Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms

Association rule mining is a very popular data mining technique. Rules in this technique are often used to identify and represent de-pendencies between attributes in databases. Specifically, fuzzy association rules are rules that use the concepts of fuzzy sets and can be considered as a special case...

Full description

Autores:
Ceruto Cordovés, Taymi
Lapeira Mena, Orenia
Rosete Suarez, Alejandro
Tipo de recurso:
Article of journal
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/52515
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/52515
http://bdigital.unal.edu.co/46860/
Palabra clave:
minería de datos
predicados difusos
medidas de calidad
forma normal conjuntiva
disyuntiva
data mining
fuzzy predicate
quality measures
conjunctive and disjunctive normal forms
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d61e96f1ae9931e987b2a59700957329
oai_identifier_str oai:repositorio.unal.edu.co:unal/52515
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms
title Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms
spellingShingle Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms
minería de datos
predicados difusos
medidas de calidad
forma normal conjuntiva
disyuntiva
data mining
fuzzy predicate
quality measures
conjunctive and disjunctive normal forms
title_short Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms
title_full Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms
title_fullStr Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms
title_full_unstemmed Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms
title_sort Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms
dc.creator.fl_str_mv Ceruto Cordovés, Taymi
Lapeira Mena, Orenia
Rosete Suarez, Alejandro
dc.contributor.author.spa.fl_str_mv Ceruto Cordovés, Taymi
Lapeira Mena, Orenia
Rosete Suarez, Alejandro
dc.subject.proposal.spa.fl_str_mv minería de datos
predicados difusos
medidas de calidad
forma normal conjuntiva
disyuntiva
data mining
fuzzy predicate
quality measures
conjunctive and disjunctive normal forms
topic minería de datos
predicados difusos
medidas de calidad
forma normal conjuntiva
disyuntiva
data mining
fuzzy predicate
quality measures
conjunctive and disjunctive normal forms
description Association rule mining is a very popular data mining technique. Rules in this technique are often used to identify and represent de-pendencies between attributes in databases. Specifically, fuzzy association rules are rules that use the concepts of fuzzy sets and can be considered as a special case of fuzzy predicates. Many quality measures have been defined for fuzzy association rules, but all consider a specific structure: antecedent and consequence. In the case of fuzzy predicates in the normal form (i.e., conjunctive or disjunctive), it is necessary to define different quality measures that do not consider the structure as an antecedent or a consequence. The only available measure for this scenario is the fuzzy predicate truth value (FPTV), which has serious limitations. The evaluation of fuzzy predicates in the normal form through appropriate quality measures has not yet been clearly defined in the literature. Thus, we propose several quality measures specifically for fuzzy predicates in the conjunctive (CNF) and disjunctive (DNF) normal forms. Experi-mental studies illustrate the use of the proposed measures and allow some general conclusions about each measure.
publishDate 2014
dc.date.issued.spa.fl_str_mv 2014-11-21
dc.date.accessioned.spa.fl_str_mv 2019-06-29T14:35:56Z
dc.date.available.spa.fl_str_mv 2019-06-29T14:35:56Z
dc.type.spa.fl_str_mv Artículo de revista
dc.type.coar.fl_str_mv http://purl.org/coar/resource_type/c_2df8fbb1
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/article
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_6501
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/ART
format http://purl.org/coar/resource_type/c_6501
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/52515
dc.identifier.eprints.spa.fl_str_mv http://bdigital.unal.edu.co/46860/
url https://repositorio.unal.edu.co/handle/unal/52515
http://bdigital.unal.edu.co/46860/
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.spa.fl_str_mv http://revistas.unal.edu.co/index.php/ingeinv/article/view/41638
dc.relation.ispartof.spa.fl_str_mv Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e Investigación
Ingeniería e Investigación
dc.relation.ispartofseries.none.fl_str_mv Ingeniería e Investigación; Vol. 34, núm. 3 (2014); 63-69 Ingeniería e Investigación; Vol. 34, núm. 3 (2014); 63-69 2248-8723 0120-5609
dc.relation.references.spa.fl_str_mv Ceruto Cordovés, Taymi and Lapeira Mena, Orenia and Rosete Suarez, Alejandro (2014) Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms. Ingeniería e Investigación; Vol. 34, núm. 3 (2014); 63-69 Ingeniería e Investigación; Vol. 34, núm. 3 (2014); 63-69 2248-8723 0120-5609 .
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia - Facultad de Ingeniería
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/52515/1/41638-231280-4-PB.pdf
https://repositorio.unal.edu.co/bitstream/unal/52515/2/41638-189251-1-SP.pdf
https://repositorio.unal.edu.co/bitstream/unal/52515/3/41638-231280-4-PB.pdf.jpg
https://repositorio.unal.edu.co/bitstream/unal/52515/4/41638-189251-1-SP.pdf.jpg
bitstream.checksum.fl_str_mv c0bb817358b3df88233c1a5fd291bb8c
1add0a6a73bd2da87cb68f81bd6aa0b4
7f84944feafa72f801bdd36d19c03795
ff24a9ff1d58f25f09d7e79bb096388e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089897715171328
spelling Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ceruto Cordovés, Taymib07bb48e-6c7e-438c-a1e5-59b5eca3bc89300Lapeira Mena, Orenia233660ea-1a8f-44ed-becc-670bf5e108d4300Rosete Suarez, Alejandro993fa4f2-8e6e-4702-baf8-4942fd83fd513002019-06-29T14:35:56Z2019-06-29T14:35:56Z2014-11-21https://repositorio.unal.edu.co/handle/unal/52515http://bdigital.unal.edu.co/46860/Association rule mining is a very popular data mining technique. Rules in this technique are often used to identify and represent de-pendencies between attributes in databases. Specifically, fuzzy association rules are rules that use the concepts of fuzzy sets and can be considered as a special case of fuzzy predicates. Many quality measures have been defined for fuzzy association rules, but all consider a specific structure: antecedent and consequence. In the case of fuzzy predicates in the normal form (i.e., conjunctive or disjunctive), it is necessary to define different quality measures that do not consider the structure as an antecedent or a consequence. The only available measure for this scenario is the fuzzy predicate truth value (FPTV), which has serious limitations. The evaluation of fuzzy predicates in the normal form through appropriate quality measures has not yet been clearly defined in the literature. Thus, we propose several quality measures specifically for fuzzy predicates in the conjunctive (CNF) and disjunctive (DNF) normal forms. Experi-mental studies illustrate the use of the proposed measures and allow some general conclusions about each measure.La extracción de las reglas de asociación es una técnica de minería de datos muy popular, las cuales son utilizadas a menudo para identificar y representar dependencias entre atributos en bases de datos. Específicamente, las reglas de asociación difusas utilizan conceptos de conjuntos difusos y pueden ser vistas como un caso especial de predicados difusos. Muchas medidas de calidad han sido definidas para reglas de asociación difusa, pero todas consideran la estructura específica de reglas: antecedente y conse-cuente.En el caso general de predicados difusos en forma normal (conjuntiva o disyuntiva), es necesario definir diferentes medidas de cali-dad que no estén en función de antecedente y consecuente, puesto que la única medida disponible para ello, es el valor de verdad para predicados difusos (FPTV) y tiene serias limitaciones. La evaluación de un predicado difuso en forma normal, a través de medidas adecuadas de calidad no ha sido todavía claramente definida por otros autores. Por esa razón, en este trabajo se proponen varias medidas de calidad para los predicados difusos, en formas normal conjuntiva o disyuntiva. Los experimentos demuestran el uso que se le puede dar a las métricas propuestas y permiten llegar a conclusiones generales de cada una de ellas.application/pdfspaUniversidad Nacional de Colombia - Facultad de Ingenieríahttp://revistas.unal.edu.co/index.php/ingeinv/article/view/41638Universidad Nacional de Colombia Revistas electrónicas UN Ingeniería e InvestigaciónIngeniería e InvestigaciónIngeniería e Investigación; Vol. 34, núm. 3 (2014); 63-69 Ingeniería e Investigación; Vol. 34, núm. 3 (2014); 63-69 2248-8723 0120-5609Ceruto Cordovés, Taymi and Lapeira Mena, Orenia and Rosete Suarez, Alejandro (2014) Quality measures for fuzzy predicates in conjunctive and disjunctive normal forms. Ingeniería e Investigación; Vol. 34, núm. 3 (2014); 63-69 Ingeniería e Investigación; Vol. 34, núm. 3 (2014); 63-69 2248-8723 0120-5609 .Quality measures for fuzzy predicates in conjunctive and disjunctive normal formsArtículo de revistainfo:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_6501http://purl.org/coar/resource_type/c_2df8fbb1http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/ARTminería de datospredicados difusosmedidas de calidadforma normal conjuntivadisyuntivadata miningfuzzy predicatequality measuresconjunctive and disjunctive normal formsORIGINAL41638-231280-4-PB.pdfapplication/pdf240306https://repositorio.unal.edu.co/bitstream/unal/52515/1/41638-231280-4-PB.pdfc0bb817358b3df88233c1a5fd291bb8cMD5141638-189251-1-SP.pdfapplication/pdf168480https://repositorio.unal.edu.co/bitstream/unal/52515/2/41638-189251-1-SP.pdf1add0a6a73bd2da87cb68f81bd6aa0b4MD52THUMBNAIL41638-231280-4-PB.pdf.jpg41638-231280-4-PB.pdf.jpgGenerated Thumbnailimage/jpeg8616https://repositorio.unal.edu.co/bitstream/unal/52515/3/41638-231280-4-PB.pdf.jpg7f84944feafa72f801bdd36d19c03795MD5341638-189251-1-SP.pdf.jpg41638-189251-1-SP.pdf.jpgGenerated Thumbnailimage/jpeg7331https://repositorio.unal.edu.co/bitstream/unal/52515/4/41638-189251-1-SP.pdf.jpgff24a9ff1d58f25f09d7e79bb096388eMD54unal/52515oai:repositorio.unal.edu.co:unal/525152024-03-02 23:08:27.418Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co