Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application

ilustraciones, diagramas, fotografías

Autores:
Muñoz González, Ana María
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86396
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86396
https://repositorio.unal.edu.co/
Palabra clave:
Materiales Biocompatibles/análisis
Ingeniería de Tejidos/métodos
Miocardio/patología
Biocompatible Materials/analysis
Tissue Engineering/methods
Myocardium/pathology
Electrospinning
Nanofiller
Electroconductive
Polycaprolactone
Polypyrrole
Graphene
Scaffold
Tissue engineering
Electrohilado
Relleno conductor
Nanorelleno
Policaprolactona
Polipirrol
Grafeno
Andamio
Ingeniería de tejidos
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_d5dd8b0adfec5d476ea15364087bad02
oai_identifier_str oai:repositorio.unal.edu.co:unal/86396
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application
dc.title.translated.spa.fl_str_mv Evaluación de la adición de nanorrellenos conductores en andamios para aplicaciones de ingeniería de tejidos miocárdicos
title Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application
spellingShingle Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application
Materiales Biocompatibles/análisis
Ingeniería de Tejidos/métodos
Miocardio/patología
Biocompatible Materials/analysis
Tissue Engineering/methods
Myocardium/pathology
Electrospinning
Nanofiller
Electroconductive
Polycaprolactone
Polypyrrole
Graphene
Scaffold
Tissue engineering
Electrohilado
Relleno conductor
Nanorelleno
Policaprolactona
Polipirrol
Grafeno
Andamio
Ingeniería de tejidos
title_short Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application
title_full Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application
title_fullStr Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application
title_full_unstemmed Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application
title_sort Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application
dc.creator.fl_str_mv Muñoz González, Ana María
dc.contributor.advisor.spa.fl_str_mv Clavijo Grimaldo, Aleida Dianney
dc.contributor.author.spa.fl_str_mv Muñoz González, Ana María
dc.contributor.researchgroup.spa.fl_str_mv Biomecánica
dc.contributor.orcid.spa.fl_str_mv https://orcid.org/0000-0002-3191-9891
dc.contributor.cvlac.spa.fl_str_mv https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001661109
dc.subject.decs.spa.fl_str_mv Materiales Biocompatibles/análisis
Ingeniería de Tejidos/métodos
Miocardio/patología
topic Materiales Biocompatibles/análisis
Ingeniería de Tejidos/métodos
Miocardio/patología
Biocompatible Materials/analysis
Tissue Engineering/methods
Myocardium/pathology
Electrospinning
Nanofiller
Electroconductive
Polycaprolactone
Polypyrrole
Graphene
Scaffold
Tissue engineering
Electrohilado
Relleno conductor
Nanorelleno
Policaprolactona
Polipirrol
Grafeno
Andamio
Ingeniería de tejidos
dc.subject.decs.eng.fl_str_mv Biocompatible Materials/analysis
Tissue Engineering/methods
Myocardium/pathology
dc.subject.proposal.eng.fl_str_mv Electrospinning
Nanofiller
Electroconductive
Polycaprolactone
Polypyrrole
Graphene
Scaffold
Tissue engineering
dc.subject.proposal.spa.fl_str_mv Electrohilado
Relleno conductor
Nanorelleno
Policaprolactona
Polipirrol
Grafeno
Andamio
Ingeniería de tejidos
description ilustraciones, diagramas, fotografías
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-04T19:58:01Z
dc.date.available.none.fl_str_mv 2024-07-04T19:58:01Z
dc.date.issued.none.fl_str_mv 2024-06-30
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86396
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86396
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Abbasi, A. M. R., Marsalkova, M., & Militky, J. (2013). Conductometry and Size Characterization of Polypyrrole Nanoparticles Produced by Ball Milling. Journal of Nanoparticles, 2013, 1–4. https://doi.org/10.1155/2013/690407
Abdul Rahman, N., & Bahruji, H. (2022). Plastics in Biomedical Application. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 114–125). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00071-7
Agrawal, R., Shah, J., Gupta, G., Srivastava, R., Sharma, C., & Kotnala, R. (2020). Significantly high electromagnetic shielding effectiveness in polypyrrole synthesized by eco-friendly and cost-effective technique. Journal of Applied Polymer Science, 137(48), 1–12. https://doi.org/10.1002/app.49566
Ahadian, S., Zhou, Y., Yamada, S., Estili, M., Liang, X., Nakajima, K., Shiku, H., & Matsue, T. (2016). Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale, 8(13), 7075–7084. https://doi.org/10.1039/c5nr07059g
Ajith, G., Tamilarasi, G. P., Sabarees, G., Gouthaman, S., Manikandan, K., Velmurugan, V., Alagarsamy, V., & Solomon, V. R. (2023). Recent Developments in Electrospun Nanofibers as Delivery of Phytoconstituents for Wound Healing. Drugs and Drug Candidates, 2(1), 148–171. https://doi.org/10.3390/ddc2010010
Al-Abduljabbar, A., & Farooq, I. (2023). Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers, 15(1). https://doi.org/10.3390/polym15010065
myocardial repair. Cellular and Molecular Life Sciences, 69(16), 2635–2656. https://doi.org/10.1007/ Alcon, A., Cagavi Bozkulak, E., & Qyang, Y. (2012). Regenerating functional heart tissue for s00018-012-0942-4
Alegret, N., Dominguez-Alfaro, A., & Mecerreyes, D. (2019). 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules, 20(1), 73–89. https://doi.org/10.1021/acs.biomac.8b01382
Alexeev, D., Goedecke, N., Snedeker, J., & Ferguson, S. (2020). Mechanical evaluation of electrospun poly ( ε -caprolactone ) single fi bers. Materials Today Communications, 24(April), 101211. https://doi.org/10.1016/j.mtcomm.2020.101211
Amariei, N., Manea, L. R., Bertea, A. P., Bertea, A., & Popa, A. (2017). The Influence of Polymer Solution on the Properties of Electrospun 3D Nanostructures. IOP Conference Series: Materials Science and Engineering, 209(1). https://doi.org/10.1088/1757-899X/209/1/012092
Amaya, J. B. (2018). Estudio De La Degradabilidad Del Pcl (Policaprolactona) Dosificado Con La Lignina De La Fibra De Banano. Revista Iberoamericana de Polimeros y MAteriales, 19(4), 128–141.
Ansari, R. (2006). Polypyrrole Conducting Electroactive Polymers: Synthesis and Stability Studies. E-Journal of Chemistry, 3(4), 186–201. https://doi.org/10.1155/2006/860413
Arakawa, C. K., & DeForest, C. A. (2017). Chapter 19 - Polymer Design and Development (A. Vishwakarma & J. M. B. T.-B. and E. of S. C. N. Karp (eds.); pp. 295–314). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802734-9.00019-6
Asri, N. A. N., Mahat, M. M., Zakaria, A., Safian, M. F., & Abd Hamid, U. M. (2022). Fabrication Methods of Electroactive Scaffold-Based Conducting Polymers for Tissue Engineering Application: A Review. Frontiers in Bioengineering and Biotechnology, 10(July), 1–13. https://doi.org/10.3389/fbioe.2022.876696
Avouris, P., & Dimitrakopoulos, C. (2012). Graphene: synthesis and applications. Materials Today, 15(3), 86–97. https://doi.org/https://doi.org/10.1016/S1369-7021(12)70044-5
AWIN, Mclennan, K. M., Rebelo, C. J. R., Corke, M. J., Holmes, M. A., & Constantino-Casas. (2014). Using facial expression to assess pain in sheep. 9, 92281.
Aziz, R., Falanga, M., Purenovic, J., Mancini, S., Lamberti, P., & Guida, M. (2023). A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. Nanomaterials, 13(8), 1–28. https://doi.org/10.3390/nano13081374
Baei, P., Jalili-Firoozinezhad, S., Rajabi-Zeleti, S., Tafazzoli-Shadpour, M., Baharvand, H., & Aghdami, N. (2016). Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Science and Engineering C, 63, 131–141. https://doi.org/10.1016/j.msec.2016.02.056
Bagbi, Y., Pandey, A., & Solanki, P. R. (2019). Chapter 10 - Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 275–288). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00015-X
Bahrami, S., Solouk, A., Mirzadeh, H., & Seifalian, A. M. (2019). Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Composites Part B: Engineering, 168(March), 421–431. https://doi.org/10.1016/j.compositesb.2019.03.044
Baker, S. R., Banerjee, S., Bonin, K., & Guthold, M. (2016). Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Materials Science and Engineering C, 59, 203–212. https://doi.org/10.1016/j.msec.2015.09.102
Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015
Barba Evia, J. R. (2009). Cardiomioplastia: El papel de las células madre en la regeneración miocárdica. Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio, 56(1), 50–65.
Bejaoui, M., Galai, H., Touati, F., & Kouass, S. (2021). Multifunctional Roles of PVP as a Versatile Biomaterial in Solid State. In U. Ahmad (Ed.), Dosage Forms. IntechOpen. https://doi.org/10.5772/intechopen.99431
Bellet, P., Gasparotto, M., Pressi, S., Fortunato, A., Scapin, G., Mba, M., Menna, E., & Filippini, F. (2021). Graphene-Based Scaffolds for Regenerative Medicine
Beltran-Vargas, N. E., Peña-Mercado, E., Sánchez-Gómez, C., Garcia-Lorenzana, M., Ruiz, J. C., Arroyo-Maya, I., Huerta-Yepez, S., & Campos-Terán, J. (2022). Sodium Alginate/Chitosan Scaffolds for Cardiac Tissue Engineering: The Influence of Its Three-Dimensional Material Preparation and the Use of Gold Nanoparticles. Polymers, 14(16). https://doi.org/10.3390/polym14163233
Bertuoli, P. T., Ordono, J., Armelin, E., Pérez-Amodio, S., Baldissera, A. F., Ferreira, C. A., Puiggalí, J., Engel, E., Del Valle, L. J., & Alemán, C. (2019). Electrospun Conducting and Biocompatible Uniaxial and Core-Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 4(2), 3660–3672. https://doi.org/10.1021/acsomega.8b03411
Biscaia, S., Silva, J. C., Moura, C., Viana, T., Tojeira, A., Mitchell, G. R., Pascoal-Faria, P., Ferreira, F. C., & Alves, N. (2022). Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance. Polymers, 14(9). https://doi.org/10.3390/polym14091669
Blachowicz, T., & Ehrmann, A. (2020). Conductive electrospun nanofiber mats. Materials, 13(1). https://doi.org/10.3390/ma13010152
Bolonduro, O. A., Duffy, B. M., Rao, A. A., Black, L. D., & Timko, B. P. (2020). From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering. Nano Research, 12(1). https://doi.org/10.1007/s12274-020-2682-3
Borges, M. H. R., Nagay, B. E., Costa, R. C., Souza, J. G. S., Mathew, M. T., & Barão, V. A. R. (2023). Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. In Advances in Colloid and Interface Science (Vol. 314, Issue February). https://doi.org/10.1016/j.cis.2023.102860
Boroumand, S., Haeri, A., Nazeri, N., & Rabbani, S. (2021). Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds and Pharmacological Agents. Iranian Journal of Pharmaceutical Research, 20(4), 467–496. https://doi.org/10.22037/IJPR.2021.114730.15012
Boutry, C. M., Müller, M., & Hierold, C. (2012). Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy). Materials Science and Engineering C, 32(6), 1610–1620. https://doi.org/10.1016/j.msec.2012.04.051
Bronzino, J. D. (2006). Tissue Engineering and Artificial Organs (1st ed.) (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9781420003871
Brugnara, M., Della Volpe, C., Siboni, S., & Zeni, D. (2006). Contact angle analysis on polymethylmethacrylate and commercial wax by using an environmental scanning electron microscope. Scanning, 28(5), 267–273. https://doi.org/10.1002/sca.4950280504
Butt, H.-J., & Kappl, M. (2018). Surface and Interfacial Forces. Wiley VCH.
Camacho, P., Fan, H., Liu, Z., & He, J. Q. (2016). Small mammalian animal models of heart disease. American Journal of Cardiovascular Disease, 6(3), 70–80. https://doi.org/10.3390/jcdd3040030
Camman, M., Joanne, P., Agbulut, O., & Hélary, C. (2022). 3D models of dilated cardiomyopathy: Shaping the chemical, physical and topographical properties of biomaterials to mimic the cardiac extracellular matrix. Bioactive Materials, 7, 275–291. https://doi.org/10.1016/j.bioactmat.2021.05.040
Centers for Disease Control and Prevention. (2022). Heart Disease Facts. https://www.cdc.gov/heartdisease/facts.htm#print
Ceretti, E., Ginestra, P. S., Ghazinejad, M., Fiorentino, A., & Madou, M. (2017). Electrospinning and characterization of polymer–graphene powder scaffolds. CIRP Annals - Manufacturing Technology, 66(1), 233–236. https://doi.org/10.1016/j.cirp.2017.04.122
Chakraborty, M. (2020). Chitosan Biopolymer on Plant Growth. Encyclopedia. https://encyclopedia.pub/entry/3639
Chang, W.-T., Chen, J.-S., Tsai, M.-H., Tsai, W.-C., Juang, J.-N., & Liu, P.-Y. (2016). Interplay of Aging and Hypertension in Cardiac Remodeling: A Mathematical Geometric Model. PloS One, 11(12), e0168071. https://doi.org/10.1371/journal.pone.0168071
Chem, G., Thomas, M. S., Pillai, P. K. S., Farrowc, S. C., Pothan, L. A., & Thomas, S. (2021). Electrospinning as an Important Tool for Fabrication of Nanofibers for Advanced Applications — a Brief Review. Figure 1, 1–7. https://doi.org/10.21127/yaoyigc20200022
behavior in tissue engineering. Biomaterials Research, 23(1), 1–12. https://doi.org/10.1186/s40824-019- Chen, C., Bai, X., Ding, Y., & Lee, I. S. (2019). Electrical stimulation as a novel tool for regulating cell 0176-8
Chen, Q., Xiao, S., Shi, S. Q., & Cai, L. (2020). Synthesis, Characterization, and Antibacterial Activity of N-substituted Quaternized Chitosan and Its Cellulose-based Composite Film. BioResources, 15(1), 415.
Chen, X., Feng, B., Zhu, D. Q., Chen, Y. W., Ji, W., Ji, T. J., & Li, F. (2019). Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. International Journal of Nanomedicine, 14, 3669–3678. https://doi.org/10.2147/IJN.S204971
Chiesa, E., Dorati, R., Pisani, S., Bruni, G., Rizzi, L. G., Conti, B., Modena, T., & Genta, I. (2020). Graphene nanoplatelets for the development of reinforced PLA-PCL electrospun fibers as the next-generation of biomedical mats. Polymers, 12(6). https://doi.org/10.3390/polym12061390
Chorro, F. J., & López-merino, L. S. V. (2009). Modelos animales de enfermedad cardiovascular. 62(I), 69–84.
Číková, E., Mičušík, M., Šišková, A., Procházka, M., Fedorko, P., & Omastová, M. (2018). Conducting electrospun polycaprolactone/polypyrrole fibers. Synthetic Metals, 235(December 2017), 80–88. https://doi.org/10.1016/j.synthmet.2017.11.011
Clavijo-Grimaldo, D., Casadiego-Torrado, C. A., Villalobos-Elías, J., Ocampo-Páramo, A., & Torres-Parada, M. (2022). Characterization of Electrospun Poly(ε-caprolactone) Nano/Micro Fibrous Membrane as Scaffolds in Tissue Engineering: Effects of the Type of Collector Used. Membranes, 12(6). https://doi.org/10.3390/membranes12060563
ClinicalTrials.gov. (2024). ClinicalTrials.gov. https://clinicaltrials.gov/search?term=scaffold&cond=Myocardial Infarction&city=
Cristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019a). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. March, 1253–1264. https://doi.org/10.1002/term.2875
Cristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019b). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. April, 1253–1264. https://doi.org/10.1002/term.2875
Cui, J., Li, J., Mathison, M., Tondato, F., Mulkey, S. P., Micko, C., Chronos, N. A. F., & Robinson, K. A. (2005). A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch materials. Cardiovascular Revascularization Medicine, 6(3), 113–120. https://doi.org/10.1016/j.carrev.2005.07.006
Cui, S., Mao, J., Rouabhia, M., Elkoun, S., & Zhang, Z. (2021). A biocompatible polypyrrole membrane for biomedical applications. RSC Advances, 11(28), 16996–17006. https://doi.org/10.1039/d1ra01338f
Cui, S., Mao, J., Zhang, Z., & Rouabhia, M. (2021). A biocompatible polypyrrole membrane for biomedical applications. 16996–17006. https://doi.org/10.1039/d1ra01338f
Da Silva, A. B., Marini, J., Gelves, G., Sundararaj, U., Gregório, R., & Bretas, R. E. S. (2013). Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. European Polymer Journal, 49(10), 3318–3327. https://doi.org/10.1016/j.eurpolymj.2013.06.039
for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7 Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanism
Dane. (2018). Estadísticas vitales. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/nacimientos-y-defunciones
Das, S., Wajid, A. S., Bhattacharia, S. K., Wilting, M. D., Rivero, I. V., & Green, M. J. (2013). Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. Journal of Applied Polymer Science, 128(6), 4040–4046. https://doi.org/10.1002/app.38694
Dayan V, Benech A, Rodríguez C, Ado S, Guedes I, Sotelo V, Laguzzi F, Kapitán M, Langhain M, Ferrando R, T. C. (2011). MODELO DE INFARTO AGUDO DE MIOCARDIO MEDIANTE ISQUEMIA-REPERFUSIÓN EN OVEJAS. Revista Uruguaya de Cardiología, 31–93. http://www.scielo.edu.uy/scielo.php?pid=S1688-04202011000400007&script=sci_arttext
De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44(5), 1357–1362. https://doi.org/10.1007/s10853-008-3010-6
Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261–272. https://doi.org/https://doi.org/10.1016/S0032-3861(00)00250-0
del Maria Javier, M. F., Delmo, E. M. J., & Hetzer, R. (2021). Evolution of heart transplantation since Barnard’s first. Cardiovascular Diagnosis and Therapy, 11(1), 171–182. https://doi.org/10.21037/CDT-20-289
Deliormanlı, A. M. (2019). Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology, 188(4), 1117–1133. https://doi.org/10.1007/s12010-019-02976-5
Deshmukh, K., Basheer Ahamed, M., Deshmukh, R. R., Khadheer Pasha, S. K., Bhagat, P. R., & Chidambaram, K. (2017). 3 - Biopolymer Composites With High Dielectric Performance: Interface Engineering. In K. K. Sadasivuni, D. Ponnamma, J. Kim, J.-J. Cabibihan, & M. A. AlMaadeed (Eds.), Biopolymer Composites in Electronics (pp. 27–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809261-3.00003-6
Devlin, G., Matthews, K., McCracken, G., Stuart, S., Jensen, J., Conaglen, J., & Bass, J. (2000). An ovine model of chronic stable heart failure. Journal of Cardiac Failure, 6(2), 140–143. https://doi.org/10.1054/jcaf.2000.7279
Diaz, A., Ignacio, E., & Fischer, C. (2016). Modelos Experimentales de Insuficiencia Cardiaca en Grandes Animales (Issue February).
Ding, B., Wang, X., & Yu, J. (2019). Electrospinning and nanofabrication and applications. Elsevier.
Dozois, M. D., Bahlmann, L. C., Zilberman, Y., & Tang, X. (Shirley). (2017). Carbon nanomaterial-enhanced scaffolds for the creation of cardiac tissue constructs: A new frontier in cardiac tissue engineering. Carbon, 120, 338–349. https://doi.org/10.1016/j.carbon.2017.05.050
Echegaray, K., Andreu, I., Lazkano, A., Villanueva, I., Sáenz, A., Elizalde, M. R., Echeverría, T., López, B., Garro, A., González, A., Zubillaga, E., Solla, I., Sanz, I., González, J., Elósegui-Artola, A., Roca-Cusachs, P., Díez, J., Ravassa, S., & Querejeta, R. (2017). Role of Myocardial Collagen in Severe
Aortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure. Revista Espanola de Cardiologia (English Ed.), 70(10), 832–840. https://doi.org/10.1016/j.rec.2016.12.038
Edrisi, F., Baheiraei, N., Razavi, M., Roshanbinfar, K., Imani, R., & Jalilinejad, N. (2023). Potential of graphene-based nanomaterials for cardiac tissue engineering. Journal of Materials Chemistry B, 11(31), 7280–7299. https://doi.org/10.1039/d3tb00654a
El-Sayed, N. M., El-Bakary, M. A., Ibrahim, M. A., Elgamal, M. A., & Hamza, A. A. (2021). Characterization of the mechanical and structural properties of PGA/TMC copolymer for cardiac tissue engineering. Microscopy Research and Technique, 84(7), 1596–1606. https://doi.org/10.1002/jemt.23720
Elamparithi, A., Punnoose, A. M., Paul, S. F. D., & Kuruvilla, S. (2017). Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(1), 20–27. https://doi.org/10.1080/00914037.2016.1180616
Elkhoury, K., Morsink, M., Sanchez-Gonzalez, L., Kahn, C., Tamayol, A., & Arab-Tehrany, E. (2021). Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioactive Materials, 6(11), 3904–3923. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.03.040
Eroğlu, N. S. (2022). Production of Nanofibers from Plant Extracts by Electrospinning Method (T. Tański & P. Jarka (eds.); p. Ch. 3). IntechOpen. https://doi.org/10.5772/intechopen.102614
Eslahi, N., Lotfi, R., Zandi, N., Mazaheri, M., Soleimani, F., & Simchi, A. (2022). 8 - Graphene-based polymer nanocomposites in biomedical applications. In S. M. Rangappa, J. Parameswaranpillai, V. Ayyappan, M. G. Motappa, S. Siengchin, & C. Soutis (Eds.), Innovations in Graphene-Based Polymer Composites (pp. 199–245). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-823789-2.00016-9
Fakhrali, A., Nasari, M., Poursharifi, N., Semnani, D., Salehi, H., Ghane, M., & Mohammadi, S. (2021). Biocompatible graphene-embedded PCL/PGS-based nanofibrous scaffolds: A potential application for cardiac tissue regeneration. Journal of Applied Polymer Science, 138(40), 1–14. https://doi.org/10.1002/app.51177
Fakhrali, A., Semnani, D., Salehi, H., & Ghane, M. (2022). Electro-conductive nanofibrous structure based on PGS/PCL coated with PPy by in situ chemical polymerization applicable as cardiac patch: Fabrication and optimization. Journal of Applied Polymer Science, 139(19), 1–20. https://doi.org/10.1002/app.52136
Ferreira, C. L., Valente, C. A., Zanini, M. L., Sgarioni, B., Henrique, P., Tondo, F., Chagastelles, P. C., Braga, J., Campos, M. M., Malmonge, A., Regina, N., & Basso, D. S. (2019). Biocompatible PCL / PLGA / Polypyrrole Composites for Regenerating Nerves. 1800028, 1–8. https://doi.org/10.1002/masy.201800028
Flaig, F., Ragot, H., Simon, A., Revet, G., Kitsara, M., Kitasato, L., Hébraud, A., Agbulut, O., & Schlatter, G. (2020). Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate)
Elastomer and Poly(lactic acid) for Cardiac Tissue Engineering. ACS Biomaterials Science and Engineering, 6(4), 2388–2400. https://doi.org/10.1021/acsbiomaterials.0c00243
Fleischer, S., Feiner, R., & Dvir, T. (2017). Cardiac tissue engineering: From matrix design to the engineering of bionic hearts. Regenerative Medicine, 12(3), 275–284. https://doi.org/10.2217/rme-2016-0150
Flores-Rojas, G. G. ., Gómez-Lazaro, B. ., López-Saucedo, F. ., Vera-Graziano, R. ., Bucio, E. ., & Mendizábal, E. (2023). Electrospun Scaffolds for Tissue Engineering : A Review. Macromol, 3, 524–553. https://doi.org/https://doi.org/10.3390/macromol3030031
Forward, K., & Rutledge, G. (2012). Free surface electrospinning from a wire electrode. Chemical Engineering Journal, 183, 492–503. https://doi.org/10.1016/j.cej.2011.12.045
Fujihara, K., Teo, E., Teik-Cheng, L., & Ma, Z. (2005). An Introduction To Electrospinning And Nanofibers. In World Scientific: Singapore (Vol. 3). https://doi.org/10.1142/9789812567611_0003
Fujita, B., & Zimmermann, W. H. (2017). Engineered Heart Repair. Clinical Pharmacology and Therapeutics, 102(2), 197–199. https://doi.org/10.1002/cpt.724
Furth, M. E., & Atala, A. (2014). Chapter 6 - Tissue Engineering: Future Perspectives. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (Fourth Edi, pp. 83–123). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-398358-9.00006-9
Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41(11), 2251–2269. https://doi.org/10.1088/0031-9155/41/11/002
Gálvez-Montón, C., Prat-Vidal, C., Díaz-Güemes, I., Crisóstomo, V., Soler-Botija, C., Roura, S., Llucià-Valldeperas, A., Perea-Gil, I., Sánchez-Margallo, F. M., & Bayes-Genis, A. (2014). Comparison of two preclinical myocardial infarct models: Coronary coil deployment versus surgical ligation. Journal of Translational Medicine, 12(1), 1–9. https://doi.org/10.1186/1479-5876-12-137
Gálvez-Montón, C., Prat-Vidal, C., Roura, S., Soler-Botija, C., & Bayes-Genis, A. (2013). Ingeniería tisular cardiaca y corazón bioartificial. Revista Espanola de Cardiologia, 66(5), 391–399. https://doi.org/10.1016/j.recesp.2012.11.013
Gelmi, A., Zhang, J., Cieslar-Pobuda, A., Ljunngren, M. K., Los, M. J., Rafat, M., & Jager, E. W. H. (2015). Electroactive 3D materials for cardiac tissue engineering. Electroactive Polymer Actuators and Devices (EAPAD) 2015, 9430, 94301T. https://doi.org/10.1117/12.2084165
Ghovvati, M., Kharaziha, M., Ardehali, R., & Annabi, N. (2022). Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2200055.
Ghuran, A. V., & Camm, A. J. (2001). Ischaemic heart disease presenting as arrhythmias. British Medical Bulletin, 59, 193–210. https://doi.org/10.1093/bmb/59.1.193
Ginestra, P. (2019). Manufacturing of polycaprolactone - Graphene fibers for nerve tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 100(July), 103387. https://doi.org/10.1016/j.jmbbm.2019.103387
Gómez, J., Vásquez, M., Mantione, D., & Alegret, N. (2021). Carbon Nanomaterials Embedded in Conductive Polymers : A State of the Art.
Greenlund, K. J., Giles, W. H., Keenan, N. L., Malarcher, A. M., Zheng, Z. J., Casper, M. L., & Croft, J. B. (2006). 381Heart Disease and Stroke Mortality in the Twentieth Century. In J. W. Ward & C. Warren (Eds.), Silent Victories: The History and Practice of Public Health in Twentieth Century America (p. 0). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195150698.003.18
Gryshkov, O., Al Halabi, F., Kuhn, A. I., Leal-Marin, S., Freund, L. J., Förthmann, M., Meier, N., Barker, S. A., Haastert-Talini, K., & Glasmacher, B. (2021). Pvdf and p(Vdf-trfe) electrospun scaffolds for nerve graft engineering: A comparative study on piezoelectric and structural properties, and in vitro biocompatibility. International Journal of Molecular Sciences, 22(21), 1–27. https://doi.org/10.3390/ijms222111373
Grzeszczuk, M. (2018). Polymer electrodes: Preparation, properties, and applications. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11676-2
Gu, H., Huang, J., Li, N., Yang, H., Wang, Y., Zhang, Y., Dong, C., Chen, G., & Guan, H. (2022). Polystyrene-Modulated Polypyrrole to Achieve Controllable Electromagnetic-Wave Absorption with Enhanced Environmental Stability. Nanomaterials, 12(15). https://doi.org/10.3390/nano12152698
Guo, B., & Ma, P. X. (2018). Conducting Polymers for Tissue Engineering [Review-article]. Biomacromolecules, 19(6), 1764–1782. https://doi.org/10.1021/acs.biomac.8b00276
Guo, Q.-Y., Yang, J.-Q., Feng, X.-X., & Zhou, Y.-J. (2023). Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Military Medical Research, 10(1), 18. https://doi.org/10.1186/s40779-023-00452-0
Hagen, R. (2012). 10.12 - Polylactic Acid. In K. Matyjaszewski & M. Möller (Eds.), Polymer Science: A Comprehensive Reference (pp. 231–236). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53349-4.00269-7
Haider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015
Han, J., Li, H., Xu, X., Yuan, L., Wang, N., & Yu, H. (2016). Cu2(OH)PO4 pretreated by composite surfactants for the micro-domino effect: A high-efficiency Fenton catalyst for the total oxidation of dyes. Materials Letters, 166, 71–74. https://doi.org/https://doi.org/10.1016/j.matlet.2015.12.046
Hao, D., Swindell, H. S., Ramasubramanian, L., Liu, R., Lam, K. S., Farmer, D. L., & Wang, A. (2020). Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Frontiers in Bioengineering and Biotechnology, 8(June). https://doi.org/10.3389/fbioe.2020.00633
Hao, L., Dong, C., Zhang, L., Zhu, K., & Yu, D. (2022). Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers, 14(23). https://doi.org/10.3390/polym14235139
Haq, A. U., Carotenuto, F., De Matteis, F., Prosposito, P., Francini, R., Teodori, L., Pasquo, A., & Di Nardo, P. (2021). Intrinsically conductive polymers for striated cardiac muscle repair. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168550
Harlin, A., & Ferenets, M. (2006). Introduction to conductive materials. Intelligent Textiles and Clothing, 217–238. https://doi.org/10.1533/9781845691622.3.217
Hashizume, R., Fujimoto, K. L., Hong, Y., Guan, J., Toma, C., Tobita, K., & Wagner, W. R. (2013). Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia-reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model. Journal of Thoracic and Cardiovascular Surgery, 146(2), 391-399.e1. https://doi.org/10.1016/j.jtcvs.2012.11.013
He, S., Wu, J., Li, S., Wang, L., Sun, Y., Xie, J., & Ramnath, D. (2020). The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure. Biomaterials, 120285. https://doi.org/10.1016/j.biomaterials.2020.120285
Heidari, M., Bahrami, H., & Ranjbar-Mohammadi, M. (2017). Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Materials Science and Engineering C, 78, 218–229. https://doi.org/10.1016/j.msec.2017.04.095
Heidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Materials Science and Engineering C, 103(May), 109768. https://doi.org/10.1016/j.msec.2019.109768
Heikhmakhtiar, A. K., & Lim, K. M. (2018). Computational Prediction of the Combined Effect of CRT and LVAD on Cardiac Electromechanical Delay in LBBB and RBBB. Computational and Mathematical Methods in Medicine, 2018(September), 10–12. https://doi.org/10.1155/2018/4253928
Heng, B. C., Bai, Y., Li, X., Lim, L. W., Li, W., Ge, Z., Zhang, X., & Deng, X. (2023). Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. Advanced Science, 10(2), 2204502. https://doi.org/https://doi.org/10.1002/advs.202204502
Hirenkumar, M., & Steven, S. (2012). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1–19. https://doi.org/10.3390/polym3031377.Poly
Hohman, M., Shin, M., Rutledge, G., & Brenner, M. (2001). Electrospinning and Electrically Forced Jets. I. Stability Theory. Physics of Fluids - PHYS FLUIDS, 13. https://doi.org/10.1063/1.1383791
House, A., Atalla, I., Lee, E. J., & Guvendiren, M. (2021). Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. 2000022, 1–16. https://doi.org/10.1002/anbr.202000022
Hu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9, 895035. https://doi.org/10.3389/fcvm.2022.895035
Huang, C., Niu, H., Wu, J., Ke, Q., Mo, X., & Lin, T. (2012). Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. Journal of Nanomaterials, 2012, 473872. https://doi.org/10.1155/2012/473872
Huang, P., Liu, Y., Chen, Z., Zheng, Y., Vasilovna, K. V., Faritovich, G. R., & Xin, B. (2023). Preparation and Characterization of PU/PDA/PPy Flexible Composite Film for Electric Heating. Fibers and Polymers. https://doi.org/10.1007/s12221-023-00416-0
Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/https://doi.org/10.1016/S0266-3538(03)00178-7
Ibrahim, I. M., Yunus, S., & Hashim, M. A. (2013). Relative performance of isoproopylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. International Journal of Scientific & Engineering Research, 4(2), 1–12.
Ikram, H., Rogers, S. J., Charles, C. J., Sands, J., Richards, A. M., Bridgman, P. G., & Gooneratne, R. (1997). An ovine model of acute myocardial infarction and chronic left ventricular dysfunction. Angiology, 48(8), 679–688. https://doi.org/10.1177/000331979704800803
Imani, F., Karimi-Soflou, R., Shabani, I., & Karkhaneh, A. (2021). PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. Polymer, 218(September 2020), 123487. https://doi.org/10.1016/j.polymer.2021.123487
Jain, A., Nabeel, A. N., Bhagwat, S., Kumar, R., Sharma, S., Kozak, D., Hunjet, A., Kumar, A., & Singh, R. (2023). Fabrication of polypyrrole gas sensor for detection of NH3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon, 9(7), e17611. https://doi.org/10.1016/j.heliyon.2023.e17611
Jana, S., Bhagia, A., & Lerman, A. (2019). Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Biomedical Materials (Bristol), 14(6). https://doi.org/10.1088/1748-605X/ab3d24
Jang, Y., Park, Y., & Kim, J. (2020). Engineering Biomaterials to Guide Heart Cells for Matured Cardiac Tissue. Coatings, 10, 925. https://doi.org/10.3390/coatings10100925
Jiang, L., Chen, D., Wang, Z., Zhang, Z., Xia, Y., Xue, H., & Liu, Y. (2019). Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering. Applied Biochemistry and Biotechnology, 188(4), 952–964. https://doi.org/10.1007/s12010-019-02967-6
John, J., & Jayalekshmi, S. (2023). Polypyrrole with appreciable solubility, crystalline order and electrical conductivity synthesized using various dopants appropriate for device applications. Polymer Bulletin, 80(6), 6099–6116. https://doi.org/10.1007/s00289-022-04354-4
Jung, H.-S., Kim, M. H., Shin, J. Y., Park, S. R., Jung, J.-Y., & Park, W. H. (2018). Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydr. Polym., 193, 205.
Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011a). Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 98 B(2), 379–386. https://doi.org/10.1002/jbm.b.31862
Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011b). Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. Journal of Biomedical Materials Research - Part A, 99 A(3), 376–385. https://doi.org/10.1002/jbm.a.33200
Kalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D., & Bakenov, Z. (2020). A review of piezoelectric pvdf film by electrospinning and its applications. Sensors (Switzerland), 20(18), 1–42. https://doi.org/10.3390/s20185214
Kariduraganavar, M. Y., Kittur, A. A., & Kamble, R. R. (2014). Chapter 1 - Polymer Synthesis and Processing. In S. G. Kumbar, C. T. Laurencin, & M. Deng (Eds.), Natural and Synthetic Biomedical Polymers (pp. 1–31). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-396983-5.00001-6
Karimi, S. N. H., Aghdam, R. M., Ebrahimi, S. A. S., & Chehrehsaz, Y. (2022). Tri-layered alginate/poly(epsilon-caprolactone) electrospun scaffold for cardiac tissue engineering. POLYMER INTERNATIONAL, 71(9), 1099–1108. https://doi.org/10.1002/pi.6371
Karkan, S. F., Davaran, S., Rahbarghazi, R., Salehi, R., & Akbarzadeh, A. (2019). Electrospun nanofibers for the fabrication of engineered vascular grafts. Journal of Biological Engineering, 7, 1–13.
Kashou, A. H., & Chhabra, H. B. L. (2020). Physiology, Sinoatrial Node. StatPearls [Internet], 1–6.
Kausar, A. (2021). Chapter 5 - Perspectives on nanocomposite with polypyrrole and nanoparticles. In A. Kausar (Ed.), Conducting Polymer-Based Nanocomposites (pp. 103–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822463-2.00006-3
Kazu Kikuchi, & Poss, K. D. (2008). Cardiac Regenerative Capacity and Mechanisms. Annual Review of Cell and Developmental Biology, 28(1), 719–741. https://doi.org/doi.org/10.1146/annurev-cellbio-101011-155739
Kesornsit, S., Direksilp, C., Phasuksom, K., Thummarungsan, N., Sakunpongpitiporn, P., Rotjanasuworapong, K., Sirivat, A., & Niamlang, S. (2022). Synthesis of Highly Conductive Poly(3-hexylthiophene) by Chemical Oxidative Polymerization Using Surfactant Templates. Polymers, 14(18), 1–19. https://doi.org/10.3390/polym14183860
Kharaziha, M., Shin, S. R., Nikkhah, M., Topkaya, S. N., Masoumi, N., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2014). Tough and flexible CNT-polymeric hybrid scaffolds for engineering
cardiac constructs. Biomaterials, 35(26), 7346–7354. https://doi.org/10.1016/j.biomaterials.2014.05.014
Khatti, T., Naderi-Manesh, H., & Kalantar, S. M. (2019). Polypyrrole-Coated Polycaprolactone-Gelatin Conductive Nanofibers: Fabrication and Characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 250(October), 114440. https://doi.org/10.1016/j.mseb.2019.114440
Kierszenbaum, Abraham L.; Tres, Laura L.; Fernández Aceñero, M. J. (2016). Histología y biología celular : introducción a la anatomía patológica (Elsevier (ed.)).
Kim, S., Tserengombo, B., Choi, S.-H., Noh, J., Huh, S., Choi, B., Chung, H., Kim, J., & Jeong, H. (2018). Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. International Communications in Heat and Mass Transfer, 91, 95–102. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2017.12.011
Kotadia, I., Whitaker, J., Roney, C., Niederer, S., O’Neill, M., Bishop, M., & Wright, M. (2020). Anisotropic Cardiac Conduction. Arrhythmia & Electrophysiology Review, 9(4), 202–210. https://doi.org/10.15420/aer.2020.04
Krista McLennan. (n.d.). Recognising, assessing and alleviating pain in sheep. Farm Animal Well Being.
Kumar, A., & Kumar, A. (2019). Poly(lactic acid) and poly(lactic-co-glycolic) acid nanoparticles: Versatility in biomedical applications. In Materials for Biomedical Engineering: Absorbable Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818415-8.00007-3
Kumar, M., & Kumari, P. (2020). The effect of reciprocating motion of drum collector on electrospun PVDF nanofiber for energy harvesting application. WCMNM, 18–21.
Kumar, S., & Chatterjee, K. (2016). Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. In ACS Applied Materials and Interfaces (Vol. 8, Issue 40, pp. 26431–26457). American Chemical Society. https://doi.org/10.1021/acsami.6b09801
Kurakula, M., & Koteswara Rao, G. S. N. (2020). Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136(July). https://doi.org/10.1016/j.eurpolymj.2020.109919
Laforgue, A., & Robitaille, L. (2010). Deposition of ultrathin coatings of polypyrrole and poly(3,4- ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chemistry of Materials, 22(8), 2474–2480. https://doi.org/10.1021/cm902986g
Langer, R., & Vacanti, J. P. (1993). Tissue Engineering. Science, 260(5110), 920–926. https://doi.org/10.1126/science.8493529
Le, T. H., Kim, Y., & Yoon, H. (2017). Electrical and electrochemical properties of conducting polymers. Polymers, 9(4). https://doi.org/10.3390/polym9040150
Lee, J. K. Y., Chen, N., Peng, S., Li, L., Tian, L., Thakor, N., & Ramakrishna, S. (2018). Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Progress in Polymer Science, 86, 40–84. https://doi.org/10.1016/j.progpolymsci.2018.07.002
Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325–4335. https://doi.org/10.1016/j.biomaterials.2009.04.042
Lee, M., Kim, M. C., & Lee, J. Y. (2022). Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. International Journal of Nanomedicine, 17, 6181–6200. https://doi.org/10.2147/IJN.S386763
Leung, V., & Ko, F. (2011). Biomedical applications of nanofibers. Polymers for Advanced Technologies, 22, 350–365. https://doi.org/10.1002/pat.1813
Lewis, T. W. (1998). A Study of The Overoxidation of The Conducting Polymer Polypyrrole. 230.
Li, J., Xu, C., Tian, H., Zha, F., Qi, W., & Wang, Q. (2018). Blend-electrospun poly(vinylidene fluoride)/stearic acid membranes for efficient separation of water-in-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 494–499. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.11.043
Li, J., Zhang, X., Jiang, J., Wang, Y., Jiang, H., Zhang, J., Nie, X., & Liu, B. (2018). Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Toxicological Sciences, 167(1), 269–281. https://doi.org/10.1093/toxsci/kfy235
Li, S., Yu, X., & Li, Y. (2022). Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fibrous mat : influence of drug delivery and Schwann cells proliferation Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fi. Biomedical Physics & Engineering Express, 8.
Li, T. T., Yan, M., Zhong, Y., Ren, H. T., Lou, C. W., Huang, S. Y., & Lin, J. H. (2019). Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 8(6), 5124–5132. https://doi.org/10.1016/j.jmrt.2019.08.035
Li, Y., Wei, L., Lan, L., Gao, Y., Zhang, Q., Dawit, H., Mao, J., Guo, L., Shen, L., & Wang, L. (2022). Conductive biomaterials for cardiac repair: A review. Acta Biomaterialia, 139, 157–178. https://doi.org/10.1016/j.actbio.2021.04.018
Liang, Y., & Goh, J. C.-H. (2020). Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity, 2(2), 101–119. https://doi.org/10.1089/bioe.2020.0010
Liang, Y., Mitriashkin, A., Lim, T. T., & Goh, J. C. H. (2021). Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials, 276(January), 121008. https://doi.org/10.1016/j.biomaterials.2021.121008
Liau, B., Zhang, D., & Bursac, N. (2012). Functional cardiac tissue engineering. Regenerative Medicine, 7(2), 187–206. https://doi.org/10.2217/rme.11.122
Lindsey, M. L., Bolli, R., Canty, J. M., Du, X. J., Frangogiannis, N. G., Frantz, S., Gourdie, R. G., Holmes, J. W., Jones, S. P., Kloner, R. A., Lefer, D. J., Liao, R., Murphy, E., Ping, P., Przyklenk, K., Recchia, F. A., Longacre, L. S., Ripplinger, C. M., Van Eyk, J. E., & Heusch, G. (2018). Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology - Heart and Circulatory Physiology, 314(4), H812–H838. https://doi.org/10.1152/ajpheart.00335.2017
Liu, H., Paul, C., & Xu, M. (2017). Optimal environmental stiffness for stem cell mediated ischemic myocardium repair. Adult Stem Cells, 293–304.
Liu, Y., & Wu, F. (2023). Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Advances, 3606–3618. https://doi.org/10.1039/d3na00138e
Longhin, E. M., El Yamani, N., Rundén-Pran, E., & Dusinska, M. (2022). The alamar blue assay in the context of safety testing of nanomaterials. Frontiers in Toxicology, 4, 981701. https://doi.org/10.3389/ftox.2022.981701
Loyo, C., Cordoba, A., Palza, H., Canales, D., Melo, F., Vivanco, J. F., Baier, R. V., Millán, C., Corrales, T., & Zapata, P. A. (2023). Effect of Gelatin Coating and GO Incorporation on the Properties and Degradability of Electrospun PCL Scaffolds for Bone Tissue Regeneration. Polymers, 16(1), 129. https://doi.org/10.3390/polym16010129
Lu, H., Li, X., & Lei, Q. (2021). Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Frontiers in Chemistry, 9(September), 6–11. https://doi.org/10.3389/fchem.2021.732132
Lukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M. F., Al-Tel, T. H., Dolatshahi-Pirouz, A., & Orive, G. (2022). Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics, 14(6), 1–19. https://doi.org/10.3390/pharmaceutics14061177
Ma, Z., Shi, W., Yan, K., Pan, L., & Yu, G. (2019). Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chemical Science, 10(25), 6232–6244. https://doi.org/10.1039/c9sc02033k
MacDonald, E. A., Rose, R. A., & Quinn, T. A. (2020). Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00170
Maharjan, B., Kaliannagounder, V. K., Jang, S. R., Awasthi, G. P., Bhattarai, D. P., Choukrani, G., Park, C. H., & Kim, C. S. (2020). In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Materials Science and Engineering C, 114(April), 111056. https://doi.org/10.1016/j.msec.2020.111056
Mahmoudi, T., Wang, Y., & Hahn, Y.-B. (2018). Graphene and its derivatives for solar cells application. Nano Energy, 47, 51–65. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.02.047
Mahun, A., Abbrent, S., Bober, P., Brus, J., & Kobera, L. (2020). Effect of structural features of polypyrrole (PPy) on electrical conductivity reflected on 13C ssNMR parameters. Synthetic Metals, 259, 116250. https://doi.org/https://doi.org/10.1016/j.synthmet.2019.116250
Majid, Q. A., Fricker, A. T. R., Gregory, D. A., Davidenko, N., Hernandez Cruz, O., Jabbour, R. J., Owen, T. J., Basnett, P., Lukasiewicz, B., Stevens, M., Best, S., Cameron, R., Sinha, S., Harding, S. E., & Roy, I. (2020). Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine, 7(October), 1–32. https://doi.org/10.3389/fcvm.2020.554597
Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195058239.001.0001
Mancino, C., Hendrickson, T., Whitney, L. V., Paradiso, F., Abasi, S., Tasciotti, E., Taraballi, F., & Guiseppi-Elie, A. (2022). Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 44, 102567. https://doi.org/10.1016/j.nano.2022.102567
Mannhardt, I., Breckwoldt, K., Letuffe-Brenière, D., Schaaf, S., Schulz, H., Neuber, C., Benzin, A., Werner, T., Eder, A., Schulze, T., Klampe, B., Christ, T., Hirt, M. N., Huebner, N., Moretti, A., Eschenhagen, T., & Hansen, A. (2016). Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports, 7(1), 29–42. https://doi.org/10.1016/j.stemcr.2016.04.011
Manousiouthakis, E., Park, J., Hardy, J. G., Lee, J. Y., & Schmidt, C. E. (2022). Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomaterialia, 139, 22–42. https://doi.org/https://doi.org/10.1016/j.actbio.2021.07.065
Manteca, X., Temple, D., Mainau, E., & Llonch, P. (2017). Evaluación del dolor en el ganado ovino. Fawec, 17(1), 1–2. https://doi.org/10.13130/AWIN
Mao, J., & Zhang, Z. (2018). Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges. Advances in Experimental Medicine and Biology, 1078, 347–370. https://doi.org/10.1007/978-981-13-0950-2_18
Margerrison, E., Argentieri, M., Kommala, D., & Schabowsky, C. N. (2021). Polycaprolactone (PCL) Safety Profile Report Details Date of Submission ECRI Corporate Governance Project Manager. 540.
Markowitz, S. M., & Lerman, B. B. (2018). A contemporary view of atrioventricular nodal physiology. Journal of Interventional Cardiac Electrophysiology, 52(3), 271–279. https://doi.org/10.1007/s10840-018-0392-5
Matysiak, W., Tański, T., Smok, W., Gołombek, K., & Schab-Balcerzak, E. (2020). Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline. Applied Surface Science, 509(December 2019). https://doi.org/10.1016/j.apsusc.2019.145068
Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & ullah khan, A. (2021). Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/https://doi.org/10.1016/j.rechem.2021.100163
McClelland, R., Dennis, R., Reid, L. M., Palsson, B., & Macdonald, J. M. (2005). 7 - TISSUE ENGINEERING. In J. D. Enderle, S. M. Blanchard, & J. D. Bronzino (Eds.), Introduction to Biomedical Engineering (Second Edition) (Second Edi, pp. 313–402). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-238662-6.50009-4
Mcivor, M. J., Maolmhuaidh, F. Ó., Meenagh, A., Hussain, S., Bhattacharya, G., Fishlock, S., Ward, J., Mcferran, A., Acheson, J. G., Cahill, P. A., Forster, R., Mceneaney, D. J., Boyd, A. R., & Meenan, B. J. (2022). 3D Fabrication and Characterisation of Electrically Receptive Tissue Models
Mckee, C. T., Last, J. A., Russell, P., & Murphy, C. J. (2011). Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Engineering. Part B, Reviews, 17 3, 155–164.
McKeen, L. (2021). Chapter11 - The effect of heat aging on the properties of sustainable polymers. In L. McKeen (Ed.), The Effect of Long Term Thermal Exposure on Plastics and Elastomers (Second Edition) (Second Edi, pp. 313–332). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-85436-8.00001-1
McMahan, S., Taylor, A., Copeland, K. M., Pan, Z., Liao, J., & Hong, Y. (2020). Current advances in biodegradable synthetic polymer based cardiac patches. Journal of Biomedical Materials Research - Part A, 108(4), 972–983. https://doi.org/10.1002/jbm.a.36874
McMillen, C. (2001). The sheep - an ideal model for biomedical research? Anzccart News, 14(2), 1–4.
Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 35(22), 8456–8466. https://doi.org/10.1021/ma020444a
Mehta, P. P., & Pawar, V. S. (2018). 22 - Electrospun nanofiber scaffolds: Technology and applications. In Inamuddin, A. M. Asiri, & A. Mohammad (Eds.), Applications of Nanocomposite Materials in Drug Delivery (pp. 509–573). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-813741-3.00023-6
Mit-uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 205(17), 2327–2338. https://doi.org/https://doi.org/10.1002/macp.200400225
Mittal, T. (2005). Pacemakers- A journey through the years. Indian Journal of Thoracic and Cardiovascular Surgery, 21, 236–249. https://doi.org/doi.org/10.1007/s12055-005-0060-0
Mohan, V. B., Lau, K., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220. https://doi.org/https://doi.org/10.1016/j.compositesb.2018.01.013
Montes, A., Valor, D., Penabad, Y., Dom, M., Pereyra, C., Mart, E., & Ossa, D. (2023). Formation of PLGA – PEDOT : PSS Conductive Scaffolds by Supercritical Foaming. 1–20.
Morsink, M., Severino, P., Luna-Ceron, E., Hussain, M. A., Sobahi, N., & Shin, S. R. (2022). Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomaterialia, 139, 141–156. https://doi.org/10.1016/j.actbio.2021.11.022
Mota, K. O., & Corrêa, C. B. (2021). Effect of Preparation Additives on the Antimicrobial Activity and Cytotoxicity of Polypyrrole. 32(6), 1203–1212.
Murugan, S. S., Dalavi, P. A., Devi G.V., Y., Chatterjee, K., & Venkatesan, J. (2022). Natural and Synthetic Biopolymeric Biomaterials for Bone Tissue Engineering Applications. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 746–757). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00246-7
Mutepfa, A. R., Hardy, J. G., & Adams, C. F. (2022). Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Frontiers in Medical Technology, 4(February). https://doi.org/10.3389/fmedt.2022.693438
Nag, A., Mitra, A., & Mukhopadhyay, S. C. (2018). Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 270, 177–194. https://doi.org/https://doi.org/10.1016/j.sna.2017.12.028
Nagiah, N., El Khoury, R., Othman, M. H., Akimoto, J., Ito, Y., Roberson, D. A., & Joddar, B. (2022). Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering. ACS Omega, 7(16), 13894–13905. https://doi.org/10.1021/acsomega.2c00271
Nair, N. R., Sekhar, V. C., Nampoothiri, K. M., & Pandey, A. (2017). 32 - Biodegradation of Biopolymers. In A. Pandey, S. Negi, & C. R. Soccol (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 739–755). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63662-1.00032-4
Najafi Tireh Shabankareh, A., Samadi Pakchin, P., Hasany, M., & Ghanbari, H. (2023). Development of a new electroconductive nanofibrous cardiac patch based on polyurethane-reduced graphene oxide nanocomposite scaffolds. Materials Chemistry and Physics, 305(May), 127961. https://doi.org/10.1016/j.matchemphys.2023.127961
Namsheer, K., & Rout, C. S. (2021). Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances, 11(10), 5659–5697. https://doi.org/10.1039/d0ra07800j
Nasr, S. M., Rabiee, N., Hajebi, S., Ahmadi, S., Fatahi, Y., Hosseini, M., Bagherzadeh, M., Ghadiri, A. M., Rabiee, M., Jajarmi, V., & Webster, T. J. (2020). Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine. International Journal of Nanomedicine, 15, 4205–4224. https://doi.org/10.2147/IJN.S245936
National Farm Animal Care Council. (2013). Code of practice for the care and handling of sheep. In Practice.
National Research Council. (1992). 4 Recognition and Assessment of Pain, Stress, and Distress. In Recognition and Alleviation of Pain and Distress in Laboratory Animals. The National Academies Press. https://doi.org/doi: 10.17226/1542
Nekounam, H., Gholizadeh, S., Allahyari, Z., Samadian, H., Nazeri, N., Shokrgozar, M. A., & Faridi-Majidi, R. (2021). Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 134(June 2020), 111083. https://doi.org/10.1016/j.materresbull.2020.111083
Nguyen-truong, M., & Li, Y. V. (2020). Mechanical Considerations of Electrospun Sca ff olds for Myocardial Tissue and Regenerative Engineering. 1–22.
Nguyen, T. D., Roh, S., Thi, M., Nguyen, N., & Lee, J. S. (2023). Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications.
Nikkhah, M., Akbari, M., Paul, A., Memic, A., Dolatshahi-Pirouz, A., & Khademhosseini, A. (2016). Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering. In Biomaterials from Nature for Advanced Devices and Therapies (pp. 37–62). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119126218.ch3
Nostril, A., & Lip, A. (n.d.). Sheep Pain Facial Expression Scale * Sheep Pain Facial Expression Scale ( SPFES ). 0–1.
O’Brien, J., Wilson, I., Orton, T., & Pognan, F. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267(17), 5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.x
Ojrzynska, M., Wroblewska, A., Judek, J., Malolepszy, A., Duzynska, A., & Zdrojek, M. (2020). Study of optical properties of graphene flakes and its derivatives in aqueous solutions. Optics Express, 28(5), 7274. https://doi.org/10.1364/oe.382523
Oprea, A. E., Ficai, A., & Andronescu, E. (2019). Electrospun nanofibers for tissue engineering applications. In Materials for Biomedical Engineering. Elsevier Inc. https://doi.org/10.1016/b978-0-12-816909-4.00004-x
Pang, A. L., Arsad, A., & Ahmadipour, M. (2021). Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies, 32(4), 1428–1454. https://doi.org/10.1002/pat.5201
Park, D. W., Ness, J. P., Brodnick, S. K., Esquibel, C., Novello, J., Atry, F., Baek, D. H., Kim, H., Bong, J., Swanson, K. I., Suminski, A. J., Otto, K. J., Pashaie, R., Williams, J. C., & Ma, Z. (2018). Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. ACS Nano, 12(1), 148–157. https://doi.org/10.1021/acsnano.7b04321
Patino, M. G., Neiders, M. E., Andreana, S., Noble, B., & Cohen, R. E. (2002). Collagen : An Overview. 280–285. https://doi.org/10.1097/01.ID.0000019547.50849.3B
Pfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. Journal of Biomechanical Engineering, 136(2), 21007. https://doi.org/10.1115/1.4026221
Pomeroy, J. E., Helfer, A., & Bursac, N. (2020). Biomaterializing the promise of cardiac tissue engineering. Biotechnology Advances, 42, 107353. https://doi.org/https://doi.org/10.1016/j.biotechadv.2019.02.009
Potdar, A., Kale, A., Marathe, P., Talekar, P., & Yadav, S. (2020). A Review On Applications Of Graphene. IJRAR1AA1390 International Journal of Research and Analytical Reviews (IJRAR) Www.Ijrar.Org, 80(4), 80–85. www.ijrar.org
Precedence Research. (2022). Transplantation Market Size, Share and Growth Analysis.
Pushp, P., Bhaskar, R., Kelkar, S., Sharma, N., Pathak, D., & Gupta, M. K. (2021). Plasticized poly(vinylalcohol) and poly(vinylpyrrolidone) based patches with tunable mechanical properties for cardiac tissue engineering applications. Biotechnology and Bioengineering, 118(6), 2312–2325. https://doi.org/10.1002/bit.27743
Qasim, M., Arunkumar, P., Powell, H. M., & Khan, M. (2019). Current research trends and challenges in tissue engineering for mending broken hearts. Life Sciences, 229(March), 233–250. https://doi.org/10.1016/j.lfs.2019.05.012
Rabbani, S., Ahmadi, H., Fayazzadeh, E., Sahebjam, M., Boroumand, M. A., Sotudeh, M., & Nassiri, S. M. (2008). Development of an ovine model of myocardial infarction. ANZ Journal of Surgery, 78(1–2), 78–81. https://doi.org/10.1111/j.1445-2197.2007.04359.x
Randviir, E. P., Brownson, D. A. C., & Banks, C. E. (2014). A decade of graphene research: Production, applications and outlook. In Materials Today (Vol. 17, Issue 9, pp. 426–432). Elsevier. https://doi.org/10.1016/j.mattod.2014.06.001
Rashid, S. T., Salacinski, H. J., Hamilton, G., & Seifalian, A. M. (2004). The use of animal models in developing the discipline of cardiovascular tissue engineering: A review. Biomaterials, 25(9), 1627–1637. https://doi.org/10.1016/S0142-9612(03)00522-2
Ratih, D., Siburian, R., & Andriayani. (2018). The performance of graphite/n-graphene and graphene/n-graphene as electrode in primary cell batteries. Rasayan Journal of Chemistry, 11(4), 1649–1656. https://doi.org/10.31788/RJC.2018.1145007
Ray, S. S., Chen, S.-S., Nguyen, N. C., & Nguyen, H. T. (2019). Chapter 9 - Electrospinning: A Versatile Fabrication Technique for Nanofibrous Membranes for Use in Desalination. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 247–273). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00014-8
Refate, A., Mohamed, Y., Mohamed, M., Sobhy, M., Samhy, K., Khaled, O., Eidaroos, K., Batikh, H., El-Kashif, E., El-Khatib, S., & Mehanny, S. (2023). Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon, 9(6), e17051. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e17051
Ren, X., Jiang, Z., & Tang, M. (2023). Application of conductive hydrogels in cardiac tissue engineering. 4(2), 1–7.
Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387–2425. https://doi.org/10.1016/j.polymer.2008.02.002
Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547. https://doi.org/10.1063/1.373532
Research, P. (2022). Scaffold Technology Market (By Product: Hydrogels, Micropatterned Surface Microplates, and Nanofiber Based Scaffolds; By Application: Neurology, Orthopedics, Dental, Cardiology & Vascular, Cancer, Skin & Integumentary, GI & Gynecologyand Urology; By End-U. https://www.precedenceresearch.com/scaffold-technology-market
Reshmy, R., Philip, E., Vaisakh, P. H., Sindhu, R., Binod, P., Madhavan, A., Pandey, A., Sirohi, R., & Tarafdar, A. (2021). Chapter 14 - Biodegradable polymer composites (P. Binod, S. Raveendran, & A. B. T.-B. Pandey Biofuels, Biochemicals (eds.); pp. 393–412). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821888-4.00003-4
Riehle, C., & Bauersachs, J. (2019). Small animal models of heart failure. 1838–1849. https://doi.org/10.1093/cvr/cvz161
Roacho-p, J. A., Garza-treviño, E. N., Moncada-saucedo, N. K., Carriquiry-chequer, P. A., Valencia-g, L. E., Matthews, E. R., G, V., Simental-mend, M., Delgado-gonzalez, P., Delgado-gallegos, J. L., Padilla-rivas, G. R., & Islas, J. F. (2022). Artificial Scaffolds in Cardiac Tissue Engineering. 1–21.
Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A. F., Matheny, R. G., & Badylak, S. F. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 SUPPL.), 135–143. https://doi.org/10.1161/CIRCULATIONAHA.104.525436
Rodrigues, I. C. P., Kaasi, A., Maciel Filho, R., Jardini, A. L., & Gabriel, L. P. (2018). Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein (Sao Paulo, Brazil), 16(3), eRB4538. https://doi.org/10.1590/S1679-45082018RB4538
Roser, M., & Ritchie, H. (2023). How has world population growth changed over time? Our World in Data.
Roshanbinfar, K., Vogt, L., Ruther, F., Roether, J. A., Boccaccini, A. R., & Engel, F. B. (2020). Nanofibrous Composite with Tailorable Electrical and Mechanical Properties for Cardiac Tissue Engineering. 1908612. https://doi.org/10.1002/adfm.201908612
Saberi, A., Jabbari, F., Zarrintaj, P., Saeb, M. R., & Mozafari, M. (2019). Electrically conductive materials: Opportunities and challenges in tissue engineering. In Biomolecules (Vol. 9, Issue 9). https://doi.org/10.3390/biom9090448
Sack, K. L., Baillargeon, B., Acevedo-Bolton, G., Genet, M., Rebelo, N., Kuhl, E., Klein, L., Weiselthaler, G. M., Burkhoff, D., Franz, T., & Guccione, J. M. (2016). Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart in
silico. The International Journal of Artificial Organs, 39(8), 421–430. https://doi.org/10.5301/ijao.5000520
Sadeghi, A., Moztarzadeh, F., & Aghazadeh Mohandesi, J. (2019). Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. International Journal of Biological Macromolecules, 121, 625–632. https://doi.org/10.1016/j.ijbiomac.2018.10.022
Sadeghianmaryan, A., Karimi, Y., Naghieh, S., Alizadeh Sardroud, H., Gorji, M., & Chen, X. (2019). Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-019-03192-x
Sartoretto, S. C., Uzeda, M. J., Miguel, F. B., Nascimento, J. R., Ascoli, F., & Calasans-Maia, M. D. (2016). Sheep as an experimental model for biomaterial implant evaluation. Acta Ortopedica Brasileira, 24(5), 262–266. https://doi.org/10.1590/1413-785220162405161949
Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., & Belgacem, N. (2011). Polypyrrole and polypyrrole/wood-derived materials conducting composites: A review. BioResources, 6(3), 3585–3620. https://doi.org/10.15376/biores.6.3.3585-3620
Savchenko, A., Yin, R. T., Kireev, D., Efimov, I. R., & Molokanova, E. (2021). Graphene-Based Scaffolds: Fundamentals and Applications for Cardiovascular Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 9(December), 1–8. https://doi.org/10.3389/fbioe.2021.797340
Saxena, P., & Shukla, P. (2021). A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Advanced Composites and Hybrid Materials, 4(1), 8–26. https://doi.org/10.1007/s42114-021-00217-0
Scheetz, S. D., & Upadhyay, G. A. (2022). Physiologic Pacing Targeting the His Bundle and Left Bundle Branch: a Review of the Literature. Current Cardiology Reports, 24(8), 959–978. https://doi.org/10.1007/s11886-022-01723-3
Schmitt, P. R., Dwyer, K. D., & Coulombe, K. L. K. (2022). Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS Applied Bio Materials, 5(6), 2461–2480. https://doi.org/10.1021/acsabm.2c00174
Schmitt, P. R., Dwyer, K. D., Minor, A. J., & Coulombe, K. L. K. (2022). Wet-Spun Polycaprolactone Scaffolds Provide Customizable Anisotropic Viscoelastic Mechanics for Engineered Cardiac Tissues.
Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., & Bowlin, G. L. (2009). Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 61(12), 1007–1019. https://doi.org/https://doi.org/10.1016/j.addr.2009.07.012
Senthil, T., & Anandhan, S. (2017). Effect of Solvents on the Solution Electrospinning of Discover more interesting articles and news on the subject ! Entdecken Sie weitere interessante Artikel und News zum Thema !
Serafin, A., Murphy, C., Rubio, M. C., & Collins, M. N. (2021). Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Materials Science and Engineering C, 122(January), 111927. https://doi.org/10.1016/j.msec.2021.111927
Shafei, S., Foroughi, J., Chen, Z., Wong, C. S., & Naebe, M. (2017). Short oxygen plasma treatment leading to long-term hydrophilicity of conductive PCL-PPy nanofiber scaffolds. Polymers, 9(11). https://doi.org/10.3390/polym9110614
Shafei, S., Foroughi, J., Stevens, L., Wong, C. S., Zabihi, O., & Naebe, M. (2017). Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Research on Chemical Intermediates, 43(2), 1235–1251. https://doi.org/10.1007/s11164-016-2695-4
Shang, L., Qi, Y., Lu, H., Pei, H., Li, Y., Paul, J. A., Chool, S. O. N. S., Engineering, O. F., & S, A. P. P. S. C. (2019). 7. Graphene and Graphene Oxide for Tissue Engineering and Regeneration. In Theranostic Bionanomaterials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815341-3.00007-9
Shao, H., Fang, J., Wang, H., & Lin, T. (2015). Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Advances, 5(19), 14345–14350. https://doi.org/10.1039/c4ra16360e
Sharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent advances in cardiac tissue engineering for the management of myocardium infarction. In Cells (Vol. 10, Issue 10). https://doi.org/10.3390/cells10102538
Shinde, S. S., Gund, G. S., Dubal, D. P., Jambure, S. B., & Lokhande, C. D. (2014). Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochimica Acta, 119, 1–10. https://doi.org/10.1016/j.electacta.2013.10.174
Shokrollahi, P., Omidi, Y., Cubeddu, L. X., & Omidian, H. (2023). Conductive polymers for cardiac tissue engineering and regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 111(11), 1979–1995. https://doi.org/10.1002/jbm.b.35293
Sigaroodi, F., Rahmani, M., Parandakh, A., Boroumand, S., Rabbani, S., & Khani, M. M. (2023). Designing cardiac patches for myocardial regeneration–a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 0(0), 1–19. https://doi.org/10.1080/00914037.2023.2180510
Socci, M. C., Rodríguez, G., Oliva, E., Fushimi, S., Takabatake, K., Nagatsuka, H., Felice, C. J., & Rodríguez, A. P. (2023). Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering, 10(2). https://doi.org/10.3390/bioengineering10020218
Solazzo, M., O’Brien, F. J., Nicolosi, V., & Monaghan, M. G. (2019). The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering, 3(4), 041501. https://doi.org/10.1063/1.5116579
Son, W. K., Youk, J. H., Lee, T. S., & Park, W. H. (2004). The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45(9), 2959–2966. https://doi.org/10.1016/j.polymer.2004.03.006
Song, H., Li, T., Han, Y., Wang, Y., Zhang, C., & Wang, Q. (2016). Optimizing the polymerization conditions of conductive polypyrrole. Journal of Photopolymer Science and Technology, 29(6), 803–808. https://doi.org/10.2494/photopolymer.29.803
Sovilj, S., Magjarević, R., Al Abed, A., Lovell, N. H., & Dokos, S. (2014). Simplified 2D bidomain model of whole heart electrical activity and ECG generation. Measurement Science Review, 14(3), 136–143. https://doi.org/10.2478/msr-2014-0018
Sowmya, B., Hemavathi, A. B., & Panda, P. K. (2021). Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Progress in Biomaterials, 10(2), 91–117. https://doi.org/10.1007/s40204-021-00157-4
Sudwilai, T., Ng, J. J., Boonkrai, C., Israsena, N., Chuangchote, S., & Supaphol, P. (2014). Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: Effects of coating on electrical conductivity and neural cell growth. Journal of Biomaterials Science, Polymer Edition, 25(12), 1240–1252. https://doi.org/10.1080/09205063.2014.926578
Suh, T. C., Amanah, A. Y., & Gluck, J. M. (2020). Electrospun Sca ff olds and Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Engineering Applications. 1–21.
Sun, M., Chi, G., Li, P., Lv, S., Xu, J., Xu, Z., Xia, Y., Tan, Y., Xu, J., Li, L., & Li, Y. (2018). Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. International Journal of Medical Sciences, 15(3), 257–268. https://doi.org/10.7150/ijms.21620
Sun, Y., Liu, J., Xu, Z., Lin, X., Zhang, X., Li, L., & Li, Y. (2021). Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells. 13(2), 2231–2250.
Surekha, G., Krishnaiah, K. V., Ravi, N., & Padma Suvarna, R. (2020). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, 1495(1). https://doi.org/10.1088/1742-6596/1495/1/012012
Szewczyk, P. K., & Stachewicz, U. (2020). The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 286, 102315. https://doi.org/https://doi.org/10.1016/j.cis.2020.102315
Takada, T., Sasaki, D., Matsuura, K., Miura, K., Sakamoto, S., Goto, H., Ohya, T., Iida, T., Homma, J., Shimizu, T., & Hagiwara, N. (2022). Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials, 281, 121351. https://doi.org/https://doi.org/10.1016/j.biomaterials.2021.121351
Talebi, A., Labbaf, S., & Karimzadeh, F. (2019). A conductive film of chitosan-polycaprolcatone-polypyrrole with potential in heart patch application. Polymer Testing, 75(December 2018), 254–261. https://doi.org/10.1016/j.polymertesting.2019.02.029
Tamimi, M., Rajabi, S., & Pezeshki-Modaress, M. (2020). Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. International Journal of Biological Macromolecules, 164, 389–402. https://doi.org/10.1016/j.ijbiomac.2020.07.134
Tavakkol, E., Tavanai, H., Abdolmaleki, A., & Morshed, M. (2017). Production of conductive electrospun polypyrrole/poly(vinyl pyrrolidone) nanofibers. Synthetic Metals, 231(July), 95–106. https://doi.org/10.1016/j.synthmet.2017.06.017
Tayebi, T., Baradaran-Rafii, A., Hajifathali, A., Rahimpour, A., Zali, H., Shaabani, A., & Niknejad, H. (2021). Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-86340-w
Tenreiro, M. F., Louro, A. F., Alves, P. M., & Serra, M. (2021). Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. Npj Regenerative Medicine, 6(1). https://doi.org/10.1038/s41536-021-00140-4
Tian, L., Prabhakaran, M. P., Hu, J., Chen, M., Besenbacher, F., & Ramakrishna, S. (2016). Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2016.05.032
Tiwari, S. K., & Venkatraman, S. S. (2012). Importance of viscosity parameters in electrospinning: Of monolithic and core–shell fibers. Materials Science and Engineering: C, 32(5), 1037–1042. https://doi.org/https://doi.org/10.1016/j.msec.2012.02.019
Topuz, F., Abdulhamid, M. A., Holtzl, T., & Szekely, G. (2021). Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Materials & Design, 198, 109280. https://doi.org/https://doi.org/10.1016/j.matdes.2020.109280
Torabi, M., Abazari, M. F., Zare Karizi, S., Kohandani, M., Hajati-Birgani, N., Norouzi, S., Nejati, F., Mohajerani, A., Rahmati, T., & Mokhames, Z. (2021). Efficient cardiomyocyte differentiation of induced pluripotent stem cells on PLGA nanofibers enriched by platelet-rich plasma. Polymers for Advanced Technologies, 32(3), 1168–1175. https://doi.org/10.1002/pat.5164
Tortora, G., & Derrickson, B. (2006). Principios de Anatomía y Fisiología. In Editorial Panamericana (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004
Tsao, Connie W; Aday, Aaron W.; Almarzooq, Z. I. (2022). Heart Disease and Stroe Statistics-2022 Update: A Report From the american Heart Association. Circulation, 145(8). https://doi.org/10.1161/IR.0000000000001052
Tsui, J. H., Leonard, A., Camp, N. D., Long, J. T., Nawas, Z. Y., Chavanachat, R., Choi, J. S., Wolf-Yadlin, A., Murry, C. E., Sniadecki, N. J., & Kim, D.-H. (2019). Functional Maturation of Human iPSC-
based Cardiac Microphysiological Systems with Tunable Electroconductive Decellularized Extracellular Matrices. BioRxiv, 786657. https://doi.org/10.1101/786657
Ţucureanu, V., Matei, A., & Avram, A. M. (2016). FTIR Spectroscopy for Carbon Family Study. Critical Reviews in Analytical Chemistry, 46(6), 502–520. https://doi.org/10.1080/10408347.2016.1157013
U.S. FDA Center for Devices and Radiological Health. (2020). Medical Device Material Performance Study Poly Lactic-co-Glycolic Acid [ P ( L / G ) A ] Safety Profile Submitted to. 804.
United Nations, Department of Economic and Social Affairs, P. D. (2022). World Population Prospects 2022.
Vacanti, C. (2006). The history of tissue engineering. Journal of Cellular and Molecular Medicine, 1(3), 569–576. https://doi.org/10.2755/jcmm010.003.20
Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To scaffold, or not to scaffold, that is the question. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/ijms222312690
Valverde, I. (2017). Impresión tridimensional de modelos cardiacos : aplicaciones en el campo de la educación y el intervencionismo estructural. 70(4), 282–291.
Vogt, L., Rivera, L. R., Liverani, L., Piegat, A., El Fray, M., & Boccaccini, A. R. (2019). Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Materials Science and Engineering C, 103(February), 109712. https://doi.org/10.1016/j.msec.2019.04.091
Vunjak-Novakovic, G. (2017). Tissue engineering of the heart: An evolving paradigm. Journal of Thoracic and Cardiovascular Surgery, 153(3), 593–595. https://doi.org/10.1016/j.jtcvs.2016.08.057
Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., & Radisic, M. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.teb.2009.0352
Wang, J. (2021). Meta-analysis of Cellular Toxicity for Graphene via Data-Mining the Literature and Machine Learning.
Wang, L., Wu, Y., Hu, T., Guo, B., & Ma, P. X. (2017). Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia, 59, 68–81. https://doi.org/10.1016/j.actbio.2017.06.036
Wang, Y., & Feng, W. (2022). Conductive Polymers and Their Composites. In Conductive Polymers and their Composites. https://doi.org/10.1007/978-981-19-5363-7
Waremra, R. S., & Betaubun, P. (2018). Analysis of Electrical Properties Using the four point Probe Method. E3S Web of Conferences, 73, 1–4. https://doi.org/10.1051/e3sconf/20187313019
Wee, J. H., Yoo, K. D., Sim, S. B., Kim, H. J., Kim, H. J., Park, K. N., Kim, G. H., Moon, M. H., You, S. J., Ha, M. Y., Yang, D. H., Chun, H. J., Ko, J. H., & Kim, C. H. (2022). Stem cell laden nano and micro
collagen / PLGA bimodal fibrous patches for myocardial regeneration. Biomaterials Research, 1–17. https://doi.org/10.1186/s40824-022-00319-w
WHO, W. H. O. (2022). Cardiovascular diseases (CVDs). 11 June 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
World Heart Federation. (2022). World Heart Vision 2030. 4–9.
Xu, B., Li, Y., Deng, B., Liu, X., Wang, L., & Zhu, Q. L. (2017). Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats. Experimental and Therapeutic Medicine, 13(2), 588–594. https://doi.org/10.3892/etm.2017.4026
Xu, H., Holzwarth, J. M., Yan, Y., Xu, P., Zheng, H., Yin, Y., Li, S., & Ma, P. X. (2014). Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials, 35(1), 225–235. https://doi.org/10.1016/j.biomaterials.2013.10.002
Xu, M., Qin, M., Cheng, Y., Niu, X., Kong, J., Zhang, X., Huang, D., & Wang, H. (2021). Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydrate Polymers, 266, 118128. https://doi.org/10.1016/j.carbpol.2021.118128
Yalcinkaya, F., Yalcinkaya, B., & Jirsak, O. (2015). Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions. Journal of Nanomaterials, 2015, 134251. https://doi.org/10.1155/2015/134251
Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004). Influence of Solvents on the Formation of Ultrathin Uniform Poly(Vinyl Pyrrolidone) Nanofibers with Electrospinning. Journal of Polymer Science Part B: Polymer Physics, 42, 3721–3726. https://doi.org/10.1002/polb.20222
Ye, G., & Qiu, X. (2017). Conductive biomaterials in cardiac tissue engineering. Biotarget, 1(5), 9–9. https://doi.org/10.21037/biotarget.2017.08.01
You, J. O., Rafat, M., Ye, G. J. C., & Auguste, D. T. (2011). Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Letters, 11(9), 3643–3648. https://doi.org/10.1021/nl201514a
Yuan, S., Xiong, G., Wang, X., Zhang, S., & Choong, C. (2012). Surface modification of polycaprolactone substrates using collagen-conjugated poly(methacrylic acid) brushes for the regulation of cell proliferation and endothelialisation. Journal of Materials Chemistry, 22, 13039–13049. https://doi.org/10.1039/C2JM31213A
Yue, B. (2014). NIH Public Access Author Manuscript J Glaucoma. Author manuscript; available in PMC 2015 October 01. Published in final edited form as: J Glaucoma. 2014 ; : S20–S23. doi:10.1097/IJG.0000000000000108. Biology of the Extracellular Matrix: An Overview Beatri. J Glaucoma., 23(1), 1–7. https://doi.org/10.1097/IJG.0000000000000108.Biology
Yussuf, A., Al-Saleh, M., Al-Enezi, S., & Abraham, G. (2018). Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/4191747
Zaarour, B., Zhang, W., Zhu, L., Jin, X. Y., & Huang, C. (2019). Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration. Textile Research Journal, 89(12), 2406–2422. https://doi.org/10.1177/0040517518792748
Zaarour, B., Zhu, L., & Jin, X. (2019). Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 17(2), 181–189. https://doi.org/10.1080/1539445X.2019.1582542
Zahari, A. S., Mazwir, M. H., & Misnon, I. I. (2021). Influence of molecular weight on dielectric properties and piezoelectric constant of poly(vinylidene fluoride) membranes obtained by electrospinning. Polimery/Polymers, 66(10), 532–537. https://doi.org/10.14314/polimery.2021.10.4
Zaragoza, C., Gomez-guerrero, C., Martin-ventura, J. L., Blanco-colio, L., Tarin, C., Mas, S., Ortiz, A., & Egido, J. (2011). Animal Models of Cardiovascular Diseases. 2011. https://doi.org/10.1155/2011/497841
Zarei, M., Samimi, A., Khorram, M., Abdi, M. M., & Golestaneh, S. I. (2021). Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. International Journal of Biological Macromolecules, 168, 175–186. https://doi.org/10.1016/j.ijbiomac.2020.12.031
Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A. S., & Damerchely, R. (2012). The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. Journal of Engineered Fibers and Fabrics, 7(4), 155892501200700400. https://doi.org/10.1177/155892501200700414
Zhang, H., Cheng, J., & Ao, Q. (2021). Preparation of alginate-based biomaterials and their applications in biomedicine. Marine Drugs, 19(5), 1–24. https://doi.org/10.3390/md19050264
Zhang, X, Peng, X., & Zhang, S. W. (2017). 7 - Synthetic biodegradable medical polymers: Polymer blends. In Xiang Zhang (Ed.), Science and Principles of Biodegradable and Bioresorbable Medical Polymers (pp. 217–254). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100372-5.00007-6
Zhang, Xuewei, Chen, X., Hong, H., Hu, R., Liu, J., & Liu, C. (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive Materials, 10, 15–31. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.09.014
Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/https://doi.org/10.1038/s41427-018-0092-8
Zhao, W., Tu, H., Chen, J., Wang, J., Liu, H., Zhang, F., & Li, J. (2023). Functionalized hydrogels in neural injury repairing. Frontiers in Neuroscience, 17(June), 1–9. https://doi.org/10.3389/fnins.2023.1199299
Zhou, J., Chen, J., Sun, H., Qiu, X., Mou, Y., Liu, Z., Zhao, Y., Li, X., Han, Y., Duan, C., Tang, R., Wang, C., Zhong, W., Liu, J., Luo, Y., Xing, M. M., & Wang, C. (2014). Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific Reports, 4, 1–11. https://doi.org/10.1038/srep03733
Zimmermann, W.-H., Schneiderbanger, K., Schubert, P., Didié, M., Münzel, F., Heubach, J. F., Kostin, S., Neuhuber, W. L., & Eschenhagen, T. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230. https://doi.org/10.1161/hh0202.103644
Zhuang, R. Z., Lock, R., Liu, B., & Vunjak-Novakovic, G. (2022). Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nature Biomedical Engineering, 6(4), 327–338. https://doi.org/10.1038/s41551-022-00885-3
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xv, 201 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales
dc.publisher.faculty.spa.fl_str_mv Facultad de Ingeniería
dc.publisher.place.spa.fl_str_mv Bogotá, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86396/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86396/2/1018457635.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86396/3/1018457635.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2b2c977576b138d0ee47089d03cb9283
3b8c2a7e44eb7d73b807bfcaeb5d78f2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090037844770816
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Clavijo Grimaldo, Aleida Dianney0f5f59dcd59278828f92bde97781e0fd600Muñoz González, Ana Maríae7eb51455bc4068cf0e104465ef4f59fBiomecánicahttps://orcid.org/0000-0002-3191-9891https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00016611092024-07-04T19:58:01Z2024-07-04T19:58:01Z2024-06-30https://repositorio.unal.edu.co/handle/unal/86396Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasThis thesis explores the design, fabrication, and of polymeric nanofiber scaffolds with electroconductive nanofillers for cardiac tissue engineering, focusing on myocardial tissue repair through differentiated incorporation of graphene and polypyrrole (PPy) into polycaprolactone (PCL) matrices via electrospinning. The work aims to establish fabrication parameters and assess the morphological, mechanical, chemical, electrical and biocompatibility properties of the scaffolds, with the goal of selecting those that offer optimal theorical electromechanical coupling with myocardial tissue. Two strategies are distinguished: one focused on scaffolds doped with graphene, which show improvements in structural uniformity and mechanical properties, and another on scaffolds enriched with PPy, noted for their significant electrical conductivity. Both strategies present specific advantages, such as enhanced hydrophilicity and the promotion of cell adhesion and proliferation, crucial for tissue regeneration. Despite challenges like the uniform dispersion of nanoparticles and matching the mechanical properties to those of native myocardium, the research highlights the potential of in situ polymerization of PPy as a balanced method for achieving scaffolds with optimized electrical properties and biocompatibility.Esta tesis explora el diseño, fabricación y análisis de andamios de nanofibras poliméricas con nanorrellenos electroconductivos para la ingeniería de tejidos cardíacos, centrándose en la reparación del tejido miocárdico mediante la incorporación diferenciada de grafeno y polipirrol (PPy) en matrices de policaprolactona (PCL) a través del electrohilado. El trabajo tiene como objetivo establecer parámetros de fabricación y evaluar las propiedades morfológicas, mecánicas, químicas, eléctricas y de biocompatibilidad de los andamios, con el fin de seleccionar aquellos que ofrezcan un acoplamiento electromecánico teórico óptimo con el tejido miocárdico. Se distinguen dos estrategias: una centrada en andamios dopados con grafeno, que muestran mejoras en la uniformidad estructural y propiedades mecánicas, y otra en andamios enriquecidos con PPy, conocidos por su significativa conductividad eléctrica. Ambas estrategias presentan ventajas específicas, como la mejora de la hidrofilicidad y la promoción de la adhesión y proliferación celular, cruciales para la regeneración del tejido. A pesar de desafíos como la dispersión uniforme de nanopartículas y la correspondencia de las propiedades mecánicas con las del miocardio nativo, la investigación resalta el potencial de la polimerización in situ de PPy como un método equilibrado para lograr andamios con propiedades eléctricas y biocompatibilidad optimizadas. (Texto tomado de la fuente).DoctoradoDoctor en IngenieríaNanomateriales e ingeniería tisularxv, 201 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de MaterialesFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáEvaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering applicationEvaluación de la adición de nanorrellenos conductores en andamios para aplicaciones de ingeniería de tejidos miocárdicosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbbasi, A. M. R., Marsalkova, M., & Militky, J. (2013). Conductometry and Size Characterization of Polypyrrole Nanoparticles Produced by Ball Milling. Journal of Nanoparticles, 2013, 1–4. https://doi.org/10.1155/2013/690407Abdul Rahman, N., & Bahruji, H. (2022). Plastics in Biomedical Application. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 114–125). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00071-7Agrawal, R., Shah, J., Gupta, G., Srivastava, R., Sharma, C., & Kotnala, R. (2020). Significantly high electromagnetic shielding effectiveness in polypyrrole synthesized by eco-friendly and cost-effective technique. Journal of Applied Polymer Science, 137(48), 1–12. https://doi.org/10.1002/app.49566Ahadian, S., Zhou, Y., Yamada, S., Estili, M., Liang, X., Nakajima, K., Shiku, H., & Matsue, T. (2016). Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale, 8(13), 7075–7084. https://doi.org/10.1039/c5nr07059gAjith, G., Tamilarasi, G. P., Sabarees, G., Gouthaman, S., Manikandan, K., Velmurugan, V., Alagarsamy, V., & Solomon, V. R. (2023). Recent Developments in Electrospun Nanofibers as Delivery of Phytoconstituents for Wound Healing. Drugs and Drug Candidates, 2(1), 148–171. https://doi.org/10.3390/ddc2010010Al-Abduljabbar, A., & Farooq, I. (2023). Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers, 15(1). https://doi.org/10.3390/polym15010065myocardial repair. Cellular and Molecular Life Sciences, 69(16), 2635–2656. https://doi.org/10.1007/ Alcon, A., Cagavi Bozkulak, E., & Qyang, Y. (2012). Regenerating functional heart tissue for s00018-012-0942-4Alegret, N., Dominguez-Alfaro, A., & Mecerreyes, D. (2019). 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules, 20(1), 73–89. https://doi.org/10.1021/acs.biomac.8b01382Alexeev, D., Goedecke, N., Snedeker, J., & Ferguson, S. (2020). Mechanical evaluation of electrospun poly ( ε -caprolactone ) single fi bers. Materials Today Communications, 24(April), 101211. https://doi.org/10.1016/j.mtcomm.2020.101211Amariei, N., Manea, L. R., Bertea, A. P., Bertea, A., & Popa, A. (2017). The Influence of Polymer Solution on the Properties of Electrospun 3D Nanostructures. IOP Conference Series: Materials Science and Engineering, 209(1). https://doi.org/10.1088/1757-899X/209/1/012092Amaya, J. B. (2018). Estudio De La Degradabilidad Del Pcl (Policaprolactona) Dosificado Con La Lignina De La Fibra De Banano. Revista Iberoamericana de Polimeros y MAteriales, 19(4), 128–141.Ansari, R. (2006). Polypyrrole Conducting Electroactive Polymers: Synthesis and Stability Studies. E-Journal of Chemistry, 3(4), 186–201. https://doi.org/10.1155/2006/860413Arakawa, C. K., & DeForest, C. A. (2017). Chapter 19 - Polymer Design and Development (A. Vishwakarma & J. M. B. T.-B. and E. of S. C. N. Karp (eds.); pp. 295–314). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802734-9.00019-6Asri, N. A. N., Mahat, M. M., Zakaria, A., Safian, M. F., & Abd Hamid, U. M. (2022). Fabrication Methods of Electroactive Scaffold-Based Conducting Polymers for Tissue Engineering Application: A Review. Frontiers in Bioengineering and Biotechnology, 10(July), 1–13. https://doi.org/10.3389/fbioe.2022.876696Avouris, P., & Dimitrakopoulos, C. (2012). Graphene: synthesis and applications. Materials Today, 15(3), 86–97. https://doi.org/https://doi.org/10.1016/S1369-7021(12)70044-5AWIN, Mclennan, K. M., Rebelo, C. J. R., Corke, M. J., Holmes, M. A., & Constantino-Casas. (2014). Using facial expression to assess pain in sheep. 9, 92281.Aziz, R., Falanga, M., Purenovic, J., Mancini, S., Lamberti, P., & Guida, M. (2023). A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. Nanomaterials, 13(8), 1–28. https://doi.org/10.3390/nano13081374Baei, P., Jalili-Firoozinezhad, S., Rajabi-Zeleti, S., Tafazzoli-Shadpour, M., Baharvand, H., & Aghdami, N. (2016). Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Science and Engineering C, 63, 131–141. https://doi.org/10.1016/j.msec.2016.02.056Bagbi, Y., Pandey, A., & Solanki, P. R. (2019). Chapter 10 - Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 275–288). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00015-XBahrami, S., Solouk, A., Mirzadeh, H., & Seifalian, A. M. (2019). Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Composites Part B: Engineering, 168(March), 421–431. https://doi.org/10.1016/j.compositesb.2019.03.044Baker, S. R., Banerjee, S., Bonin, K., & Guthold, M. (2016). Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Materials Science and Engineering C, 59, 203–212. https://doi.org/10.1016/j.msec.2015.09.102Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015Barba Evia, J. R. (2009). Cardiomioplastia: El papel de las células madre en la regeneración miocárdica. Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio, 56(1), 50–65.Bejaoui, M., Galai, H., Touati, F., & Kouass, S. (2021). Multifunctional Roles of PVP as a Versatile Biomaterial in Solid State. In U. Ahmad (Ed.), Dosage Forms. IntechOpen. https://doi.org/10.5772/intechopen.99431Bellet, P., Gasparotto, M., Pressi, S., Fortunato, A., Scapin, G., Mba, M., Menna, E., & Filippini, F. (2021). Graphene-Based Scaffolds for Regenerative MedicineBeltran-Vargas, N. E., Peña-Mercado, E., Sánchez-Gómez, C., Garcia-Lorenzana, M., Ruiz, J. C., Arroyo-Maya, I., Huerta-Yepez, S., & Campos-Terán, J. (2022). Sodium Alginate/Chitosan Scaffolds for Cardiac Tissue Engineering: The Influence of Its Three-Dimensional Material Preparation and the Use of Gold Nanoparticles. Polymers, 14(16). https://doi.org/10.3390/polym14163233Bertuoli, P. T., Ordono, J., Armelin, E., Pérez-Amodio, S., Baldissera, A. F., Ferreira, C. A., Puiggalí, J., Engel, E., Del Valle, L. J., & Alemán, C. (2019). Electrospun Conducting and Biocompatible Uniaxial and Core-Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 4(2), 3660–3672. https://doi.org/10.1021/acsomega.8b03411Biscaia, S., Silva, J. C., Moura, C., Viana, T., Tojeira, A., Mitchell, G. R., Pascoal-Faria, P., Ferreira, F. C., & Alves, N. (2022). Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance. Polymers, 14(9). https://doi.org/10.3390/polym14091669Blachowicz, T., & Ehrmann, A. (2020). Conductive electrospun nanofiber mats. Materials, 13(1). https://doi.org/10.3390/ma13010152Bolonduro, O. A., Duffy, B. M., Rao, A. A., Black, L. D., & Timko, B. P. (2020). From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering. Nano Research, 12(1). https://doi.org/10.1007/s12274-020-2682-3Borges, M. H. R., Nagay, B. E., Costa, R. C., Souza, J. G. S., Mathew, M. T., & Barão, V. A. R. (2023). Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. In Advances in Colloid and Interface Science (Vol. 314, Issue February). https://doi.org/10.1016/j.cis.2023.102860Boroumand, S., Haeri, A., Nazeri, N., & Rabbani, S. (2021). Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds and Pharmacological Agents. Iranian Journal of Pharmaceutical Research, 20(4), 467–496. https://doi.org/10.22037/IJPR.2021.114730.15012Boutry, C. M., Müller, M., & Hierold, C. (2012). Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy). Materials Science and Engineering C, 32(6), 1610–1620. https://doi.org/10.1016/j.msec.2012.04.051Bronzino, J. D. (2006). Tissue Engineering and Artificial Organs (1st ed.) (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9781420003871Brugnara, M., Della Volpe, C., Siboni, S., & Zeni, D. (2006). Contact angle analysis on polymethylmethacrylate and commercial wax by using an environmental scanning electron microscope. Scanning, 28(5), 267–273. https://doi.org/10.1002/sca.4950280504Butt, H.-J., & Kappl, M. (2018). Surface and Interfacial Forces. Wiley VCH.Camacho, P., Fan, H., Liu, Z., & He, J. Q. (2016). Small mammalian animal models of heart disease. American Journal of Cardiovascular Disease, 6(3), 70–80. https://doi.org/10.3390/jcdd3040030Camman, M., Joanne, P., Agbulut, O., & Hélary, C. (2022). 3D models of dilated cardiomyopathy: Shaping the chemical, physical and topographical properties of biomaterials to mimic the cardiac extracellular matrix. Bioactive Materials, 7, 275–291. https://doi.org/10.1016/j.bioactmat.2021.05.040Centers for Disease Control and Prevention. (2022). Heart Disease Facts. https://www.cdc.gov/heartdisease/facts.htm#printCeretti, E., Ginestra, P. S., Ghazinejad, M., Fiorentino, A., & Madou, M. (2017). Electrospinning and characterization of polymer–graphene powder scaffolds. CIRP Annals - Manufacturing Technology, 66(1), 233–236. https://doi.org/10.1016/j.cirp.2017.04.122Chakraborty, M. (2020). Chitosan Biopolymer on Plant Growth. Encyclopedia. https://encyclopedia.pub/entry/3639Chang, W.-T., Chen, J.-S., Tsai, M.-H., Tsai, W.-C., Juang, J.-N., & Liu, P.-Y. (2016). Interplay of Aging and Hypertension in Cardiac Remodeling: A Mathematical Geometric Model. PloS One, 11(12), e0168071. https://doi.org/10.1371/journal.pone.0168071Chem, G., Thomas, M. S., Pillai, P. K. S., Farrowc, S. C., Pothan, L. A., & Thomas, S. (2021). Electrospinning as an Important Tool for Fabrication of Nanofibers for Advanced Applications — a Brief Review. Figure 1, 1–7. https://doi.org/10.21127/yaoyigc20200022behavior in tissue engineering. Biomaterials Research, 23(1), 1–12. https://doi.org/10.1186/s40824-019- Chen, C., Bai, X., Ding, Y., & Lee, I. S. (2019). Electrical stimulation as a novel tool for regulating cell 0176-8Chen, Q., Xiao, S., Shi, S. Q., & Cai, L. (2020). Synthesis, Characterization, and Antibacterial Activity of N-substituted Quaternized Chitosan and Its Cellulose-based Composite Film. BioResources, 15(1), 415.Chen, X., Feng, B., Zhu, D. Q., Chen, Y. W., Ji, W., Ji, T. J., & Li, F. (2019). Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. International Journal of Nanomedicine, 14, 3669–3678. https://doi.org/10.2147/IJN.S204971Chiesa, E., Dorati, R., Pisani, S., Bruni, G., Rizzi, L. G., Conti, B., Modena, T., & Genta, I. (2020). Graphene nanoplatelets for the development of reinforced PLA-PCL electrospun fibers as the next-generation of biomedical mats. Polymers, 12(6). https://doi.org/10.3390/polym12061390Chorro, F. J., & López-merino, L. S. V. (2009). Modelos animales de enfermedad cardiovascular. 62(I), 69–84.Číková, E., Mičušík, M., Šišková, A., Procházka, M., Fedorko, P., & Omastová, M. (2018). Conducting electrospun polycaprolactone/polypyrrole fibers. Synthetic Metals, 235(December 2017), 80–88. https://doi.org/10.1016/j.synthmet.2017.11.011Clavijo-Grimaldo, D., Casadiego-Torrado, C. A., Villalobos-Elías, J., Ocampo-Páramo, A., & Torres-Parada, M. (2022). Characterization of Electrospun Poly(ε-caprolactone) Nano/Micro Fibrous Membrane as Scaffolds in Tissue Engineering: Effects of the Type of Collector Used. Membranes, 12(6). https://doi.org/10.3390/membranes12060563ClinicalTrials.gov. (2024). ClinicalTrials.gov. https://clinicaltrials.gov/search?term=scaffold&cond=Myocardial Infarction&city=Cristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019a). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. March, 1253–1264. https://doi.org/10.1002/term.2875Cristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019b). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. April, 1253–1264. https://doi.org/10.1002/term.2875Cui, J., Li, J., Mathison, M., Tondato, F., Mulkey, S. P., Micko, C., Chronos, N. A. F., & Robinson, K. A. (2005). A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch materials. Cardiovascular Revascularization Medicine, 6(3), 113–120. https://doi.org/10.1016/j.carrev.2005.07.006Cui, S., Mao, J., Rouabhia, M., Elkoun, S., & Zhang, Z. (2021). A biocompatible polypyrrole membrane for biomedical applications. RSC Advances, 11(28), 16996–17006. https://doi.org/10.1039/d1ra01338fCui, S., Mao, J., Zhang, Z., & Rouabhia, M. (2021). A biocompatible polypyrrole membrane for biomedical applications. 16996–17006. https://doi.org/10.1039/d1ra01338fDa Silva, A. B., Marini, J., Gelves, G., Sundararaj, U., Gregório, R., & Bretas, R. E. S. (2013). Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. European Polymer Journal, 49(10), 3318–3327. https://doi.org/10.1016/j.eurpolymj.2013.06.039for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7 Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanismDane. (2018). Estadísticas vitales. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/nacimientos-y-defuncionesDas, S., Wajid, A. S., Bhattacharia, S. K., Wilting, M. D., Rivero, I. V., & Green, M. J. (2013). Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. Journal of Applied Polymer Science, 128(6), 4040–4046. https://doi.org/10.1002/app.38694Dayan V, Benech A, Rodríguez C, Ado S, Guedes I, Sotelo V, Laguzzi F, Kapitán M, Langhain M, Ferrando R, T. C. (2011). MODELO DE INFARTO AGUDO DE MIOCARDIO MEDIANTE ISQUEMIA-REPERFUSIÓN EN OVEJAS. Revista Uruguaya de Cardiología, 31–93. http://www.scielo.edu.uy/scielo.php?pid=S1688-04202011000400007&script=sci_arttextDe Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44(5), 1357–1362. https://doi.org/10.1007/s10853-008-3010-6Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261–272. https://doi.org/https://doi.org/10.1016/S0032-3861(00)00250-0del Maria Javier, M. F., Delmo, E. M. J., & Hetzer, R. (2021). Evolution of heart transplantation since Barnard’s first. Cardiovascular Diagnosis and Therapy, 11(1), 171–182. https://doi.org/10.21037/CDT-20-289Deliormanlı, A. M. (2019). Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology, 188(4), 1117–1133. https://doi.org/10.1007/s12010-019-02976-5Deshmukh, K., Basheer Ahamed, M., Deshmukh, R. R., Khadheer Pasha, S. K., Bhagat, P. R., & Chidambaram, K. (2017). 3 - Biopolymer Composites With High Dielectric Performance: Interface Engineering. In K. K. Sadasivuni, D. Ponnamma, J. Kim, J.-J. Cabibihan, & M. A. AlMaadeed (Eds.), Biopolymer Composites in Electronics (pp. 27–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809261-3.00003-6Devlin, G., Matthews, K., McCracken, G., Stuart, S., Jensen, J., Conaglen, J., & Bass, J. (2000). An ovine model of chronic stable heart failure. Journal of Cardiac Failure, 6(2), 140–143. https://doi.org/10.1054/jcaf.2000.7279Diaz, A., Ignacio, E., & Fischer, C. (2016). Modelos Experimentales de Insuficiencia Cardiaca en Grandes Animales (Issue February).Ding, B., Wang, X., & Yu, J. (2019). Electrospinning and nanofabrication and applications. Elsevier.Dozois, M. D., Bahlmann, L. C., Zilberman, Y., & Tang, X. (Shirley). (2017). Carbon nanomaterial-enhanced scaffolds for the creation of cardiac tissue constructs: A new frontier in cardiac tissue engineering. Carbon, 120, 338–349. https://doi.org/10.1016/j.carbon.2017.05.050Echegaray, K., Andreu, I., Lazkano, A., Villanueva, I., Sáenz, A., Elizalde, M. R., Echeverría, T., López, B., Garro, A., González, A., Zubillaga, E., Solla, I., Sanz, I., González, J., Elósegui-Artola, A., Roca-Cusachs, P., Díez, J., Ravassa, S., & Querejeta, R. (2017). Role of Myocardial Collagen in SevereAortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure. Revista Espanola de Cardiologia (English Ed.), 70(10), 832–840. https://doi.org/10.1016/j.rec.2016.12.038Edrisi, F., Baheiraei, N., Razavi, M., Roshanbinfar, K., Imani, R., & Jalilinejad, N. (2023). Potential of graphene-based nanomaterials for cardiac tissue engineering. Journal of Materials Chemistry B, 11(31), 7280–7299. https://doi.org/10.1039/d3tb00654aEl-Sayed, N. M., El-Bakary, M. A., Ibrahim, M. A., Elgamal, M. A., & Hamza, A. A. (2021). Characterization of the mechanical and structural properties of PGA/TMC copolymer for cardiac tissue engineering. Microscopy Research and Technique, 84(7), 1596–1606. https://doi.org/10.1002/jemt.23720Elamparithi, A., Punnoose, A. M., Paul, S. F. D., & Kuruvilla, S. (2017). Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(1), 20–27. https://doi.org/10.1080/00914037.2016.1180616Elkhoury, K., Morsink, M., Sanchez-Gonzalez, L., Kahn, C., Tamayol, A., & Arab-Tehrany, E. (2021). Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioactive Materials, 6(11), 3904–3923. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.03.040Eroğlu, N. S. (2022). Production of Nanofibers from Plant Extracts by Electrospinning Method (T. Tański & P. Jarka (eds.); p. Ch. 3). IntechOpen. https://doi.org/10.5772/intechopen.102614Eslahi, N., Lotfi, R., Zandi, N., Mazaheri, M., Soleimani, F., & Simchi, A. (2022). 8 - Graphene-based polymer nanocomposites in biomedical applications. In S. M. Rangappa, J. Parameswaranpillai, V. Ayyappan, M. G. Motappa, S. Siengchin, & C. Soutis (Eds.), Innovations in Graphene-Based Polymer Composites (pp. 199–245). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-823789-2.00016-9Fakhrali, A., Nasari, M., Poursharifi, N., Semnani, D., Salehi, H., Ghane, M., & Mohammadi, S. (2021). Biocompatible graphene-embedded PCL/PGS-based nanofibrous scaffolds: A potential application for cardiac tissue regeneration. Journal of Applied Polymer Science, 138(40), 1–14. https://doi.org/10.1002/app.51177Fakhrali, A., Semnani, D., Salehi, H., & Ghane, M. (2022). Electro-conductive nanofibrous structure based on PGS/PCL coated with PPy by in situ chemical polymerization applicable as cardiac patch: Fabrication and optimization. Journal of Applied Polymer Science, 139(19), 1–20. https://doi.org/10.1002/app.52136Ferreira, C. L., Valente, C. A., Zanini, M. L., Sgarioni, B., Henrique, P., Tondo, F., Chagastelles, P. C., Braga, J., Campos, M. M., Malmonge, A., Regina, N., & Basso, D. S. (2019). Biocompatible PCL / PLGA / Polypyrrole Composites for Regenerating Nerves. 1800028, 1–8. https://doi.org/10.1002/masy.201800028Flaig, F., Ragot, H., Simon, A., Revet, G., Kitsara, M., Kitasato, L., Hébraud, A., Agbulut, O., & Schlatter, G. (2020). Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate)Elastomer and Poly(lactic acid) for Cardiac Tissue Engineering. ACS Biomaterials Science and Engineering, 6(4), 2388–2400. https://doi.org/10.1021/acsbiomaterials.0c00243Fleischer, S., Feiner, R., & Dvir, T. (2017). Cardiac tissue engineering: From matrix design to the engineering of bionic hearts. Regenerative Medicine, 12(3), 275–284. https://doi.org/10.2217/rme-2016-0150Flores-Rojas, G. G. ., Gómez-Lazaro, B. ., López-Saucedo, F. ., Vera-Graziano, R. ., Bucio, E. ., & Mendizábal, E. (2023). Electrospun Scaffolds for Tissue Engineering : A Review. Macromol, 3, 524–553. https://doi.org/https://doi.org/10.3390/macromol3030031Forward, K., & Rutledge, G. (2012). Free surface electrospinning from a wire electrode. Chemical Engineering Journal, 183, 492–503. https://doi.org/10.1016/j.cej.2011.12.045Fujihara, K., Teo, E., Teik-Cheng, L., & Ma, Z. (2005). An Introduction To Electrospinning And Nanofibers. In World Scientific: Singapore (Vol. 3). https://doi.org/10.1142/9789812567611_0003Fujita, B., & Zimmermann, W. H. (2017). Engineered Heart Repair. Clinical Pharmacology and Therapeutics, 102(2), 197–199. https://doi.org/10.1002/cpt.724Furth, M. E., & Atala, A. (2014). Chapter 6 - Tissue Engineering: Future Perspectives. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (Fourth Edi, pp. 83–123). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-398358-9.00006-9Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41(11), 2251–2269. https://doi.org/10.1088/0031-9155/41/11/002Gálvez-Montón, C., Prat-Vidal, C., Díaz-Güemes, I., Crisóstomo, V., Soler-Botija, C., Roura, S., Llucià-Valldeperas, A., Perea-Gil, I., Sánchez-Margallo, F. M., & Bayes-Genis, A. (2014). Comparison of two preclinical myocardial infarct models: Coronary coil deployment versus surgical ligation. Journal of Translational Medicine, 12(1), 1–9. https://doi.org/10.1186/1479-5876-12-137Gálvez-Montón, C., Prat-Vidal, C., Roura, S., Soler-Botija, C., & Bayes-Genis, A. (2013). Ingeniería tisular cardiaca y corazón bioartificial. Revista Espanola de Cardiologia, 66(5), 391–399. https://doi.org/10.1016/j.recesp.2012.11.013Gelmi, A., Zhang, J., Cieslar-Pobuda, A., Ljunngren, M. K., Los, M. J., Rafat, M., & Jager, E. W. H. (2015). Electroactive 3D materials for cardiac tissue engineering. Electroactive Polymer Actuators and Devices (EAPAD) 2015, 9430, 94301T. https://doi.org/10.1117/12.2084165Ghovvati, M., Kharaziha, M., Ardehali, R., & Annabi, N. (2022). Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2200055.Ghuran, A. V., & Camm, A. J. (2001). Ischaemic heart disease presenting as arrhythmias. British Medical Bulletin, 59, 193–210. https://doi.org/10.1093/bmb/59.1.193Ginestra, P. (2019). Manufacturing of polycaprolactone - Graphene fibers for nerve tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 100(July), 103387. https://doi.org/10.1016/j.jmbbm.2019.103387Gómez, J., Vásquez, M., Mantione, D., & Alegret, N. (2021). Carbon Nanomaterials Embedded in Conductive Polymers : A State of the Art.Greenlund, K. J., Giles, W. H., Keenan, N. L., Malarcher, A. M., Zheng, Z. J., Casper, M. L., & Croft, J. B. (2006). 381Heart Disease and Stroke Mortality in the Twentieth Century. In J. W. Ward & C. Warren (Eds.), Silent Victories: The History and Practice of Public Health in Twentieth Century America (p. 0). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195150698.003.18Gryshkov, O., Al Halabi, F., Kuhn, A. I., Leal-Marin, S., Freund, L. J., Förthmann, M., Meier, N., Barker, S. A., Haastert-Talini, K., & Glasmacher, B. (2021). Pvdf and p(Vdf-trfe) electrospun scaffolds for nerve graft engineering: A comparative study on piezoelectric and structural properties, and in vitro biocompatibility. International Journal of Molecular Sciences, 22(21), 1–27. https://doi.org/10.3390/ijms222111373Grzeszczuk, M. (2018). Polymer electrodes: Preparation, properties, and applications. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11676-2Gu, H., Huang, J., Li, N., Yang, H., Wang, Y., Zhang, Y., Dong, C., Chen, G., & Guan, H. (2022). Polystyrene-Modulated Polypyrrole to Achieve Controllable Electromagnetic-Wave Absorption with Enhanced Environmental Stability. Nanomaterials, 12(15). https://doi.org/10.3390/nano12152698Guo, B., & Ma, P. X. (2018). Conducting Polymers for Tissue Engineering [Review-article]. Biomacromolecules, 19(6), 1764–1782. https://doi.org/10.1021/acs.biomac.8b00276Guo, Q.-Y., Yang, J.-Q., Feng, X.-X., & Zhou, Y.-J. (2023). Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Military Medical Research, 10(1), 18. https://doi.org/10.1186/s40779-023-00452-0Hagen, R. (2012). 10.12 - Polylactic Acid. In K. Matyjaszewski & M. Möller (Eds.), Polymer Science: A Comprehensive Reference (pp. 231–236). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53349-4.00269-7Haider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015Han, J., Li, H., Xu, X., Yuan, L., Wang, N., & Yu, H. (2016). Cu2(OH)PO4 pretreated by composite surfactants for the micro-domino effect: A high-efficiency Fenton catalyst for the total oxidation of dyes. Materials Letters, 166, 71–74. https://doi.org/https://doi.org/10.1016/j.matlet.2015.12.046Hao, D., Swindell, H. S., Ramasubramanian, L., Liu, R., Lam, K. S., Farmer, D. L., & Wang, A. (2020). Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Frontiers in Bioengineering and Biotechnology, 8(June). https://doi.org/10.3389/fbioe.2020.00633Hao, L., Dong, C., Zhang, L., Zhu, K., & Yu, D. (2022). Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers, 14(23). https://doi.org/10.3390/polym14235139Haq, A. U., Carotenuto, F., De Matteis, F., Prosposito, P., Francini, R., Teodori, L., Pasquo, A., & Di Nardo, P. (2021). Intrinsically conductive polymers for striated cardiac muscle repair. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168550Harlin, A., & Ferenets, M. (2006). Introduction to conductive materials. Intelligent Textiles and Clothing, 217–238. https://doi.org/10.1533/9781845691622.3.217Hashizume, R., Fujimoto, K. L., Hong, Y., Guan, J., Toma, C., Tobita, K., & Wagner, W. R. (2013). Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia-reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model. Journal of Thoracic and Cardiovascular Surgery, 146(2), 391-399.e1. https://doi.org/10.1016/j.jtcvs.2012.11.013He, S., Wu, J., Li, S., Wang, L., Sun, Y., Xie, J., & Ramnath, D. (2020). The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure. Biomaterials, 120285. https://doi.org/10.1016/j.biomaterials.2020.120285Heidari, M., Bahrami, H., & Ranjbar-Mohammadi, M. (2017). Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Materials Science and Engineering C, 78, 218–229. https://doi.org/10.1016/j.msec.2017.04.095Heidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Materials Science and Engineering C, 103(May), 109768. https://doi.org/10.1016/j.msec.2019.109768Heikhmakhtiar, A. K., & Lim, K. M. (2018). Computational Prediction of the Combined Effect of CRT and LVAD on Cardiac Electromechanical Delay in LBBB and RBBB. Computational and Mathematical Methods in Medicine, 2018(September), 10–12. https://doi.org/10.1155/2018/4253928Heng, B. C., Bai, Y., Li, X., Lim, L. W., Li, W., Ge, Z., Zhang, X., & Deng, X. (2023). Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. Advanced Science, 10(2), 2204502. https://doi.org/https://doi.org/10.1002/advs.202204502Hirenkumar, M., & Steven, S. (2012). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1–19. https://doi.org/10.3390/polym3031377.PolyHohman, M., Shin, M., Rutledge, G., & Brenner, M. (2001). Electrospinning and Electrically Forced Jets. I. Stability Theory. Physics of Fluids - PHYS FLUIDS, 13. https://doi.org/10.1063/1.1383791House, A., Atalla, I., Lee, E. J., & Guvendiren, M. (2021). Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. 2000022, 1–16. https://doi.org/10.1002/anbr.202000022Hu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9, 895035. https://doi.org/10.3389/fcvm.2022.895035Huang, C., Niu, H., Wu, J., Ke, Q., Mo, X., & Lin, T. (2012). Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. Journal of Nanomaterials, 2012, 473872. https://doi.org/10.1155/2012/473872Huang, P., Liu, Y., Chen, Z., Zheng, Y., Vasilovna, K. V., Faritovich, G. R., & Xin, B. (2023). Preparation and Characterization of PU/PDA/PPy Flexible Composite Film for Electric Heating. Fibers and Polymers. https://doi.org/10.1007/s12221-023-00416-0Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/https://doi.org/10.1016/S0266-3538(03)00178-7Ibrahim, I. M., Yunus, S., & Hashim, M. A. (2013). Relative performance of isoproopylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. International Journal of Scientific & Engineering Research, 4(2), 1–12.Ikram, H., Rogers, S. J., Charles, C. J., Sands, J., Richards, A. M., Bridgman, P. G., & Gooneratne, R. (1997). An ovine model of acute myocardial infarction and chronic left ventricular dysfunction. Angiology, 48(8), 679–688. https://doi.org/10.1177/000331979704800803Imani, F., Karimi-Soflou, R., Shabani, I., & Karkhaneh, A. (2021). PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. Polymer, 218(September 2020), 123487. https://doi.org/10.1016/j.polymer.2021.123487Jain, A., Nabeel, A. N., Bhagwat, S., Kumar, R., Sharma, S., Kozak, D., Hunjet, A., Kumar, A., & Singh, R. (2023). Fabrication of polypyrrole gas sensor for detection of NH3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon, 9(7), e17611. https://doi.org/10.1016/j.heliyon.2023.e17611Jana, S., Bhagia, A., & Lerman, A. (2019). Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Biomedical Materials (Bristol), 14(6). https://doi.org/10.1088/1748-605X/ab3d24Jang, Y., Park, Y., & Kim, J. (2020). Engineering Biomaterials to Guide Heart Cells for Matured Cardiac Tissue. Coatings, 10, 925. https://doi.org/10.3390/coatings10100925Jiang, L., Chen, D., Wang, Z., Zhang, Z., Xia, Y., Xue, H., & Liu, Y. (2019). Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering. Applied Biochemistry and Biotechnology, 188(4), 952–964. https://doi.org/10.1007/s12010-019-02967-6John, J., & Jayalekshmi, S. (2023). Polypyrrole with appreciable solubility, crystalline order and electrical conductivity synthesized using various dopants appropriate for device applications. Polymer Bulletin, 80(6), 6099–6116. https://doi.org/10.1007/s00289-022-04354-4Jung, H.-S., Kim, M. H., Shin, J. Y., Park, S. R., Jung, J.-Y., & Park, W. H. (2018). Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydr. Polym., 193, 205.Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011a). Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 98 B(2), 379–386. https://doi.org/10.1002/jbm.b.31862Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011b). Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. Journal of Biomedical Materials Research - Part A, 99 A(3), 376–385. https://doi.org/10.1002/jbm.a.33200Kalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D., & Bakenov, Z. (2020). A review of piezoelectric pvdf film by electrospinning and its applications. Sensors (Switzerland), 20(18), 1–42. https://doi.org/10.3390/s20185214Kariduraganavar, M. Y., Kittur, A. A., & Kamble, R. R. (2014). Chapter 1 - Polymer Synthesis and Processing. In S. G. Kumbar, C. T. Laurencin, & M. Deng (Eds.), Natural and Synthetic Biomedical Polymers (pp. 1–31). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-396983-5.00001-6Karimi, S. N. H., Aghdam, R. M., Ebrahimi, S. A. S., & Chehrehsaz, Y. (2022). Tri-layered alginate/poly(epsilon-caprolactone) electrospun scaffold for cardiac tissue engineering. POLYMER INTERNATIONAL, 71(9), 1099–1108. https://doi.org/10.1002/pi.6371Karkan, S. F., Davaran, S., Rahbarghazi, R., Salehi, R., & Akbarzadeh, A. (2019). Electrospun nanofibers for the fabrication of engineered vascular grafts. Journal of Biological Engineering, 7, 1–13.Kashou, A. H., & Chhabra, H. B. L. (2020). Physiology, Sinoatrial Node. StatPearls [Internet], 1–6.Kausar, A. (2021). Chapter 5 - Perspectives on nanocomposite with polypyrrole and nanoparticles. In A. Kausar (Ed.), Conducting Polymer-Based Nanocomposites (pp. 103–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822463-2.00006-3Kazu Kikuchi, & Poss, K. D. (2008). Cardiac Regenerative Capacity and Mechanisms. Annual Review of Cell and Developmental Biology, 28(1), 719–741. https://doi.org/doi.org/10.1146/annurev-cellbio-101011-155739Kesornsit, S., Direksilp, C., Phasuksom, K., Thummarungsan, N., Sakunpongpitiporn, P., Rotjanasuworapong, K., Sirivat, A., & Niamlang, S. (2022). Synthesis of Highly Conductive Poly(3-hexylthiophene) by Chemical Oxidative Polymerization Using Surfactant Templates. Polymers, 14(18), 1–19. https://doi.org/10.3390/polym14183860Kharaziha, M., Shin, S. R., Nikkhah, M., Topkaya, S. N., Masoumi, N., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2014). Tough and flexible CNT-polymeric hybrid scaffolds for engineeringcardiac constructs. Biomaterials, 35(26), 7346–7354. https://doi.org/10.1016/j.biomaterials.2014.05.014Khatti, T., Naderi-Manesh, H., & Kalantar, S. M. (2019). Polypyrrole-Coated Polycaprolactone-Gelatin Conductive Nanofibers: Fabrication and Characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 250(October), 114440. https://doi.org/10.1016/j.mseb.2019.114440Kierszenbaum, Abraham L.; Tres, Laura L.; Fernández Aceñero, M. J. (2016). Histología y biología celular : introducción a la anatomía patológica (Elsevier (ed.)).Kim, S., Tserengombo, B., Choi, S.-H., Noh, J., Huh, S., Choi, B., Chung, H., Kim, J., & Jeong, H. (2018). Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. International Communications in Heat and Mass Transfer, 91, 95–102. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2017.12.011Kotadia, I., Whitaker, J., Roney, C., Niederer, S., O’Neill, M., Bishop, M., & Wright, M. (2020). Anisotropic Cardiac Conduction. Arrhythmia & Electrophysiology Review, 9(4), 202–210. https://doi.org/10.15420/aer.2020.04Krista McLennan. (n.d.). Recognising, assessing and alleviating pain in sheep. Farm Animal Well Being.Kumar, A., & Kumar, A. (2019). Poly(lactic acid) and poly(lactic-co-glycolic) acid nanoparticles: Versatility in biomedical applications. In Materials for Biomedical Engineering: Absorbable Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818415-8.00007-3Kumar, M., & Kumari, P. (2020). The effect of reciprocating motion of drum collector on electrospun PVDF nanofiber for energy harvesting application. WCMNM, 18–21.Kumar, S., & Chatterjee, K. (2016). Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. In ACS Applied Materials and Interfaces (Vol. 8, Issue 40, pp. 26431–26457). American Chemical Society. https://doi.org/10.1021/acsami.6b09801Kurakula, M., & Koteswara Rao, G. S. N. (2020). Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136(July). https://doi.org/10.1016/j.eurpolymj.2020.109919Laforgue, A., & Robitaille, L. (2010). Deposition of ultrathin coatings of polypyrrole and poly(3,4- ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chemistry of Materials, 22(8), 2474–2480. https://doi.org/10.1021/cm902986gLanger, R., & Vacanti, J. P. (1993). Tissue Engineering. Science, 260(5110), 920–926. https://doi.org/10.1126/science.8493529Le, T. H., Kim, Y., & Yoon, H. (2017). Electrical and electrochemical properties of conducting polymers. Polymers, 9(4). https://doi.org/10.3390/polym9040150Lee, J. K. Y., Chen, N., Peng, S., Li, L., Tian, L., Thakor, N., & Ramakrishna, S. (2018). Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Progress in Polymer Science, 86, 40–84. https://doi.org/10.1016/j.progpolymsci.2018.07.002Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325–4335. https://doi.org/10.1016/j.biomaterials.2009.04.042Lee, M., Kim, M. C., & Lee, J. Y. (2022). Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. International Journal of Nanomedicine, 17, 6181–6200. https://doi.org/10.2147/IJN.S386763Leung, V., & Ko, F. (2011). Biomedical applications of nanofibers. Polymers for Advanced Technologies, 22, 350–365. https://doi.org/10.1002/pat.1813Lewis, T. W. (1998). A Study of The Overoxidation of The Conducting Polymer Polypyrrole. 230.Li, J., Xu, C., Tian, H., Zha, F., Qi, W., & Wang, Q. (2018). Blend-electrospun poly(vinylidene fluoride)/stearic acid membranes for efficient separation of water-in-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 494–499. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.11.043Li, J., Zhang, X., Jiang, J., Wang, Y., Jiang, H., Zhang, J., Nie, X., & Liu, B. (2018). Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Toxicological Sciences, 167(1), 269–281. https://doi.org/10.1093/toxsci/kfy235Li, S., Yu, X., & Li, Y. (2022). Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fibrous mat : influence of drug delivery and Schwann cells proliferation Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fi. Biomedical Physics & Engineering Express, 8.Li, T. T., Yan, M., Zhong, Y., Ren, H. T., Lou, C. W., Huang, S. Y., & Lin, J. H. (2019). Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 8(6), 5124–5132. https://doi.org/10.1016/j.jmrt.2019.08.035Li, Y., Wei, L., Lan, L., Gao, Y., Zhang, Q., Dawit, H., Mao, J., Guo, L., Shen, L., & Wang, L. (2022). Conductive biomaterials for cardiac repair: A review. Acta Biomaterialia, 139, 157–178. https://doi.org/10.1016/j.actbio.2021.04.018Liang, Y., & Goh, J. C.-H. (2020). Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity, 2(2), 101–119. https://doi.org/10.1089/bioe.2020.0010Liang, Y., Mitriashkin, A., Lim, T. T., & Goh, J. C. H. (2021). Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials, 276(January), 121008. https://doi.org/10.1016/j.biomaterials.2021.121008Liau, B., Zhang, D., & Bursac, N. (2012). Functional cardiac tissue engineering. Regenerative Medicine, 7(2), 187–206. https://doi.org/10.2217/rme.11.122Lindsey, M. L., Bolli, R., Canty, J. M., Du, X. J., Frangogiannis, N. G., Frantz, S., Gourdie, R. G., Holmes, J. W., Jones, S. P., Kloner, R. A., Lefer, D. J., Liao, R., Murphy, E., Ping, P., Przyklenk, K., Recchia, F. A., Longacre, L. S., Ripplinger, C. M., Van Eyk, J. E., & Heusch, G. (2018). Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology - Heart and Circulatory Physiology, 314(4), H812–H838. https://doi.org/10.1152/ajpheart.00335.2017Liu, H., Paul, C., & Xu, M. (2017). Optimal environmental stiffness for stem cell mediated ischemic myocardium repair. Adult Stem Cells, 293–304.Liu, Y., & Wu, F. (2023). Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Advances, 3606–3618. https://doi.org/10.1039/d3na00138eLonghin, E. M., El Yamani, N., Rundén-Pran, E., & Dusinska, M. (2022). The alamar blue assay in the context of safety testing of nanomaterials. Frontiers in Toxicology, 4, 981701. https://doi.org/10.3389/ftox.2022.981701Loyo, C., Cordoba, A., Palza, H., Canales, D., Melo, F., Vivanco, J. F., Baier, R. V., Millán, C., Corrales, T., & Zapata, P. A. (2023). Effect of Gelatin Coating and GO Incorporation on the Properties and Degradability of Electrospun PCL Scaffolds for Bone Tissue Regeneration. Polymers, 16(1), 129. https://doi.org/10.3390/polym16010129Lu, H., Li, X., & Lei, Q. (2021). Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Frontiers in Chemistry, 9(September), 6–11. https://doi.org/10.3389/fchem.2021.732132Lukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M. F., Al-Tel, T. H., Dolatshahi-Pirouz, A., & Orive, G. (2022). Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics, 14(6), 1–19. https://doi.org/10.3390/pharmaceutics14061177Ma, Z., Shi, W., Yan, K., Pan, L., & Yu, G. (2019). Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chemical Science, 10(25), 6232–6244. https://doi.org/10.1039/c9sc02033kMacDonald, E. A., Rose, R. A., & Quinn, T. A. (2020). Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00170Maharjan, B., Kaliannagounder, V. K., Jang, S. R., Awasthi, G. P., Bhattarai, D. P., Choukrani, G., Park, C. H., & Kim, C. S. (2020). In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Materials Science and Engineering C, 114(April), 111056. https://doi.org/10.1016/j.msec.2020.111056Mahmoudi, T., Wang, Y., & Hahn, Y.-B. (2018). Graphene and its derivatives for solar cells application. Nano Energy, 47, 51–65. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.02.047Mahun, A., Abbrent, S., Bober, P., Brus, J., & Kobera, L. (2020). Effect of structural features of polypyrrole (PPy) on electrical conductivity reflected on 13C ssNMR parameters. Synthetic Metals, 259, 116250. https://doi.org/https://doi.org/10.1016/j.synthmet.2019.116250Majid, Q. A., Fricker, A. T. R., Gregory, D. A., Davidenko, N., Hernandez Cruz, O., Jabbour, R. J., Owen, T. J., Basnett, P., Lukasiewicz, B., Stevens, M., Best, S., Cameron, R., Sinha, S., Harding, S. E., & Roy, I. (2020). Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine, 7(October), 1–32. https://doi.org/10.3389/fcvm.2020.554597Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195058239.001.0001Mancino, C., Hendrickson, T., Whitney, L. V., Paradiso, F., Abasi, S., Tasciotti, E., Taraballi, F., & Guiseppi-Elie, A. (2022). Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 44, 102567. https://doi.org/10.1016/j.nano.2022.102567Mannhardt, I., Breckwoldt, K., Letuffe-Brenière, D., Schaaf, S., Schulz, H., Neuber, C., Benzin, A., Werner, T., Eder, A., Schulze, T., Klampe, B., Christ, T., Hirt, M. N., Huebner, N., Moretti, A., Eschenhagen, T., & Hansen, A. (2016). Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports, 7(1), 29–42. https://doi.org/10.1016/j.stemcr.2016.04.011Manousiouthakis, E., Park, J., Hardy, J. G., Lee, J. Y., & Schmidt, C. E. (2022). Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomaterialia, 139, 22–42. https://doi.org/https://doi.org/10.1016/j.actbio.2021.07.065Manteca, X., Temple, D., Mainau, E., & Llonch, P. (2017). Evaluación del dolor en el ganado ovino. Fawec, 17(1), 1–2. https://doi.org/10.13130/AWINMao, J., & Zhang, Z. (2018). Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges. Advances in Experimental Medicine and Biology, 1078, 347–370. https://doi.org/10.1007/978-981-13-0950-2_18Margerrison, E., Argentieri, M., Kommala, D., & Schabowsky, C. N. (2021). Polycaprolactone (PCL) Safety Profile Report Details Date of Submission ECRI Corporate Governance Project Manager. 540.Markowitz, S. M., & Lerman, B. B. (2018). A contemporary view of atrioventricular nodal physiology. Journal of Interventional Cardiac Electrophysiology, 52(3), 271–279. https://doi.org/10.1007/s10840-018-0392-5Matysiak, W., Tański, T., Smok, W., Gołombek, K., & Schab-Balcerzak, E. (2020). Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline. Applied Surface Science, 509(December 2019). https://doi.org/10.1016/j.apsusc.2019.145068Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & ullah khan, A. (2021). Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/https://doi.org/10.1016/j.rechem.2021.100163McClelland, R., Dennis, R., Reid, L. M., Palsson, B., & Macdonald, J. M. (2005). 7 - TISSUE ENGINEERING. In J. D. Enderle, S. M. Blanchard, & J. D. Bronzino (Eds.), Introduction to Biomedical Engineering (Second Edition) (Second Edi, pp. 313–402). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-238662-6.50009-4Mcivor, M. J., Maolmhuaidh, F. Ó., Meenagh, A., Hussain, S., Bhattacharya, G., Fishlock, S., Ward, J., Mcferran, A., Acheson, J. G., Cahill, P. A., Forster, R., Mceneaney, D. J., Boyd, A. R., & Meenan, B. J. (2022). 3D Fabrication and Characterisation of Electrically Receptive Tissue ModelsMckee, C. T., Last, J. A., Russell, P., & Murphy, C. J. (2011). Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Engineering. Part B, Reviews, 17 3, 155–164.McKeen, L. (2021). Chapter11 - The effect of heat aging on the properties of sustainable polymers. In L. McKeen (Ed.), The Effect of Long Term Thermal Exposure on Plastics and Elastomers (Second Edition) (Second Edi, pp. 313–332). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-85436-8.00001-1McMahan, S., Taylor, A., Copeland, K. M., Pan, Z., Liao, J., & Hong, Y. (2020). Current advances in biodegradable synthetic polymer based cardiac patches. Journal of Biomedical Materials Research - Part A, 108(4), 972–983. https://doi.org/10.1002/jbm.a.36874McMillen, C. (2001). The sheep - an ideal model for biomedical research? Anzccart News, 14(2), 1–4.Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 35(22), 8456–8466. https://doi.org/10.1021/ma020444aMehta, P. P., & Pawar, V. S. (2018). 22 - Electrospun nanofiber scaffolds: Technology and applications. In Inamuddin, A. M. Asiri, & A. Mohammad (Eds.), Applications of Nanocomposite Materials in Drug Delivery (pp. 509–573). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-813741-3.00023-6Mit-uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 205(17), 2327–2338. https://doi.org/https://doi.org/10.1002/macp.200400225Mittal, T. (2005). Pacemakers- A journey through the years. Indian Journal of Thoracic and Cardiovascular Surgery, 21, 236–249. https://doi.org/doi.org/10.1007/s12055-005-0060-0Mohan, V. B., Lau, K., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220. https://doi.org/https://doi.org/10.1016/j.compositesb.2018.01.013Montes, A., Valor, D., Penabad, Y., Dom, M., Pereyra, C., Mart, E., & Ossa, D. (2023). Formation of PLGA – PEDOT : PSS Conductive Scaffolds by Supercritical Foaming. 1–20.Morsink, M., Severino, P., Luna-Ceron, E., Hussain, M. A., Sobahi, N., & Shin, S. R. (2022). Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomaterialia, 139, 141–156. https://doi.org/10.1016/j.actbio.2021.11.022Mota, K. O., & Corrêa, C. B. (2021). Effect of Preparation Additives on the Antimicrobial Activity and Cytotoxicity of Polypyrrole. 32(6), 1203–1212.Murugan, S. S., Dalavi, P. A., Devi G.V., Y., Chatterjee, K., & Venkatesan, J. (2022). Natural and Synthetic Biopolymeric Biomaterials for Bone Tissue Engineering Applications. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 746–757). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00246-7Mutepfa, A. R., Hardy, J. G., & Adams, C. F. (2022). Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Frontiers in Medical Technology, 4(February). https://doi.org/10.3389/fmedt.2022.693438Nag, A., Mitra, A., & Mukhopadhyay, S. C. (2018). Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 270, 177–194. https://doi.org/https://doi.org/10.1016/j.sna.2017.12.028Nagiah, N., El Khoury, R., Othman, M. H., Akimoto, J., Ito, Y., Roberson, D. A., & Joddar, B. (2022). Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering. ACS Omega, 7(16), 13894–13905. https://doi.org/10.1021/acsomega.2c00271Nair, N. R., Sekhar, V. C., Nampoothiri, K. M., & Pandey, A. (2017). 32 - Biodegradation of Biopolymers. In A. Pandey, S. Negi, & C. R. Soccol (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 739–755). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63662-1.00032-4Najafi Tireh Shabankareh, A., Samadi Pakchin, P., Hasany, M., & Ghanbari, H. (2023). Development of a new electroconductive nanofibrous cardiac patch based on polyurethane-reduced graphene oxide nanocomposite scaffolds. Materials Chemistry and Physics, 305(May), 127961. https://doi.org/10.1016/j.matchemphys.2023.127961Namsheer, K., & Rout, C. S. (2021). Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances, 11(10), 5659–5697. https://doi.org/10.1039/d0ra07800jNasr, S. M., Rabiee, N., Hajebi, S., Ahmadi, S., Fatahi, Y., Hosseini, M., Bagherzadeh, M., Ghadiri, A. M., Rabiee, M., Jajarmi, V., & Webster, T. J. (2020). Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine. International Journal of Nanomedicine, 15, 4205–4224. https://doi.org/10.2147/IJN.S245936National Farm Animal Care Council. (2013). Code of practice for the care and handling of sheep. In Practice.National Research Council. (1992). 4 Recognition and Assessment of Pain, Stress, and Distress. In Recognition and Alleviation of Pain and Distress in Laboratory Animals. The National Academies Press. https://doi.org/doi: 10.17226/1542Nekounam, H., Gholizadeh, S., Allahyari, Z., Samadian, H., Nazeri, N., Shokrgozar, M. A., & Faridi-Majidi, R. (2021). Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 134(June 2020), 111083. https://doi.org/10.1016/j.materresbull.2020.111083Nguyen-truong, M., & Li, Y. V. (2020). Mechanical Considerations of Electrospun Sca ff olds for Myocardial Tissue and Regenerative Engineering. 1–22.Nguyen, T. D., Roh, S., Thi, M., Nguyen, N., & Lee, J. S. (2023). Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications.Nikkhah, M., Akbari, M., Paul, A., Memic, A., Dolatshahi-Pirouz, A., & Khademhosseini, A. (2016). Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering. In Biomaterials from Nature for Advanced Devices and Therapies (pp. 37–62). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119126218.ch3Nostril, A., & Lip, A. (n.d.). Sheep Pain Facial Expression Scale * Sheep Pain Facial Expression Scale ( SPFES ). 0–1.O’Brien, J., Wilson, I., Orton, T., & Pognan, F. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267(17), 5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.xOjrzynska, M., Wroblewska, A., Judek, J., Malolepszy, A., Duzynska, A., & Zdrojek, M. (2020). Study of optical properties of graphene flakes and its derivatives in aqueous solutions. Optics Express, 28(5), 7274. https://doi.org/10.1364/oe.382523Oprea, A. E., Ficai, A., & Andronescu, E. (2019). Electrospun nanofibers for tissue engineering applications. In Materials for Biomedical Engineering. Elsevier Inc. https://doi.org/10.1016/b978-0-12-816909-4.00004-xPang, A. L., Arsad, A., & Ahmadipour, M. (2021). Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies, 32(4), 1428–1454. https://doi.org/10.1002/pat.5201Park, D. W., Ness, J. P., Brodnick, S. K., Esquibel, C., Novello, J., Atry, F., Baek, D. H., Kim, H., Bong, J., Swanson, K. I., Suminski, A. J., Otto, K. J., Pashaie, R., Williams, J. C., & Ma, Z. (2018). Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. ACS Nano, 12(1), 148–157. https://doi.org/10.1021/acsnano.7b04321Patino, M. G., Neiders, M. E., Andreana, S., Noble, B., & Cohen, R. E. (2002). Collagen : An Overview. 280–285. https://doi.org/10.1097/01.ID.0000019547.50849.3BPfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. Journal of Biomechanical Engineering, 136(2), 21007. https://doi.org/10.1115/1.4026221Pomeroy, J. E., Helfer, A., & Bursac, N. (2020). Biomaterializing the promise of cardiac tissue engineering. Biotechnology Advances, 42, 107353. https://doi.org/https://doi.org/10.1016/j.biotechadv.2019.02.009Potdar, A., Kale, A., Marathe, P., Talekar, P., & Yadav, S. (2020). A Review On Applications Of Graphene. IJRAR1AA1390 International Journal of Research and Analytical Reviews (IJRAR) Www.Ijrar.Org, 80(4), 80–85. www.ijrar.orgPrecedence Research. (2022). Transplantation Market Size, Share and Growth Analysis.Pushp, P., Bhaskar, R., Kelkar, S., Sharma, N., Pathak, D., & Gupta, M. K. (2021). Plasticized poly(vinylalcohol) and poly(vinylpyrrolidone) based patches with tunable mechanical properties for cardiac tissue engineering applications. Biotechnology and Bioengineering, 118(6), 2312–2325. https://doi.org/10.1002/bit.27743Qasim, M., Arunkumar, P., Powell, H. M., & Khan, M. (2019). Current research trends and challenges in tissue engineering for mending broken hearts. Life Sciences, 229(March), 233–250. https://doi.org/10.1016/j.lfs.2019.05.012Rabbani, S., Ahmadi, H., Fayazzadeh, E., Sahebjam, M., Boroumand, M. A., Sotudeh, M., & Nassiri, S. M. (2008). Development of an ovine model of myocardial infarction. ANZ Journal of Surgery, 78(1–2), 78–81. https://doi.org/10.1111/j.1445-2197.2007.04359.xRandviir, E. P., Brownson, D. A. C., & Banks, C. E. (2014). A decade of graphene research: Production, applications and outlook. In Materials Today (Vol. 17, Issue 9, pp. 426–432). Elsevier. https://doi.org/10.1016/j.mattod.2014.06.001Rashid, S. T., Salacinski, H. J., Hamilton, G., & Seifalian, A. M. (2004). The use of animal models in developing the discipline of cardiovascular tissue engineering: A review. Biomaterials, 25(9), 1627–1637. https://doi.org/10.1016/S0142-9612(03)00522-2Ratih, D., Siburian, R., & Andriayani. (2018). The performance of graphite/n-graphene and graphene/n-graphene as electrode in primary cell batteries. Rasayan Journal of Chemistry, 11(4), 1649–1656. https://doi.org/10.31788/RJC.2018.1145007Ray, S. S., Chen, S.-S., Nguyen, N. C., & Nguyen, H. T. (2019). Chapter 9 - Electrospinning: A Versatile Fabrication Technique for Nanofibrous Membranes for Use in Desalination. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 247–273). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00014-8Refate, A., Mohamed, Y., Mohamed, M., Sobhy, M., Samhy, K., Khaled, O., Eidaroos, K., Batikh, H., El-Kashif, E., El-Khatib, S., & Mehanny, S. (2023). Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon, 9(6), e17051. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e17051Ren, X., Jiang, Z., & Tang, M. (2023). Application of conductive hydrogels in cardiac tissue engineering. 4(2), 1–7.Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387–2425. https://doi.org/10.1016/j.polymer.2008.02.002Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547. https://doi.org/10.1063/1.373532Research, P. (2022). Scaffold Technology Market (By Product: Hydrogels, Micropatterned Surface Microplates, and Nanofiber Based Scaffolds; By Application: Neurology, Orthopedics, Dental, Cardiology & Vascular, Cancer, Skin & Integumentary, GI & Gynecologyand Urology; By End-U. https://www.precedenceresearch.com/scaffold-technology-marketReshmy, R., Philip, E., Vaisakh, P. H., Sindhu, R., Binod, P., Madhavan, A., Pandey, A., Sirohi, R., & Tarafdar, A. (2021). Chapter 14 - Biodegradable polymer composites (P. Binod, S. Raveendran, & A. B. T.-B. Pandey Biofuels, Biochemicals (eds.); pp. 393–412). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821888-4.00003-4Riehle, C., & Bauersachs, J. (2019). Small animal models of heart failure. 1838–1849. https://doi.org/10.1093/cvr/cvz161Roacho-p, J. A., Garza-treviño, E. N., Moncada-saucedo, N. K., Carriquiry-chequer, P. A., Valencia-g, L. E., Matthews, E. R., G, V., Simental-mend, M., Delgado-gonzalez, P., Delgado-gallegos, J. L., Padilla-rivas, G. R., & Islas, J. F. (2022). Artificial Scaffolds in Cardiac Tissue Engineering. 1–21.Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A. F., Matheny, R. G., & Badylak, S. F. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 SUPPL.), 135–143. https://doi.org/10.1161/CIRCULATIONAHA.104.525436Rodrigues, I. C. P., Kaasi, A., Maciel Filho, R., Jardini, A. L., & Gabriel, L. P. (2018). Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein (Sao Paulo, Brazil), 16(3), eRB4538. https://doi.org/10.1590/S1679-45082018RB4538Roser, M., & Ritchie, H. (2023). How has world population growth changed over time? Our World in Data.Roshanbinfar, K., Vogt, L., Ruther, F., Roether, J. A., Boccaccini, A. R., & Engel, F. B. (2020). Nanofibrous Composite with Tailorable Electrical and Mechanical Properties for Cardiac Tissue Engineering. 1908612. https://doi.org/10.1002/adfm.201908612Saberi, A., Jabbari, F., Zarrintaj, P., Saeb, M. R., & Mozafari, M. (2019). Electrically conductive materials: Opportunities and challenges in tissue engineering. In Biomolecules (Vol. 9, Issue 9). https://doi.org/10.3390/biom9090448Sack, K. L., Baillargeon, B., Acevedo-Bolton, G., Genet, M., Rebelo, N., Kuhl, E., Klein, L., Weiselthaler, G. M., Burkhoff, D., Franz, T., & Guccione, J. M. (2016). Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart insilico. The International Journal of Artificial Organs, 39(8), 421–430. https://doi.org/10.5301/ijao.5000520Sadeghi, A., Moztarzadeh, F., & Aghazadeh Mohandesi, J. (2019). Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. International Journal of Biological Macromolecules, 121, 625–632. https://doi.org/10.1016/j.ijbiomac.2018.10.022Sadeghianmaryan, A., Karimi, Y., Naghieh, S., Alizadeh Sardroud, H., Gorji, M., & Chen, X. (2019). Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-019-03192-xSartoretto, S. C., Uzeda, M. J., Miguel, F. B., Nascimento, J. R., Ascoli, F., & Calasans-Maia, M. D. (2016). Sheep as an experimental model for biomaterial implant evaluation. Acta Ortopedica Brasileira, 24(5), 262–266. https://doi.org/10.1590/1413-785220162405161949Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., & Belgacem, N. (2011). Polypyrrole and polypyrrole/wood-derived materials conducting composites: A review. BioResources, 6(3), 3585–3620. https://doi.org/10.15376/biores.6.3.3585-3620Savchenko, A., Yin, R. T., Kireev, D., Efimov, I. R., & Molokanova, E. (2021). Graphene-Based Scaffolds: Fundamentals and Applications for Cardiovascular Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 9(December), 1–8. https://doi.org/10.3389/fbioe.2021.797340Saxena, P., & Shukla, P. (2021). A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Advanced Composites and Hybrid Materials, 4(1), 8–26. https://doi.org/10.1007/s42114-021-00217-0Scheetz, S. D., & Upadhyay, G. A. (2022). Physiologic Pacing Targeting the His Bundle and Left Bundle Branch: a Review of the Literature. Current Cardiology Reports, 24(8), 959–978. https://doi.org/10.1007/s11886-022-01723-3Schmitt, P. R., Dwyer, K. D., & Coulombe, K. L. K. (2022). Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS Applied Bio Materials, 5(6), 2461–2480. https://doi.org/10.1021/acsabm.2c00174Schmitt, P. R., Dwyer, K. D., Minor, A. J., & Coulombe, K. L. K. (2022). Wet-Spun Polycaprolactone Scaffolds Provide Customizable Anisotropic Viscoelastic Mechanics for Engineered Cardiac Tissues.Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., & Bowlin, G. L. (2009). Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 61(12), 1007–1019. https://doi.org/https://doi.org/10.1016/j.addr.2009.07.012Senthil, T., & Anandhan, S. (2017). Effect of Solvents on the Solution Electrospinning of Discover more interesting articles and news on the subject ! Entdecken Sie weitere interessante Artikel und News zum Thema !Serafin, A., Murphy, C., Rubio, M. C., & Collins, M. N. (2021). Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Materials Science and Engineering C, 122(January), 111927. https://doi.org/10.1016/j.msec.2021.111927Shafei, S., Foroughi, J., Chen, Z., Wong, C. S., & Naebe, M. (2017). Short oxygen plasma treatment leading to long-term hydrophilicity of conductive PCL-PPy nanofiber scaffolds. Polymers, 9(11). https://doi.org/10.3390/polym9110614Shafei, S., Foroughi, J., Stevens, L., Wong, C. S., Zabihi, O., & Naebe, M. (2017). Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Research on Chemical Intermediates, 43(2), 1235–1251. https://doi.org/10.1007/s11164-016-2695-4Shang, L., Qi, Y., Lu, H., Pei, H., Li, Y., Paul, J. A., Chool, S. O. N. S., Engineering, O. F., & S, A. P. P. S. C. (2019). 7. Graphene and Graphene Oxide for Tissue Engineering and Regeneration. In Theranostic Bionanomaterials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815341-3.00007-9Shao, H., Fang, J., Wang, H., & Lin, T. (2015). Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Advances, 5(19), 14345–14350. https://doi.org/10.1039/c4ra16360eSharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent advances in cardiac tissue engineering for the management of myocardium infarction. In Cells (Vol. 10, Issue 10). https://doi.org/10.3390/cells10102538Shinde, S. S., Gund, G. S., Dubal, D. P., Jambure, S. B., & Lokhande, C. D. (2014). Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochimica Acta, 119, 1–10. https://doi.org/10.1016/j.electacta.2013.10.174Shokrollahi, P., Omidi, Y., Cubeddu, L. X., & Omidian, H. (2023). Conductive polymers for cardiac tissue engineering and regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 111(11), 1979–1995. https://doi.org/10.1002/jbm.b.35293Sigaroodi, F., Rahmani, M., Parandakh, A., Boroumand, S., Rabbani, S., & Khani, M. M. (2023). Designing cardiac patches for myocardial regeneration–a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 0(0), 1–19. https://doi.org/10.1080/00914037.2023.2180510Socci, M. C., Rodríguez, G., Oliva, E., Fushimi, S., Takabatake, K., Nagatsuka, H., Felice, C. J., & Rodríguez, A. P. (2023). Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering, 10(2). https://doi.org/10.3390/bioengineering10020218Solazzo, M., O’Brien, F. J., Nicolosi, V., & Monaghan, M. G. (2019). The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering, 3(4), 041501. https://doi.org/10.1063/1.5116579Son, W. K., Youk, J. H., Lee, T. S., & Park, W. H. (2004). The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45(9), 2959–2966. https://doi.org/10.1016/j.polymer.2004.03.006Song, H., Li, T., Han, Y., Wang, Y., Zhang, C., & Wang, Q. (2016). Optimizing the polymerization conditions of conductive polypyrrole. Journal of Photopolymer Science and Technology, 29(6), 803–808. https://doi.org/10.2494/photopolymer.29.803Sovilj, S., Magjarević, R., Al Abed, A., Lovell, N. H., & Dokos, S. (2014). Simplified 2D bidomain model of whole heart electrical activity and ECG generation. Measurement Science Review, 14(3), 136–143. https://doi.org/10.2478/msr-2014-0018Sowmya, B., Hemavathi, A. B., & Panda, P. K. (2021). Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Progress in Biomaterials, 10(2), 91–117. https://doi.org/10.1007/s40204-021-00157-4Sudwilai, T., Ng, J. J., Boonkrai, C., Israsena, N., Chuangchote, S., & Supaphol, P. (2014). Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: Effects of coating on electrical conductivity and neural cell growth. Journal of Biomaterials Science, Polymer Edition, 25(12), 1240–1252. https://doi.org/10.1080/09205063.2014.926578Suh, T. C., Amanah, A. Y., & Gluck, J. M. (2020). Electrospun Sca ff olds and Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Engineering Applications. 1–21.Sun, M., Chi, G., Li, P., Lv, S., Xu, J., Xu, Z., Xia, Y., Tan, Y., Xu, J., Li, L., & Li, Y. (2018). Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. International Journal of Medical Sciences, 15(3), 257–268. https://doi.org/10.7150/ijms.21620Sun, Y., Liu, J., Xu, Z., Lin, X., Zhang, X., Li, L., & Li, Y. (2021). Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells. 13(2), 2231–2250.Surekha, G., Krishnaiah, K. V., Ravi, N., & Padma Suvarna, R. (2020). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, 1495(1). https://doi.org/10.1088/1742-6596/1495/1/012012Szewczyk, P. K., & Stachewicz, U. (2020). The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 286, 102315. https://doi.org/https://doi.org/10.1016/j.cis.2020.102315Takada, T., Sasaki, D., Matsuura, K., Miura, K., Sakamoto, S., Goto, H., Ohya, T., Iida, T., Homma, J., Shimizu, T., & Hagiwara, N. (2022). Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials, 281, 121351. https://doi.org/https://doi.org/10.1016/j.biomaterials.2021.121351Talebi, A., Labbaf, S., & Karimzadeh, F. (2019). A conductive film of chitosan-polycaprolcatone-polypyrrole with potential in heart patch application. Polymer Testing, 75(December 2018), 254–261. https://doi.org/10.1016/j.polymertesting.2019.02.029Tamimi, M., Rajabi, S., & Pezeshki-Modaress, M. (2020). Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. International Journal of Biological Macromolecules, 164, 389–402. https://doi.org/10.1016/j.ijbiomac.2020.07.134Tavakkol, E., Tavanai, H., Abdolmaleki, A., & Morshed, M. (2017). Production of conductive electrospun polypyrrole/poly(vinyl pyrrolidone) nanofibers. Synthetic Metals, 231(July), 95–106. https://doi.org/10.1016/j.synthmet.2017.06.017Tayebi, T., Baradaran-Rafii, A., Hajifathali, A., Rahimpour, A., Zali, H., Shaabani, A., & Niknejad, H. (2021). Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-86340-wTenreiro, M. F., Louro, A. F., Alves, P. M., & Serra, M. (2021). Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. Npj Regenerative Medicine, 6(1). https://doi.org/10.1038/s41536-021-00140-4Tian, L., Prabhakaran, M. P., Hu, J., Chen, M., Besenbacher, F., & Ramakrishna, S. (2016). Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2016.05.032Tiwari, S. K., & Venkatraman, S. S. (2012). Importance of viscosity parameters in electrospinning: Of monolithic and core–shell fibers. Materials Science and Engineering: C, 32(5), 1037–1042. https://doi.org/https://doi.org/10.1016/j.msec.2012.02.019Topuz, F., Abdulhamid, M. A., Holtzl, T., & Szekely, G. (2021). Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Materials & Design, 198, 109280. https://doi.org/https://doi.org/10.1016/j.matdes.2020.109280Torabi, M., Abazari, M. F., Zare Karizi, S., Kohandani, M., Hajati-Birgani, N., Norouzi, S., Nejati, F., Mohajerani, A., Rahmati, T., & Mokhames, Z. (2021). Efficient cardiomyocyte differentiation of induced pluripotent stem cells on PLGA nanofibers enriched by platelet-rich plasma. Polymers for Advanced Technologies, 32(3), 1168–1175. https://doi.org/10.1002/pat.5164Tortora, G., & Derrickson, B. (2006). Principios de Anatomía y Fisiología. In Editorial Panamericana (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004Tsao, Connie W; Aday, Aaron W.; Almarzooq, Z. I. (2022). Heart Disease and Stroe Statistics-2022 Update: A Report From the american Heart Association. Circulation, 145(8). https://doi.org/10.1161/IR.0000000000001052Tsui, J. H., Leonard, A., Camp, N. D., Long, J. T., Nawas, Z. Y., Chavanachat, R., Choi, J. S., Wolf-Yadlin, A., Murry, C. E., Sniadecki, N. J., & Kim, D.-H. (2019). Functional Maturation of Human iPSC-based Cardiac Microphysiological Systems with Tunable Electroconductive Decellularized Extracellular Matrices. BioRxiv, 786657. https://doi.org/10.1101/786657Ţucureanu, V., Matei, A., & Avram, A. M. (2016). FTIR Spectroscopy for Carbon Family Study. Critical Reviews in Analytical Chemistry, 46(6), 502–520. https://doi.org/10.1080/10408347.2016.1157013U.S. FDA Center for Devices and Radiological Health. (2020). Medical Device Material Performance Study Poly Lactic-co-Glycolic Acid [ P ( L / G ) A ] Safety Profile Submitted to. 804.United Nations, Department of Economic and Social Affairs, P. D. (2022). World Population Prospects 2022.Vacanti, C. (2006). The history of tissue engineering. Journal of Cellular and Molecular Medicine, 1(3), 569–576. https://doi.org/10.2755/jcmm010.003.20Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To scaffold, or not to scaffold, that is the question. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/ijms222312690Valverde, I. (2017). Impresión tridimensional de modelos cardiacos : aplicaciones en el campo de la educación y el intervencionismo estructural. 70(4), 282–291.Vogt, L., Rivera, L. R., Liverani, L., Piegat, A., El Fray, M., & Boccaccini, A. R. (2019). Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Materials Science and Engineering C, 103(February), 109712. https://doi.org/10.1016/j.msec.2019.04.091Vunjak-Novakovic, G. (2017). Tissue engineering of the heart: An evolving paradigm. Journal of Thoracic and Cardiovascular Surgery, 153(3), 593–595. https://doi.org/10.1016/j.jtcvs.2016.08.057Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., & Radisic, M. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.teb.2009.0352Wang, J. (2021). Meta-analysis of Cellular Toxicity for Graphene via Data-Mining the Literature and Machine Learning.Wang, L., Wu, Y., Hu, T., Guo, B., & Ma, P. X. (2017). Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia, 59, 68–81. https://doi.org/10.1016/j.actbio.2017.06.036Wang, Y., & Feng, W. (2022). Conductive Polymers and Their Composites. In Conductive Polymers and their Composites. https://doi.org/10.1007/978-981-19-5363-7Waremra, R. S., & Betaubun, P. (2018). Analysis of Electrical Properties Using the four point Probe Method. E3S Web of Conferences, 73, 1–4. https://doi.org/10.1051/e3sconf/20187313019Wee, J. H., Yoo, K. D., Sim, S. B., Kim, H. J., Kim, H. J., Park, K. N., Kim, G. H., Moon, M. H., You, S. J., Ha, M. Y., Yang, D. H., Chun, H. J., Ko, J. H., & Kim, C. H. (2022). Stem cell laden nano and microcollagen / PLGA bimodal fibrous patches for myocardial regeneration. Biomaterials Research, 1–17. https://doi.org/10.1186/s40824-022-00319-wWHO, W. H. O. (2022). Cardiovascular diseases (CVDs). 11 June 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)World Heart Federation. (2022). World Heart Vision 2030. 4–9.Xu, B., Li, Y., Deng, B., Liu, X., Wang, L., & Zhu, Q. L. (2017). Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats. Experimental and Therapeutic Medicine, 13(2), 588–594. https://doi.org/10.3892/etm.2017.4026Xu, H., Holzwarth, J. M., Yan, Y., Xu, P., Zheng, H., Yin, Y., Li, S., & Ma, P. X. (2014). Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials, 35(1), 225–235. https://doi.org/10.1016/j.biomaterials.2013.10.002Xu, M., Qin, M., Cheng, Y., Niu, X., Kong, J., Zhang, X., Huang, D., & Wang, H. (2021). Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydrate Polymers, 266, 118128. https://doi.org/10.1016/j.carbpol.2021.118128Yalcinkaya, F., Yalcinkaya, B., & Jirsak, O. (2015). Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions. Journal of Nanomaterials, 2015, 134251. https://doi.org/10.1155/2015/134251Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004). Influence of Solvents on the Formation of Ultrathin Uniform Poly(Vinyl Pyrrolidone) Nanofibers with Electrospinning. Journal of Polymer Science Part B: Polymer Physics, 42, 3721–3726. https://doi.org/10.1002/polb.20222Ye, G., & Qiu, X. (2017). Conductive biomaterials in cardiac tissue engineering. Biotarget, 1(5), 9–9. https://doi.org/10.21037/biotarget.2017.08.01You, J. O., Rafat, M., Ye, G. J. C., & Auguste, D. T. (2011). Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Letters, 11(9), 3643–3648. https://doi.org/10.1021/nl201514aYuan, S., Xiong, G., Wang, X., Zhang, S., & Choong, C. (2012). Surface modification of polycaprolactone substrates using collagen-conjugated poly(methacrylic acid) brushes for the regulation of cell proliferation and endothelialisation. Journal of Materials Chemistry, 22, 13039–13049. https://doi.org/10.1039/C2JM31213AYue, B. (2014). NIH Public Access Author Manuscript J Glaucoma. Author manuscript; available in PMC 2015 October 01. Published in final edited form as: J Glaucoma. 2014 ; : S20–S23. doi:10.1097/IJG.0000000000000108. Biology of the Extracellular Matrix: An Overview Beatri. J Glaucoma., 23(1), 1–7. https://doi.org/10.1097/IJG.0000000000000108.BiologyYussuf, A., Al-Saleh, M., Al-Enezi, S., & Abraham, G. (2018). Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/4191747Zaarour, B., Zhang, W., Zhu, L., Jin, X. Y., & Huang, C. (2019). Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration. Textile Research Journal, 89(12), 2406–2422. https://doi.org/10.1177/0040517518792748Zaarour, B., Zhu, L., & Jin, X. (2019). Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 17(2), 181–189. https://doi.org/10.1080/1539445X.2019.1582542Zahari, A. S., Mazwir, M. H., & Misnon, I. I. (2021). Influence of molecular weight on dielectric properties and piezoelectric constant of poly(vinylidene fluoride) membranes obtained by electrospinning. Polimery/Polymers, 66(10), 532–537. https://doi.org/10.14314/polimery.2021.10.4Zaragoza, C., Gomez-guerrero, C., Martin-ventura, J. L., Blanco-colio, L., Tarin, C., Mas, S., Ortiz, A., & Egido, J. (2011). Animal Models of Cardiovascular Diseases. 2011. https://doi.org/10.1155/2011/497841Zarei, M., Samimi, A., Khorram, M., Abdi, M. M., & Golestaneh, S. I. (2021). Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. International Journal of Biological Macromolecules, 168, 175–186. https://doi.org/10.1016/j.ijbiomac.2020.12.031Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A. S., & Damerchely, R. (2012). The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. Journal of Engineered Fibers and Fabrics, 7(4), 155892501200700400. https://doi.org/10.1177/155892501200700414Zhang, H., Cheng, J., & Ao, Q. (2021). Preparation of alginate-based biomaterials and their applications in biomedicine. Marine Drugs, 19(5), 1–24. https://doi.org/10.3390/md19050264Zhang, X, Peng, X., & Zhang, S. W. (2017). 7 - Synthetic biodegradable medical polymers: Polymer blends. In Xiang Zhang (Ed.), Science and Principles of Biodegradable and Bioresorbable Medical Polymers (pp. 217–254). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100372-5.00007-6Zhang, Xuewei, Chen, X., Hong, H., Hu, R., Liu, J., & Liu, C. (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive Materials, 10, 15–31. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.09.014Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/https://doi.org/10.1038/s41427-018-0092-8Zhao, W., Tu, H., Chen, J., Wang, J., Liu, H., Zhang, F., & Li, J. (2023). Functionalized hydrogels in neural injury repairing. Frontiers in Neuroscience, 17(June), 1–9. https://doi.org/10.3389/fnins.2023.1199299Zhou, J., Chen, J., Sun, H., Qiu, X., Mou, Y., Liu, Z., Zhao, Y., Li, X., Han, Y., Duan, C., Tang, R., Wang, C., Zhong, W., Liu, J., Luo, Y., Xing, M. M., & Wang, C. (2014). Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific Reports, 4, 1–11. https://doi.org/10.1038/srep03733Zimmermann, W.-H., Schneiderbanger, K., Schubert, P., Didié, M., Münzel, F., Heubach, J. F., Kostin, S., Neuhuber, W. L., & Eschenhagen, T. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230. https://doi.org/10.1161/hh0202.103644Zhuang, R. Z., Lock, R., Liu, B., & Vunjak-Novakovic, G. (2022). Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nature Biomedical Engineering, 6(4), 327–338. https://doi.org/10.1038/s41551-022-00885-3Materiales Biocompatibles/análisisIngeniería de Tejidos/métodosMiocardio/patologíaBiocompatible Materials/analysisTissue Engineering/methodsMyocardium/pathologyElectrospinningNanofillerElectroconductivePolycaprolactonePolypyrroleGrapheneScaffoldTissue engineeringElectrohiladoRelleno conductorNanorellenoPolicaprolactonaPolipirrolGrafenoAndamioIngeniería de tejidosInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86396/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1018457635.2024.pdf1018457635.2024.pdfTesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materialesapplication/pdf8351722https://repositorio.unal.edu.co/bitstream/unal/86396/2/1018457635.2024.pdf2b2c977576b138d0ee47089d03cb9283MD52THUMBNAIL1018457635.2024.pdf.jpg1018457635.2024.pdf.jpgGenerated Thumbnailimage/jpeg4947https://repositorio.unal.edu.co/bitstream/unal/86396/3/1018457635.2024.pdf.jpg3b8c2a7e44eb7d73b807bfcaeb5d78f2MD53unal/86396oai:repositorio.unal.edu.co:unal/863962024-07-04 23:25:43.808Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=