.1016/J.SCITOTENV.2009.09.007Murcia, U., Medina, R., Rodriguez, J., Hernández, A., Herrera, A., Herrera, E. & Castellanos, H. (2014) Monitoreo de los bosques y otras coberturas de la Amazonia Colombiana, a escala 1:100.000. U. Murcia (Ed). Instituto Amazónico de Investigaciones Científicas SINCHI, Bogotá D.C., 144 pp.Murtagh, F. & Legendre, P. (2014) Ward’s Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Ward’s Criterion? Journal of Classification 31, 274–295. https://doi.org/10.1007/s00357-014-9161-zNdiaye, D., Lepage, M., Sall, C.E. & Brauman, A. (2004) Nitrogen transformations associated with termite biogenic structures in a dry savanna ecosystem. Plant and Soil 265, 189–196. https://doi.org/10.1007/s11104-005-0892-9Neoh, K.B., Nguyen, M.T., Nguyen, V.T., Itoh, M., Kozan, O. & Yoshimura, T. (2018) Intermediate disturbance promotes termite functional diversity in intensively managed Vietnamese coffee agroecosystems. Journal of Insect Conservation 22, 197–208. https://doi.org/10.1007/s10841-018-0053-0Noriega, J.A., Hortal, J., Azcárate, F.M., Berg, M.P., Bonada, N., Briones, M.J.I., Del Toro, I., Goulson, D., Ibanez, S., Landis, D.A., Moretti, M., Potts, S.G., Slade, E.M., Stout, J.C., Ulyshen, M.D., Wackers, F.L., Woodcock, B.A. & Santos, A.M.C. (2018) Research trends in ecosystem services provided by insects. Basic and Applied Ecology 26, 8–23.Officer, S.J., Kravchenko, A., Bollero, G.A., Sudduth, K.A., Kitchen, N.R., Wiebold, W.J., Palm, H.L. & Bullock, & D.G. (2004) 258 Plant and Soil Relationships between soil bulk electrical conductivity and the principal component analysis of topography and soil fertility values.Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., Mcglinn, D., Minchin, P.R., O’hara, R.B., Simpson, G.L., Solymos, P., Henry, M., Stevens, H., Szoecs, E. & Maintainer, H.W. (2019) Package “vegan” Title Community Ecology Package Version 2.5-6.Oliveira, D.E., Carrijo, T.F. & Brandão, D. (2013) Species composition of termites (Isoptera) in different Cerrado vegetation physiognomies. Sociobiology 60, 190–197. https://doi.org/10.13102/sociobiology.v60i2.190-197Palin, O.F., Eggleton, P., Malhi, Y., Girardin, C.A.J., Rozas-Dávila, A. & Parr, C.L. (2011) Termite diversity along an Amazon-Andes elevation gradient, Peru. Biotropica 43, 100–107. https://doi.org/10.1111/j.1744-7429.2010.00650.xde Paula, R.C., de Moraes Lima Silveira, R., da Rocha, M.M. & Izzo, T.J. (2016) The restoration of termite diversity in different reforestated forests. Agroforestry Systems 90, 395–404. https://doi.org/10.1007/s10457-015-9862-2Peña-Venegas, C., Mendoza, E., Rodríguez, C., Cardona, G., Betancurt, B. & Garzón, M. (2015) Carbon fixing capacity of Amazonian soils in relation to its degradation conditions. Revista EIA, 47–53. https://doi.org/10.14508/reia.2014.11.E2.47-53Peña-Venegas, C.P., Cardona, G.I., Mazorra, A., Arguellez, J. & Arcos, A. (2006) Micorrizas arbusculares de la Amazonia colombiana Catálogo ilustrado. Instituto Amazónico de Investigaciones Científicas, SINCHI, Bogotá D.C., 90 pp.Peña-Venegas, C.P., Kuyper, T.W., Davison, J., Jairus, T., Vasar, M., Stomph, T.J., Struik, P.C. & Öpik, M. (2019) Distinct arbuscular mycorrhizal fungal communities associate with different manioc landraces and Amazonian soils. Mycorrhiza 29, 263–275. https://doi.org/10.1007/s00572-019-00891-5Pinzón, O.P., Baquero, L.S. & Beltran, M.A. (2017) Termite (isoptera) diversity in a gallery forest relict in the Colombian eastern plains. Sociobiology 64, 92–100. https://doi.org/10.13102/sociobiology.v64i1.1184Pinzón, O.P. & Castro, J.D. (2018) New records of termites (Blattodea: Termitidae: Syntermitinae) from Colombia. Journal of Threatened Taxa 10. https://doi.org/10.11609/jot.3909.10.9.12218-12225Pinzón, O.P., Hernández, A.M. & Malagón, L.A. (2012) Diversidad de termitas (Isoptera: Termitidae, Rhinotermitidae) en plantaciones de caucho en Puerto López (Meta, Colombia). Revista Colombiana de Entomologia 38, 291–298.Pinzón, O.P., Scheffrahn, R.H. & Carrijo, T.F. (2019) Aparatermes thornatus (Isoptera: Termitidae: Apicotermitinae), a New Species of Soldierless Termite from Northern Amazonia. Florida Entomologist 102, 141. https://doi.org/10.1653/024.102.0123Piotto, D., Flesher, K., Nunes, A.C.P., Rolim, S., Ashton, M. & Montagnini, F. (2020) Restoration plantings of non-pioneer tree species in open fields, young secondary forests, and rubber plantations in Bahia, Brazil. Forest Ecology and Management 474, 118389. https://doi.org/10.1016/j.foreco.2020.118389Pisco, R.R., María, ;, Guzmán Álvarez, E., Ivonne, E. & Rojas, L. (2013) Population dynamics of earthworms in an andisol under different soil use systems. Rev.Fac.Nal.Agr.Medellín, 7045–7055.Quesada, C.A., Lloyd, J., Schwarz, M., Patiño, S., Patiño, P., Baker, T.R., Czimczik, C., Fyllas, N.M., Martinelli, L., Nardoto, G.B., Schmerler, J., Santos, A.J.B., Hodnett, M.G., Herrera, R., Luizão, F.J., Arneth, A., Lloyd, G., Dezzeo, N., Hilke, I., Kuhlmann, I., Raessler, M., Brand, W.A., Geilmann, H., Filho, J.O.M., Carvalho, F.P., Filho, R.N.A., Chaves, J.E., Cruz Junior, O.F., Pimentel, T.P. & Paiva, R. (2010) Variations in chemical and physical properties of Amazon forest soils in relation to their genesis. Biogeosciences 7, 1515–1541. https://doi.org/10.5194/bg-7-1515-2010R Development Core Team (2021) R: A language and environment for statistical computing.Ramírez, U., Charry, A., Jäger, M., Hurtado, J., Rosas, G., Sterling, A., Romero, M., Sierra, L. & Quintero, M. (2018) Estrategia Sectorial de la Cadena de Caucho en Caquetá, con Enfoque Agroambiental y Cero Deforestación. Publicación CIAT No. 451. Centro Internacional de Agricultura Tropical (CIAT), Cali, Colombia, 82 pp. Available from: http://bit.ly/2tnFv7R (April 22, 2020)Rocha, M.M., Cancello, E.M. & Carrijo, T.F. (2012) Neotropical termites: Revision of Armitermes Wasmann (Isoptera, Termitidae, Syntermitinae) and phylogeny of the Syntermitinae. Systematic Entomology 37, 793–827. https://doi.org/10.1111/j.1365-3113.2012.00645.xRocha, M.M., Cuezzo, C., Constantini, J.P., Oliveira, D.E., Santos, R.G., Carrijo, T.F. & Cancello, E.M. (2019) Overview of the morphology of Neotropical termite workers: history and practice. Sociobiology 66, 1–32. https://doi.org/10.13102/sociobiology.v66i1.2067Rocha, M.M. Da & Cancello, E.M. (2007) Estudo taxonômico de Cylindrotermes Holmegren (Isoptera, Termitidae Termitinae). Papéis Avulsos de Zoologia da Universidade de São Paulo 47, 137–152.Rocha, M.M. Da & Cancello, E.M. (2009) Revision of the Neotropical termite genus Orthognathotermes Holmgren ( Isoptera : Termitidae : Termitinae ). Zootaxa 2280, 1–26.Roisin, Y. (1996) Castes in humivorous and litter-dwelling neotropical nasute termites (Isoptera, Termitidae). Insectes Sociaux 43, 375–389. https://doi.org/10.1007/BF01258410Roisin, Y., Dejean, A., Corbara, B., Orivel, J., Samaniego, M. & Leponce, M. (2006) Vertical stratification of the termite assemblage in a neotropical rainforest. Oecologia 149, 301–311. https://doi.org/10.1007/s00442-006-0449-5Rossi, J.P., Mathieu, J., Cooper, M. & Grimaldi, M. (2006) Soil macrofaunal biodiversity in Amazonian pastures: Matching sampling with patterns. Soil Biology and Biochemistry 38, 2178–2187. https://doi.org/10.1016/j.soilbio.2006.01.020Sanabria, C., Dubs, F., Lavelle, P., Fonte, S.J. & Barot, S. (2016) Influence of regions, land uses and soil properties on termite and ant communities in agricultural landscapes of the Colombian Llanos. European Journal of Soil Biology 74, 81–92. https://doi.org/10.1016/j.ejsobi.2016.03.008Sánchez-Cuervo, A.M., Aide, T.M., Clark, M.L. & Etter, A. (2012) Land cover change in Colombia: surprising forest recovery trends between 2001 and 2010 B. Bond-Lamberty (Ed). PLoS ONE 7, e43943. https://doi.org/10.1371/journal.pone.0043943Sanjeeva Rao, P., Saraswathyamma, C.K. & Sethuraj, M.R. (1998) Studies on the relationship between yield and meteorological parameters of para rubber tree (Hevea brasiliensis). Agricultural and Forest Meteorology 90, 235–245. https://doi.org/10.1016/S0168-1923(98)00051-3Schaefer, C., Marins, A., Redende, G., De Souza, O.F.F. & Nunes, J. (2016) Termite role in soil nutrient cycling in ironstone rupestrian grasslands (Canga) in Carajás, Brazilian Amazonia. In: G. Fernandes (Ed), Ecology and Conservation of Mountaintop Grasslands in Brazil. Springer, pp. 1–567.Scheffrahn, R.H. (2013) Compositermes vindai (Isoptera: Termitidae: Apicotermitinae), a new genus and species of soldierless termite from the Neotropics. Zootaxa 3652, 381–391. https://doi.org/10.11646/zootaxa.3652.3.6Scheffrahn, R.H., Carrijo, T.F., Postle, A.C. & Tonini, F. (2017) Disjunctitermes insularis, a new soldierless termite genus and species (Isoptera, Termitidae, Apicotermitinae) from Guadeloupe and Peru. ZooKeys 665, 71–84. https://doi.org/10.3897/zookeys.665.11599Schroth, G. (1999) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agroforestry systems 43, 5–34.Scudder, G.G.E. (2017) The Importance of Insects. In: Insect Biodiversity. John Wiley & Sons, Ltd, Chichester, UK, pp. 9–43.Shigematsu, A., Mizoue, N., Kakada, K., Muthavy, P., Kajisa, T. & Yoshida, S. (2013) Financial potential of rubber plantations considering rubberwood production: Wood and crop production nexus. Biomass and Bioenergy 49, 131–142. https://doi.org/10.1016/j.biombioe.2012.12.011Siebers, N., Martius, C., Eckhardt, K.U., Garcia, M.V.B., Leinweber, P. & Amelung, W. (2015) Origin and alteration of organic matter in termite mounds from different feeding guilds of the Amazon rainforests. PLoS ONE 10, e0123790. https://doi.org/10.1371/journal.pone.0123790Sierra, G. (2011) La fiebre del caucho en Colombia. Revista Credencial.Snyder, T.E. (1924) Descriptions of new species and hitherto unknown castes of termites from America and Hawaii. Proceedings of the U.S. National Museum 64, 1–45.Snyder, T.E. (1949) Catalog of the termites (Isoptera) of the world. Smithsonian Miscellaneous Collections 112, 9–378.Souty-Grosset, C. & Faberi, A. (2018) Effect of agricultural practices on terrestrial isopods: a review. ZooKeys 2018, 63. https://doi.org/10.3897/ZOOKEYS.801.24680De Souza, O.F.F. & Brown, V.K. (1994) Effects of habitat fagmentation on amazonian termite communities effects of habitat fragmentation on Amazonian termite communities. Journal ofTropical Ecology 10, 197–206.De Souza, S.T., Cassol, P., Baretta, D., Bartz, M., Klauberg Filho, O., Mafra, Á. & da Rosa, M. (2016) Abundance and diversity of soil macrofauna in native forest, eucalyptus plantations, perennial pasture, integrated crop-livestock, and no-tillage cropping. Revista Brasileira de Ciencia do Solo 40, e0150248. https://doi.org/10.1590/18069657rbcs20150248Sterling, A., Gómez, C.A. & Campo, A.A. (2011a) Patogenicidad de Metarhizium anisopliae (Deuteromycota: Hyphomycetes) sobre Heterotermes tenuis (Isoptera: Rhinotermitidae) en Hevea brasiliensis. Revista Colombiana de Entomologia 37, 36–42.Sterling, A., Pimentel-Parra, G.A., Virguez-Díaz, Y.R., Suárez-Córdoba, Y.D., Hoyos-Duarte, J.D. & Fonseca-Restrepo, J.A. (2021) Long-term resistance in promising rubber tree genotypes as a breeding source for improving South American leaf blight management under high disease incidence in the Colombian Amazon. Crop Protection 150, 105817. https://doi.org/10.1016/J.CROPRO.2021.105817Sterling, A., Rodriguez-León, C.H., Betancurt, B., Dussan, I., Bonilla, N., Mazorra, A., Ossa, E., Gamboa, A., Caicedo, D. & Lllanos, H. (2011b) Bases técnicas para la identificación y selección de árboles elite-francos de caucho natural en el Departamento del Caquetá. In: A. Sterling and C. H. Rodriguez-León (Eds), Nuevos clones de caucho natural para la Amazonia colombiana: énfasis en la resistencia al mal suramericano de las hojas (Microcyclus ulei). Instituto Amazonico de Investigaciones Cientificas SINCHI, Bogotá D.C., p. 195.Sterling, A. & Rodríguez, C.H. (2012) Ampliación de la base genética de caucho natural con proyección para la Amazonia colombiana : fase de evaluación en periodo improductivo a gran escala. Instituto Amazónico de Investigaciones Científicas- Sinchi, Bogotá D.C., 147 pp.Sterling Cuéllar, A. & Rodríguez León, C.H. (2014) Agroforestería en el Caquetá : clones promisorios de caucho en asocio con copoazú y pátano hartón con potencial para la Amazonia colombiana. Instituto Amazónico de Investigaciones Científicas - SINCHI, Bogotá, D.C., 220 pp.Tokuda, G. & Watanabe, H. (2007) Hidden cellulases in termites: Revision of an old hypothesis. Biology Letters 3, 336–339. https://doi.org/10.1098/rsbl.2007.0073Tokuda, G., Watanabe, H., Matsumoto, T. & Noda, H. (1997) Cellulose digestion in the wood-eating higher termite, Nasutitermes takasagoensis (Shiraki): distribution of cellulases and properties of endo-β-1,4-glucanase. Zoological sciense 14, 83–93.Vargas-Niño, a. P., Sánchez-Muñoz, O.D. & Serna-Cardona, F.J. (2005) Lista de los géneros de Termitidae (Insecta: Isoptera) de Colombia. Biota Colombiana 6, 181–190.Veresoglou, S.D., Chen, B. & Rillig, M.C. (2012) Arbuscular mycorrhiza and soil nitrogen cycling. Soil Biology and Biochemistry 46, 53–62. https://doi.org/10.1016/J.SOILBIO.2011.11.018Viana, A.B., Souza, V.B., Reis, Y.T. & Marques-Costa, A.P. (2014) Termite assemblages in dry tropical forests of Northeastern Brazil: Are termites bioindicators of environmental disturbances? Sociobiology 61, 324–331. https://doi.org/10.13102/sociobiology.v61i3.324-331Walkley, A. & Black, I.A. (1934) An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Science 37, 29–38. https://doi.org/10.1097/00010694-193401000-00003Wei, T. & Simko, V. (2017) R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84). Available from: https://github.com/taiyun/corrplotWeidner, H. (1980) Termiten aus Kolumbien nach Beobachtungen von German O. Valenzuela und Fritz Schremmer. Anzeiger für Schädlingskunde Pflanzenschutz Umweltschutz 53, 65–69. https://doi.org/10.1007/BF01965892White, P.J. (1998) Calcium channels in the plasma membrane of root cells. Annals of Botany 81, 173–183.Yamada, A., Inoue, T., Wiwatwitaya, D., Ohkuma, M., Kudo, T. & Sugimoto, A. (2006) Nitrogen fixation by termites in tropical forests, Thailand. Ecosystems 9, 75–83. https://doi.org/10.1007/s10021-005-0024-7Zaller, J.G. & Brühl, C.A. (2019) Non-target effects of pesticides on organisms inhabiting agroecosystems. Frontiers in Environmental Science 7, 75. https://doi.org/10.3389/fenvs.2019.00075Instituto Amazónico de Investigaciones Científicas SINCHIInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-83964https://repositorio.unal.edu.co/bitstream/unal/80457/1/license.txtcccfe52f796b7c63423298c2d3365fc6MD51ORIGINAL1015428889.2021.pdf1015428889.2021.pdfTesis de Maestría en Ciencias Agrariasapplication/pdf3787284https://repositorio.unal.edu.co/bitstream/unal/80457/2/1015428889.2021.pdf051f0813a3e85117852fc3bcec123179MD52THUMBNAIL1015428889.2021.pdf.jpg1015428889.2021.pdf.jpgGenerated Thumbnailimage/jpeg5232https://repositorio.unal.edu.co/bitstream/unal/80457/3/1015428889.2021.pdf.jpgf97c7bad0c33ae504fae3eb163c7c342MD53unal/80457oai:repositorio.unal.edu.co:unal/804572023-07-29 23:04:10.872Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCgpVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSAtIMOabHRpbWEgbW9kaWZpY2FjacOzbiAyNy8yMC8yMDIwCg== |