Efectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario
ilustraciones, graficas
- Autores:
-
Guevara Espitia, Camilo Andrés
- Tipo de recurso:
- Fecha de publicación:
- 2021
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/81226
- Palabra clave:
- 610 - Medicina y salud::616 - Enfermedades
Cerebro
brain
Litio
Cascada de los fosfoinositoles
Embrion de pollo
Neuronas de Purkinje
Lithium
PLC-pathway
Chick embryo
Purkinje Neurons
Embriones animales
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_d5e99b64084984b7368da3e842ad6c76 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/81226 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Efectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario |
dc.title.translated.eng.fl_str_mv |
Modulatory effects of lithium on the phosphoinositide signaling cascade in primary neuronal culture |
title |
Efectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario |
spellingShingle |
Efectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario 610 - Medicina y salud::616 - Enfermedades Cerebro brain Litio Cascada de los fosfoinositoles Embrion de pollo Neuronas de Purkinje Lithium PLC-pathway Chick embryo Purkinje Neurons Embriones animales |
title_short |
Efectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario |
title_full |
Efectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario |
title_fullStr |
Efectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario |
title_full_unstemmed |
Efectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario |
title_sort |
Efectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario |
dc.creator.fl_str_mv |
Guevara Espitia, Camilo Andrés |
dc.contributor.advisor.none.fl_str_mv |
Nasi Lignarolo, Enrico |
dc.contributor.author.none.fl_str_mv |
Guevara Espitia, Camilo Andrés |
dc.contributor.researchgroup.spa.fl_str_mv |
Biofísica de la Señalización Celular |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::616 - Enfermedades |
topic |
610 - Medicina y salud::616 - Enfermedades Cerebro brain Litio Cascada de los fosfoinositoles Embrion de pollo Neuronas de Purkinje Lithium PLC-pathway Chick embryo Purkinje Neurons Embriones animales |
dc.subject.agrovocuri.spa.fl_str_mv |
Cerebro |
dc.subject.agrovocuri.eng.fl_str_mv |
brain |
dc.subject.proposal.spa.fl_str_mv |
Litio Cascada de los fosfoinositoles Embrion de pollo Neuronas de Purkinje |
dc.subject.proposal.eng.fl_str_mv |
Lithium PLC-pathway Chick embryo Purkinje Neurons |
dc.subject.unesco.spa.fl_str_mv |
Embriones animales |
description |
ilustraciones, graficas |
publishDate |
2021 |
dc.date.issued.none.fl_str_mv |
2021 |
dc.date.accessioned.none.fl_str_mv |
2022-03-15T19:47:42Z |
dc.date.available.none.fl_str_mv |
2022-03-15T19:47:42Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/81226 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/81226 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abdul-Ghani, M. A., Valiante, T. A., Carlen, P. L., & Pennefather, P. S. (1996). Metabotropic glutamate receptors coupled to IP3 production mediate inhibition of IAHP in rat dentate granule neurons. Journal of Neurophysiology, 76(4), 2691–2700. https://doi.org/10.1152/jn.1996.76.4.2691 Adamski, F. M., Timms, K. M., & Shieh, B.-H. (1999). A unique isoform of phospholipase Cβ4 highly expressed in the cerebellum and eye. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1444(1), 55–60. https://doi.org/10.1016/S0167-4781(98)00260-7 Akar, S., & Sur, E. (2010). The development of chicken cerebellar cortex and the determination of AgNOR activity of the Purkinje cell nuclei. 9. Akkouh, I. A., Skrede, S., Holmgren, A., Ersland, K. M., Hansson, L., Bahrami, S., Andreassen, O. A., Steen, V. M., Djurovic, S., & Hughes, T. (2020). Exploring lithium’s transcriptional mechanisms of action in bipolar disorder: A multi-step study. Neuropsychopharmacology, 45(6), 947–955. https://doi.org/10.1038/s41386-019-0556-8 Amdisen, A. (1978). Clinical and Serum-Level Monitoring in Lithium Therapy and Lithium Intoxication. Journal of Analytical Toxicology, 2(5), 193–202. https://doi.org/10.1093/jat/2.5.193 Báez-Becerra, C., Filipello, F., Sandoval-Hern ndez, A., Arboleda, H., & Arboleda, G. (2018). Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotoxicity Research, 33(3), 569–579. https://doi.org/10.1007/s12640-017-9845-3 Baldessarini, R. J., Tondo, L., Davis, P., Pompili, M., Goodwin, F. K., & Hennen, J. (2006). Decreased risk of suicides and attempts during long-term lithium treatment: A meta-analytic review. Bipolar Disorders, 8(5p2), 625–639. https://doi.org/10.1111/j.1399-5618.2006.00344.x Bastianelli, E., & Pochet, R. (1993). Transient expression of calretinin during development of chick cerebellum Comparison with calbindin-D28k. Neuroscience Research, 17(1), 53–61. https://doi.org/10.1016/0168-0102(93)90029-P Batchelor, A. M., Madge, D. J., & Garthwaite, J. (1994). Synaptic activation of metabotropic glutamate receptors in the parallel Fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience, 63(4), 911–915. https://doi.org/10.1016/0306-4522(94)90558-4 Bearden, C. E., Thompson, P. M., Dalwani, M., Hayashi, K. M., Lee, A. D., Nicoletti, M., Trakhtenbroit, M., Glahn, D. C., Brambilla, P., Sassi, R. B., Mallinger, A. G., Frank, E., Kupfer, D. J., & Soares, J. C. (2007). Greater Cortical Gray Matter Density in Lithium-Treated Patients with Bipolar Disorder. Biological Psychiatry, 62(1), 7–16. https://doi.org/10.1016/j.biopsych.2006.10.027 Becker, E. B. E., & Stoodley, C. J. (2013). Autism Spectrum Disorder and the Cerebellum. In International Review of Neurobiology (Vol. 113, pp. 1–34). Elsevier. https://doi.org/10.1016/B978-0-12-418700-9.00001-0 Berridge, M. J., Downes, C. P., & Hanley, M. R. (1982). Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochemical Journal, 206(3), 587–595. https://doi.org/10.1042/bj2060587 Berridge, M. J., & Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312(5992), 315–321. https://doi.org/10.1038/312315a0 Berthele, A., Platzer, S., Laurie, D. J., Weis, S., Sommer, B., Zieglg nsberger, W., Conrad, B., & T lle, T. R. (1999). Expression of metabotropic glutamate receptor subtype mRNA (mGluR1–8) in human cerebellum: NeuroReport, 10(18), 3861–3867. https://doi.org/10.1097/00001756-199912160-00026 Boni, L. T., & Rando, R. R. (1985). The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. The Journal of Biological Chemistry, 260(19), 10819–10825. Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE, the Mouse Genome Database Group. 2019. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 2019 Jan. 8;47 (D1): D801–D806. Callender, J. A., & Newton, A. C. (2017). Conventional protein kinase C in the brain: 40 years later. Neuronal Signaling, 1(2), NS20160005. https://doi.org/10.1042/NS20160005 Carter, A. G., Vogt, K. E., Foster, K. A., & Regehr, W. G. (2002). Assessing the Role of Calcium-Induced Calcium Release in Short-Term Presynaptic Plasticity at Excitatory Central Synapses. The Journal of Neuroscience, 22(1), 21–28. https://doi.org/10.1523/JNEUROSCI.22-01-00021.2002 Chen, A., Hu, W. W., Jiang, X. L., Potegal, M., & Li, H. (2017). Molecular mechanisms of group I metabotropic glutamate receptor mediated LTP and LTD in basolateral amygdala in vitro. Psychopharmacology, 234(4), 681–694. https://doi.org/10.1007/s00213-016-4503-7 Colin, S. F., Chang, H. C., Mollner, S., Pfeuffer, T., Reed, R. R., Duman, R. S., & Nestler, E. J. (1991). Chronic lithium regulates the expression of adenylate cyclase and Gi-protein alpha subunit in rat cerebral cortex. Proceedings of the National Academy of Sciences, 88(23), 10634–10637. https://doi.org/10.1073/pnas.88.23.10634 Consalez, G. G., Goldowitz, D., Casoni, F., & Hawkes, R. (2021). Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum. Frontiers in Neural Circuits, 14, 611841. https://doi.org/10.3389/fncir.2020.611841 Cushing, A., Price-Jones, M. J., Graves, R., Harris, A. J., Hughes, K. T., Bleakman, D., & Lodge, D. (1999). Measurement of calcium flux through ionotropic glutamate receptors using Cytostar-T scintillating microplates. Journal of Neuroscience Methods, 90(1), 33–36. https://doi.org/10.1016/S0165-0270(99)00058-8 de Sousa, R. T., Zanetti, M. V., Talib, L. L., Serpa, M. H., Chaim, T. M., Carvalho, A. F., Brunoni, A. R., Busatto, G. F., Gattaz, W. F., & Machado-Vieira, R. (2015). Lithium increases platelet serine-9 phosphorylated GSK-3β levels in drug-free bipolar disorder during depressive episodes. Journal of Psychiatric Research, 62, 78–83. https://doi.org/10.1016/j.jpsychires.2015.01.016 DelBello, M., Strakowski, S., Zimmerman, M., Hawkins, J., & Sax, K. (1999). MRI Analysis of the Cerebellum in Bipolar Disorder A Pilot Study. Neuropsychopharmacology, 21(1), 63–68. https://doi.org/10.1016/S0893-133X(99)00026-3 Deverett, B., Kislin, M., Tank, D. W., & Wang, S. S.-H. (2019). Cerebellar disruption impairs working memory during evidence accumulation. Nature Communications, 10(1), 3128. https://doi.org/10.1038/s41467-019-11050-x Durán, S. (2017). Inmunodetección de las proteínas de la cascada de fosfoinositoles en céulas HEK293 y evaluación de los efectos del litio sobre corrientes de membrana activadas por esta vía. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá . Recuperado de https://repositorio.unal.edu.co/handle/unal/59178 Ebadi, M. S., Simmons, V. J., Hendrickson, M. J., & Lacy, P. S. (1974). Pharmacokinetics of lithium and its regional distribution in rat brain. European Journal of Pharmacology, 27(3), 324–329. https://doi.org/10.1016/0014-2999(74)90007-7 Ebstein, R. P., Hermoni, M., & Belmaker, R. H. (1980). The effect of lithium on noradrenaline-induced cyclic AMP accumulation in rat brain: Inhibition after chronic treatment and absence of supersensitivity. The Journal of Pharmacology and Experimental Therapeutics, 213(1), 161–167. Edwards, D., Sommerhage, F., Berry, B., Nummer, H., Raquet, M., Clymer, B., Stancescu, M., & Hickman, J. J. (2017). Comparison of NMDA and AMPA Channel Expression and Function between Embryonic and Adult Neurons Utilizing Microelectrode Array Systems. ACS Biomaterials Science & Engineering, 3(12), 3525–3533. https://doi.org/10.1021/acsbiomaterials.7b00596 Einat, H., Yuan, P., Gould, T. D., Li, J., Du, J., Zhang, L., Manji, H. K., & Chen, G. (2003). The Role of the Extracellular Signal-Regulated Kinase Signaling Pathway in Mood Modulation. The Journal of Neuroscience, 23(19), 7311–7316. https://doi.org/10.1523/JNEUROSCI.23-19-07311.2003 Ellisman, M. H., Deerinck, T. J., Ouyang, Y., Beck, C. F., Tanksley, S. J., Walton, P. D., Airey, J. A., & Sutko, J. L. (1990). Identification and localization of ryanodine binding proteins in the avian central nervous system. Neuron, 5(2), 135–146. https://doi.org/10.1016/0896-6273(90)90304-X Emamghoreishi, M., Keshavarz, M., & Nekooeian, A. A. (2015). Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures. Iranian Journal of Basic Medical Sciences, 18(3), 240–246. Ernfors, P., Wetmore, C., Olson, L., & Persson, H. (1990). Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron, 5(4), 511–526. https://doi.org/10.1016/0896-6273(90)90090-3 Farhy Tselnicker, I., Tsemakhovich, V., Rishal, I., Kahanovitch, U., Dessauer, C. W., & Dascal, N. (2014). Dual regulation of G proteins and the G-protein–activated K + channels by lithium. Proceedings of the National Academy of Sciences, 111(13), 5018–5023. https://doi.org/10.1073/pnas.1316425111 Fatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., Thuras, P., & Merz, A. (2002). Purkinje Cell Size is Reduced in Cerebellum of Patients With Autism. Cellular and Molecular Neurobiology, 22(2), 171–175. https://doi.org/10.1023/A:1019861721160 Fiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). IMPAIRED NON-MOTOR LEARNING AND ERROR DETECTION ASSOCIATED WITH CEREBELLAR DAMAGE: A SINGLE CASE STUDY. Brain, 115(1), 155–178. https://doi.org/10.1093/brain/115.1.155 Fujita, H., Aoki, H., Ajioka, I., Yamazaki, M., Abe, M., Oh-Nishi, A., Sakimura, K., & Sugihara, I. (2014). Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice. PLoS ONE, 9(1), e86679. https://doi.org/10.1371/journal.pone.0086679 Fukami, K., Inanobe, S., Kanemaru, K., & Nakamura, Y. (2010). Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Progress in Lipid Research, 49(4), 429–437. https://doi.org/10.1016/j.plipres.2010.06.001 Fukaya, M., Uchigashima, M., Nomura, S., Hasegawa, Y., Kikuchi, H., & Watanabe, M. (2008). Predominant expression of phospholipase Cβ1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. European Journal of Neuroscience, 28(9), 1744–1759. https://doi.org/10.1111/j.1460-9568.2008.06495.x Furuichi, T., Yoshikaw, S., & Mikoshiba, K. (1989). Nucleotide sequence of cDNA encoding P 400 protein in the mouse cerebellum. Nucleic Acids Research, 17(13), 5385–5386. https://doi.org/10.1093/nar/17.13.5385 Furuya, S., Makino, A., & Hirabayashi, Y. (1998). An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Research Protocols, 3(2), 192–198. https://doi.org/10.1016/S1385-299X(98)00040-3 Gao, T., Yatani, A., Dell’Acqua, M. L., Sako, H., Green, S. A., Dascal, N., Scott, J. D., & Hosey, M. M. (1997). CAMP-Dependent Regulation of Cardiac L-Type Ca2+ Channels Requires Membrane Targeting of PKA and Phosphorylation of Channel Subunits. Neuron, 19(1), 185–196. https://doi.org/10.1016/S0896-6273(00)80358-X Giussani, D. A., Salinas, C. E., Villena, M., & Blanco, C. E. (2007). The role of oxygen in prenatal growth: Studies in the chick embryo: Oxygen and fetal growth. The Journal of Physiology, 585(3), 911–917. https://doi.org/10.1113/jphysiol.2007.141572 Gomez, L. C., Kawaguchi, S.-Y., Collin, T., Jalil, A., Gomez, M. D. P., Nasi, E., Marty, A., & Llano, I. (2020). Influence of spatially segregated IP3-producing pathways on spike generation and transmitter release in Purkinje cell axons. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 11097–11108. https://doi.org/10.1073/pnas.2000148117 Gould, T. D., Chen, G., & Manji, H. K. (2004). In Vivo Evidence in the Brain for Lithium Inhibition of Glycogen Synthase Kinase-3. Neuropsychopharmacology, 29(1), 32–38. https://doi.org/10.1038/sj.npp.1300283 Grabs, D., Escher, L., & Bergmann, M. (2008). Expression of SV2 in the Seveloping Chick Cerebellum: Comparison with Calbindin and AMPA Glutamate Receptors 2/3. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 291(5), 538–546. https://doi.org/10.1002/ar.20691 Grandes, P., Mateos, J. M., Rüegg, D., Kuhn, R., & Kn pfel, T. (1994). Differential cellular localization of three splice variants of the mGluR1 metabotropic glutamate receptor in rat cerebellum: NeuroReport, 5(17), 2249–2252. https://doi.org/10.1097/00001756-199411000-00011 Gresset, A., Sondek, J., & Harden, T. K. (2012). The Phospholipase C Isozymes and Their Regulation. In T. Balla, M. Wymann, & J. D. York (Eds.), Phosphoinositides I: Enzymes of Synthesis and Degradation (Vol. 58, pp. 61–94). Springer Netherlands. https://doi.org/10.1007/978-94-007-3012-0_3 Grimes, C. A., & Jope, R. S. (2001). The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Progress in Neurobiology, 65(4), 391–426. https://doi.org/10.1016/S0301-0082(01)00011-9 Hallahan, B., Newell, J., Soares, J. C., Brambilla, P., Strakowski, S. M., Fleck, D. E., Kiesepp , T., Altshuler, L. L., Fornito, A., Malhi, G. S., McIntosh, A. M., Yurgelun-Todd, D. A., Labar, K. S., Sharma, V., MacQueen, G. M., Murray, R. M., & McDonald, C. (2011). Structural Magnetic Resonance Imaging in Bipolar Disorder: An International Collaborative Mega-Analysis of Individual Adult Patient Data. Biological Psychiatry, 69(4), 326–335. https://doi.org/10.1016/j.biopsych.2010.08.029 Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88(1), 49–92. https://doi.org/10.1002/jmor.1050880104 Hannan, A. J., Blakemore, C., Katsnelson, A., Vitalis, T., Huber, K. M., Bear, M., Roder, J., Kim, D., Shin, H.-S., & Kind, P. C. (2001). PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nature Neuroscience, 4(3), 282–288. https://doi.org/10.1038/85132 Hannan, A. J., Kind, P. C., & Blakemore, C. (1998). Phospholipase C-β1 expression correlates with neuronal differentiation and synaptic plasticity in rat somatosensory cortex. Neuropharmacology, 37(4–5), 593–605. https://doi.org/10.1016/S0028-3908(98)00056-2 Hartmann, J., Dragicevic, E., Adelsberger, H., Henning, H. A., Sumser, M., Abramowitz, J., Blum, R., Dietrich, A., Freichel, M., Flockerzi, V., Birnbaumer, L., & Konnerth, A. (2008). TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination. Neuron, 59(3), 392–398. https://doi.org/10.1016/j.neuron.2008.06.009 Hashimoto, K., Kano, M., Miyata, M., & Watanabe, M. (2001). Roles of Phospholipase Cβ4 in Synapse Elimination and Plasticity in Developing and Mature Cerebellum. Molecular Neurobiology, 23(1), 69–82. https://doi.org/10.1385/MN:23:1:69 Hawkes, R., & Leclerc, N. (1989). Purkinje cell axon collateral distribution reflect the chemical compartmentation of the rat cerebellar cortex. Brain Research, 476(2), 279–290. https://doi.org/10.1016/0006-8993(89)91248-1 Heidemann, S. R., Reynolds, M., Ngo, K., & Lamoureux, P. (2003). The Culture of Chick Forebrain Neurons. In Methods in Cell Biology (Vol. 71, pp. 51–65). Elsevier. https://doi.org/10.1016/S0091-679X(03)01004-5 Hillert, M., Zimmermann, M., & Klein, J. (2012). Uptake of lithium into rat brain after acute and chronic administration. Neuroscience Letters, 521(1), 62–66. https://doi.org/10.1016/j.neulet.2012.05.060 Hirono, M., Ogawa, Y., Misono, K., Zollinger, D. R., Trimmer, J. S., Rasband, M. N., & Misonou, H. (2015). BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells. Journal of Neuroscience, 35(18), 7082–7094. https://doi.org/10.1523/JNEUROSCI.3778-14.2015 Hofmann, T., Obukhov, A. G., Schaefer, M., Harteneck, C., Gudermann, T., & Schultz, G. (1999). Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature, 397(6716), 259–263. https://doi.org/10.1038/16711 Homma, Y., Takenawa, T., Emori, Y., Sorimachi, H., & Suzuki, K. (1989). Tissue- and cell type-specific expression of mRNAS for four types of inositol phospholipid-specific phospholipase C. Biochemical and Biophysical Research Communications, 164(1), 406–412. https://doi.org/10.1016/0006-291X(89)91734-8 Honore, T., Davies, S., Drejer, J., Fletcher, E., Jacobsen, P., Lodge, D., & Nielsen, F. (1988). Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science, 241(4866), 701–703. https://doi.org/10.1126/science.2899909 Hoxha, E., Lippiello, P., Zurlo, F., Balbo, I., Santamaria, R., Tempia, F., & Miniaci, M. C. (2018). The Emerging Role of Altered Cerebellar Synaptic Processing in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 10, 396. https://doi.org/10.3389/fnagi.2018.00396 Hui, J., Zhang, J., Pu, M., Zhou, X., Dong, L., Mao, X., Shi, G., Zou, J., Wu, J., Jiang, D., & Xi, G. (2018). Modulation of GSK-3β/β-Catenin Signaling Contributes to Learning and Memory Impairment in a Rat Model of Depression. International Journal of Neuropsychopharmacology, 21(9), 858–870. https://doi.org/10.1093/ijnp/pyy040 Hussain, S., Gardner, C. R., Bagust, J., & Walker, R. J. (1991). Receptor sub-types involved in responses of purkinje cell to exogenous excitatory amino acids and local electrical stimulation in cerebellar slices in the rat. Neuropharmacology, 30(10), 1029–1037. https://doi.org/10.1016/0028-3908(91)90130-4 Indriati, D. W., Kamasawa, N., Matsui, K., Meredith, A. L., Watanabe, M., & Shigemoto, R. (2013). Quantitative Localization of Cav2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels. Journal of Neuroscience, 33(8), 3668–3678. https://doi.org/10.1523/JNEUROSCI.2921-12.2013 Ireland, D. R., & Abraham, W. C. (2002). Group I mGluRs Increase Excitability of Hippocampal CA1 Pyramidal Neurons by a PLC-Independent Mechanism. Journal of Neurophysiology, 88(1), 107–116. https://doi.org/10.1152/jn.2002.88.1.107 Itsuki, K., Imai, Y., Hase, H., Okamura, Y., Inoue, R., & Mori, M. X. (2014). PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. The Journal of General Physiology, 143(2), 183–201. https://doi.org/10.1085/jgp.201311033 Jacobs, H. I. L., Hopkins, D. A., Mayrhofer, H. C., Bruner, E., van Leeuwen, F. W., Raaijmakers, W., & Schmahmann, J. D. (2018). The cerebellum in Alzheimer’s disease: Evaluating its role in cognitive decline. Brain, 141(1), 37–47. https://doi.org/10.1093/brain/awx194 Jeffrey, P. L., Meaney, J., Tolhurst, O., & Weinberger, R. P. (1996). Epigenetic factors controlling the development of avian Purkinje neurons. Journal of Neuroscience Methods, 67(2), 163–175. https://doi.org/10.1016/0165-0270(96)00044-1 Jiang, H., Wu, D., & Simon, M. I. (1994). Activation of phospholipase C beta 4 by heterotrimeric GTP-binding proteins. The Journal of Biological Chemistry, 269(10), 7593–7596. Jin, R., Horning, M., Mayer, M. L., & Gouaux, E. (2002). Mechanism of Activation and Selectivity in a Ligand-Gated Ion Channel: Structural and Functional Studies of GluR2 and Quisqualate. Biochemistry, 41(52), 15635–15643. https://doi.org/10.1021/bi020583k Jope, R. S. (1999). Anti-bipolar therapy: Mechanism of action of lithium. Molecular Psychiatry, 4(2), 117–128. https://doi.org/10.1038/sj.mp.4000494 Kamato, D., Mitra, P., Davis, F., Osman, N., Chaplin, R., Cabot, P. J., Afroz, R., Thomas, W., Zheng, W., Kaur, H., Brimble, M., & Little, P. J. (2017). Gaq proteins: Molecular pharmacology and therapeutic potential. Cellular and Molecular Life Sciences, 74(8), 1379–1390. https://doi.org/10.1007/s00018-016-2405-9 Kamp, T. J., & Hell, J. W. (2000). Regulation of Cardiac L-Type Calcium Channels by Protein Kinase A and Protein Kinase C. Circulation Research, 87(12), 1095–1102. https://doi.org/10.1161/01.RES.87.12.1095 Kan, W., Adjobo-Hermans, M., Burroughs, M., Faibis, G., Malik, S., Tall, G. G., & Smrcka, A. V. (2014). M3 Muscarinic Receptor Interaction with Phospholipase C β3 Determines Its Signaling Efficiency. Journal of Biological Chemistry, 289(16), 11206–11218. https://doi.org/10.1074/jbc.M113.538546 Kano, M., & Watanabe, T. (2017). Type-1 metabotropic glutamate receptor signaling in cerebellar Purkinje cells in health and disease. F1000Research, 6, 416. https://doi.org/10.12688/f1000research.10485.1 Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10(3), 381–391. https://doi.org/10.1016/S0959-4388(00)00092-1 Kaupp, U. B., & Seifert, R. (2002). Cyclic Nucleotide-Gated Ion Channels. Physiological Reviews, 82(3), 769–824. https://doi.org/10.1152/physrev.00008.2002 Kim, H.-H., Lee, K.-H., Lee, D., Han, Y.-E., Lee, S.-H., Sohn, J.-W., & Ho, W.-K. (2015). Costimulation of AMPA and Metabotropic Glutamate Receptors Underlies Phospholipase C Activation by Glutamate in Hippocampus. Journal of Neuroscience, 35(16), 6401–6412. https://doi.org/10.1523/JNEUROSCI.4208-14.2015 Kitamura, K., & Kano, M. (2013). Dendritic calcium signaling in cerebellar Purkinje cell. Neural Networks, 47, 11–17. https://doi.org/10.1016/j.neunet.2012.08.001 Klein, P. S., & Melton, D. A. (1996). A molecular mechanism for the effect of lithium on development. Proceedings of the National Academy of Sciences, 93(16), 8455–8459. https://doi.org/10.1073/pnas.93.16.8455 Knōpfel, T., Anchisi, D., Alojado, M. E., Tempia, F., & Strata, P. (2000). Elevation of intradendritic sodium concentration mediated by synaptic activation of metabotropic glutamate receptors in cerebellar Purkinje cells: Sodium signalling mediated by mGluR1 EPSC. European Journal of Neuroscience, 12(6), 2199–2204. https://doi.org/10.1046/j.1460-9568.2000.00122.x Knōpfel, T., & Grandes, P. (2002). Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. The Cerebellum, 1(1), 19–26. https://doi.org/10.1007/BF02941886 Kovacsics, C. E., & Gould, T. D. (2010). Shock-induced aggression in mice is modified by lithium. Pharmacology Biochemistry and Behavior, 94(3), 380–386. https://doi.org/10.1016/j.pbb.2009.09.020 Krug, J. T., Klein, A. K., Purvis, E. M., Ayala, K., Mayes, M. S., Collins, L., Fisher, M. P. A., & Ettenberg, A. (2019). Effects of chronic lithium exposure in a modified rodent ketamine-induced hyperactivity model of mania. Pharmacology Biochemistry and Behavior, 179, 150–155. https://doi.org/10.1016/j.pbb.2019.01.003 Landinez, M. P. (2016). Evaluación fisiológica de los efectos del litio sobre la movilización de calcio intracelular en la línea celular HEK 293. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá. Recuperado de https://repositorio.unal.edu.co/handle/unal/56608 Lauritsen, B. J., Mellerup, E. T., Plenge, P., Rasmussen, S., Vestergaard, P., & Schou, M. (1981). Serum lithium concentrations around the clock with different treatment regimens and the diurnal variation of the renal lithium clearance. Acta Psychiatrica Scandinavica, 64(4), 314–319. https://doi.org/10.1111/j.1600-0447.1981.tb00788.x Leal, G., Bramham, C. R., & Duarte, C. B. (2017). BDNF and Hippocampal Synaptic Plasticity. In Vitamins and Hormones (Vol. 104, pp. 153–195). Elsevier. https://doi.org/10.1016/bs.vh.2016.10.004 Lee, S. P., So, C. H., Rashid, A. J., Varghese, G., Cheng, R., Lan a, A. J., O’Dowd, B. F., & George, S. R. (2004). Dopamine D1 and D2 Receptor Co-activation Generates a Novel Phospholipase C-mediated Calcium Signal. Journal of Biological Chemistry, 279(34), 35671–35678. https://doi.org/10.1074/jbc.M401923200 Li, P. P., Young, L. T., Tam, Y. K., Sibony, D., & Warsh, J. J. (1993). Effects of chronic lithium and carbamazepine treatment on G-protein subunit expression in rat cerebral cortex. Biological Psychiatry, 34(3), 162–170. https://doi.org/10.1016/0006-3223(93)90387-S Lichtenegger, M., Tiapko, O., Svobodova, B., Stockner, T., Glasnov, T. N., Schreibmayer, W., Platzer, D., de la Cruz, G. G., Krenn, S., Schober, R., Shrestha, N., Schindl, R., Romanin, C., & Groschner, K. (2018). An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nature Chemical Biology, 14(4), 396–404. https://doi.org/10.1038/s41589-018-0015-6 Linden, D., Dickinson, M. H., Smeyne, M., & Connor, J. A. (1991). A long-term depression of AMPA currents in cultured cerebellar purkinje neurons. Neuron, 7(1), 81–89. https://doi.org/10.1016/0896-6273(91)90076-C Linden, D. J., Smeyne, M., & Connor, J. A. (1994a). Trans-ACPD, a metabotropic receptor agonist, produces calcium mobilization and an inward current in cultured cerebellar Purkinje neurons. Journal of Neurophysiology, 71(5), 1992–1998. https://doi.org/10.1152/jn.1994.71.5.1992 Linden, D. J. (1994b). Input-specific induction of cerebellar long-term depression does not require presynaptic alteration. Learning & Memory (Cold Spring Harbor, N.Y.), 1(2), 121–128. Llano, I., Dreessen, J., Kano, M., & Konnerth, A. (1991). Intradendritic release of calcium induced by glutamate in cerebellar purkinje cells. Neuron, 7(4), 577–583. https://doi.org/10.1016/0896-6273(91)90370-F Llinás, R., & Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. The Journal of Physiology, 305(1), 197–213. https://doi.org/10.1113/jphysiol.1980.sp013358 Lo Vasco, V. R. (2012). Phosphoinositide pathway and the signal transduction network in neural development. Neuroscience Bulletin, 28(6), 789–800. https://doi.org/10.1007/s12264-012-1283-x Longone, P., Impagnatiello, F., Mienville, J.-M., Costa, E., & Guidotti, A. (1998). Changes in AMPA Receptor-Spliced Variant Expression and Shift in AMPA Receptor Spontaneous Desensitization Pharmacology During Cerebellar Granule Cell Maturation In Vitro. Journal of Molecular Neuroscience, 11(1), 23–42. https://doi.org/10.1385/JMN:11:1:23 Louiset, E., Duparc, C., Lenglet, S., Gomez-Sanchez, C. E., & Lefebvre, H. (2017). Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells. Molecular and Cellular Endocrinology, 441, 99–107. https://doi.org/10.1016/j.mce.2016.10.008 Lupo, M., Olivito, G., Gragnani, A., Saettoni, M., Siciliano, L., Pancheri, C., Panfili, M., Bozzali, M., Delle Chiaie, R., & Leggio, M. (2021). Comparison of Cerebellar Grey Matter Alterations in Bipolar and Cerebellar Patients: Evidence from Voxel-Based Analysis. International Journal of Molecular Sciences, 22(7), 3511. https://doi.org/10.3390/ijms22073511 Machado-Vieira, R., Manji, H. K., & Zarate Jr, C. A. (2009). The role of lithium in the treatment of bipolar disorder: Convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disorders, 11, 92–109. https://doi.org/10.1111/j.1399-5618.2009.00714.x Maguschak, K. A., & Ressler, K. J. (2008). β-catenin is required for memory consolidation. Nature Neuroscience, 11(11), 1319–1326. https://doi.org/10.1038/nn.2198 Makoff, A. J., Phillips, T., Pilling, C., & Emson, P. (1997). Expression of a novel splice variant of human mGluR1 in the cerebellum: NeuroReport, 8(13), 2943–2947. https://doi.org/10.1097/00001756-199709080-00027 Mantilla, F. A. (2021). Implementación de un cultivo neuronal primario como modelo para el estudio de mecanismos de modulación sobre la vía de señalización de los fosfoinositoles. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá. Man, H.-Y., Sekine-Aizawa, Y., & Huganir, R. L. (2007). Regulation of -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proceedings of the National Academy of Sciences, 104(9), 3579–3584. https://doi.org/10.1073/pnas.0611698104 Manto, M., Bower, J. M., Conforto, A. B., Delgado-Garc a, J. M., da Guarda, S. N. F., Gerwig, M., Habas, C., Hagura, N., Ivry, R. B., Mari n, P., Molinari, M., Naito, E., Nowak, D. A., Oulad Ben Taib, N., Pelisson, D., Tesche, C. D., Tilikete, C., & Timmann, D. (2012). Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement. The Cerebellum, 11(2), 457–487. https://doi.org/10.1007/s12311-011-0331-9 Marzban, H., Chung, S.-H., Pezhouh, M. K., Feirabend, H., Watanabe, M., Voogd, J., & Hawkes, R. (2010). Antigenic compartmentation of the cerebellar cortex in the chicken (Gallus domesticus). The Journal of Comparative Neurology, 518(12), 2221–2239. https://doi.org/10.1002/cne.22328 Mateos, J. M., Ben tez, R., Elezgarai, I., Azkue, J. J., L zaro, E., Osorio, A., Bilbao, A., Do ate, F., Sarr a, R., Conquet, F., Ferraguti, F., Kuhn, R., Kn pfel, T., & Grandes, P. (2000). Immunolocalization of the mGluR1b Splice Variant of the Metabotropic Glutamate Receptor 1 at Parallel Fiber-Purkinje Cell Synapses in the Rat Cerebellar Cortex. Journal of Neurochemistry, 74(3), 1301–1309. https://doi.org/10.1046/j.1471-4159.2000.741301.x McDonald, A. J. (1982). Neurons of the lateral and basolateral amygdaloid nuclei: A golgi study in the rat. The Journal of Comparative Neurology, 212(3), 293–312. https://doi.org/10.1002/cne.902120307 Mizuno, N., & Itoh, H. (2009). Functions and Regulatory Mechanisms of Gq-Signaling Pathways. Neurosignals, 17(1), 42–54. https://doi.org/10.1159/000186689 Mori-Okamoto, J., Okamoto, K., & Tatsuno, J. (1993). Intracellular Mechanisms Underlying the Suppression of AMPA Responses by trans-ACPD in Cultured Chick Purkinje Neurons. Molecular and Cellular Neuroscience, 4(4), 375–386. https://doi.org/10.1006/mcne.1993.1047 Nakamura, T., Nakamura, K., Lasser-Ross, N., Barbara, J.-G., Sandler, V. M., & Ross, W. N. (2000). Inositol 1,4,5-Trisphosphate (IP3)-Mediated Ca2+ Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA1 Pyramidal Neurons. The Journal of Neuroscience, 20(22), 8365–8376. https://doi.org/10.1523/JNEUROSCI.20-22-08365.2000 Netzeband, J. G., Parsons, K. L., Sweeney, D. D., & Gruol, D. L. (1997). Metabotropic Glutamate Receptor Agonists Alter Neuronal Excitability and Ca 2+ Levels via the Phospholipase C Transduction Pathway in Cultured Purkinje Neurons. Journal of Neurophysiology, 78(1), 63–75. https://doi.org/10.1152/jn.1997.78.1.63 Newman, M. E., Lichtenberg, P., & Belmaker, R. H. (1985). Effects of lithium in vitro on noradrenaline-induced cyclic AMP accumulation in rat cortical slices after reserpine-induced supersensitivity. Neuropharmacology, 24(4), 353–355. https://doi.org/10.1016/0028-3908(85)90144-3 Nolen, W. A., Licht, R. W., Young, A. H., Malhi, G. S., Tohen, M., Vieta, E., Kupka, R. W., Zarate, C., Nielsen, R. E., Baldessarini, R. J., Severus, E., & the ISBD/IGSLI Task Force on the treatment with lithium. (2019). What is the optimal serum level for lithium in the maintenance treatment of bipolar disorder? A systematic review and recommendations from the ISBD/IGSLI Task Force on treatment with lithium. Bipolar Disorders, 21(5), 394–409. https://doi.org/10.1111/bdi.12805 Orlandi, C., La Via, L., Bonini, D., Mora, C., Russo, I., Barbon, A., & Barlati, S. (2011). AMPA Receptor Regulation at the mRNA and Protein Level in Rat Primary Cortical Cultures. PLoS ONE, 6(9), e25350. https://doi.org/10.1371/journal.pone.0025350 Perkins, E. M., Clarkson, Y. L., Suminaite, D., Lyndon, A. R., Tanaka, K., Rothstein, J. D., Skehel, P. A., Wyllie, D. J. A., & Jackson, M. (2018). Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Human Molecular Genetics, 27(15), 2614–2627. https://doi.org/10.1093/hmg/ddy169 Pires, R. S., Real, C. C., Hayashi, M. A. F., & Britto, L. R. G. (2006). Ontogeny of subunits 2 and 3 of the AMPA-type glutamate receptors in Purkinje cells of the developing chick cerebellum. Brain Research, 1096(1), 11–19. https://doi.org/10.1016/j.brainres.2006.04.040 Platman, S. R. (1968). Biochemical Aspects of Lithium in Affective Disorders. Archives of General Psychiatry, 19(6), 659. https://doi.org/10.1001/archpsyc.1968.01740120019003 Preskorn, S. H., Burke, M. J., & Fast, G. A. (1993). Therapeutic Drug Monitoring: Principles and Practice. Psychiatric Clinics of North America, 16(3), 611–645. https://doi.org/10.1016/S0193-953X(18)30167-9 Prestori, F., Mapelli, L., & D’Angelo, E. (2019). Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit. Frontiers in Molecular Neuroscience, 12, 267. https://doi.org/10.3389/fnmol.2019.00267 Raghu, P., Joseph, A., Krishnan, H., Singh, P., & Saha, S. (2019). Phosphoinositides: Regulators of Nervous System Function in Health and Disease. Frontiers in Molecular Neuroscience, 12, 208. https://doi.org/10.3389/fnmol.2019.00208 Ramikie, T. S., Nyilas, R., Bluett, R. J., Gamble-George, J. C., Hartley, N. D., Mackie, K., Watanabe, M., Katona, I., & Patel, S. (2014). Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization at Central Amygdala Glutamatergic Synapses. Neuron, 81(5), 1111–1125. https://doi.org/10.1016/j.neuron.2014.01.012 Rhee, S. G., & Choi, K. D. (1992). Regulation of inositol phospholipid-specific phospholipase C isozymes. The Journal of Biological Chemistry, 267(18), 12393–12396. Rogers, T. D., McKimm, E., Dickson, P. E., Goldowitz, D., Blaha, C. D., & Mittleman, G. (2013). Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/fnsys.2013.00015 Ross, C. A., MacCumber, M. W., Glatt, C. E., & Snyder, S. H. (1989a). Brain phospholipase C isozymes: Differential mRNA localizations by in situ hybridization. Proceedings of the National Academy of Sciences, 86(8), 2923–2927. https://doi.org/10.1073/pnas.86.8.2923 Ross, C. A., Meldolesi, J., Milner, T. A., Satoh, T., Supattapone, S., & H. Snyder, S. (1989b). Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature, 339(6224), 468–470. https://doi.org/10.1038/339468a0 Sacchetto, R., Cliffer, K. D., Podini, P., Villa, A., Christensen, B. N., & Volpe, P. (1995). Intracellular Ca2+ stores in chick cerebellum Purkinje neurons: Ontogenetic and functional studies. American Journal of Physiology-Cell Physiology, 269(5), C1219–C1227. https://doi.org/10.1152/ajpcell.1995.269.5.C1219 Sade, Y., Toker, L., Kara, N. Z., Einat, H., Rapoport, S., Moechars, D., Berry, G. T., Bersudsky, Y., & Agam, G. (2016). IP3 accumulation and/or inositol depletion: Two downstream lithium’s effects that may mediate its behavioral and cellular changes. Translational Psychiatry, 6(12), e968–e968. https://doi.org/10.1038/tp.2016.217 Saiardi, A., & Mudge, A. W. (2018). Lithium and fluoxetine regulate the rate of phosphoinositide synthesis in neurons: A new view of their mechanisms of action in bipolar disorder. Translational Psychiatry, 8(1), 175. https://doi.org/10.1038/s41398-018-0235-2 Sánchez, C. A. (2019). Estudio fisiológico de los efectos del litio sobre la cascada de señalización mediada por la fosfolipasa C en modelos neuronales. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá. Recuperado de https://repositorio.unal.edu.co/handle/unal/76779 Sarna, J. R., Marzban, H., Watanabe, M., & Hawkes, R. (2006). Complementary stripes of phospholipase Cβ3 and Cβ4 expression by Purkinje cell subsets in the mouse cerebellum. The Journal of Comparative Neurology, 496(3), 303–313. https://doi.org/10.1002/cne.20912 Sassone-Corsi, P. (2012). The Cyclic AMP Pathway. Cold Spring Harbor Perspectives in Biology, 4(12), a011148–a011148. https://doi.org/10.1101/cshperspect.a011148 Schilling, K., Dickinson, M. H., Connor, J. A., & Morgan, J. I. (1991). Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron, 7(6), 891–902. https://doi.org/10.1016/0896-6273(91)90335-W Schoepp, D. D., Jane, D. E., & Monn, J. A. (1999). Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 38(10), 1431–1476. https://doi.org/10.1016/S0028-3908(99)00092-1 Shinn, A. K., Roh, Y. S., Ravichandran, C. T., Baker, J. T., ngür, D., & Cohen, B. M. (2017). Aberrant Cerebellar Connectivity in Bipolar Disorder With Psychosis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(5), 438–448. https://doi.org/10.1016/j.bpsc.2016.07.002 Shorter, E. (2009). The history of lithium therapy. Bipolar Disorders, 11, 4–9. https://doi.org/10.1111/j.1399-5618.2009.00706.x Sid, H., & Schusser, B. (2018). Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Frontiers in Genetics, 9, 456. https://doi.org/10.3389/fgene.2018.00456 Sillitoe, R. V., Marzban, H., Larouche, M., Zahedi, S., Affanni, J., & Hawkes, R. (2005). Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. In Progress in Brain Research (Vol. 148, pp. 283–297). Elsevier. https://doi.org/10.1016/S0079-6123(04)48022-4 Smrcka, A. V., & Sternweis, P. C. (1993). Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. The Journal of Biological Chemistry, 268(13), 9667–9674. Song, J., Sj lander, A., Joas, E., Bergen, S. E., Runeson, B., Larsson, H., Land n, M., & Lichtenstein, P. (2017). Suicidal Behavior During Lithium and Valproate Treatment: A Within-Individual 8-Year Prospective Study of 50,000 Patients With Bipolar Disorder. American Journal of Psychiatry, 174(8), 795–802. https://doi.org/10.1176/appi.ajp.2017.16050542 Stambolic, V., Ruel, L., & Woodgett, J. R. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells. Current Biology, 6(12), 1664–1669. https://doi.org/10.1016/S0960-9822(02)70790-2 Staub, C., Vranesic, I., & Kn pfel, T. (1992). Responses to Metabotropic Glutamate Receptor Activation in Cerebellar Purkinje Cells: Induction of an Inward Current. European Journal of Neuroscience, 4(9), 832–839. https://doi.org/10.1111/j.1460-9568.1992.tb00193.x Stoodley, C. J., & Limperopoulos, C. (2016). Structure–function relationships in the developing cerebellum: Evidence from early-life cerebellar injury and neurodevelopmental disorders. Seminars in Fetal and Neonatal Medicine, 21(5), 356–364. https://doi.org/10.1016/j.siny.2016.04.010 Stoodley, C., & Schmahmann, J. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 44(2), 489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039 Streb, H., Irvine, R. F., Berridge, M. J., & Schulz, I. (1983). Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature, 306(5938), 67–69. https://doi.org/10.1038/306067a0 Sugiyama, T., Hirono, M., Suzuki, K., Nakamura, Y., Aiba, A., Nakamura, K., Nakao, K., Katsuki, M., & Yoshioka, T. (1999). Localization of Phospholipase Cβ Isozymes in the Mouse Cerebellum. Biochemical and Biophysical Research Communications, 265(2), 6 Supattapone, S., Worley, P. F., Baraban, J. M., & Snyder, S. H. (1988). Solubilization, purification, and characterization of an inositol trisphosphate receptor. The Journal of Biological Chemistry, 263(3), 1530–1534. Szczepankiewicz, D., Celichowski, P., Kołodziejski, P. A., Pruszyńska-Oszmałek, E., Sassek, M., Zakowicz, P., Banach, E., Langwiński, W., Sakrajda, K., Nowakowska, J., Socha, M., Bukowska-Olech, E., Pawlak, J., Twarowska-Hauser, J., Nogowski, L., Rybakowski, J. K., & Szczepankiewicz, A. (2021). Transcriptome Changes in Three Brain Regions during Chronic Lithium Administration in the Rat Models of Mania and Depression. International Journal of Molecular Sciences, 22(3), 1148. https://doi.org/10.3390/ijms22031148 Tabata, T., Sawada, S., Araki, K., Bono, Y., Furuya, S., & Kano, M. (2000). A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. Journal of Neuroscience Methods, 104(1), 45–53. https://doi.org/10.1016/S0165-0270(00)00323-X Taguchi, K., Ueda, M., & Kubo, T. (1997). Effects of cAMP and cGMP on L-Type Calcium Channel Currents in Rat Mesenteric Artery Cells. Japanese Journal of Pharmacology, 74(2), 179–186. https://doi.org/10.1016/S0021-5198(19)31407-6 Takagi, H., Takimizu, H., de Barry, J., Kudo, Y., & Yoshioka, T. (1992). The expression of presynaptic t-ACPD receptor in rat cerebellum. Biochemical and Biophysical Research Communications, 189(3), 1287–1295. https://doi.org/10.1016/0006-291X(92)90213-5 Tanaka, O., & Kondo, H. (1994). Localization of mRNAs for three novel members (β3, β4 and γ2) of phospholipase C family in mature rat brain. Neuroscience Letters, 182(1), 17–20. https://doi.org/10.1016/0304-3940(94)90194-5 Tang, T., Xiao, J., Suh, C. Y., Burroughs, A., Cerminara, N. L., Jia, L., Marshall, S. P., Wise, A. K., Apps, R., Sugihara, I., & Lang, E. J. (2017). Heterogeneity of Purkinje cell simple spike-complex spike interactions: Zebrin- and non-zebrin-related variations: Simple spike-complex spike interactions. The Journal of Physiology, 595(15), 5341–5357. https://doi.org/10.1113/JP274252 Thul, P. J., Äkesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., Asplund, A., Björk, L., Breckels, L. M., Bäckström, A., Danielsson, F., Fagerberg, L., Fall, J., Gatto, L., Gnann, C., Hober, S., Hjelmare, M., Johansson, F., Lundberg, E. (2017). A subcellular map of the human proteome. Science, 356(6340), eaal3321. https://doi.org/10.1126/science.aal332 Tjaden, J., Pieczora, L., Wach, F., Theiss, C., & Theis, V. (2018). Cultivation of Purified Primary Purkinje Cells from Rat Cerebella. Cellular and Molecular Neurobiology, 38(7), 1399–1412. https://doi.org/10.1007/s10571-018-0606-5 Tömböl, T., Davies, D. C., Németh, A., Sebestény, T., & Alpár, A. (2000). A comparative Golgi study of chicken (Gallus domesticus) and homing pigeon (Columba livia) hippocampus. Anatomy and Embryology, 201(2), 85–101. https://doi.org/10.1007/PL00008235 Tomlinson, S. P., Davis, N. J., Morgan, H. M., & Bracewell, R. M. (2014). Cerebellar Contributions to Verbal Working Memory. The Cerebellum, 13(3), 354–361. https://doi.org/10.1007/s12311-013-0542-3 Tosevski, J., Malikovic, A., Mojsilovic-Petrovic, J., Lackovic, V., Peulic, M., Sazdanovic, P., & Alexopulos, C. (2002). Types of neurons and some dendritic patterns of basolateral amygdala in humans—A Golgi study. Annals of Anatomy - Anatomischer Anzeiger, 184(1), 93–103. https://doi.org/10.1016/S0940-9602(02)80042-5 Tringham, E. W., Payne, C. E., Dupere, J. R. B., & Usowicz, M. M. (2007). Maturation of rat cerebellar Purkinje cells reveals an atypical Ca 2+ channel current that is inhibited by ω-agatoxin IVA and the dihydropyridine (−)-( S )-Bay K8644: Ca 2+ channels in mature and immature cerebellar Purkinje neurons. The Journal of Physiology, 578(3), 693–714. https://doi.org/10.1113/jphysiol.2006.121905 Tsien, R. Y. (1981). A non-disruptive technique for loading calcium buffers and indicators into cells. Nature, 290(5806), 527–528. https://doi.org/10.1038/290527a0 Tsutsumi, S., Yamazaki, M., Miyazaki, T., Watanabe, M., Sakimura, K., Kano, M., & Kitamura, K. (2015). Structure–Function Relationships between Aldolase C/Zebrin II Expression and Complex Spike Synchrony in the Cerebellum. The Journal of Neuroscience, 35(2), 843–852. https://doi.org/10.1523/JNEUROSCI.2170-14.2015 Vaca, L., & Kunze, D. L. (1995). IP3-activated Ca2+ channels in the plasma membrane of cultured vascular endothelial cells. American Journal of Physiology-Cell Physiology, 269(3), C733–C738. https://doi.org/10.1152/ajpcell.1995.269.3.C733 Venkatachalam, K., Ma, H.-T., Ford, D. L., & Gill, D. L. (2001). Expression of Functional Receptor-coupled TRPC3 Channels in DT40 Triple Receptor InsP3 knockout Cells. Journal of Biological Chemistry, 276(36), 33980–33985. https://doi.org/10.1074/jbc.C100321200 Vranesic, I., Batchelor, A., G hwiler, B. H., Garthwaite, J., Staub, C., & Kn pfel, T. (1991). Trans-ACPD-induced Ca2+ signals in cerebellar Purkinje cells: NeuroReport, 2(12), 759–762. https://doi.org/10.1097/00001756-199112000-00007 Walloe, S., Pakkenberg, B., & Fabricius, K. (2014). Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00508 Walton, P. D., Airey, J. A., Sutko, J. L., Beck, C. F., Mignery, G. A., Südhof, T. C., Deerinck, T. J., & Ellisman, M. H. (1991). Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. The Journal of Cell Biology, 113(5), 1145–1157. https://doi.org/10.1083/jcb.113.5.1145 Wang, J., Liu, P., Zhang, A., Yang, C., Liu, S., Wang, J., Xu, Y., & Sun, N. (2021). Specific Gray Matter Volume Changes of the Brain in Unipolar and Bipolar Depression. Frontiers in Human Neuroscience, 14, 592419. https://doi.org/10.3389/fnhum.2020.592419 Watanabe, M., Nakamura, M., Sato, K., Kano, M., Simon, M. I., & Inoue, Y. (1998). Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cβ in mouse brain: PLCβ1-4 mRNAs in developing and adult mouse brain. European Journal of Neuroscience, 10(6), 2016–2025. https://doi.org/10.1046/j.1460-9568.1998.00213.x Wilkie, T. M., Scherle, P. A., Strathmann, M. P., Slepak, V. Z., & Simon, M. I. (1991). Characterization of G-protein alpha subunits in the Gq class: Expression in murine tissues and in stromal and hematopoietic cell lines. Proceedings of the National Academy of Sciences, 88(22), 10049–10053. https://doi.org/10.1073/pnas.88.22.10049 Womack, M. D., Walker, J. W., & Khodakhah, K. (2000). Impaired Calcium Release in Cerebellar Purkinje Neurons Maintained in Culture. The Journal of General Physiology, 115(3), 339–346. https://doi.org/10.1085/jgp.115.3.339 Won, E., & Kim, Y.-K. (2017). An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. International Journal of Molecular Sciences, 18(12), 2679. https://doi.org/10.3390/ijms18122679 Wu, B., Blot, F. G., Wong, A. B., Os rio, C., Adolfs, Y., Pasterkamp, R. J., Hartmann, J., Becker, E. B., Boele, H.-J., De Zeeuw, C. I., & Schonewille, M. (2019). TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. ELife, 8, e45590. https://doi.org/10.7554/eLife.45590 Wu, D., Jiang, H., Katz, A., & Simon, M. I. (1993). Identification of critical regions on phospholipase C-beta 1 required for activation by G-proteins. The Journal of Biological Chemistry, 268(5), 3704–3709. Wu, D., Katz, A., Lee, C. H., & Simon, M. I. (1992). Activation of phospholipase C by alpha 1-adrenergic receptors is mediated by the alpha subunits of Gq family. The Journal of Biological Chemistry, 267(36), 25798–25802. Xiao, J., Cerminara, N. L., Kotsurovskyy, Y., Aoki, H., Burroughs, A., Wise, A. K., Luo, Y., Marshall, S. P., Sugihara, I., Apps, R., & Lang, E. J. (2014). Systematic Regional Variations in Purkinje Cell Spiking Patterns. PLoS ONE, 9(8), e105633. https://doi.org/10.1371/journal.pone.0105633 Yasuda, S., Liang, M.-H., Marinova, Z., Yahyavi, A., & Chuang, D.-M. (2009). The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Molecular Psychiatry, 14(1), 51–59. https://doi.org/10.1038/sj.mp.4002099 Yuzaki, M., & Mikoshiba, K. (1992). Pharmacological and immunocytochemical characterization of metabotropic glutamate receptors in cultured Purkinje cells. The Journal of Neuroscience, 12(11), 4253–4263. https://doi.org/10.1523/JNEUROSCI.12-11-04253.1992 Zhang, Y.-N., Li, H., Shen, Z.-W., Xu, C., Huang, Y.-J., & Wu, R.-H. (2021). Healthy individuals vs patients with bipolar or unipolar depression in gray matter volume. World Journal of Clinical Cases, 9(6), 1304–1317. https://doi.org/10.12998/wjcc.v9.i6.1304 Zhao, G., Neeb, Z. P., Leo, M. D., Pachuau, J., Adebiyi, A., Ouyang, K., Chen, J., & Jaggar, J. H. (2010). Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. Journal of General Physiology, 136(3), 283–291. https://doi.org/10.1085/jgp.201010453 Zhou, H., Lin, Z., Voges, K., Ju, C., Gao, Z., Bosman, L. W., Ruigrok, T. J., Hoebeek, F. E., De Zeeuw, C. I., & Schonewille, M. (2014). Cerebellar modules operate at different frequencies. ELife, 3, e02536. https://doi.org/10.7554/eLife.02536 Zhou, Z., Wang, Y., Tan, H., Bharti, V., Che, Y., & Wang, J.-F. (2015). Chronic treatment with mood stabilizer lithium inhibits amphetamine-induced risk-taking manic-like behaviors. Neuroscience Letters, 603, 84–88. https://doi.org/10.1016/j.neulet.2015.07.027 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
87 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias - Biología |
dc.publisher.department.spa.fl_str_mv |
Departamento de Biología |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/81226/1/1014256546.2021.pdf https://repositorio.unal.edu.co/bitstream/unal/81226/2/license.txt https://repositorio.unal.edu.co/bitstream/unal/81226/3/1014256546.2021.pdf.jpg |
bitstream.checksum.fl_str_mv |
584bd8a816e82875f24536ed28854bd4 8153f7789df02f0a4c9e079953658ab2 4f530172cab2795d2a615e6257e72abb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089917101244416 |
spelling |
Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nasi Lignarolo, Enricob880efc08f05d0579d6f076cca5dd9cdGuevara Espitia, Camilo Andrésd1bc825565e82f9c29d403a417c22709Biofísica de la Señalización Celular2022-03-15T19:47:42Z2022-03-15T19:47:42Z2021https://repositorio.unal.edu.co/handle/unal/81226Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, graficasEl litio es el fármaco estándar para el tratamiento del trastorno bipolar. Sin embargo, su mecanismo de acción a nivel celular no está dilucidado. En líneas celulares en nuestro laboratorio se observaron efectos modulatorios del litio sobre respuestas fisiológicas dependientes de la vîa de los fosfoinositoles. Considerando la expresión de distintas isoformas de las proteínas Gq y PLCβ en el sistema nervioso, este trabajo se propuso extender estas observaciones a un primer modelo neuronal. Para ello se utilizaron cultivos primarios de neuronas enzimáticamente disociadas de cerebelo de embrión de pollo. Algunas neuronas fueron identificadas como células de Purkinje y su estimulación con el agonista glutamatérgico quisquilato evocó corrientes de entrada registradas con la técnica de patch clamp e incrementos de calcio intracelular medidos con indicadores fluorescentes de calcio. El rol de la vía de la PLC sobre estas respuestas fue comprobado mostrando su sensibilidad al inhibidor de la PLC U-73122 y la contribución mayoritaria de depósitos intracelulares sobre la movilización de calcio. Finalmente se examinó el efecto del litio sobre las respuestas al quisquilato. En algunas células, exposición aguda a 10mM de litio produjo potenciación de la respuesta mientras que en otras hubo una depresión. Este efecto dual puede ser producto de dos subpoblaciones de neuronas con expresión de diferentes isoformas de la PLCβ. Este trabajo constituye el primer reporte del efecto del litio sobre respuestas asociadas a la vía de la PLC en neuronas primarias de pollo, y abre las puertas para su exploración en otras regiones cerebrales. (Texto tomado de la fuente)Lithium is the treatment of choice for bipolar disorder. However, its cellular mechanism of action has not been elucidated. Previous work from our laboratory found modulatory effects of lithium on physiological responses dependent on the phosphoinositide signaling pathway in mammalian cell lines. Considering the expression of different isoforms of Gq protein and PLCβ in the nervous system, this work aims to extend these observations into a first neuronal model. To achieve this, primary cultures of enzymatically dissociated neurons from chick embryo cerebellum were developed. Some neurons were identified as Purkinje cells and their stimulation with the glutamatergic agonist quisqualate evoked inward currents recorded with the patch clamp technique and increases in intracellular calcium measured with fluorescent calcium indicators. The role of the PLC pathway on these responses was verified by showing its sensitivity to the PLC inhibitor U-73122 and the main contribution of intracellular compartments on calcium mobilization. Finally, the effect of lithium on the responses evoked by quisqualate was examined. In some cells, acute exposure to 10mM lithium potentiated the response, while in others it was depressed. We suggest that the observed effect is the consequence of two subpopulations of neurons with different expression of PLCβ isoforms. This work constitutes the first report in chick primary neurons of the effect of lithium on the PLC pathway and is a first step for the exploration of this phenomenon in other brain regions.MaestríaMagíster en Ciencias - BiologíaFisiología Celular87 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias - BiologíaDepartamento de BiologíaFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::616 - EnfermedadesCerebrobrainLitioCascada de los fosfoinositolesEmbrion de polloNeuronas de PurkinjeLithiumPLC-pathwayChick embryoPurkinje NeuronsEmbriones animalesEfectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primarioModulatory effects of lithium on the phosphoinositide signaling cascade in primary neuronal cultureTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbdul-Ghani, M. A., Valiante, T. A., Carlen, P. L., & Pennefather, P. S. (1996). Metabotropic glutamate receptors coupled to IP3 production mediate inhibition of IAHP in rat dentate granule neurons. Journal of Neurophysiology, 76(4), 2691–2700. https://doi.org/10.1152/jn.1996.76.4.2691Adamski, F. M., Timms, K. M., & Shieh, B.-H. (1999). A unique isoform of phospholipase Cβ4 highly expressed in the cerebellum and eye. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1444(1), 55–60. https://doi.org/10.1016/S0167-4781(98)00260-7Akar, S., & Sur, E. (2010). The development of chicken cerebellar cortex and the determination of AgNOR activity of the Purkinje cell nuclei. 9.Akkouh, I. A., Skrede, S., Holmgren, A., Ersland, K. M., Hansson, L., Bahrami, S., Andreassen, O. A., Steen, V. M., Djurovic, S., & Hughes, T. (2020). Exploring lithium’s transcriptional mechanisms of action in bipolar disorder: A multi-step study. Neuropsychopharmacology, 45(6), 947–955. https://doi.org/10.1038/s41386-019-0556-8Amdisen, A. (1978). Clinical and Serum-Level Monitoring in Lithium Therapy and Lithium Intoxication. Journal of Analytical Toxicology, 2(5), 193–202. https://doi.org/10.1093/jat/2.5.193Báez-Becerra, C., Filipello, F., Sandoval-Hern ndez, A., Arboleda, H., & Arboleda, G. (2018). Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotoxicity Research, 33(3), 569–579. https://doi.org/10.1007/s12640-017-9845-3Baldessarini, R. J., Tondo, L., Davis, P., Pompili, M., Goodwin, F. K., & Hennen, J. (2006). Decreased risk of suicides and attempts during long-term lithium treatment: A meta-analytic review. Bipolar Disorders, 8(5p2), 625–639. https://doi.org/10.1111/j.1399-5618.2006.00344.xBastianelli, E., & Pochet, R. (1993). Transient expression of calretinin during development of chick cerebellum Comparison with calbindin-D28k. Neuroscience Research, 17(1), 53–61. https://doi.org/10.1016/0168-0102(93)90029-PBatchelor, A. M., Madge, D. J., & Garthwaite, J. (1994). Synaptic activation of metabotropic glutamate receptors in the parallel Fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience, 63(4), 911–915. https://doi.org/10.1016/0306-4522(94)90558-4Bearden, C. E., Thompson, P. M., Dalwani, M., Hayashi, K. M., Lee, A. D., Nicoletti, M., Trakhtenbroit, M., Glahn, D. C., Brambilla, P., Sassi, R. B., Mallinger, A. G., Frank, E., Kupfer, D. J., & Soares, J. C. (2007). Greater Cortical Gray Matter Density in Lithium-Treated Patients with Bipolar Disorder. Biological Psychiatry, 62(1), 7–16. https://doi.org/10.1016/j.biopsych.2006.10.027Becker, E. B. E., & Stoodley, C. J. (2013). Autism Spectrum Disorder and the Cerebellum. In International Review of Neurobiology (Vol. 113, pp. 1–34). Elsevier. https://doi.org/10.1016/B978-0-12-418700-9.00001-0Berridge, M. J., Downes, C. P., & Hanley, M. R. (1982). Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochemical Journal, 206(3), 587–595. https://doi.org/10.1042/bj2060587Berridge, M. J., & Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312(5992), 315–321. https://doi.org/10.1038/312315a0Berthele, A., Platzer, S., Laurie, D. J., Weis, S., Sommer, B., Zieglg nsberger, W., Conrad, B., & T lle, T. R. (1999). Expression of metabotropic glutamate receptor subtype mRNA (mGluR1–8) in human cerebellum: NeuroReport, 10(18), 3861–3867. https://doi.org/10.1097/00001756-199912160-00026Boni, L. T., & Rando, R. R. (1985). The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. The Journal of Biological Chemistry, 260(19), 10819–10825.Bult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE, the Mouse Genome Database Group. 2019. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 2019 Jan. 8;47 (D1): D801–D806.Callender, J. A., & Newton, A. C. (2017). Conventional protein kinase C in the brain: 40 years later. Neuronal Signaling, 1(2), NS20160005. https://doi.org/10.1042/NS20160005Carter, A. G., Vogt, K. E., Foster, K. A., & Regehr, W. G. (2002). Assessing the Role of Calcium-Induced Calcium Release in Short-Term Presynaptic Plasticity at Excitatory Central Synapses. The Journal of Neuroscience, 22(1), 21–28. https://doi.org/10.1523/JNEUROSCI.22-01-00021.2002Chen, A., Hu, W. W., Jiang, X. L., Potegal, M., & Li, H. (2017). Molecular mechanisms of group I metabotropic glutamate receptor mediated LTP and LTD in basolateral amygdala in vitro. Psychopharmacology, 234(4), 681–694. https://doi.org/10.1007/s00213-016-4503-7Colin, S. F., Chang, H. C., Mollner, S., Pfeuffer, T., Reed, R. R., Duman, R. S., & Nestler, E. J. (1991). Chronic lithium regulates the expression of adenylate cyclase and Gi-protein alpha subunit in rat cerebral cortex. Proceedings of the National Academy of Sciences, 88(23), 10634–10637. https://doi.org/10.1073/pnas.88.23.10634Consalez, G. G., Goldowitz, D., Casoni, F., & Hawkes, R. (2021). Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum. Frontiers in Neural Circuits, 14, 611841. https://doi.org/10.3389/fncir.2020.611841Cushing, A., Price-Jones, M. J., Graves, R., Harris, A. J., Hughes, K. T., Bleakman, D., & Lodge, D. (1999). Measurement of calcium flux through ionotropic glutamate receptors using Cytostar-T scintillating microplates. Journal of Neuroscience Methods, 90(1), 33–36. https://doi.org/10.1016/S0165-0270(99)00058-8de Sousa, R. T., Zanetti, M. V., Talib, L. L., Serpa, M. H., Chaim, T. M., Carvalho, A. F., Brunoni, A. R., Busatto, G. F., Gattaz, W. F., & Machado-Vieira, R. (2015). Lithium increases platelet serine-9 phosphorylated GSK-3β levels in drug-free bipolar disorder during depressive episodes. Journal of Psychiatric Research, 62, 78–83. https://doi.org/10.1016/j.jpsychires.2015.01.016DelBello, M., Strakowski, S., Zimmerman, M., Hawkins, J., & Sax, K. (1999). MRI Analysis of the Cerebellum in Bipolar Disorder A Pilot Study. Neuropsychopharmacology, 21(1), 63–68. https://doi.org/10.1016/S0893-133X(99)00026-3Deverett, B., Kislin, M., Tank, D. W., & Wang, S. S.-H. (2019). Cerebellar disruption impairs working memory during evidence accumulation. Nature Communications, 10(1), 3128. https://doi.org/10.1038/s41467-019-11050-xDurán, S. (2017). Inmunodetección de las proteínas de la cascada de fosfoinositoles en céulas HEK293 y evaluación de los efectos del litio sobre corrientes de membrana activadas por esta vía. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá . Recuperado de https://repositorio.unal.edu.co/handle/unal/59178Ebadi, M. S., Simmons, V. J., Hendrickson, M. J., & Lacy, P. S. (1974). Pharmacokinetics of lithium and its regional distribution in rat brain. European Journal of Pharmacology, 27(3), 324–329. https://doi.org/10.1016/0014-2999(74)90007-7Ebstein, R. P., Hermoni, M., & Belmaker, R. H. (1980). The effect of lithium on noradrenaline-induced cyclic AMP accumulation in rat brain: Inhibition after chronic treatment and absence of supersensitivity. The Journal of Pharmacology and Experimental Therapeutics, 213(1), 161–167.Edwards, D., Sommerhage, F., Berry, B., Nummer, H., Raquet, M., Clymer, B., Stancescu, M., & Hickman, J. J. (2017). Comparison of NMDA and AMPA Channel Expression and Function between Embryonic and Adult Neurons Utilizing Microelectrode Array Systems. ACS Biomaterials Science & Engineering, 3(12), 3525–3533. https://doi.org/10.1021/acsbiomaterials.7b00596Einat, H., Yuan, P., Gould, T. D., Li, J., Du, J., Zhang, L., Manji, H. K., & Chen, G. (2003). The Role of the Extracellular Signal-Regulated Kinase Signaling Pathway in Mood Modulation. The Journal of Neuroscience, 23(19), 7311–7316. https://doi.org/10.1523/JNEUROSCI.23-19-07311.2003Ellisman, M. H., Deerinck, T. J., Ouyang, Y., Beck, C. F., Tanksley, S. J., Walton, P. D., Airey, J. A., & Sutko, J. L. (1990). Identification and localization of ryanodine binding proteins in the avian central nervous system. Neuron, 5(2), 135–146. https://doi.org/10.1016/0896-6273(90)90304-XEmamghoreishi, M., Keshavarz, M., & Nekooeian, A. A. (2015). Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures. Iranian Journal of Basic Medical Sciences, 18(3), 240–246.Ernfors, P., Wetmore, C., Olson, L., & Persson, H. (1990). Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron, 5(4), 511–526. https://doi.org/10.1016/0896-6273(90)90090-3Farhy Tselnicker, I., Tsemakhovich, V., Rishal, I., Kahanovitch, U., Dessauer, C. W., & Dascal, N. (2014). Dual regulation of G proteins and the G-protein–activated K + channels by lithium. Proceedings of the National Academy of Sciences, 111(13), 5018–5023. https://doi.org/10.1073/pnas.1316425111Fatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., Thuras, P., & Merz, A. (2002). Purkinje Cell Size is Reduced in Cerebellum of Patients With Autism. Cellular and Molecular Neurobiology, 22(2), 171–175. https://doi.org/10.1023/A:1019861721160Fiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). IMPAIRED NON-MOTOR LEARNING AND ERROR DETECTION ASSOCIATED WITH CEREBELLAR DAMAGE: A SINGLE CASE STUDY. Brain, 115(1), 155–178. https://doi.org/10.1093/brain/115.1.155Fujita, H., Aoki, H., Ajioka, I., Yamazaki, M., Abe, M., Oh-Nishi, A., Sakimura, K., & Sugihara, I. (2014). Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice. PLoS ONE, 9(1), e86679. https://doi.org/10.1371/journal.pone.0086679Fukami, K., Inanobe, S., Kanemaru, K., & Nakamura, Y. (2010). Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Progress in Lipid Research, 49(4), 429–437. https://doi.org/10.1016/j.plipres.2010.06.001Fukaya, M., Uchigashima, M., Nomura, S., Hasegawa, Y., Kikuchi, H., & Watanabe, M. (2008). Predominant expression of phospholipase Cβ1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. European Journal of Neuroscience, 28(9), 1744–1759. https://doi.org/10.1111/j.1460-9568.2008.06495.xFuruichi, T., Yoshikaw, S., & Mikoshiba, K. (1989). Nucleotide sequence of cDNA encoding P 400 protein in the mouse cerebellum. Nucleic Acids Research, 17(13), 5385–5386. https://doi.org/10.1093/nar/17.13.5385Furuya, S., Makino, A., & Hirabayashi, Y. (1998). An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Research Protocols, 3(2), 192–198. https://doi.org/10.1016/S1385-299X(98)00040-3Gao, T., Yatani, A., Dell’Acqua, M. L., Sako, H., Green, S. A., Dascal, N., Scott, J. D., & Hosey, M. M. (1997). CAMP-Dependent Regulation of Cardiac L-Type Ca2+ Channels Requires Membrane Targeting of PKA and Phosphorylation of Channel Subunits. Neuron, 19(1), 185–196. https://doi.org/10.1016/S0896-6273(00)80358-XGiussani, D. A., Salinas, C. E., Villena, M., & Blanco, C. E. (2007). The role of oxygen in prenatal growth: Studies in the chick embryo: Oxygen and fetal growth. The Journal of Physiology, 585(3), 911–917. https://doi.org/10.1113/jphysiol.2007.141572Gomez, L. C., Kawaguchi, S.-Y., Collin, T., Jalil, A., Gomez, M. D. P., Nasi, E., Marty, A., & Llano, I. (2020). Influence of spatially segregated IP3-producing pathways on spike generation and transmitter release in Purkinje cell axons. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 11097–11108. https://doi.org/10.1073/pnas.2000148117Gould, T. D., Chen, G., & Manji, H. K. (2004). In Vivo Evidence in the Brain for Lithium Inhibition of Glycogen Synthase Kinase-3. Neuropsychopharmacology, 29(1), 32–38. https://doi.org/10.1038/sj.npp.1300283Grabs, D., Escher, L., & Bergmann, M. (2008). Expression of SV2 in the Seveloping Chick Cerebellum: Comparison with Calbindin and AMPA Glutamate Receptors 2/3. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 291(5), 538–546. https://doi.org/10.1002/ar.20691Grandes, P., Mateos, J. M., Rüegg, D., Kuhn, R., & Kn pfel, T. (1994). Differential cellular localization of three splice variants of the mGluR1 metabotropic glutamate receptor in rat cerebellum: NeuroReport, 5(17), 2249–2252. https://doi.org/10.1097/00001756-199411000-00011Gresset, A., Sondek, J., & Harden, T. K. (2012). The Phospholipase C Isozymes and Their Regulation. In T. Balla, M. Wymann, & J. D. York (Eds.), Phosphoinositides I: Enzymes of Synthesis and Degradation (Vol. 58, pp. 61–94). Springer Netherlands. https://doi.org/10.1007/978-94-007-3012-0_3Grimes, C. A., & Jope, R. S. (2001). The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Progress in Neurobiology, 65(4), 391–426. https://doi.org/10.1016/S0301-0082(01)00011-9Hallahan, B., Newell, J., Soares, J. C., Brambilla, P., Strakowski, S. M., Fleck, D. E., Kiesepp , T., Altshuler, L. L., Fornito, A., Malhi, G. S., McIntosh, A. M., Yurgelun-Todd, D. A., Labar, K. S., Sharma, V., MacQueen, G. M., Murray, R. M., & McDonald, C. (2011). Structural Magnetic Resonance Imaging in Bipolar Disorder: An International Collaborative Mega-Analysis of Individual Adult Patient Data. Biological Psychiatry, 69(4), 326–335. https://doi.org/10.1016/j.biopsych.2010.08.029Hamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88(1), 49–92. https://doi.org/10.1002/jmor.1050880104Hannan, A. J., Blakemore, C., Katsnelson, A., Vitalis, T., Huber, K. M., Bear, M., Roder, J., Kim, D., Shin, H.-S., & Kind, P. C. (2001). PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nature Neuroscience, 4(3), 282–288. https://doi.org/10.1038/85132Hannan, A. J., Kind, P. C., & Blakemore, C. (1998). Phospholipase C-β1 expression correlates with neuronal differentiation and synaptic plasticity in rat somatosensory cortex. Neuropharmacology, 37(4–5), 593–605. https://doi.org/10.1016/S0028-3908(98)00056-2Hartmann, J., Dragicevic, E., Adelsberger, H., Henning, H. A., Sumser, M., Abramowitz, J., Blum, R., Dietrich, A., Freichel, M., Flockerzi, V., Birnbaumer, L., & Konnerth, A. (2008). TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination. Neuron, 59(3), 392–398. https://doi.org/10.1016/j.neuron.2008.06.009Hashimoto, K., Kano, M., Miyata, M., & Watanabe, M. (2001). Roles of Phospholipase Cβ4 in Synapse Elimination and Plasticity in Developing and Mature Cerebellum. Molecular Neurobiology, 23(1), 69–82. https://doi.org/10.1385/MN:23:1:69Hawkes, R., & Leclerc, N. (1989). Purkinje cell axon collateral distribution reflect the chemical compartmentation of the rat cerebellar cortex. Brain Research, 476(2), 279–290. https://doi.org/10.1016/0006-8993(89)91248-1Heidemann, S. R., Reynolds, M., Ngo, K., & Lamoureux, P. (2003). The Culture of Chick Forebrain Neurons. In Methods in Cell Biology (Vol. 71, pp. 51–65). Elsevier. https://doi.org/10.1016/S0091-679X(03)01004-5Hillert, M., Zimmermann, M., & Klein, J. (2012). Uptake of lithium into rat brain after acute and chronic administration. Neuroscience Letters, 521(1), 62–66. https://doi.org/10.1016/j.neulet.2012.05.060Hirono, M., Ogawa, Y., Misono, K., Zollinger, D. R., Trimmer, J. S., Rasband, M. N., & Misonou, H. (2015). BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells. Journal of Neuroscience, 35(18), 7082–7094. https://doi.org/10.1523/JNEUROSCI.3778-14.2015Hofmann, T., Obukhov, A. G., Schaefer, M., Harteneck, C., Gudermann, T., & Schultz, G. (1999). Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature, 397(6716), 259–263. https://doi.org/10.1038/16711Homma, Y., Takenawa, T., Emori, Y., Sorimachi, H., & Suzuki, K. (1989). Tissue- and cell type-specific expression of mRNAS for four types of inositol phospholipid-specific phospholipase C. Biochemical and Biophysical Research Communications, 164(1), 406–412. https://doi.org/10.1016/0006-291X(89)91734-8Honore, T., Davies, S., Drejer, J., Fletcher, E., Jacobsen, P., Lodge, D., & Nielsen, F. (1988). Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science, 241(4866), 701–703. https://doi.org/10.1126/science.2899909Hoxha, E., Lippiello, P., Zurlo, F., Balbo, I., Santamaria, R., Tempia, F., & Miniaci, M. C. (2018). The Emerging Role of Altered Cerebellar Synaptic Processing in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 10, 396. https://doi.org/10.3389/fnagi.2018.00396Hui, J., Zhang, J., Pu, M., Zhou, X., Dong, L., Mao, X., Shi, G., Zou, J., Wu, J., Jiang, D., & Xi, G. (2018). Modulation of GSK-3β/β-Catenin Signaling Contributes to Learning and Memory Impairment in a Rat Model of Depression. International Journal of Neuropsychopharmacology, 21(9), 858–870. https://doi.org/10.1093/ijnp/pyy040Hussain, S., Gardner, C. R., Bagust, J., & Walker, R. J. (1991). Receptor sub-types involved in responses of purkinje cell to exogenous excitatory amino acids and local electrical stimulation in cerebellar slices in the rat. Neuropharmacology, 30(10), 1029–1037. https://doi.org/10.1016/0028-3908(91)90130-4Indriati, D. W., Kamasawa, N., Matsui, K., Meredith, A. L., Watanabe, M., & Shigemoto, R. (2013). Quantitative Localization of Cav2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels. Journal of Neuroscience, 33(8), 3668–3678. https://doi.org/10.1523/JNEUROSCI.2921-12.2013Ireland, D. R., & Abraham, W. C. (2002). Group I mGluRs Increase Excitability of Hippocampal CA1 Pyramidal Neurons by a PLC-Independent Mechanism. Journal of Neurophysiology, 88(1), 107–116. https://doi.org/10.1152/jn.2002.88.1.107Itsuki, K., Imai, Y., Hase, H., Okamura, Y., Inoue, R., & Mori, M. X. (2014). PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. The Journal of General Physiology, 143(2), 183–201. https://doi.org/10.1085/jgp.201311033Jacobs, H. I. L., Hopkins, D. A., Mayrhofer, H. C., Bruner, E., van Leeuwen, F. W., Raaijmakers, W., & Schmahmann, J. D. (2018). The cerebellum in Alzheimer’s disease: Evaluating its role in cognitive decline. Brain, 141(1), 37–47. https://doi.org/10.1093/brain/awx194Jeffrey, P. L., Meaney, J., Tolhurst, O., & Weinberger, R. P. (1996). Epigenetic factors controlling the development of avian Purkinje neurons. Journal of Neuroscience Methods, 67(2), 163–175. https://doi.org/10.1016/0165-0270(96)00044-1Jiang, H., Wu, D., & Simon, M. I. (1994). Activation of phospholipase C beta 4 by heterotrimeric GTP-binding proteins. The Journal of Biological Chemistry, 269(10), 7593–7596.Jin, R., Horning, M., Mayer, M. L., & Gouaux, E. (2002). Mechanism of Activation and Selectivity in a Ligand-Gated Ion Channel: Structural and Functional Studies of GluR2 and Quisqualate. Biochemistry, 41(52), 15635–15643. https://doi.org/10.1021/bi020583kJope, R. S. (1999). Anti-bipolar therapy: Mechanism of action of lithium. Molecular Psychiatry, 4(2), 117–128. https://doi.org/10.1038/sj.mp.4000494Kamato, D., Mitra, P., Davis, F., Osman, N., Chaplin, R., Cabot, P. J., Afroz, R., Thomas, W., Zheng, W., Kaur, H., Brimble, M., & Little, P. J. (2017). Gaq proteins: Molecular pharmacology and therapeutic potential. Cellular and Molecular Life Sciences, 74(8), 1379–1390. https://doi.org/10.1007/s00018-016-2405-9Kamp, T. J., & Hell, J. W. (2000). Regulation of Cardiac L-Type Calcium Channels by Protein Kinase A and Protein Kinase C. Circulation Research, 87(12), 1095–1102. https://doi.org/10.1161/01.RES.87.12.1095Kan, W., Adjobo-Hermans, M., Burroughs, M., Faibis, G., Malik, S., Tall, G. G., & Smrcka, A. V. (2014). M3 Muscarinic Receptor Interaction with Phospholipase C β3 Determines Its Signaling Efficiency. Journal of Biological Chemistry, 289(16), 11206–11218. https://doi.org/10.1074/jbc.M113.538546Kano, M., & Watanabe, T. (2017). Type-1 metabotropic glutamate receptor signaling in cerebellar Purkinje cells in health and disease. F1000Research, 6, 416. https://doi.org/10.12688/f1000research.10485.1Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10(3), 381–391. https://doi.org/10.1016/S0959-4388(00)00092-1Kaupp, U. B., & Seifert, R. (2002). Cyclic Nucleotide-Gated Ion Channels. Physiological Reviews, 82(3), 769–824. https://doi.org/10.1152/physrev.00008.2002Kim, H.-H., Lee, K.-H., Lee, D., Han, Y.-E., Lee, S.-H., Sohn, J.-W., & Ho, W.-K. (2015). Costimulation of AMPA and Metabotropic Glutamate Receptors Underlies Phospholipase C Activation by Glutamate in Hippocampus. Journal of Neuroscience, 35(16), 6401–6412. https://doi.org/10.1523/JNEUROSCI.4208-14.2015Kitamura, K., & Kano, M. (2013). Dendritic calcium signaling in cerebellar Purkinje cell. Neural Networks, 47, 11–17. https://doi.org/10.1016/j.neunet.2012.08.001Klein, P. S., & Melton, D. A. (1996). A molecular mechanism for the effect of lithium on development. Proceedings of the National Academy of Sciences, 93(16), 8455–8459. https://doi.org/10.1073/pnas.93.16.8455Knōpfel, T., Anchisi, D., Alojado, M. E., Tempia, F., & Strata, P. (2000). Elevation of intradendritic sodium concentration mediated by synaptic activation of metabotropic glutamate receptors in cerebellar Purkinje cells: Sodium signalling mediated by mGluR1 EPSC. European Journal of Neuroscience, 12(6), 2199–2204. https://doi.org/10.1046/j.1460-9568.2000.00122.xKnōpfel, T., & Grandes, P. (2002). Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. The Cerebellum, 1(1), 19–26. https://doi.org/10.1007/BF02941886Kovacsics, C. E., & Gould, T. D. (2010). Shock-induced aggression in mice is modified by lithium. Pharmacology Biochemistry and Behavior, 94(3), 380–386. https://doi.org/10.1016/j.pbb.2009.09.020Krug, J. T., Klein, A. K., Purvis, E. M., Ayala, K., Mayes, M. S., Collins, L., Fisher, M. P. A., & Ettenberg, A. (2019). Effects of chronic lithium exposure in a modified rodent ketamine-induced hyperactivity model of mania. Pharmacology Biochemistry and Behavior, 179, 150–155. https://doi.org/10.1016/j.pbb.2019.01.003Landinez, M. P. (2016). Evaluación fisiológica de los efectos del litio sobre la movilización de calcio intracelular en la línea celular HEK 293. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá. Recuperado de https://repositorio.unal.edu.co/handle/unal/56608Lauritsen, B. J., Mellerup, E. T., Plenge, P., Rasmussen, S., Vestergaard, P., & Schou, M. (1981). Serum lithium concentrations around the clock with different treatment regimens and the diurnal variation of the renal lithium clearance. Acta Psychiatrica Scandinavica, 64(4), 314–319. https://doi.org/10.1111/j.1600-0447.1981.tb00788.xLeal, G., Bramham, C. R., & Duarte, C. B. (2017). BDNF and Hippocampal Synaptic Plasticity. In Vitamins and Hormones (Vol. 104, pp. 153–195). Elsevier. https://doi.org/10.1016/bs.vh.2016.10.004Lee, S. P., So, C. H., Rashid, A. J., Varghese, G., Cheng, R., Lan a, A. J., O’Dowd, B. F., & George, S. R. (2004). Dopamine D1 and D2 Receptor Co-activation Generates a Novel Phospholipase C-mediated Calcium Signal. Journal of Biological Chemistry, 279(34), 35671–35678. https://doi.org/10.1074/jbc.M401923200Li, P. P., Young, L. T., Tam, Y. K., Sibony, D., & Warsh, J. J. (1993). Effects of chronic lithium and carbamazepine treatment on G-protein subunit expression in rat cerebral cortex. Biological Psychiatry, 34(3), 162–170. https://doi.org/10.1016/0006-3223(93)90387-SLichtenegger, M., Tiapko, O., Svobodova, B., Stockner, T., Glasnov, T. N., Schreibmayer, W., Platzer, D., de la Cruz, G. G., Krenn, S., Schober, R., Shrestha, N., Schindl, R., Romanin, C., & Groschner, K. (2018). An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nature Chemical Biology, 14(4), 396–404. https://doi.org/10.1038/s41589-018-0015-6Linden, D., Dickinson, M. H., Smeyne, M., & Connor, J. A. (1991). A long-term depression of AMPA currents in cultured cerebellar purkinje neurons. Neuron, 7(1), 81–89. https://doi.org/10.1016/0896-6273(91)90076-CLinden, D. J., Smeyne, M., & Connor, J. A. (1994a). Trans-ACPD, a metabotropic receptor agonist, produces calcium mobilization and an inward current in cultured cerebellar Purkinje neurons. Journal of Neurophysiology, 71(5), 1992–1998. https://doi.org/10.1152/jn.1994.71.5.1992Linden, D. J. (1994b). Input-specific induction of cerebellar long-term depression does not require presynaptic alteration. Learning & Memory (Cold Spring Harbor, N.Y.), 1(2), 121–128.Llano, I., Dreessen, J., Kano, M., & Konnerth, A. (1991). Intradendritic release of calcium induced by glutamate in cerebellar purkinje cells. Neuron, 7(4), 577–583. https://doi.org/10.1016/0896-6273(91)90370-FLlinás, R., & Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. The Journal of Physiology, 305(1), 197–213. https://doi.org/10.1113/jphysiol.1980.sp013358Lo Vasco, V. R. (2012). Phosphoinositide pathway and the signal transduction network in neural development. Neuroscience Bulletin, 28(6), 789–800. https://doi.org/10.1007/s12264-012-1283-xLongone, P., Impagnatiello, F., Mienville, J.-M., Costa, E., & Guidotti, A. (1998). Changes in AMPA Receptor-Spliced Variant Expression and Shift in AMPA Receptor Spontaneous Desensitization Pharmacology During Cerebellar Granule Cell Maturation In Vitro. Journal of Molecular Neuroscience, 11(1), 23–42. https://doi.org/10.1385/JMN:11:1:23Louiset, E., Duparc, C., Lenglet, S., Gomez-Sanchez, C. E., & Lefebvre, H. (2017). Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells. Molecular and Cellular Endocrinology, 441, 99–107. https://doi.org/10.1016/j.mce.2016.10.008Lupo, M., Olivito, G., Gragnani, A., Saettoni, M., Siciliano, L., Pancheri, C., Panfili, M., Bozzali, M., Delle Chiaie, R., & Leggio, M. (2021). Comparison of Cerebellar Grey Matter Alterations in Bipolar and Cerebellar Patients: Evidence from Voxel-Based Analysis. International Journal of Molecular Sciences, 22(7), 3511. https://doi.org/10.3390/ijms22073511Machado-Vieira, R., Manji, H. K., & Zarate Jr, C. A. (2009). The role of lithium in the treatment of bipolar disorder: Convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disorders, 11, 92–109. https://doi.org/10.1111/j.1399-5618.2009.00714.xMaguschak, K. A., & Ressler, K. J. (2008). β-catenin is required for memory consolidation. Nature Neuroscience, 11(11), 1319–1326. https://doi.org/10.1038/nn.2198Makoff, A. J., Phillips, T., Pilling, C., & Emson, P. (1997). Expression of a novel splice variant of human mGluR1 in the cerebellum: NeuroReport, 8(13), 2943–2947. https://doi.org/10.1097/00001756-199709080-00027Mantilla, F. A. (2021). Implementación de un cultivo neuronal primario como modelo para el estudio de mecanismos de modulación sobre la vía de señalización de los fosfoinositoles. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá.Man, H.-Y., Sekine-Aizawa, Y., & Huganir, R. L. (2007). Regulation of -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proceedings of the National Academy of Sciences, 104(9), 3579–3584. https://doi.org/10.1073/pnas.0611698104Manto, M., Bower, J. M., Conforto, A. B., Delgado-Garc a, J. M., da Guarda, S. N. F., Gerwig, M., Habas, C., Hagura, N., Ivry, R. B., Mari n, P., Molinari, M., Naito, E., Nowak, D. A., Oulad Ben Taib, N., Pelisson, D., Tesche, C. D., Tilikete, C., & Timmann, D. (2012). Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement. The Cerebellum, 11(2), 457–487. https://doi.org/10.1007/s12311-011-0331-9Marzban, H., Chung, S.-H., Pezhouh, M. K., Feirabend, H., Watanabe, M., Voogd, J., & Hawkes, R. (2010). Antigenic compartmentation of the cerebellar cortex in the chicken (Gallus domesticus). The Journal of Comparative Neurology, 518(12), 2221–2239. https://doi.org/10.1002/cne.22328Mateos, J. M., Ben tez, R., Elezgarai, I., Azkue, J. J., L zaro, E., Osorio, A., Bilbao, A., Do ate, F., Sarr a, R., Conquet, F., Ferraguti, F., Kuhn, R., Kn pfel, T., & Grandes, P. (2000). Immunolocalization of the mGluR1b Splice Variant of the Metabotropic Glutamate Receptor 1 at Parallel Fiber-Purkinje Cell Synapses in the Rat Cerebellar Cortex. Journal of Neurochemistry, 74(3), 1301–1309. https://doi.org/10.1046/j.1471-4159.2000.741301.xMcDonald, A. J. (1982). Neurons of the lateral and basolateral amygdaloid nuclei: A golgi study in the rat. The Journal of Comparative Neurology, 212(3), 293–312. https://doi.org/10.1002/cne.902120307Mizuno, N., & Itoh, H. (2009). Functions and Regulatory Mechanisms of Gq-Signaling Pathways. Neurosignals, 17(1), 42–54. https://doi.org/10.1159/000186689Mori-Okamoto, J., Okamoto, K., & Tatsuno, J. (1993). Intracellular Mechanisms Underlying the Suppression of AMPA Responses by trans-ACPD in Cultured Chick Purkinje Neurons. Molecular and Cellular Neuroscience, 4(4), 375–386. https://doi.org/10.1006/mcne.1993.1047Nakamura, T., Nakamura, K., Lasser-Ross, N., Barbara, J.-G., Sandler, V. M., & Ross, W. N. (2000). Inositol 1,4,5-Trisphosphate (IP3)-Mediated Ca2+ Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA1 Pyramidal Neurons. The Journal of Neuroscience, 20(22), 8365–8376. https://doi.org/10.1523/JNEUROSCI.20-22-08365.2000Netzeband, J. G., Parsons, K. L., Sweeney, D. D., & Gruol, D. L. (1997). Metabotropic Glutamate Receptor Agonists Alter Neuronal Excitability and Ca 2+ Levels via the Phospholipase C Transduction Pathway in Cultured Purkinje Neurons. Journal of Neurophysiology, 78(1), 63–75. https://doi.org/10.1152/jn.1997.78.1.63Newman, M. E., Lichtenberg, P., & Belmaker, R. H. (1985). Effects of lithium in vitro on noradrenaline-induced cyclic AMP accumulation in rat cortical slices after reserpine-induced supersensitivity. Neuropharmacology, 24(4), 353–355. https://doi.org/10.1016/0028-3908(85)90144-3Nolen, W. A., Licht, R. W., Young, A. H., Malhi, G. S., Tohen, M., Vieta, E., Kupka, R. W., Zarate, C., Nielsen, R. E., Baldessarini, R. J., Severus, E., & the ISBD/IGSLI Task Force on the treatment with lithium. (2019). What is the optimal serum level for lithium in the maintenance treatment of bipolar disorder? A systematic review and recommendations from the ISBD/IGSLI Task Force on treatment with lithium. Bipolar Disorders, 21(5), 394–409. https://doi.org/10.1111/bdi.12805Orlandi, C., La Via, L., Bonini, D., Mora, C., Russo, I., Barbon, A., & Barlati, S. (2011). AMPA Receptor Regulation at the mRNA and Protein Level in Rat Primary Cortical Cultures. PLoS ONE, 6(9), e25350. https://doi.org/10.1371/journal.pone.0025350Perkins, E. M., Clarkson, Y. L., Suminaite, D., Lyndon, A. R., Tanaka, K., Rothstein, J. D., Skehel, P. A., Wyllie, D. J. A., & Jackson, M. (2018). Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Human Molecular Genetics, 27(15), 2614–2627. https://doi.org/10.1093/hmg/ddy169Pires, R. S., Real, C. C., Hayashi, M. A. F., & Britto, L. R. G. (2006). Ontogeny of subunits 2 and 3 of the AMPA-type glutamate receptors in Purkinje cells of the developing chick cerebellum. Brain Research, 1096(1), 11–19. https://doi.org/10.1016/j.brainres.2006.04.040Platman, S. R. (1968). Biochemical Aspects of Lithium in Affective Disorders. Archives of General Psychiatry, 19(6), 659. https://doi.org/10.1001/archpsyc.1968.01740120019003Preskorn, S. H., Burke, M. J., & Fast, G. A. (1993). Therapeutic Drug Monitoring: Principles and Practice. Psychiatric Clinics of North America, 16(3), 611–645. https://doi.org/10.1016/S0193-953X(18)30167-9Prestori, F., Mapelli, L., & D’Angelo, E. (2019). Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit. Frontiers in Molecular Neuroscience, 12, 267. https://doi.org/10.3389/fnmol.2019.00267Raghu, P., Joseph, A., Krishnan, H., Singh, P., & Saha, S. (2019). Phosphoinositides: Regulators of Nervous System Function in Health and Disease. Frontiers in Molecular Neuroscience, 12, 208. https://doi.org/10.3389/fnmol.2019.00208Ramikie, T. S., Nyilas, R., Bluett, R. J., Gamble-George, J. C., Hartley, N. D., Mackie, K., Watanabe, M., Katona, I., & Patel, S. (2014). Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization at Central Amygdala Glutamatergic Synapses. Neuron, 81(5), 1111–1125. https://doi.org/10.1016/j.neuron.2014.01.012Rhee, S. G., & Choi, K. D. (1992). Regulation of inositol phospholipid-specific phospholipase C isozymes. The Journal of Biological Chemistry, 267(18), 12393–12396.Rogers, T. D., McKimm, E., Dickson, P. E., Goldowitz, D., Blaha, C. D., & Mittleman, G. (2013). Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/fnsys.2013.00015Ross, C. A., MacCumber, M. W., Glatt, C. E., & Snyder, S. H. (1989a). Brain phospholipase C isozymes: Differential mRNA localizations by in situ hybridization. Proceedings of the National Academy of Sciences, 86(8), 2923–2927. https://doi.org/10.1073/pnas.86.8.2923Ross, C. A., Meldolesi, J., Milner, T. A., Satoh, T., Supattapone, S., & H. Snyder, S. (1989b). Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature, 339(6224), 468–470. https://doi.org/10.1038/339468a0Sacchetto, R., Cliffer, K. D., Podini, P., Villa, A., Christensen, B. N., & Volpe, P. (1995). Intracellular Ca2+ stores in chick cerebellum Purkinje neurons: Ontogenetic and functional studies. American Journal of Physiology-Cell Physiology, 269(5), C1219–C1227. https://doi.org/10.1152/ajpcell.1995.269.5.C1219Sade, Y., Toker, L., Kara, N. Z., Einat, H., Rapoport, S., Moechars, D., Berry, G. T., Bersudsky, Y., & Agam, G. (2016). IP3 accumulation and/or inositol depletion: Two downstream lithium’s effects that may mediate its behavioral and cellular changes. Translational Psychiatry, 6(12), e968–e968. https://doi.org/10.1038/tp.2016.217Saiardi, A., & Mudge, A. W. (2018). Lithium and fluoxetine regulate the rate of phosphoinositide synthesis in neurons: A new view of their mechanisms of action in bipolar disorder. Translational Psychiatry, 8(1), 175. https://doi.org/10.1038/s41398-018-0235-2Sánchez, C. A. (2019). Estudio fisiológico de los efectos del litio sobre la cascada de señalización mediada por la fosfolipasa C en modelos neuronales. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá. Recuperado de https://repositorio.unal.edu.co/handle/unal/76779Sarna, J. R., Marzban, H., Watanabe, M., & Hawkes, R. (2006). Complementary stripes of phospholipase Cβ3 and Cβ4 expression by Purkinje cell subsets in the mouse cerebellum. The Journal of Comparative Neurology, 496(3), 303–313. https://doi.org/10.1002/cne.20912Sassone-Corsi, P. (2012). The Cyclic AMP Pathway. Cold Spring Harbor Perspectives in Biology, 4(12), a011148–a011148. https://doi.org/10.1101/cshperspect.a011148Schilling, K., Dickinson, M. H., Connor, J. A., & Morgan, J. I. (1991). Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron, 7(6), 891–902. https://doi.org/10.1016/0896-6273(91)90335-WSchoepp, D. D., Jane, D. E., & Monn, J. A. (1999). Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 38(10), 1431–1476. https://doi.org/10.1016/S0028-3908(99)00092-1Shinn, A. K., Roh, Y. S., Ravichandran, C. T., Baker, J. T., ngür, D., & Cohen, B. M. (2017). Aberrant Cerebellar Connectivity in Bipolar Disorder With Psychosis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(5), 438–448. https://doi.org/10.1016/j.bpsc.2016.07.002Shorter, E. (2009). The history of lithium therapy. Bipolar Disorders, 11, 4–9. https://doi.org/10.1111/j.1399-5618.2009.00706.xSid, H., & Schusser, B. (2018). Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Frontiers in Genetics, 9, 456. https://doi.org/10.3389/fgene.2018.00456Sillitoe, R. V., Marzban, H., Larouche, M., Zahedi, S., Affanni, J., & Hawkes, R. (2005). Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. In Progress in Brain Research (Vol. 148, pp. 283–297). Elsevier. https://doi.org/10.1016/S0079-6123(04)48022-4Smrcka, A. V., & Sternweis, P. C. (1993). Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. The Journal of Biological Chemistry, 268(13), 9667–9674.Song, J., Sj lander, A., Joas, E., Bergen, S. E., Runeson, B., Larsson, H., Land n, M., & Lichtenstein, P. (2017). Suicidal Behavior During Lithium and Valproate Treatment: A Within-Individual 8-Year Prospective Study of 50,000 Patients With Bipolar Disorder. American Journal of Psychiatry, 174(8), 795–802. https://doi.org/10.1176/appi.ajp.2017.16050542Stambolic, V., Ruel, L., & Woodgett, J. R. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells. Current Biology, 6(12), 1664–1669. https://doi.org/10.1016/S0960-9822(02)70790-2Staub, C., Vranesic, I., & Kn pfel, T. (1992). Responses to Metabotropic Glutamate Receptor Activation in Cerebellar Purkinje Cells: Induction of an Inward Current. European Journal of Neuroscience, 4(9), 832–839. https://doi.org/10.1111/j.1460-9568.1992.tb00193.xStoodley, C. J., & Limperopoulos, C. (2016). Structure–function relationships in the developing cerebellum: Evidence from early-life cerebellar injury and neurodevelopmental disorders. Seminars in Fetal and Neonatal Medicine, 21(5), 356–364. https://doi.org/10.1016/j.siny.2016.04.010Stoodley, C., & Schmahmann, J. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 44(2), 489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039Streb, H., Irvine, R. F., Berridge, M. J., & Schulz, I. (1983). Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature, 306(5938), 67–69. https://doi.org/10.1038/306067a0Sugiyama, T., Hirono, M., Suzuki, K., Nakamura, Y., Aiba, A., Nakamura, K., Nakao, K., Katsuki, M., & Yoshioka, T. (1999). Localization of Phospholipase Cβ Isozymes in the Mouse Cerebellum. Biochemical and Biophysical Research Communications, 265(2), 6Supattapone, S., Worley, P. F., Baraban, J. M., & Snyder, S. H. (1988). Solubilization, purification, and characterization of an inositol trisphosphate receptor. The Journal of Biological Chemistry, 263(3), 1530–1534.Szczepankiewicz, D., Celichowski, P., Kołodziejski, P. A., Pruszyńska-Oszmałek, E., Sassek, M., Zakowicz, P., Banach, E., Langwiński, W., Sakrajda, K., Nowakowska, J., Socha, M., Bukowska-Olech, E., Pawlak, J., Twarowska-Hauser, J., Nogowski, L., Rybakowski, J. K., & Szczepankiewicz, A. (2021). Transcriptome Changes in Three Brain Regions during Chronic Lithium Administration in the Rat Models of Mania and Depression. International Journal of Molecular Sciences, 22(3), 1148. https://doi.org/10.3390/ijms22031148Tabata, T., Sawada, S., Araki, K., Bono, Y., Furuya, S., & Kano, M. (2000). A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. Journal of Neuroscience Methods, 104(1), 45–53. https://doi.org/10.1016/S0165-0270(00)00323-XTaguchi, K., Ueda, M., & Kubo, T. (1997). Effects of cAMP and cGMP on L-Type Calcium Channel Currents in Rat Mesenteric Artery Cells. Japanese Journal of Pharmacology, 74(2), 179–186. https://doi.org/10.1016/S0021-5198(19)31407-6Takagi, H., Takimizu, H., de Barry, J., Kudo, Y., & Yoshioka, T. (1992). The expression of presynaptic t-ACPD receptor in rat cerebellum. Biochemical and Biophysical Research Communications, 189(3), 1287–1295. https://doi.org/10.1016/0006-291X(92)90213-5Tanaka, O., & Kondo, H. (1994). Localization of mRNAs for three novel members (β3, β4 and γ2) of phospholipase C family in mature rat brain. Neuroscience Letters, 182(1), 17–20. https://doi.org/10.1016/0304-3940(94)90194-5Tang, T., Xiao, J., Suh, C. Y., Burroughs, A., Cerminara, N. L., Jia, L., Marshall, S. P., Wise, A. K., Apps, R., Sugihara, I., & Lang, E. J. (2017). Heterogeneity of Purkinje cell simple spike-complex spike interactions: Zebrin- and non-zebrin-related variations: Simple spike-complex spike interactions. The Journal of Physiology, 595(15), 5341–5357. https://doi.org/10.1113/JP274252Thul, P. J., Äkesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., Asplund, A., Björk, L., Breckels, L. M., Bäckström, A., Danielsson, F., Fagerberg, L., Fall, J., Gatto, L., Gnann, C., Hober, S., Hjelmare, M., Johansson, F., Lundberg, E. (2017). A subcellular map of the human proteome. Science, 356(6340), eaal3321. https://doi.org/10.1126/science.aal332Tjaden, J., Pieczora, L., Wach, F., Theiss, C., & Theis, V. (2018). Cultivation of Purified Primary Purkinje Cells from Rat Cerebella. Cellular and Molecular Neurobiology, 38(7), 1399–1412. https://doi.org/10.1007/s10571-018-0606-5Tömböl, T., Davies, D. C., Németh, A., Sebestény, T., & Alpár, A. (2000). A comparative Golgi study of chicken (Gallus domesticus) and homing pigeon (Columba livia) hippocampus. Anatomy and Embryology, 201(2), 85–101. https://doi.org/10.1007/PL00008235Tomlinson, S. P., Davis, N. J., Morgan, H. M., & Bracewell, R. M. (2014). Cerebellar Contributions to Verbal Working Memory. The Cerebellum, 13(3), 354–361. https://doi.org/10.1007/s12311-013-0542-3Tosevski, J., Malikovic, A., Mojsilovic-Petrovic, J., Lackovic, V., Peulic, M., Sazdanovic, P., & Alexopulos, C. (2002). Types of neurons and some dendritic patterns of basolateral amygdala in humans—A Golgi study. Annals of Anatomy - Anatomischer Anzeiger, 184(1), 93–103. https://doi.org/10.1016/S0940-9602(02)80042-5Tringham, E. W., Payne, C. E., Dupere, J. R. B., & Usowicz, M. M. (2007). Maturation of rat cerebellar Purkinje cells reveals an atypical Ca 2+ channel current that is inhibited by ω-agatoxin IVA and the dihydropyridine (−)-( S )-Bay K8644: Ca 2+ channels in mature and immature cerebellar Purkinje neurons. The Journal of Physiology, 578(3), 693–714. https://doi.org/10.1113/jphysiol.2006.121905Tsien, R. Y. (1981). A non-disruptive technique for loading calcium buffers and indicators into cells. Nature, 290(5806), 527–528. https://doi.org/10.1038/290527a0Tsutsumi, S., Yamazaki, M., Miyazaki, T., Watanabe, M., Sakimura, K., Kano, M., & Kitamura, K. (2015). Structure–Function Relationships between Aldolase C/Zebrin II Expression and Complex Spike Synchrony in the Cerebellum. The Journal of Neuroscience, 35(2), 843–852. https://doi.org/10.1523/JNEUROSCI.2170-14.2015Vaca, L., & Kunze, D. L. (1995). IP3-activated Ca2+ channels in the plasma membrane of cultured vascular endothelial cells. American Journal of Physiology-Cell Physiology, 269(3), C733–C738. https://doi.org/10.1152/ajpcell.1995.269.3.C733Venkatachalam, K., Ma, H.-T., Ford, D. L., & Gill, D. L. (2001). Expression of Functional Receptor-coupled TRPC3 Channels in DT40 Triple Receptor InsP3 knockout Cells. Journal of Biological Chemistry, 276(36), 33980–33985. https://doi.org/10.1074/jbc.C100321200Vranesic, I., Batchelor, A., G hwiler, B. H., Garthwaite, J., Staub, C., & Kn pfel, T. (1991). Trans-ACPD-induced Ca2+ signals in cerebellar Purkinje cells: NeuroReport, 2(12), 759–762. https://doi.org/10.1097/00001756-199112000-00007Walloe, S., Pakkenberg, B., & Fabricius, K. (2014). Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00508Walton, P. D., Airey, J. A., Sutko, J. L., Beck, C. F., Mignery, G. A., Südhof, T. C., Deerinck, T. J., & Ellisman, M. H. (1991). Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. The Journal of Cell Biology, 113(5), 1145–1157. https://doi.org/10.1083/jcb.113.5.1145Wang, J., Liu, P., Zhang, A., Yang, C., Liu, S., Wang, J., Xu, Y., & Sun, N. (2021). Specific Gray Matter Volume Changes of the Brain in Unipolar and Bipolar Depression. Frontiers in Human Neuroscience, 14, 592419. https://doi.org/10.3389/fnhum.2020.592419Watanabe, M., Nakamura, M., Sato, K., Kano, M., Simon, M. I., & Inoue, Y. (1998). Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cβ in mouse brain: PLCβ1-4 mRNAs in developing and adult mouse brain. European Journal of Neuroscience, 10(6), 2016–2025. https://doi.org/10.1046/j.1460-9568.1998.00213.xWilkie, T. M., Scherle, P. A., Strathmann, M. P., Slepak, V. Z., & Simon, M. I. (1991). Characterization of G-protein alpha subunits in the Gq class: Expression in murine tissues and in stromal and hematopoietic cell lines. Proceedings of the National Academy of Sciences, 88(22), 10049–10053. https://doi.org/10.1073/pnas.88.22.10049Womack, M. D., Walker, J. W., & Khodakhah, K. (2000). Impaired Calcium Release in Cerebellar Purkinje Neurons Maintained in Culture. The Journal of General Physiology, 115(3), 339–346. https://doi.org/10.1085/jgp.115.3.339Won, E., & Kim, Y.-K. (2017). An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. International Journal of Molecular Sciences, 18(12), 2679. https://doi.org/10.3390/ijms18122679Wu, B., Blot, F. G., Wong, A. B., Os rio, C., Adolfs, Y., Pasterkamp, R. J., Hartmann, J., Becker, E. B., Boele, H.-J., De Zeeuw, C. I., & Schonewille, M. (2019). TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. ELife, 8, e45590. https://doi.org/10.7554/eLife.45590Wu, D., Jiang, H., Katz, A., & Simon, M. I. (1993). Identification of critical regions on phospholipase C-beta 1 required for activation by G-proteins. The Journal of Biological Chemistry, 268(5), 3704–3709.Wu, D., Katz, A., Lee, C. H., & Simon, M. I. (1992). Activation of phospholipase C by alpha 1-adrenergic receptors is mediated by the alpha subunits of Gq family. The Journal of Biological Chemistry, 267(36), 25798–25802.Xiao, J., Cerminara, N. L., Kotsurovskyy, Y., Aoki, H., Burroughs, A., Wise, A. K., Luo, Y., Marshall, S. P., Sugihara, I., Apps, R., & Lang, E. J. (2014). Systematic Regional Variations in Purkinje Cell Spiking Patterns. PLoS ONE, 9(8), e105633. https://doi.org/10.1371/journal.pone.0105633Yasuda, S., Liang, M.-H., Marinova, Z., Yahyavi, A., & Chuang, D.-M. (2009). The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Molecular Psychiatry, 14(1), 51–59. https://doi.org/10.1038/sj.mp.4002099Yuzaki, M., & Mikoshiba, K. (1992). Pharmacological and immunocytochemical characterization of metabotropic glutamate receptors in cultured Purkinje cells. The Journal of Neuroscience, 12(11), 4253–4263. https://doi.org/10.1523/JNEUROSCI.12-11-04253.1992Zhang, Y.-N., Li, H., Shen, Z.-W., Xu, C., Huang, Y.-J., & Wu, R.-H. (2021). Healthy individuals vs patients with bipolar or unipolar depression in gray matter volume. World Journal of Clinical Cases, 9(6), 1304–1317. https://doi.org/10.12998/wjcc.v9.i6.1304Zhao, G., Neeb, Z. P., Leo, M. D., Pachuau, J., Adebiyi, A., Ouyang, K., Chen, J., & Jaggar, J. H. (2010). Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. Journal of General Physiology, 136(3), 283–291. https://doi.org/10.1085/jgp.201010453Zhou, H., Lin, Z., Voges, K., Ju, C., Gao, Z., Bosman, L. W., Ruigrok, T. J., Hoebeek, F. E., De Zeeuw, C. I., & Schonewille, M. (2014). Cerebellar modules operate at different frequencies. ELife, 3, e02536. https://doi.org/10.7554/eLife.02536Zhou, Z., Wang, Y., Tan, H., Bharti, V., Che, Y., & Wang, J.-F. (2015). Chronic treatment with mood stabilizer lithium inhibits amphetamine-induced risk-taking manic-like behaviors. Neuroscience Letters, 603, 84–88. https://doi.org/10.1016/j.neulet.2015.07.027EstudiantesInvestigadoresPúblico generalORIGINAL1014256546.2021.pdf1014256546.2021.pdfTesis de Maestría en Biologíaapplication/pdf1626616https://repositorio.unal.edu.co/bitstream/unal/81226/1/1014256546.2021.pdf584bd8a816e82875f24536ed28854bd4MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-84074https://repositorio.unal.edu.co/bitstream/unal/81226/2/license.txt8153f7789df02f0a4c9e079953658ab2MD52THUMBNAIL1014256546.2021.pdf.jpg1014256546.2021.pdf.jpgGenerated Thumbnailimage/jpeg5299https://repositorio.unal.edu.co/bitstream/unal/81226/3/1014256546.2021.pdf.jpg4f530172cab2795d2a615e6257e72abbMD53unal/81226oai:repositorio.unal.edu.co:unal/812262023-08-02 23:04:10.676Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KClBhcmEgdHJhYmFqb3MgZGVwb3NpdGFkb3MgcG9yIHN1IHByb3BpbyBhdXRvcjoKIApBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCB5byBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVbmFsIGVsIGRlcmVjaG8gYSBhbG1hY2VuYXJsb3MgeSBtYW50ZW5lcmxvcyBkaXNwb25pYmxlcyBlbiBsw61uZWEgZGUgbWFuZXJhIGdyYXR1aXRhLiBEZWNsYXJvIHF1ZSBsYSBvYnJhIGVzIGRlIG1pIHByb3BpZWRhZCBpbnRlbGVjdHVhbCB5IHF1ZSBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVuYWwgbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcywgaW5kaWNlc3MgeSBidXNjYWRvcmVzIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBzdSBkaWZ1c2nDs24uIGYpIExvcyBhdXRvcmVzIGFjZXB0YW4gcXVlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHB1ZWRhIGNvbnZlcnRpciBlbCBkb2N1bWVudG8gYSBjdWFscXVpZXIgbWVkaW8gbyBmb3JtYXRvIHBhcmEgcHJvcMOzc2l0b3MgZGUgcHJlc2VydmFjacOzbiBkaWdpdGFsLiBTSSBFTCBET0NVTUVOVE8gU0UgQkFTQSBFTiBVTiBUUkFCQUpPIFFVRSBIQSBTSURPIFBBVFJPQ0lOQURPIE8gQVBPWUFETyBQT1IgVU5BIEFHRU5DSUEgTyBVTkEgT1JHQU5JWkFDScOTTiwgQ09OIEVYQ0VQQ0nDk04gREUgTEEgVU5JVkVSU0lEQUQgTkFDSU9OQUwgREUgQ09MT01CSUEsIExPUyBBVVRPUkVTIEdBUkFOVElaQU4gUVVFIFNFIEhBIENVTVBMSURPIENPTiBMT1MgREVSRUNIT1MgWSBPQkxJR0FDSU9ORVMgUkVRVUVSSURPUyBQT1IgRUwgUkVTUEVDVElWTyBDT05UUkFUTyBPIEFDVUVSRE8uIAoKUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IAoKRGVjbGFybyBxdWUgZWwgZ3J1cG8gZGUgYXJjaGl2b3MgZGlnaXRhbGVzIHkgbWV0YWRhdG9zIGFzb2NpYWRvcyBxdWUgZXN0b3kgYXJjaGl2YW5kbyBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIFVOKSBlcyBkZSBkb21pbmlvIHDDumJsaWNvLiBTaSBubyBmdWVzZSBlbCBjYXNvLCBhY2VwdG8gdG9kYSBsYSByZXNwb25zYWJpbGlkYWQgcG9yIGN1YWxxdWllciBpbmZyYWNjacOzbiBkZSBkZXJlY2hvcyBkZSBhdXRvciBxdWUgY29ubGxldmUgbGEgZGlzdHJpYnVjacOzbiBkZSBlc3RvcyBhcmNoaXZvcyB5IG1ldGFkYXRvcy4KTk9UQTogU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLiAqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4gCgpBbCBoYWNlciBjbGljIGVuIGVsIHNpZ3VpZW50ZSBib3TDs24sIHVzdGVkIGluZGljYSBxdWUgZXN0w6EgZGUgYWN1ZXJkbyBjb24gZXN0b3MgdMOpcm1pbm9zLiBTaSB0aWVuZSBhbGd1bmEgZHVkYSBzb2JyZSBsYSBsaWNlbmNpYSwgcG9yIGZhdm9yLCBjb250YWN0ZSBjb24gZWwgYWRtaW5pc3RyYWRvciBkZWwgc2lzdGVtYS4KClVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIC0gw5psdGltYSBtb2RpZmljYWNpw7NuIDE5LzEwLzIwMjEK |