Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application
ilustraciones, diagramas, fotografías
- Autores:
-
Muñoz González, Ana María
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2024
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/86396
- Palabra clave:
- Materiales Biocompatibles/análisis
Ingeniería de Tejidos/métodos
Miocardio/patología
Biocompatible Materials/analysis
Tissue Engineering/methods
Myocardium/pathology
Electrospinning
Nanofiller
Electroconductive
Polycaprolactone
Polypyrrole
Graphene
Scaffold
Tissue engineering
Electrohilado
Relleno conductor
Nanorelleno
Policaprolactona
Polipirrol
Grafeno
Andamio
Ingeniería de tejidos
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_d5dd8b0adfec5d476ea15364087bad02 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/86396 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.eng.fl_str_mv |
Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application |
dc.title.translated.spa.fl_str_mv |
Evaluación de la adición de nanorrellenos conductores en andamios para aplicaciones de ingeniería de tejidos miocárdicos |
title |
Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application |
spellingShingle |
Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application Materiales Biocompatibles/análisis Ingeniería de Tejidos/métodos Miocardio/patología Biocompatible Materials/analysis Tissue Engineering/methods Myocardium/pathology Electrospinning Nanofiller Electroconductive Polycaprolactone Polypyrrole Graphene Scaffold Tissue engineering Electrohilado Relleno conductor Nanorelleno Policaprolactona Polipirrol Grafeno Andamio Ingeniería de tejidos |
title_short |
Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application |
title_full |
Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application |
title_fullStr |
Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application |
title_full_unstemmed |
Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application |
title_sort |
Evaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering application |
dc.creator.fl_str_mv |
Muñoz González, Ana María |
dc.contributor.advisor.spa.fl_str_mv |
Clavijo Grimaldo, Aleida Dianney |
dc.contributor.author.spa.fl_str_mv |
Muñoz González, Ana María |
dc.contributor.researchgroup.spa.fl_str_mv |
Biomecánica |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0002-3191-9891 |
dc.contributor.cvlac.spa.fl_str_mv |
https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001661109 |
dc.subject.decs.spa.fl_str_mv |
Materiales Biocompatibles/análisis Ingeniería de Tejidos/métodos Miocardio/patología |
topic |
Materiales Biocompatibles/análisis Ingeniería de Tejidos/métodos Miocardio/patología Biocompatible Materials/analysis Tissue Engineering/methods Myocardium/pathology Electrospinning Nanofiller Electroconductive Polycaprolactone Polypyrrole Graphene Scaffold Tissue engineering Electrohilado Relleno conductor Nanorelleno Policaprolactona Polipirrol Grafeno Andamio Ingeniería de tejidos |
dc.subject.decs.eng.fl_str_mv |
Biocompatible Materials/analysis Tissue Engineering/methods Myocardium/pathology |
dc.subject.proposal.eng.fl_str_mv |
Electrospinning Nanofiller Electroconductive Polycaprolactone Polypyrrole Graphene Scaffold Tissue engineering |
dc.subject.proposal.spa.fl_str_mv |
Electrohilado Relleno conductor Nanorelleno Policaprolactona Polipirrol Grafeno Andamio Ingeniería de tejidos |
description |
ilustraciones, diagramas, fotografías |
publishDate |
2024 |
dc.date.accessioned.none.fl_str_mv |
2024-07-04T19:58:01Z |
dc.date.available.none.fl_str_mv |
2024-07-04T19:58:01Z |
dc.date.issued.none.fl_str_mv |
2024-06-30 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/86396 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/86396 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.references.spa.fl_str_mv |
Abbasi, A. M. R., Marsalkova, M., & Militky, J. (2013). Conductometry and Size Characterization of Polypyrrole Nanoparticles Produced by Ball Milling. Journal of Nanoparticles, 2013, 1–4. https://doi.org/10.1155/2013/690407 Abdul Rahman, N., & Bahruji, H. (2022). Plastics in Biomedical Application. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 114–125). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00071-7 Agrawal, R., Shah, J., Gupta, G., Srivastava, R., Sharma, C., & Kotnala, R. (2020). Significantly high electromagnetic shielding effectiveness in polypyrrole synthesized by eco-friendly and cost-effective technique. Journal of Applied Polymer Science, 137(48), 1–12. https://doi.org/10.1002/app.49566 Ahadian, S., Zhou, Y., Yamada, S., Estili, M., Liang, X., Nakajima, K., Shiku, H., & Matsue, T. (2016). Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale, 8(13), 7075–7084. https://doi.org/10.1039/c5nr07059g Ajith, G., Tamilarasi, G. P., Sabarees, G., Gouthaman, S., Manikandan, K., Velmurugan, V., Alagarsamy, V., & Solomon, V. R. (2023). Recent Developments in Electrospun Nanofibers as Delivery of Phytoconstituents for Wound Healing. Drugs and Drug Candidates, 2(1), 148–171. https://doi.org/10.3390/ddc2010010 Al-Abduljabbar, A., & Farooq, I. (2023). Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers, 15(1). https://doi.org/10.3390/polym15010065 myocardial repair. Cellular and Molecular Life Sciences, 69(16), 2635–2656. https://doi.org/10.1007/ Alcon, A., Cagavi Bozkulak, E., & Qyang, Y. (2012). Regenerating functional heart tissue for s00018-012-0942-4 Alegret, N., Dominguez-Alfaro, A., & Mecerreyes, D. (2019). 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules, 20(1), 73–89. https://doi.org/10.1021/acs.biomac.8b01382 Alexeev, D., Goedecke, N., Snedeker, J., & Ferguson, S. (2020). Mechanical evaluation of electrospun poly ( ε -caprolactone ) single fi bers. Materials Today Communications, 24(April), 101211. https://doi.org/10.1016/j.mtcomm.2020.101211 Amariei, N., Manea, L. R., Bertea, A. P., Bertea, A., & Popa, A. (2017). The Influence of Polymer Solution on the Properties of Electrospun 3D Nanostructures. IOP Conference Series: Materials Science and Engineering, 209(1). https://doi.org/10.1088/1757-899X/209/1/012092 Amaya, J. B. (2018). Estudio De La Degradabilidad Del Pcl (Policaprolactona) Dosificado Con La Lignina De La Fibra De Banano. Revista Iberoamericana de Polimeros y MAteriales, 19(4), 128–141. Ansari, R. (2006). Polypyrrole Conducting Electroactive Polymers: Synthesis and Stability Studies. E-Journal of Chemistry, 3(4), 186–201. https://doi.org/10.1155/2006/860413 Arakawa, C. K., & DeForest, C. A. (2017). Chapter 19 - Polymer Design and Development (A. Vishwakarma & J. M. B. T.-B. and E. of S. C. N. Karp (eds.); pp. 295–314). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802734-9.00019-6 Asri, N. A. N., Mahat, M. M., Zakaria, A., Safian, M. F., & Abd Hamid, U. M. (2022). Fabrication Methods of Electroactive Scaffold-Based Conducting Polymers for Tissue Engineering Application: A Review. Frontiers in Bioengineering and Biotechnology, 10(July), 1–13. https://doi.org/10.3389/fbioe.2022.876696 Avouris, P., & Dimitrakopoulos, C. (2012). Graphene: synthesis and applications. Materials Today, 15(3), 86–97. https://doi.org/https://doi.org/10.1016/S1369-7021(12)70044-5 AWIN, Mclennan, K. M., Rebelo, C. J. R., Corke, M. J., Holmes, M. A., & Constantino-Casas. (2014). Using facial expression to assess pain in sheep. 9, 92281. Aziz, R., Falanga, M., Purenovic, J., Mancini, S., Lamberti, P., & Guida, M. (2023). A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. Nanomaterials, 13(8), 1–28. https://doi.org/10.3390/nano13081374 Baei, P., Jalili-Firoozinezhad, S., Rajabi-Zeleti, S., Tafazzoli-Shadpour, M., Baharvand, H., & Aghdami, N. (2016). Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Science and Engineering C, 63, 131–141. https://doi.org/10.1016/j.msec.2016.02.056 Bagbi, Y., Pandey, A., & Solanki, P. R. (2019). Chapter 10 - Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 275–288). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00015-X Bahrami, S., Solouk, A., Mirzadeh, H., & Seifalian, A. M. (2019). Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Composites Part B: Engineering, 168(March), 421–431. https://doi.org/10.1016/j.compositesb.2019.03.044 Baker, S. R., Banerjee, S., Bonin, K., & Guthold, M. (2016). Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Materials Science and Engineering C, 59, 203–212. https://doi.org/10.1016/j.msec.2015.09.102 Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015 Barba Evia, J. R. (2009). Cardiomioplastia: El papel de las células madre en la regeneración miocárdica. Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio, 56(1), 50–65. Bejaoui, M., Galai, H., Touati, F., & Kouass, S. (2021). Multifunctional Roles of PVP as a Versatile Biomaterial in Solid State. In U. Ahmad (Ed.), Dosage Forms. IntechOpen. https://doi.org/10.5772/intechopen.99431 Bellet, P., Gasparotto, M., Pressi, S., Fortunato, A., Scapin, G., Mba, M., Menna, E., & Filippini, F. (2021). Graphene-Based Scaffolds for Regenerative Medicine Beltran-Vargas, N. E., Peña-Mercado, E., Sánchez-Gómez, C., Garcia-Lorenzana, M., Ruiz, J. C., Arroyo-Maya, I., Huerta-Yepez, S., & Campos-Terán, J. (2022). Sodium Alginate/Chitosan Scaffolds for Cardiac Tissue Engineering: The Influence of Its Three-Dimensional Material Preparation and the Use of Gold Nanoparticles. Polymers, 14(16). https://doi.org/10.3390/polym14163233 Bertuoli, P. T., Ordono, J., Armelin, E., Pérez-Amodio, S., Baldissera, A. F., Ferreira, C. A., Puiggalí, J., Engel, E., Del Valle, L. J., & Alemán, C. (2019). Electrospun Conducting and Biocompatible Uniaxial and Core-Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 4(2), 3660–3672. https://doi.org/10.1021/acsomega.8b03411 Biscaia, S., Silva, J. C., Moura, C., Viana, T., Tojeira, A., Mitchell, G. R., Pascoal-Faria, P., Ferreira, F. C., & Alves, N. (2022). Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance. Polymers, 14(9). https://doi.org/10.3390/polym14091669 Blachowicz, T., & Ehrmann, A. (2020). Conductive electrospun nanofiber mats. Materials, 13(1). https://doi.org/10.3390/ma13010152 Bolonduro, O. A., Duffy, B. M., Rao, A. A., Black, L. D., & Timko, B. P. (2020). From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering. Nano Research, 12(1). https://doi.org/10.1007/s12274-020-2682-3 Borges, M. H. R., Nagay, B. E., Costa, R. C., Souza, J. G. S., Mathew, M. T., & Barão, V. A. R. (2023). Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. In Advances in Colloid and Interface Science (Vol. 314, Issue February). https://doi.org/10.1016/j.cis.2023.102860 Boroumand, S., Haeri, A., Nazeri, N., & Rabbani, S. (2021). Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds and Pharmacological Agents. Iranian Journal of Pharmaceutical Research, 20(4), 467–496. https://doi.org/10.22037/IJPR.2021.114730.15012 Boutry, C. M., Müller, M., & Hierold, C. (2012). Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy). Materials Science and Engineering C, 32(6), 1610–1620. https://doi.org/10.1016/j.msec.2012.04.051 Bronzino, J. D. (2006). Tissue Engineering and Artificial Organs (1st ed.) (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9781420003871 Brugnara, M., Della Volpe, C., Siboni, S., & Zeni, D. (2006). Contact angle analysis on polymethylmethacrylate and commercial wax by using an environmental scanning electron microscope. Scanning, 28(5), 267–273. https://doi.org/10.1002/sca.4950280504 Butt, H.-J., & Kappl, M. (2018). Surface and Interfacial Forces. Wiley VCH. Camacho, P., Fan, H., Liu, Z., & He, J. Q. (2016). Small mammalian animal models of heart disease. American Journal of Cardiovascular Disease, 6(3), 70–80. https://doi.org/10.3390/jcdd3040030 Camman, M., Joanne, P., Agbulut, O., & Hélary, C. (2022). 3D models of dilated cardiomyopathy: Shaping the chemical, physical and topographical properties of biomaterials to mimic the cardiac extracellular matrix. Bioactive Materials, 7, 275–291. https://doi.org/10.1016/j.bioactmat.2021.05.040 Centers for Disease Control and Prevention. (2022). Heart Disease Facts. https://www.cdc.gov/heartdisease/facts.htm#print Ceretti, E., Ginestra, P. S., Ghazinejad, M., Fiorentino, A., & Madou, M. (2017). Electrospinning and characterization of polymer–graphene powder scaffolds. CIRP Annals - Manufacturing Technology, 66(1), 233–236. https://doi.org/10.1016/j.cirp.2017.04.122 Chakraborty, M. (2020). Chitosan Biopolymer on Plant Growth. Encyclopedia. https://encyclopedia.pub/entry/3639 Chang, W.-T., Chen, J.-S., Tsai, M.-H., Tsai, W.-C., Juang, J.-N., & Liu, P.-Y. (2016). Interplay of Aging and Hypertension in Cardiac Remodeling: A Mathematical Geometric Model. PloS One, 11(12), e0168071. https://doi.org/10.1371/journal.pone.0168071 Chem, G., Thomas, M. S., Pillai, P. K. S., Farrowc, S. C., Pothan, L. A., & Thomas, S. (2021). Electrospinning as an Important Tool for Fabrication of Nanofibers for Advanced Applications — a Brief Review. Figure 1, 1–7. https://doi.org/10.21127/yaoyigc20200022 behavior in tissue engineering. Biomaterials Research, 23(1), 1–12. https://doi.org/10.1186/s40824-019- Chen, C., Bai, X., Ding, Y., & Lee, I. S. (2019). Electrical stimulation as a novel tool for regulating cell 0176-8 Chen, Q., Xiao, S., Shi, S. Q., & Cai, L. (2020). Synthesis, Characterization, and Antibacterial Activity of N-substituted Quaternized Chitosan and Its Cellulose-based Composite Film. BioResources, 15(1), 415. Chen, X., Feng, B., Zhu, D. Q., Chen, Y. W., Ji, W., Ji, T. J., & Li, F. (2019). Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. International Journal of Nanomedicine, 14, 3669–3678. https://doi.org/10.2147/IJN.S204971 Chiesa, E., Dorati, R., Pisani, S., Bruni, G., Rizzi, L. G., Conti, B., Modena, T., & Genta, I. (2020). Graphene nanoplatelets for the development of reinforced PLA-PCL electrospun fibers as the next-generation of biomedical mats. Polymers, 12(6). https://doi.org/10.3390/polym12061390 Chorro, F. J., & López-merino, L. S. V. (2009). Modelos animales de enfermedad cardiovascular. 62(I), 69–84. Číková, E., Mičušík, M., Šišková, A., Procházka, M., Fedorko, P., & Omastová, M. (2018). Conducting electrospun polycaprolactone/polypyrrole fibers. Synthetic Metals, 235(December 2017), 80–88. https://doi.org/10.1016/j.synthmet.2017.11.011 Clavijo-Grimaldo, D., Casadiego-Torrado, C. A., Villalobos-Elías, J., Ocampo-Páramo, A., & Torres-Parada, M. (2022). Characterization of Electrospun Poly(ε-caprolactone) Nano/Micro Fibrous Membrane as Scaffolds in Tissue Engineering: Effects of the Type of Collector Used. Membranes, 12(6). https://doi.org/10.3390/membranes12060563 ClinicalTrials.gov. (2024). ClinicalTrials.gov. https://clinicaltrials.gov/search?term=scaffold&cond=Myocardial Infarction&city= Cristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019a). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. March, 1253–1264. https://doi.org/10.1002/term.2875 Cristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019b). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. April, 1253–1264. https://doi.org/10.1002/term.2875 Cui, J., Li, J., Mathison, M., Tondato, F., Mulkey, S. P., Micko, C., Chronos, N. A. F., & Robinson, K. A. (2005). A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch materials. Cardiovascular Revascularization Medicine, 6(3), 113–120. https://doi.org/10.1016/j.carrev.2005.07.006 Cui, S., Mao, J., Rouabhia, M., Elkoun, S., & Zhang, Z. (2021). A biocompatible polypyrrole membrane for biomedical applications. RSC Advances, 11(28), 16996–17006. https://doi.org/10.1039/d1ra01338f Cui, S., Mao, J., Zhang, Z., & Rouabhia, M. (2021). A biocompatible polypyrrole membrane for biomedical applications. 16996–17006. https://doi.org/10.1039/d1ra01338f Da Silva, A. B., Marini, J., Gelves, G., Sundararaj, U., Gregório, R., & Bretas, R. E. S. (2013). Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. European Polymer Journal, 49(10), 3318–3327. https://doi.org/10.1016/j.eurpolymj.2013.06.039 for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7 Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanism Dane. (2018). Estadísticas vitales. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/nacimientos-y-defunciones Das, S., Wajid, A. S., Bhattacharia, S. K., Wilting, M. D., Rivero, I. V., & Green, M. J. (2013). Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. Journal of Applied Polymer Science, 128(6), 4040–4046. https://doi.org/10.1002/app.38694 Dayan V, Benech A, Rodríguez C, Ado S, Guedes I, Sotelo V, Laguzzi F, Kapitán M, Langhain M, Ferrando R, T. C. (2011). MODELO DE INFARTO AGUDO DE MIOCARDIO MEDIANTE ISQUEMIA-REPERFUSIÓN EN OVEJAS. Revista Uruguaya de Cardiología, 31–93. http://www.scielo.edu.uy/scielo.php?pid=S1688-04202011000400007&script=sci_arttext De Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44(5), 1357–1362. https://doi.org/10.1007/s10853-008-3010-6 Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261–272. https://doi.org/https://doi.org/10.1016/S0032-3861(00)00250-0 del Maria Javier, M. F., Delmo, E. M. J., & Hetzer, R. (2021). Evolution of heart transplantation since Barnard’s first. Cardiovascular Diagnosis and Therapy, 11(1), 171–182. https://doi.org/10.21037/CDT-20-289 Deliormanlı, A. M. (2019). Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology, 188(4), 1117–1133. https://doi.org/10.1007/s12010-019-02976-5 Deshmukh, K., Basheer Ahamed, M., Deshmukh, R. R., Khadheer Pasha, S. K., Bhagat, P. R., & Chidambaram, K. (2017). 3 - Biopolymer Composites With High Dielectric Performance: Interface Engineering. In K. K. Sadasivuni, D. Ponnamma, J. Kim, J.-J. Cabibihan, & M. A. AlMaadeed (Eds.), Biopolymer Composites in Electronics (pp. 27–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809261-3.00003-6 Devlin, G., Matthews, K., McCracken, G., Stuart, S., Jensen, J., Conaglen, J., & Bass, J. (2000). An ovine model of chronic stable heart failure. Journal of Cardiac Failure, 6(2), 140–143. https://doi.org/10.1054/jcaf.2000.7279 Diaz, A., Ignacio, E., & Fischer, C. (2016). Modelos Experimentales de Insuficiencia Cardiaca en Grandes Animales (Issue February). Ding, B., Wang, X., & Yu, J. (2019). Electrospinning and nanofabrication and applications. Elsevier. Dozois, M. D., Bahlmann, L. C., Zilberman, Y., & Tang, X. (Shirley). (2017). Carbon nanomaterial-enhanced scaffolds for the creation of cardiac tissue constructs: A new frontier in cardiac tissue engineering. Carbon, 120, 338–349. https://doi.org/10.1016/j.carbon.2017.05.050 Echegaray, K., Andreu, I., Lazkano, A., Villanueva, I., Sáenz, A., Elizalde, M. R., Echeverría, T., López, B., Garro, A., González, A., Zubillaga, E., Solla, I., Sanz, I., González, J., Elósegui-Artola, A., Roca-Cusachs, P., Díez, J., Ravassa, S., & Querejeta, R. (2017). Role of Myocardial Collagen in Severe Aortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure. Revista Espanola de Cardiologia (English Ed.), 70(10), 832–840. https://doi.org/10.1016/j.rec.2016.12.038 Edrisi, F., Baheiraei, N., Razavi, M., Roshanbinfar, K., Imani, R., & Jalilinejad, N. (2023). Potential of graphene-based nanomaterials for cardiac tissue engineering. Journal of Materials Chemistry B, 11(31), 7280–7299. https://doi.org/10.1039/d3tb00654a El-Sayed, N. M., El-Bakary, M. A., Ibrahim, M. A., Elgamal, M. A., & Hamza, A. A. (2021). Characterization of the mechanical and structural properties of PGA/TMC copolymer for cardiac tissue engineering. Microscopy Research and Technique, 84(7), 1596–1606. https://doi.org/10.1002/jemt.23720 Elamparithi, A., Punnoose, A. M., Paul, S. F. D., & Kuruvilla, S. (2017). Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(1), 20–27. https://doi.org/10.1080/00914037.2016.1180616 Elkhoury, K., Morsink, M., Sanchez-Gonzalez, L., Kahn, C., Tamayol, A., & Arab-Tehrany, E. (2021). Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioactive Materials, 6(11), 3904–3923. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.03.040 Eroğlu, N. S. (2022). Production of Nanofibers from Plant Extracts by Electrospinning Method (T. Tański & P. Jarka (eds.); p. Ch. 3). IntechOpen. https://doi.org/10.5772/intechopen.102614 Eslahi, N., Lotfi, R., Zandi, N., Mazaheri, M., Soleimani, F., & Simchi, A. (2022). 8 - Graphene-based polymer nanocomposites in biomedical applications. In S. M. Rangappa, J. Parameswaranpillai, V. Ayyappan, M. G. Motappa, S. Siengchin, & C. Soutis (Eds.), Innovations in Graphene-Based Polymer Composites (pp. 199–245). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-823789-2.00016-9 Fakhrali, A., Nasari, M., Poursharifi, N., Semnani, D., Salehi, H., Ghane, M., & Mohammadi, S. (2021). Biocompatible graphene-embedded PCL/PGS-based nanofibrous scaffolds: A potential application for cardiac tissue regeneration. Journal of Applied Polymer Science, 138(40), 1–14. https://doi.org/10.1002/app.51177 Fakhrali, A., Semnani, D., Salehi, H., & Ghane, M. (2022). Electro-conductive nanofibrous structure based on PGS/PCL coated with PPy by in situ chemical polymerization applicable as cardiac patch: Fabrication and optimization. Journal of Applied Polymer Science, 139(19), 1–20. https://doi.org/10.1002/app.52136 Ferreira, C. L., Valente, C. A., Zanini, M. L., Sgarioni, B., Henrique, P., Tondo, F., Chagastelles, P. C., Braga, J., Campos, M. M., Malmonge, A., Regina, N., & Basso, D. S. (2019). Biocompatible PCL / PLGA / Polypyrrole Composites for Regenerating Nerves. 1800028, 1–8. https://doi.org/10.1002/masy.201800028 Flaig, F., Ragot, H., Simon, A., Revet, G., Kitsara, M., Kitasato, L., Hébraud, A., Agbulut, O., & Schlatter, G. (2020). Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate) Elastomer and Poly(lactic acid) for Cardiac Tissue Engineering. ACS Biomaterials Science and Engineering, 6(4), 2388–2400. https://doi.org/10.1021/acsbiomaterials.0c00243 Fleischer, S., Feiner, R., & Dvir, T. (2017). Cardiac tissue engineering: From matrix design to the engineering of bionic hearts. Regenerative Medicine, 12(3), 275–284. https://doi.org/10.2217/rme-2016-0150 Flores-Rojas, G. G. ., Gómez-Lazaro, B. ., López-Saucedo, F. ., Vera-Graziano, R. ., Bucio, E. ., & Mendizábal, E. (2023). Electrospun Scaffolds for Tissue Engineering : A Review. Macromol, 3, 524–553. https://doi.org/https://doi.org/10.3390/macromol3030031 Forward, K., & Rutledge, G. (2012). Free surface electrospinning from a wire electrode. Chemical Engineering Journal, 183, 492–503. https://doi.org/10.1016/j.cej.2011.12.045 Fujihara, K., Teo, E., Teik-Cheng, L., & Ma, Z. (2005). An Introduction To Electrospinning And Nanofibers. In World Scientific: Singapore (Vol. 3). https://doi.org/10.1142/9789812567611_0003 Fujita, B., & Zimmermann, W. H. (2017). Engineered Heart Repair. Clinical Pharmacology and Therapeutics, 102(2), 197–199. https://doi.org/10.1002/cpt.724 Furth, M. E., & Atala, A. (2014). Chapter 6 - Tissue Engineering: Future Perspectives. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (Fourth Edi, pp. 83–123). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-398358-9.00006-9 Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41(11), 2251–2269. https://doi.org/10.1088/0031-9155/41/11/002 Gálvez-Montón, C., Prat-Vidal, C., Díaz-Güemes, I., Crisóstomo, V., Soler-Botija, C., Roura, S., Llucià-Valldeperas, A., Perea-Gil, I., Sánchez-Margallo, F. M., & Bayes-Genis, A. (2014). Comparison of two preclinical myocardial infarct models: Coronary coil deployment versus surgical ligation. Journal of Translational Medicine, 12(1), 1–9. https://doi.org/10.1186/1479-5876-12-137 Gálvez-Montón, C., Prat-Vidal, C., Roura, S., Soler-Botija, C., & Bayes-Genis, A. (2013). Ingeniería tisular cardiaca y corazón bioartificial. Revista Espanola de Cardiologia, 66(5), 391–399. https://doi.org/10.1016/j.recesp.2012.11.013 Gelmi, A., Zhang, J., Cieslar-Pobuda, A., Ljunngren, M. K., Los, M. J., Rafat, M., & Jager, E. W. H. (2015). Electroactive 3D materials for cardiac tissue engineering. Electroactive Polymer Actuators and Devices (EAPAD) 2015, 9430, 94301T. https://doi.org/10.1117/12.2084165 Ghovvati, M., Kharaziha, M., Ardehali, R., & Annabi, N. (2022). Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2200055. Ghuran, A. V., & Camm, A. J. (2001). Ischaemic heart disease presenting as arrhythmias. British Medical Bulletin, 59, 193–210. https://doi.org/10.1093/bmb/59.1.193 Ginestra, P. (2019). Manufacturing of polycaprolactone - Graphene fibers for nerve tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 100(July), 103387. https://doi.org/10.1016/j.jmbbm.2019.103387 Gómez, J., Vásquez, M., Mantione, D., & Alegret, N. (2021). Carbon Nanomaterials Embedded in Conductive Polymers : A State of the Art. Greenlund, K. J., Giles, W. H., Keenan, N. L., Malarcher, A. M., Zheng, Z. J., Casper, M. L., & Croft, J. B. (2006). 381Heart Disease and Stroke Mortality in the Twentieth Century. In J. W. Ward & C. Warren (Eds.), Silent Victories: The History and Practice of Public Health in Twentieth Century America (p. 0). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195150698.003.18 Gryshkov, O., Al Halabi, F., Kuhn, A. I., Leal-Marin, S., Freund, L. J., Förthmann, M., Meier, N., Barker, S. A., Haastert-Talini, K., & Glasmacher, B. (2021). Pvdf and p(Vdf-trfe) electrospun scaffolds for nerve graft engineering: A comparative study on piezoelectric and structural properties, and in vitro biocompatibility. International Journal of Molecular Sciences, 22(21), 1–27. https://doi.org/10.3390/ijms222111373 Grzeszczuk, M. (2018). Polymer electrodes: Preparation, properties, and applications. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11676-2 Gu, H., Huang, J., Li, N., Yang, H., Wang, Y., Zhang, Y., Dong, C., Chen, G., & Guan, H. (2022). Polystyrene-Modulated Polypyrrole to Achieve Controllable Electromagnetic-Wave Absorption with Enhanced Environmental Stability. Nanomaterials, 12(15). https://doi.org/10.3390/nano12152698 Guo, B., & Ma, P. X. (2018). Conducting Polymers for Tissue Engineering [Review-article]. Biomacromolecules, 19(6), 1764–1782. https://doi.org/10.1021/acs.biomac.8b00276 Guo, Q.-Y., Yang, J.-Q., Feng, X.-X., & Zhou, Y.-J. (2023). Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Military Medical Research, 10(1), 18. https://doi.org/10.1186/s40779-023-00452-0 Hagen, R. (2012). 10.12 - Polylactic Acid. In K. Matyjaszewski & M. Möller (Eds.), Polymer Science: A Comprehensive Reference (pp. 231–236). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53349-4.00269-7 Haider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015 Han, J., Li, H., Xu, X., Yuan, L., Wang, N., & Yu, H. (2016). Cu2(OH)PO4 pretreated by composite surfactants for the micro-domino effect: A high-efficiency Fenton catalyst for the total oxidation of dyes. Materials Letters, 166, 71–74. https://doi.org/https://doi.org/10.1016/j.matlet.2015.12.046 Hao, D., Swindell, H. S., Ramasubramanian, L., Liu, R., Lam, K. S., Farmer, D. L., & Wang, A. (2020). Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Frontiers in Bioengineering and Biotechnology, 8(June). https://doi.org/10.3389/fbioe.2020.00633 Hao, L., Dong, C., Zhang, L., Zhu, K., & Yu, D. (2022). Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers, 14(23). https://doi.org/10.3390/polym14235139 Haq, A. U., Carotenuto, F., De Matteis, F., Prosposito, P., Francini, R., Teodori, L., Pasquo, A., & Di Nardo, P. (2021). Intrinsically conductive polymers for striated cardiac muscle repair. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168550 Harlin, A., & Ferenets, M. (2006). Introduction to conductive materials. Intelligent Textiles and Clothing, 217–238. https://doi.org/10.1533/9781845691622.3.217 Hashizume, R., Fujimoto, K. L., Hong, Y., Guan, J., Toma, C., Tobita, K., & Wagner, W. R. (2013). Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia-reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model. Journal of Thoracic and Cardiovascular Surgery, 146(2), 391-399.e1. https://doi.org/10.1016/j.jtcvs.2012.11.013 He, S., Wu, J., Li, S., Wang, L., Sun, Y., Xie, J., & Ramnath, D. (2020). The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure. Biomaterials, 120285. https://doi.org/10.1016/j.biomaterials.2020.120285 Heidari, M., Bahrami, H., & Ranjbar-Mohammadi, M. (2017). Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Materials Science and Engineering C, 78, 218–229. https://doi.org/10.1016/j.msec.2017.04.095 Heidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Materials Science and Engineering C, 103(May), 109768. https://doi.org/10.1016/j.msec.2019.109768 Heikhmakhtiar, A. K., & Lim, K. M. (2018). Computational Prediction of the Combined Effect of CRT and LVAD on Cardiac Electromechanical Delay in LBBB and RBBB. Computational and Mathematical Methods in Medicine, 2018(September), 10–12. https://doi.org/10.1155/2018/4253928 Heng, B. C., Bai, Y., Li, X., Lim, L. W., Li, W., Ge, Z., Zhang, X., & Deng, X. (2023). Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. Advanced Science, 10(2), 2204502. https://doi.org/https://doi.org/10.1002/advs.202204502 Hirenkumar, M., & Steven, S. (2012). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1–19. https://doi.org/10.3390/polym3031377.Poly Hohman, M., Shin, M., Rutledge, G., & Brenner, M. (2001). Electrospinning and Electrically Forced Jets. I. Stability Theory. Physics of Fluids - PHYS FLUIDS, 13. https://doi.org/10.1063/1.1383791 House, A., Atalla, I., Lee, E. J., & Guvendiren, M. (2021). Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. 2000022, 1–16. https://doi.org/10.1002/anbr.202000022 Hu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9, 895035. https://doi.org/10.3389/fcvm.2022.895035 Huang, C., Niu, H., Wu, J., Ke, Q., Mo, X., & Lin, T. (2012). Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. Journal of Nanomaterials, 2012, 473872. https://doi.org/10.1155/2012/473872 Huang, P., Liu, Y., Chen, Z., Zheng, Y., Vasilovna, K. V., Faritovich, G. R., & Xin, B. (2023). Preparation and Characterization of PU/PDA/PPy Flexible Composite Film for Electric Heating. Fibers and Polymers. https://doi.org/10.1007/s12221-023-00416-0 Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/https://doi.org/10.1016/S0266-3538(03)00178-7 Ibrahim, I. M., Yunus, S., & Hashim, M. A. (2013). Relative performance of isoproopylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. International Journal of Scientific & Engineering Research, 4(2), 1–12. Ikram, H., Rogers, S. J., Charles, C. J., Sands, J., Richards, A. M., Bridgman, P. G., & Gooneratne, R. (1997). An ovine model of acute myocardial infarction and chronic left ventricular dysfunction. Angiology, 48(8), 679–688. https://doi.org/10.1177/000331979704800803 Imani, F., Karimi-Soflou, R., Shabani, I., & Karkhaneh, A. (2021). PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. Polymer, 218(September 2020), 123487. https://doi.org/10.1016/j.polymer.2021.123487 Jain, A., Nabeel, A. N., Bhagwat, S., Kumar, R., Sharma, S., Kozak, D., Hunjet, A., Kumar, A., & Singh, R. (2023). Fabrication of polypyrrole gas sensor for detection of NH3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon, 9(7), e17611. https://doi.org/10.1016/j.heliyon.2023.e17611 Jana, S., Bhagia, A., & Lerman, A. (2019). Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Biomedical Materials (Bristol), 14(6). https://doi.org/10.1088/1748-605X/ab3d24 Jang, Y., Park, Y., & Kim, J. (2020). Engineering Biomaterials to Guide Heart Cells for Matured Cardiac Tissue. Coatings, 10, 925. https://doi.org/10.3390/coatings10100925 Jiang, L., Chen, D., Wang, Z., Zhang, Z., Xia, Y., Xue, H., & Liu, Y. (2019). Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering. Applied Biochemistry and Biotechnology, 188(4), 952–964. https://doi.org/10.1007/s12010-019-02967-6 John, J., & Jayalekshmi, S. (2023). Polypyrrole with appreciable solubility, crystalline order and electrical conductivity synthesized using various dopants appropriate for device applications. Polymer Bulletin, 80(6), 6099–6116. https://doi.org/10.1007/s00289-022-04354-4 Jung, H.-S., Kim, M. H., Shin, J. Y., Park, S. R., Jung, J.-Y., & Park, W. H. (2018). Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydr. Polym., 193, 205. Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011a). Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 98 B(2), 379–386. https://doi.org/10.1002/jbm.b.31862 Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011b). Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. Journal of Biomedical Materials Research - Part A, 99 A(3), 376–385. https://doi.org/10.1002/jbm.a.33200 Kalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D., & Bakenov, Z. (2020). A review of piezoelectric pvdf film by electrospinning and its applications. Sensors (Switzerland), 20(18), 1–42. https://doi.org/10.3390/s20185214 Kariduraganavar, M. Y., Kittur, A. A., & Kamble, R. R. (2014). Chapter 1 - Polymer Synthesis and Processing. In S. G. Kumbar, C. T. Laurencin, & M. Deng (Eds.), Natural and Synthetic Biomedical Polymers (pp. 1–31). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-396983-5.00001-6 Karimi, S. N. H., Aghdam, R. M., Ebrahimi, S. A. S., & Chehrehsaz, Y. (2022). Tri-layered alginate/poly(epsilon-caprolactone) electrospun scaffold for cardiac tissue engineering. POLYMER INTERNATIONAL, 71(9), 1099–1108. https://doi.org/10.1002/pi.6371 Karkan, S. F., Davaran, S., Rahbarghazi, R., Salehi, R., & Akbarzadeh, A. (2019). Electrospun nanofibers for the fabrication of engineered vascular grafts. Journal of Biological Engineering, 7, 1–13. Kashou, A. H., & Chhabra, H. B. L. (2020). Physiology, Sinoatrial Node. StatPearls [Internet], 1–6. Kausar, A. (2021). Chapter 5 - Perspectives on nanocomposite with polypyrrole and nanoparticles. In A. Kausar (Ed.), Conducting Polymer-Based Nanocomposites (pp. 103–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822463-2.00006-3 Kazu Kikuchi, & Poss, K. D. (2008). Cardiac Regenerative Capacity and Mechanisms. Annual Review of Cell and Developmental Biology, 28(1), 719–741. https://doi.org/doi.org/10.1146/annurev-cellbio-101011-155739 Kesornsit, S., Direksilp, C., Phasuksom, K., Thummarungsan, N., Sakunpongpitiporn, P., Rotjanasuworapong, K., Sirivat, A., & Niamlang, S. (2022). Synthesis of Highly Conductive Poly(3-hexylthiophene) by Chemical Oxidative Polymerization Using Surfactant Templates. Polymers, 14(18), 1–19. https://doi.org/10.3390/polym14183860 Kharaziha, M., Shin, S. R., Nikkhah, M., Topkaya, S. N., Masoumi, N., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2014). Tough and flexible CNT-polymeric hybrid scaffolds for engineering cardiac constructs. Biomaterials, 35(26), 7346–7354. https://doi.org/10.1016/j.biomaterials.2014.05.014 Khatti, T., Naderi-Manesh, H., & Kalantar, S. M. (2019). Polypyrrole-Coated Polycaprolactone-Gelatin Conductive Nanofibers: Fabrication and Characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 250(October), 114440. https://doi.org/10.1016/j.mseb.2019.114440 Kierszenbaum, Abraham L.; Tres, Laura L.; Fernández Aceñero, M. J. (2016). Histología y biología celular : introducción a la anatomía patológica (Elsevier (ed.)). Kim, S., Tserengombo, B., Choi, S.-H., Noh, J., Huh, S., Choi, B., Chung, H., Kim, J., & Jeong, H. (2018). Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. International Communications in Heat and Mass Transfer, 91, 95–102. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2017.12.011 Kotadia, I., Whitaker, J., Roney, C., Niederer, S., O’Neill, M., Bishop, M., & Wright, M. (2020). Anisotropic Cardiac Conduction. Arrhythmia & Electrophysiology Review, 9(4), 202–210. https://doi.org/10.15420/aer.2020.04 Krista McLennan. (n.d.). Recognising, assessing and alleviating pain in sheep. Farm Animal Well Being. Kumar, A., & Kumar, A. (2019). Poly(lactic acid) and poly(lactic-co-glycolic) acid nanoparticles: Versatility in biomedical applications. In Materials for Biomedical Engineering: Absorbable Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818415-8.00007-3 Kumar, M., & Kumari, P. (2020). The effect of reciprocating motion of drum collector on electrospun PVDF nanofiber for energy harvesting application. WCMNM, 18–21. Kumar, S., & Chatterjee, K. (2016). Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. In ACS Applied Materials and Interfaces (Vol. 8, Issue 40, pp. 26431–26457). American Chemical Society. https://doi.org/10.1021/acsami.6b09801 Kurakula, M., & Koteswara Rao, G. S. N. (2020). Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136(July). https://doi.org/10.1016/j.eurpolymj.2020.109919 Laforgue, A., & Robitaille, L. (2010). Deposition of ultrathin coatings of polypyrrole and poly(3,4- ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chemistry of Materials, 22(8), 2474–2480. https://doi.org/10.1021/cm902986g Langer, R., & Vacanti, J. P. (1993). Tissue Engineering. Science, 260(5110), 920–926. https://doi.org/10.1126/science.8493529 Le, T. H., Kim, Y., & Yoon, H. (2017). Electrical and electrochemical properties of conducting polymers. Polymers, 9(4). https://doi.org/10.3390/polym9040150 Lee, J. K. Y., Chen, N., Peng, S., Li, L., Tian, L., Thakor, N., & Ramakrishna, S. (2018). Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Progress in Polymer Science, 86, 40–84. https://doi.org/10.1016/j.progpolymsci.2018.07.002 Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325–4335. https://doi.org/10.1016/j.biomaterials.2009.04.042 Lee, M., Kim, M. C., & Lee, J. Y. (2022). Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. International Journal of Nanomedicine, 17, 6181–6200. https://doi.org/10.2147/IJN.S386763 Leung, V., & Ko, F. (2011). Biomedical applications of nanofibers. Polymers for Advanced Technologies, 22, 350–365. https://doi.org/10.1002/pat.1813 Lewis, T. W. (1998). A Study of The Overoxidation of The Conducting Polymer Polypyrrole. 230. Li, J., Xu, C., Tian, H., Zha, F., Qi, W., & Wang, Q. (2018). Blend-electrospun poly(vinylidene fluoride)/stearic acid membranes for efficient separation of water-in-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 494–499. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.11.043 Li, J., Zhang, X., Jiang, J., Wang, Y., Jiang, H., Zhang, J., Nie, X., & Liu, B. (2018). Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Toxicological Sciences, 167(1), 269–281. https://doi.org/10.1093/toxsci/kfy235 Li, S., Yu, X., & Li, Y. (2022). Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fibrous mat : influence of drug delivery and Schwann cells proliferation Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fi. Biomedical Physics & Engineering Express, 8. Li, T. T., Yan, M., Zhong, Y., Ren, H. T., Lou, C. W., Huang, S. Y., & Lin, J. H. (2019). Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 8(6), 5124–5132. https://doi.org/10.1016/j.jmrt.2019.08.035 Li, Y., Wei, L., Lan, L., Gao, Y., Zhang, Q., Dawit, H., Mao, J., Guo, L., Shen, L., & Wang, L. (2022). Conductive biomaterials for cardiac repair: A review. Acta Biomaterialia, 139, 157–178. https://doi.org/10.1016/j.actbio.2021.04.018 Liang, Y., & Goh, J. C.-H. (2020). Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity, 2(2), 101–119. https://doi.org/10.1089/bioe.2020.0010 Liang, Y., Mitriashkin, A., Lim, T. T., & Goh, J. C. H. (2021). Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials, 276(January), 121008. https://doi.org/10.1016/j.biomaterials.2021.121008 Liau, B., Zhang, D., & Bursac, N. (2012). Functional cardiac tissue engineering. Regenerative Medicine, 7(2), 187–206. https://doi.org/10.2217/rme.11.122 Lindsey, M. L., Bolli, R., Canty, J. M., Du, X. J., Frangogiannis, N. G., Frantz, S., Gourdie, R. G., Holmes, J. W., Jones, S. P., Kloner, R. A., Lefer, D. J., Liao, R., Murphy, E., Ping, P., Przyklenk, K., Recchia, F. A., Longacre, L. S., Ripplinger, C. M., Van Eyk, J. E., & Heusch, G. (2018). Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology - Heart and Circulatory Physiology, 314(4), H812–H838. https://doi.org/10.1152/ajpheart.00335.2017 Liu, H., Paul, C., & Xu, M. (2017). Optimal environmental stiffness for stem cell mediated ischemic myocardium repair. Adult Stem Cells, 293–304. Liu, Y., & Wu, F. (2023). Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Advances, 3606–3618. https://doi.org/10.1039/d3na00138e Longhin, E. M., El Yamani, N., Rundén-Pran, E., & Dusinska, M. (2022). The alamar blue assay in the context of safety testing of nanomaterials. Frontiers in Toxicology, 4, 981701. https://doi.org/10.3389/ftox.2022.981701 Loyo, C., Cordoba, A., Palza, H., Canales, D., Melo, F., Vivanco, J. F., Baier, R. V., Millán, C., Corrales, T., & Zapata, P. A. (2023). Effect of Gelatin Coating and GO Incorporation on the Properties and Degradability of Electrospun PCL Scaffolds for Bone Tissue Regeneration. Polymers, 16(1), 129. https://doi.org/10.3390/polym16010129 Lu, H., Li, X., & Lei, Q. (2021). Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Frontiers in Chemistry, 9(September), 6–11. https://doi.org/10.3389/fchem.2021.732132 Lukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M. F., Al-Tel, T. H., Dolatshahi-Pirouz, A., & Orive, G. (2022). Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics, 14(6), 1–19. https://doi.org/10.3390/pharmaceutics14061177 Ma, Z., Shi, W., Yan, K., Pan, L., & Yu, G. (2019). Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chemical Science, 10(25), 6232–6244. https://doi.org/10.1039/c9sc02033k MacDonald, E. A., Rose, R. A., & Quinn, T. A. (2020). Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00170 Maharjan, B., Kaliannagounder, V. K., Jang, S. R., Awasthi, G. P., Bhattarai, D. P., Choukrani, G., Park, C. H., & Kim, C. S. (2020). In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Materials Science and Engineering C, 114(April), 111056. https://doi.org/10.1016/j.msec.2020.111056 Mahmoudi, T., Wang, Y., & Hahn, Y.-B. (2018). Graphene and its derivatives for solar cells application. Nano Energy, 47, 51–65. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.02.047 Mahun, A., Abbrent, S., Bober, P., Brus, J., & Kobera, L. (2020). Effect of structural features of polypyrrole (PPy) on electrical conductivity reflected on 13C ssNMR parameters. Synthetic Metals, 259, 116250. https://doi.org/https://doi.org/10.1016/j.synthmet.2019.116250 Majid, Q. A., Fricker, A. T. R., Gregory, D. A., Davidenko, N., Hernandez Cruz, O., Jabbour, R. J., Owen, T. J., Basnett, P., Lukasiewicz, B., Stevens, M., Best, S., Cameron, R., Sinha, S., Harding, S. E., & Roy, I. (2020). Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine, 7(October), 1–32. https://doi.org/10.3389/fcvm.2020.554597 Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195058239.001.0001 Mancino, C., Hendrickson, T., Whitney, L. V., Paradiso, F., Abasi, S., Tasciotti, E., Taraballi, F., & Guiseppi-Elie, A. (2022). Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 44, 102567. https://doi.org/10.1016/j.nano.2022.102567 Mannhardt, I., Breckwoldt, K., Letuffe-Brenière, D., Schaaf, S., Schulz, H., Neuber, C., Benzin, A., Werner, T., Eder, A., Schulze, T., Klampe, B., Christ, T., Hirt, M. N., Huebner, N., Moretti, A., Eschenhagen, T., & Hansen, A. (2016). Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports, 7(1), 29–42. https://doi.org/10.1016/j.stemcr.2016.04.011 Manousiouthakis, E., Park, J., Hardy, J. G., Lee, J. Y., & Schmidt, C. E. (2022). Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomaterialia, 139, 22–42. https://doi.org/https://doi.org/10.1016/j.actbio.2021.07.065 Manteca, X., Temple, D., Mainau, E., & Llonch, P. (2017). Evaluación del dolor en el ganado ovino. Fawec, 17(1), 1–2. https://doi.org/10.13130/AWIN Mao, J., & Zhang, Z. (2018). Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges. Advances in Experimental Medicine and Biology, 1078, 347–370. https://doi.org/10.1007/978-981-13-0950-2_18 Margerrison, E., Argentieri, M., Kommala, D., & Schabowsky, C. N. (2021). Polycaprolactone (PCL) Safety Profile Report Details Date of Submission ECRI Corporate Governance Project Manager. 540. Markowitz, S. M., & Lerman, B. B. (2018). A contemporary view of atrioventricular nodal physiology. Journal of Interventional Cardiac Electrophysiology, 52(3), 271–279. https://doi.org/10.1007/s10840-018-0392-5 Matysiak, W., Tański, T., Smok, W., Gołombek, K., & Schab-Balcerzak, E. (2020). Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline. Applied Surface Science, 509(December 2019). https://doi.org/10.1016/j.apsusc.2019.145068 Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & ullah khan, A. (2021). Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/https://doi.org/10.1016/j.rechem.2021.100163 McClelland, R., Dennis, R., Reid, L. M., Palsson, B., & Macdonald, J. M. (2005). 7 - TISSUE ENGINEERING. In J. D. Enderle, S. M. Blanchard, & J. D. Bronzino (Eds.), Introduction to Biomedical Engineering (Second Edition) (Second Edi, pp. 313–402). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-238662-6.50009-4 Mcivor, M. J., Maolmhuaidh, F. Ó., Meenagh, A., Hussain, S., Bhattacharya, G., Fishlock, S., Ward, J., Mcferran, A., Acheson, J. G., Cahill, P. A., Forster, R., Mceneaney, D. J., Boyd, A. R., & Meenan, B. J. (2022). 3D Fabrication and Characterisation of Electrically Receptive Tissue Models Mckee, C. T., Last, J. A., Russell, P., & Murphy, C. J. (2011). Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Engineering. Part B, Reviews, 17 3, 155–164. McKeen, L. (2021). Chapter11 - The effect of heat aging on the properties of sustainable polymers. In L. McKeen (Ed.), The Effect of Long Term Thermal Exposure on Plastics and Elastomers (Second Edition) (Second Edi, pp. 313–332). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-85436-8.00001-1 McMahan, S., Taylor, A., Copeland, K. M., Pan, Z., Liao, J., & Hong, Y. (2020). Current advances in biodegradable synthetic polymer based cardiac patches. Journal of Biomedical Materials Research - Part A, 108(4), 972–983. https://doi.org/10.1002/jbm.a.36874 McMillen, C. (2001). The sheep - an ideal model for biomedical research? Anzccart News, 14(2), 1–4. Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 35(22), 8456–8466. https://doi.org/10.1021/ma020444a Mehta, P. P., & Pawar, V. S. (2018). 22 - Electrospun nanofiber scaffolds: Technology and applications. In Inamuddin, A. M. Asiri, & A. Mohammad (Eds.), Applications of Nanocomposite Materials in Drug Delivery (pp. 509–573). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-813741-3.00023-6 Mit-uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 205(17), 2327–2338. https://doi.org/https://doi.org/10.1002/macp.200400225 Mittal, T. (2005). Pacemakers- A journey through the years. Indian Journal of Thoracic and Cardiovascular Surgery, 21, 236–249. https://doi.org/doi.org/10.1007/s12055-005-0060-0 Mohan, V. B., Lau, K., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220. https://doi.org/https://doi.org/10.1016/j.compositesb.2018.01.013 Montes, A., Valor, D., Penabad, Y., Dom, M., Pereyra, C., Mart, E., & Ossa, D. (2023). Formation of PLGA – PEDOT : PSS Conductive Scaffolds by Supercritical Foaming. 1–20. Morsink, M., Severino, P., Luna-Ceron, E., Hussain, M. A., Sobahi, N., & Shin, S. R. (2022). Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomaterialia, 139, 141–156. https://doi.org/10.1016/j.actbio.2021.11.022 Mota, K. O., & Corrêa, C. B. (2021). Effect of Preparation Additives on the Antimicrobial Activity and Cytotoxicity of Polypyrrole. 32(6), 1203–1212. Murugan, S. S., Dalavi, P. A., Devi G.V., Y., Chatterjee, K., & Venkatesan, J. (2022). Natural and Synthetic Biopolymeric Biomaterials for Bone Tissue Engineering Applications. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 746–757). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00246-7 Mutepfa, A. R., Hardy, J. G., & Adams, C. F. (2022). Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Frontiers in Medical Technology, 4(February). https://doi.org/10.3389/fmedt.2022.693438 Nag, A., Mitra, A., & Mukhopadhyay, S. C. (2018). Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 270, 177–194. https://doi.org/https://doi.org/10.1016/j.sna.2017.12.028 Nagiah, N., El Khoury, R., Othman, M. H., Akimoto, J., Ito, Y., Roberson, D. A., & Joddar, B. (2022). Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering. ACS Omega, 7(16), 13894–13905. https://doi.org/10.1021/acsomega.2c00271 Nair, N. R., Sekhar, V. C., Nampoothiri, K. M., & Pandey, A. (2017). 32 - Biodegradation of Biopolymers. In A. Pandey, S. Negi, & C. R. Soccol (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 739–755). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63662-1.00032-4 Najafi Tireh Shabankareh, A., Samadi Pakchin, P., Hasany, M., & Ghanbari, H. (2023). Development of a new electroconductive nanofibrous cardiac patch based on polyurethane-reduced graphene oxide nanocomposite scaffolds. Materials Chemistry and Physics, 305(May), 127961. https://doi.org/10.1016/j.matchemphys.2023.127961 Namsheer, K., & Rout, C. S. (2021). Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances, 11(10), 5659–5697. https://doi.org/10.1039/d0ra07800j Nasr, S. M., Rabiee, N., Hajebi, S., Ahmadi, S., Fatahi, Y., Hosseini, M., Bagherzadeh, M., Ghadiri, A. M., Rabiee, M., Jajarmi, V., & Webster, T. J. (2020). Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine. International Journal of Nanomedicine, 15, 4205–4224. https://doi.org/10.2147/IJN.S245936 National Farm Animal Care Council. (2013). Code of practice for the care and handling of sheep. In Practice. National Research Council. (1992). 4 Recognition and Assessment of Pain, Stress, and Distress. In Recognition and Alleviation of Pain and Distress in Laboratory Animals. The National Academies Press. https://doi.org/doi: 10.17226/1542 Nekounam, H., Gholizadeh, S., Allahyari, Z., Samadian, H., Nazeri, N., Shokrgozar, M. A., & Faridi-Majidi, R. (2021). Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 134(June 2020), 111083. https://doi.org/10.1016/j.materresbull.2020.111083 Nguyen-truong, M., & Li, Y. V. (2020). Mechanical Considerations of Electrospun Sca ff olds for Myocardial Tissue and Regenerative Engineering. 1–22. Nguyen, T. D., Roh, S., Thi, M., Nguyen, N., & Lee, J. S. (2023). Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications. Nikkhah, M., Akbari, M., Paul, A., Memic, A., Dolatshahi-Pirouz, A., & Khademhosseini, A. (2016). Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering. In Biomaterials from Nature for Advanced Devices and Therapies (pp. 37–62). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119126218.ch3 Nostril, A., & Lip, A. (n.d.). Sheep Pain Facial Expression Scale * Sheep Pain Facial Expression Scale ( SPFES ). 0–1. O’Brien, J., Wilson, I., Orton, T., & Pognan, F. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267(17), 5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.x Ojrzynska, M., Wroblewska, A., Judek, J., Malolepszy, A., Duzynska, A., & Zdrojek, M. (2020). Study of optical properties of graphene flakes and its derivatives in aqueous solutions. Optics Express, 28(5), 7274. https://doi.org/10.1364/oe.382523 Oprea, A. E., Ficai, A., & Andronescu, E. (2019). Electrospun nanofibers for tissue engineering applications. In Materials for Biomedical Engineering. Elsevier Inc. https://doi.org/10.1016/b978-0-12-816909-4.00004-x Pang, A. L., Arsad, A., & Ahmadipour, M. (2021). Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies, 32(4), 1428–1454. https://doi.org/10.1002/pat.5201 Park, D. W., Ness, J. P., Brodnick, S. K., Esquibel, C., Novello, J., Atry, F., Baek, D. H., Kim, H., Bong, J., Swanson, K. I., Suminski, A. J., Otto, K. J., Pashaie, R., Williams, J. C., & Ma, Z. (2018). Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. ACS Nano, 12(1), 148–157. https://doi.org/10.1021/acsnano.7b04321 Patino, M. G., Neiders, M. E., Andreana, S., Noble, B., & Cohen, R. E. (2002). Collagen : An Overview. 280–285. https://doi.org/10.1097/01.ID.0000019547.50849.3B Pfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. Journal of Biomechanical Engineering, 136(2), 21007. https://doi.org/10.1115/1.4026221 Pomeroy, J. E., Helfer, A., & Bursac, N. (2020). Biomaterializing the promise of cardiac tissue engineering. Biotechnology Advances, 42, 107353. https://doi.org/https://doi.org/10.1016/j.biotechadv.2019.02.009 Potdar, A., Kale, A., Marathe, P., Talekar, P., & Yadav, S. (2020). A Review On Applications Of Graphene. IJRAR1AA1390 International Journal of Research and Analytical Reviews (IJRAR) Www.Ijrar.Org, 80(4), 80–85. www.ijrar.org Precedence Research. (2022). Transplantation Market Size, Share and Growth Analysis. Pushp, P., Bhaskar, R., Kelkar, S., Sharma, N., Pathak, D., & Gupta, M. K. (2021). Plasticized poly(vinylalcohol) and poly(vinylpyrrolidone) based patches with tunable mechanical properties for cardiac tissue engineering applications. Biotechnology and Bioengineering, 118(6), 2312–2325. https://doi.org/10.1002/bit.27743 Qasim, M., Arunkumar, P., Powell, H. M., & Khan, M. (2019). Current research trends and challenges in tissue engineering for mending broken hearts. Life Sciences, 229(March), 233–250. https://doi.org/10.1016/j.lfs.2019.05.012 Rabbani, S., Ahmadi, H., Fayazzadeh, E., Sahebjam, M., Boroumand, M. A., Sotudeh, M., & Nassiri, S. M. (2008). Development of an ovine model of myocardial infarction. ANZ Journal of Surgery, 78(1–2), 78–81. https://doi.org/10.1111/j.1445-2197.2007.04359.x Randviir, E. P., Brownson, D. A. C., & Banks, C. E. (2014). A decade of graphene research: Production, applications and outlook. In Materials Today (Vol. 17, Issue 9, pp. 426–432). Elsevier. https://doi.org/10.1016/j.mattod.2014.06.001 Rashid, S. T., Salacinski, H. J., Hamilton, G., & Seifalian, A. M. (2004). The use of animal models in developing the discipline of cardiovascular tissue engineering: A review. Biomaterials, 25(9), 1627–1637. https://doi.org/10.1016/S0142-9612(03)00522-2 Ratih, D., Siburian, R., & Andriayani. (2018). The performance of graphite/n-graphene and graphene/n-graphene as electrode in primary cell batteries. Rasayan Journal of Chemistry, 11(4), 1649–1656. https://doi.org/10.31788/RJC.2018.1145007 Ray, S. S., Chen, S.-S., Nguyen, N. C., & Nguyen, H. T. (2019). Chapter 9 - Electrospinning: A Versatile Fabrication Technique for Nanofibrous Membranes for Use in Desalination. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 247–273). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00014-8 Refate, A., Mohamed, Y., Mohamed, M., Sobhy, M., Samhy, K., Khaled, O., Eidaroos, K., Batikh, H., El-Kashif, E., El-Khatib, S., & Mehanny, S. (2023). Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon, 9(6), e17051. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e17051 Ren, X., Jiang, Z., & Tang, M. (2023). Application of conductive hydrogels in cardiac tissue engineering. 4(2), 1–7. Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387–2425. https://doi.org/10.1016/j.polymer.2008.02.002 Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547. https://doi.org/10.1063/1.373532 Research, P. (2022). Scaffold Technology Market (By Product: Hydrogels, Micropatterned Surface Microplates, and Nanofiber Based Scaffolds; By Application: Neurology, Orthopedics, Dental, Cardiology & Vascular, Cancer, Skin & Integumentary, GI & Gynecologyand Urology; By End-U. https://www.precedenceresearch.com/scaffold-technology-market Reshmy, R., Philip, E., Vaisakh, P. H., Sindhu, R., Binod, P., Madhavan, A., Pandey, A., Sirohi, R., & Tarafdar, A. (2021). Chapter 14 - Biodegradable polymer composites (P. Binod, S. Raveendran, & A. B. T.-B. Pandey Biofuels, Biochemicals (eds.); pp. 393–412). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821888-4.00003-4 Riehle, C., & Bauersachs, J. (2019). Small animal models of heart failure. 1838–1849. https://doi.org/10.1093/cvr/cvz161 Roacho-p, J. A., Garza-treviño, E. N., Moncada-saucedo, N. K., Carriquiry-chequer, P. A., Valencia-g, L. E., Matthews, E. R., G, V., Simental-mend, M., Delgado-gonzalez, P., Delgado-gallegos, J. L., Padilla-rivas, G. R., & Islas, J. F. (2022). Artificial Scaffolds in Cardiac Tissue Engineering. 1–21. Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A. F., Matheny, R. G., & Badylak, S. F. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 SUPPL.), 135–143. https://doi.org/10.1161/CIRCULATIONAHA.104.525436 Rodrigues, I. C. P., Kaasi, A., Maciel Filho, R., Jardini, A. L., & Gabriel, L. P. (2018). Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein (Sao Paulo, Brazil), 16(3), eRB4538. https://doi.org/10.1590/S1679-45082018RB4538 Roser, M., & Ritchie, H. (2023). How has world population growth changed over time? Our World in Data. Roshanbinfar, K., Vogt, L., Ruther, F., Roether, J. A., Boccaccini, A. R., & Engel, F. B. (2020). Nanofibrous Composite with Tailorable Electrical and Mechanical Properties for Cardiac Tissue Engineering. 1908612. https://doi.org/10.1002/adfm.201908612 Saberi, A., Jabbari, F., Zarrintaj, P., Saeb, M. R., & Mozafari, M. (2019). Electrically conductive materials: Opportunities and challenges in tissue engineering. In Biomolecules (Vol. 9, Issue 9). https://doi.org/10.3390/biom9090448 Sack, K. L., Baillargeon, B., Acevedo-Bolton, G., Genet, M., Rebelo, N., Kuhl, E., Klein, L., Weiselthaler, G. M., Burkhoff, D., Franz, T., & Guccione, J. M. (2016). Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart in silico. The International Journal of Artificial Organs, 39(8), 421–430. https://doi.org/10.5301/ijao.5000520 Sadeghi, A., Moztarzadeh, F., & Aghazadeh Mohandesi, J. (2019). Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. International Journal of Biological Macromolecules, 121, 625–632. https://doi.org/10.1016/j.ijbiomac.2018.10.022 Sadeghianmaryan, A., Karimi, Y., Naghieh, S., Alizadeh Sardroud, H., Gorji, M., & Chen, X. (2019). Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-019-03192-x Sartoretto, S. C., Uzeda, M. J., Miguel, F. B., Nascimento, J. R., Ascoli, F., & Calasans-Maia, M. D. (2016). Sheep as an experimental model for biomaterial implant evaluation. Acta Ortopedica Brasileira, 24(5), 262–266. https://doi.org/10.1590/1413-785220162405161949 Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., & Belgacem, N. (2011). Polypyrrole and polypyrrole/wood-derived materials conducting composites: A review. BioResources, 6(3), 3585–3620. https://doi.org/10.15376/biores.6.3.3585-3620 Savchenko, A., Yin, R. T., Kireev, D., Efimov, I. R., & Molokanova, E. (2021). Graphene-Based Scaffolds: Fundamentals and Applications for Cardiovascular Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 9(December), 1–8. https://doi.org/10.3389/fbioe.2021.797340 Saxena, P., & Shukla, P. (2021). A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Advanced Composites and Hybrid Materials, 4(1), 8–26. https://doi.org/10.1007/s42114-021-00217-0 Scheetz, S. D., & Upadhyay, G. A. (2022). Physiologic Pacing Targeting the His Bundle and Left Bundle Branch: a Review of the Literature. Current Cardiology Reports, 24(8), 959–978. https://doi.org/10.1007/s11886-022-01723-3 Schmitt, P. R., Dwyer, K. D., & Coulombe, K. L. K. (2022). Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS Applied Bio Materials, 5(6), 2461–2480. https://doi.org/10.1021/acsabm.2c00174 Schmitt, P. R., Dwyer, K. D., Minor, A. J., & Coulombe, K. L. K. (2022). Wet-Spun Polycaprolactone Scaffolds Provide Customizable Anisotropic Viscoelastic Mechanics for Engineered Cardiac Tissues. Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., & Bowlin, G. L. (2009). Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 61(12), 1007–1019. https://doi.org/https://doi.org/10.1016/j.addr.2009.07.012 Senthil, T., & Anandhan, S. (2017). Effect of Solvents on the Solution Electrospinning of Discover more interesting articles and news on the subject ! Entdecken Sie weitere interessante Artikel und News zum Thema ! Serafin, A., Murphy, C., Rubio, M. C., & Collins, M. N. (2021). Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Materials Science and Engineering C, 122(January), 111927. https://doi.org/10.1016/j.msec.2021.111927 Shafei, S., Foroughi, J., Chen, Z., Wong, C. S., & Naebe, M. (2017). Short oxygen plasma treatment leading to long-term hydrophilicity of conductive PCL-PPy nanofiber scaffolds. Polymers, 9(11). https://doi.org/10.3390/polym9110614 Shafei, S., Foroughi, J., Stevens, L., Wong, C. S., Zabihi, O., & Naebe, M. (2017). Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Research on Chemical Intermediates, 43(2), 1235–1251. https://doi.org/10.1007/s11164-016-2695-4 Shang, L., Qi, Y., Lu, H., Pei, H., Li, Y., Paul, J. A., Chool, S. O. N. S., Engineering, O. F., & S, A. P. P. S. C. (2019). 7. Graphene and Graphene Oxide for Tissue Engineering and Regeneration. In Theranostic Bionanomaterials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815341-3.00007-9 Shao, H., Fang, J., Wang, H., & Lin, T. (2015). Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Advances, 5(19), 14345–14350. https://doi.org/10.1039/c4ra16360e Sharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent advances in cardiac tissue engineering for the management of myocardium infarction. In Cells (Vol. 10, Issue 10). https://doi.org/10.3390/cells10102538 Shinde, S. S., Gund, G. S., Dubal, D. P., Jambure, S. B., & Lokhande, C. D. (2014). Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochimica Acta, 119, 1–10. https://doi.org/10.1016/j.electacta.2013.10.174 Shokrollahi, P., Omidi, Y., Cubeddu, L. X., & Omidian, H. (2023). Conductive polymers for cardiac tissue engineering and regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 111(11), 1979–1995. https://doi.org/10.1002/jbm.b.35293 Sigaroodi, F., Rahmani, M., Parandakh, A., Boroumand, S., Rabbani, S., & Khani, M. M. (2023). Designing cardiac patches for myocardial regeneration–a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 0(0), 1–19. https://doi.org/10.1080/00914037.2023.2180510 Socci, M. C., Rodríguez, G., Oliva, E., Fushimi, S., Takabatake, K., Nagatsuka, H., Felice, C. J., & Rodríguez, A. P. (2023). Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering, 10(2). https://doi.org/10.3390/bioengineering10020218 Solazzo, M., O’Brien, F. J., Nicolosi, V., & Monaghan, M. G. (2019). The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering, 3(4), 041501. https://doi.org/10.1063/1.5116579 Son, W. K., Youk, J. H., Lee, T. S., & Park, W. H. (2004). The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45(9), 2959–2966. https://doi.org/10.1016/j.polymer.2004.03.006 Song, H., Li, T., Han, Y., Wang, Y., Zhang, C., & Wang, Q. (2016). Optimizing the polymerization conditions of conductive polypyrrole. Journal of Photopolymer Science and Technology, 29(6), 803–808. https://doi.org/10.2494/photopolymer.29.803 Sovilj, S., Magjarević, R., Al Abed, A., Lovell, N. H., & Dokos, S. (2014). Simplified 2D bidomain model of whole heart electrical activity and ECG generation. Measurement Science Review, 14(3), 136–143. https://doi.org/10.2478/msr-2014-0018 Sowmya, B., Hemavathi, A. B., & Panda, P. K. (2021). Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Progress in Biomaterials, 10(2), 91–117. https://doi.org/10.1007/s40204-021-00157-4 Sudwilai, T., Ng, J. J., Boonkrai, C., Israsena, N., Chuangchote, S., & Supaphol, P. (2014). Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: Effects of coating on electrical conductivity and neural cell growth. Journal of Biomaterials Science, Polymer Edition, 25(12), 1240–1252. https://doi.org/10.1080/09205063.2014.926578 Suh, T. C., Amanah, A. Y., & Gluck, J. M. (2020). Electrospun Sca ff olds and Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Engineering Applications. 1–21. Sun, M., Chi, G., Li, P., Lv, S., Xu, J., Xu, Z., Xia, Y., Tan, Y., Xu, J., Li, L., & Li, Y. (2018). Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. International Journal of Medical Sciences, 15(3), 257–268. https://doi.org/10.7150/ijms.21620 Sun, Y., Liu, J., Xu, Z., Lin, X., Zhang, X., Li, L., & Li, Y. (2021). Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells. 13(2), 2231–2250. Surekha, G., Krishnaiah, K. V., Ravi, N., & Padma Suvarna, R. (2020). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, 1495(1). https://doi.org/10.1088/1742-6596/1495/1/012012 Szewczyk, P. K., & Stachewicz, U. (2020). The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 286, 102315. https://doi.org/https://doi.org/10.1016/j.cis.2020.102315 Takada, T., Sasaki, D., Matsuura, K., Miura, K., Sakamoto, S., Goto, H., Ohya, T., Iida, T., Homma, J., Shimizu, T., & Hagiwara, N. (2022). Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials, 281, 121351. https://doi.org/https://doi.org/10.1016/j.biomaterials.2021.121351 Talebi, A., Labbaf, S., & Karimzadeh, F. (2019). A conductive film of chitosan-polycaprolcatone-polypyrrole with potential in heart patch application. Polymer Testing, 75(December 2018), 254–261. https://doi.org/10.1016/j.polymertesting.2019.02.029 Tamimi, M., Rajabi, S., & Pezeshki-Modaress, M. (2020). Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. International Journal of Biological Macromolecules, 164, 389–402. https://doi.org/10.1016/j.ijbiomac.2020.07.134 Tavakkol, E., Tavanai, H., Abdolmaleki, A., & Morshed, M. (2017). Production of conductive electrospun polypyrrole/poly(vinyl pyrrolidone) nanofibers. Synthetic Metals, 231(July), 95–106. https://doi.org/10.1016/j.synthmet.2017.06.017 Tayebi, T., Baradaran-Rafii, A., Hajifathali, A., Rahimpour, A., Zali, H., Shaabani, A., & Niknejad, H. (2021). Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-86340-w Tenreiro, M. F., Louro, A. F., Alves, P. M., & Serra, M. (2021). Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. Npj Regenerative Medicine, 6(1). https://doi.org/10.1038/s41536-021-00140-4 Tian, L., Prabhakaran, M. P., Hu, J., Chen, M., Besenbacher, F., & Ramakrishna, S. (2016). Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2016.05.032 Tiwari, S. K., & Venkatraman, S. S. (2012). Importance of viscosity parameters in electrospinning: Of monolithic and core–shell fibers. Materials Science and Engineering: C, 32(5), 1037–1042. https://doi.org/https://doi.org/10.1016/j.msec.2012.02.019 Topuz, F., Abdulhamid, M. A., Holtzl, T., & Szekely, G. (2021). Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Materials & Design, 198, 109280. https://doi.org/https://doi.org/10.1016/j.matdes.2020.109280 Torabi, M., Abazari, M. F., Zare Karizi, S., Kohandani, M., Hajati-Birgani, N., Norouzi, S., Nejati, F., Mohajerani, A., Rahmati, T., & Mokhames, Z. (2021). Efficient cardiomyocyte differentiation of induced pluripotent stem cells on PLGA nanofibers enriched by platelet-rich plasma. Polymers for Advanced Technologies, 32(3), 1168–1175. https://doi.org/10.1002/pat.5164 Tortora, G., & Derrickson, B. (2006). Principios de Anatomía y Fisiología. In Editorial Panamericana (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004 Tsao, Connie W; Aday, Aaron W.; Almarzooq, Z. I. (2022). Heart Disease and Stroe Statistics-2022 Update: A Report From the american Heart Association. Circulation, 145(8). https://doi.org/10.1161/IR.0000000000001052 Tsui, J. H., Leonard, A., Camp, N. D., Long, J. T., Nawas, Z. Y., Chavanachat, R., Choi, J. S., Wolf-Yadlin, A., Murry, C. E., Sniadecki, N. J., & Kim, D.-H. (2019). Functional Maturation of Human iPSC- based Cardiac Microphysiological Systems with Tunable Electroconductive Decellularized Extracellular Matrices. BioRxiv, 786657. https://doi.org/10.1101/786657 Ţucureanu, V., Matei, A., & Avram, A. M. (2016). FTIR Spectroscopy for Carbon Family Study. Critical Reviews in Analytical Chemistry, 46(6), 502–520. https://doi.org/10.1080/10408347.2016.1157013 U.S. FDA Center for Devices and Radiological Health. (2020). Medical Device Material Performance Study Poly Lactic-co-Glycolic Acid [ P ( L / G ) A ] Safety Profile Submitted to. 804. United Nations, Department of Economic and Social Affairs, P. D. (2022). World Population Prospects 2022. Vacanti, C. (2006). The history of tissue engineering. Journal of Cellular and Molecular Medicine, 1(3), 569–576. https://doi.org/10.2755/jcmm010.003.20 Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To scaffold, or not to scaffold, that is the question. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/ijms222312690 Valverde, I. (2017). Impresión tridimensional de modelos cardiacos : aplicaciones en el campo de la educación y el intervencionismo estructural. 70(4), 282–291. Vogt, L., Rivera, L. R., Liverani, L., Piegat, A., El Fray, M., & Boccaccini, A. R. (2019). Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Materials Science and Engineering C, 103(February), 109712. https://doi.org/10.1016/j.msec.2019.04.091 Vunjak-Novakovic, G. (2017). Tissue engineering of the heart: An evolving paradigm. Journal of Thoracic and Cardiovascular Surgery, 153(3), 593–595. https://doi.org/10.1016/j.jtcvs.2016.08.057 Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., & Radisic, M. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.teb.2009.0352 Wang, J. (2021). Meta-analysis of Cellular Toxicity for Graphene via Data-Mining the Literature and Machine Learning. Wang, L., Wu, Y., Hu, T., Guo, B., & Ma, P. X. (2017). Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia, 59, 68–81. https://doi.org/10.1016/j.actbio.2017.06.036 Wang, Y., & Feng, W. (2022). Conductive Polymers and Their Composites. In Conductive Polymers and their Composites. https://doi.org/10.1007/978-981-19-5363-7 Waremra, R. S., & Betaubun, P. (2018). Analysis of Electrical Properties Using the four point Probe Method. E3S Web of Conferences, 73, 1–4. https://doi.org/10.1051/e3sconf/20187313019 Wee, J. H., Yoo, K. D., Sim, S. B., Kim, H. J., Kim, H. J., Park, K. N., Kim, G. H., Moon, M. H., You, S. J., Ha, M. Y., Yang, D. H., Chun, H. J., Ko, J. H., & Kim, C. H. (2022). Stem cell laden nano and micro collagen / PLGA bimodal fibrous patches for myocardial regeneration. Biomaterials Research, 1–17. https://doi.org/10.1186/s40824-022-00319-w WHO, W. H. O. (2022). Cardiovascular diseases (CVDs). 11 June 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) World Heart Federation. (2022). World Heart Vision 2030. 4–9. Xu, B., Li, Y., Deng, B., Liu, X., Wang, L., & Zhu, Q. L. (2017). Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats. Experimental and Therapeutic Medicine, 13(2), 588–594. https://doi.org/10.3892/etm.2017.4026 Xu, H., Holzwarth, J. M., Yan, Y., Xu, P., Zheng, H., Yin, Y., Li, S., & Ma, P. X. (2014). Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials, 35(1), 225–235. https://doi.org/10.1016/j.biomaterials.2013.10.002 Xu, M., Qin, M., Cheng, Y., Niu, X., Kong, J., Zhang, X., Huang, D., & Wang, H. (2021). Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydrate Polymers, 266, 118128. https://doi.org/10.1016/j.carbpol.2021.118128 Yalcinkaya, F., Yalcinkaya, B., & Jirsak, O. (2015). Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions. Journal of Nanomaterials, 2015, 134251. https://doi.org/10.1155/2015/134251 Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004). Influence of Solvents on the Formation of Ultrathin Uniform Poly(Vinyl Pyrrolidone) Nanofibers with Electrospinning. Journal of Polymer Science Part B: Polymer Physics, 42, 3721–3726. https://doi.org/10.1002/polb.20222 Ye, G., & Qiu, X. (2017). Conductive biomaterials in cardiac tissue engineering. Biotarget, 1(5), 9–9. https://doi.org/10.21037/biotarget.2017.08.01 You, J. O., Rafat, M., Ye, G. J. C., & Auguste, D. T. (2011). Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Letters, 11(9), 3643–3648. https://doi.org/10.1021/nl201514a Yuan, S., Xiong, G., Wang, X., Zhang, S., & Choong, C. (2012). Surface modification of polycaprolactone substrates using collagen-conjugated poly(methacrylic acid) brushes for the regulation of cell proliferation and endothelialisation. Journal of Materials Chemistry, 22, 13039–13049. https://doi.org/10.1039/C2JM31213A Yue, B. (2014). NIH Public Access Author Manuscript J Glaucoma. Author manuscript; available in PMC 2015 October 01. Published in final edited form as: J Glaucoma. 2014 ; : S20–S23. doi:10.1097/IJG.0000000000000108. Biology of the Extracellular Matrix: An Overview Beatri. J Glaucoma., 23(1), 1–7. https://doi.org/10.1097/IJG.0000000000000108.Biology Yussuf, A., Al-Saleh, M., Al-Enezi, S., & Abraham, G. (2018). Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/4191747 Zaarour, B., Zhang, W., Zhu, L., Jin, X. Y., & Huang, C. (2019). Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration. Textile Research Journal, 89(12), 2406–2422. https://doi.org/10.1177/0040517518792748 Zaarour, B., Zhu, L., & Jin, X. (2019). Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 17(2), 181–189. https://doi.org/10.1080/1539445X.2019.1582542 Zahari, A. S., Mazwir, M. H., & Misnon, I. I. (2021). Influence of molecular weight on dielectric properties and piezoelectric constant of poly(vinylidene fluoride) membranes obtained by electrospinning. Polimery/Polymers, 66(10), 532–537. https://doi.org/10.14314/polimery.2021.10.4 Zaragoza, C., Gomez-guerrero, C., Martin-ventura, J. L., Blanco-colio, L., Tarin, C., Mas, S., Ortiz, A., & Egido, J. (2011). Animal Models of Cardiovascular Diseases. 2011. https://doi.org/10.1155/2011/497841 Zarei, M., Samimi, A., Khorram, M., Abdi, M. M., & Golestaneh, S. I. (2021). Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. International Journal of Biological Macromolecules, 168, 175–186. https://doi.org/10.1016/j.ijbiomac.2020.12.031 Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A. S., & Damerchely, R. (2012). The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. Journal of Engineered Fibers and Fabrics, 7(4), 155892501200700400. https://doi.org/10.1177/155892501200700414 Zhang, H., Cheng, J., & Ao, Q. (2021). Preparation of alginate-based biomaterials and their applications in biomedicine. Marine Drugs, 19(5), 1–24. https://doi.org/10.3390/md19050264 Zhang, X, Peng, X., & Zhang, S. W. (2017). 7 - Synthetic biodegradable medical polymers: Polymer blends. In Xiang Zhang (Ed.), Science and Principles of Biodegradable and Bioresorbable Medical Polymers (pp. 217–254). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100372-5.00007-6 Zhang, Xuewei, Chen, X., Hong, H., Hu, R., Liu, J., & Liu, C. (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive Materials, 10, 15–31. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.09.014 Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/https://doi.org/10.1038/s41427-018-0092-8 Zhao, W., Tu, H., Chen, J., Wang, J., Liu, H., Zhang, F., & Li, J. (2023). Functionalized hydrogels in neural injury repairing. Frontiers in Neuroscience, 17(June), 1–9. https://doi.org/10.3389/fnins.2023.1199299 Zhou, J., Chen, J., Sun, H., Qiu, X., Mou, Y., Liu, Z., Zhao, Y., Li, X., Han, Y., Duan, C., Tang, R., Wang, C., Zhong, W., Liu, J., Luo, Y., Xing, M. M., & Wang, C. (2014). Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific Reports, 4, 1–11. https://doi.org/10.1038/srep03733 Zimmermann, W.-H., Schneiderbanger, K., Schubert, P., Didié, M., Münzel, F., Heubach, J. F., Kostin, S., Neuhuber, W. L., & Eschenhagen, T. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230. https://doi.org/10.1161/hh0202.103644 Zhuang, R. Z., Lock, R., Liu, B., & Vunjak-Novakovic, G. (2022). Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nature Biomedical Engineering, 6(4), 327–338. https://doi.org/10.1038/s41551-022-00885-3 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
xv, 201 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de Materiales |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ingeniería |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/86396/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/86396/2/1018457635.2024.pdf https://repositorio.unal.edu.co/bitstream/unal/86396/3/1018457635.2024.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 2b2c977576b138d0ee47089d03cb9283 3b8c2a7e44eb7d73b807bfcaeb5d78f2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090037844770816 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Clavijo Grimaldo, Aleida Dianney0f5f59dcd59278828f92bde97781e0fd600Muñoz González, Ana Maríae7eb51455bc4068cf0e104465ef4f59fBiomecánicahttps://orcid.org/0000-0002-3191-9891https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=00016611092024-07-04T19:58:01Z2024-07-04T19:58:01Z2024-06-30https://repositorio.unal.edu.co/handle/unal/86396Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones, diagramas, fotografíasThis thesis explores the design, fabrication, and of polymeric nanofiber scaffolds with electroconductive nanofillers for cardiac tissue engineering, focusing on myocardial tissue repair through differentiated incorporation of graphene and polypyrrole (PPy) into polycaprolactone (PCL) matrices via electrospinning. The work aims to establish fabrication parameters and assess the morphological, mechanical, chemical, electrical and biocompatibility properties of the scaffolds, with the goal of selecting those that offer optimal theorical electromechanical coupling with myocardial tissue. Two strategies are distinguished: one focused on scaffolds doped with graphene, which show improvements in structural uniformity and mechanical properties, and another on scaffolds enriched with PPy, noted for their significant electrical conductivity. Both strategies present specific advantages, such as enhanced hydrophilicity and the promotion of cell adhesion and proliferation, crucial for tissue regeneration. Despite challenges like the uniform dispersion of nanoparticles and matching the mechanical properties to those of native myocardium, the research highlights the potential of in situ polymerization of PPy as a balanced method for achieving scaffolds with optimized electrical properties and biocompatibility.Esta tesis explora el diseño, fabricación y análisis de andamios de nanofibras poliméricas con nanorrellenos electroconductivos para la ingeniería de tejidos cardíacos, centrándose en la reparación del tejido miocárdico mediante la incorporación diferenciada de grafeno y polipirrol (PPy) en matrices de policaprolactona (PCL) a través del electrohilado. El trabajo tiene como objetivo establecer parámetros de fabricación y evaluar las propiedades morfológicas, mecánicas, químicas, eléctricas y de biocompatibilidad de los andamios, con el fin de seleccionar aquellos que ofrezcan un acoplamiento electromecánico teórico óptimo con el tejido miocárdico. Se distinguen dos estrategias: una centrada en andamios dopados con grafeno, que muestran mejoras en la uniformidad estructural y propiedades mecánicas, y otra en andamios enriquecidos con PPy, conocidos por su significativa conductividad eléctrica. Ambas estrategias presentan ventajas específicas, como la mejora de la hidrofilicidad y la promoción de la adhesión y proliferación celular, cruciales para la regeneración del tejido. A pesar de desafíos como la dispersión uniforme de nanopartículas y la correspondencia de las propiedades mecánicas con las del miocardio nativo, la investigación resalta el potencial de la polimerización in situ de PPy como un método equilibrado para lograr andamios con propiedades eléctricas y biocompatibilidad optimizadas. (Texto tomado de la fuente).DoctoradoDoctor en IngenieríaNanomateriales e ingeniería tisularxv, 201 páginasapplication/pdfengUniversidad Nacional de ColombiaBogotá - Ingeniería - Doctorado en Ingeniería - Ciencia y Tecnología de MaterialesFacultad de IngenieríaBogotá, ColombiaUniversidad Nacional de Colombia - Sede BogotáEvaluation of conductive nanofillers addition in scaffolds for myocardial tissue engineering applicationEvaluación de la adición de nanorrellenos conductores en andamios para aplicaciones de ingeniería de tejidos miocárdicosTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDAbbasi, A. M. R., Marsalkova, M., & Militky, J. (2013). Conductometry and Size Characterization of Polypyrrole Nanoparticles Produced by Ball Milling. Journal of Nanoparticles, 2013, 1–4. https://doi.org/10.1155/2013/690407Abdul Rahman, N., & Bahruji, H. (2022). Plastics in Biomedical Application. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 114–125). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00071-7Agrawal, R., Shah, J., Gupta, G., Srivastava, R., Sharma, C., & Kotnala, R. (2020). Significantly high electromagnetic shielding effectiveness in polypyrrole synthesized by eco-friendly and cost-effective technique. Journal of Applied Polymer Science, 137(48), 1–12. https://doi.org/10.1002/app.49566Ahadian, S., Zhou, Y., Yamada, S., Estili, M., Liang, X., Nakajima, K., Shiku, H., & Matsue, T. (2016). Graphene induces spontaneous cardiac differentiation in embryoid bodies. Nanoscale, 8(13), 7075–7084. https://doi.org/10.1039/c5nr07059gAjith, G., Tamilarasi, G. P., Sabarees, G., Gouthaman, S., Manikandan, K., Velmurugan, V., Alagarsamy, V., & Solomon, V. R. (2023). Recent Developments in Electrospun Nanofibers as Delivery of Phytoconstituents for Wound Healing. Drugs and Drug Candidates, 2(1), 148–171. https://doi.org/10.3390/ddc2010010Al-Abduljabbar, A., & Farooq, I. (2023). Electrospun Polymer Nanofibers: Processing, Properties, and Applications. Polymers, 15(1). https://doi.org/10.3390/polym15010065myocardial repair. Cellular and Molecular Life Sciences, 69(16), 2635–2656. https://doi.org/10.1007/ Alcon, A., Cagavi Bozkulak, E., & Qyang, Y. (2012). Regenerating functional heart tissue for s00018-012-0942-4Alegret, N., Dominguez-Alfaro, A., & Mecerreyes, D. (2019). 3D Scaffolds Based on Conductive Polymers for Biomedical Applications. Biomacromolecules, 20(1), 73–89. https://doi.org/10.1021/acs.biomac.8b01382Alexeev, D., Goedecke, N., Snedeker, J., & Ferguson, S. (2020). Mechanical evaluation of electrospun poly ( ε -caprolactone ) single fi bers. Materials Today Communications, 24(April), 101211. https://doi.org/10.1016/j.mtcomm.2020.101211Amariei, N., Manea, L. R., Bertea, A. P., Bertea, A., & Popa, A. (2017). The Influence of Polymer Solution on the Properties of Electrospun 3D Nanostructures. IOP Conference Series: Materials Science and Engineering, 209(1). https://doi.org/10.1088/1757-899X/209/1/012092Amaya, J. B. (2018). Estudio De La Degradabilidad Del Pcl (Policaprolactona) Dosificado Con La Lignina De La Fibra De Banano. Revista Iberoamericana de Polimeros y MAteriales, 19(4), 128–141.Ansari, R. (2006). Polypyrrole Conducting Electroactive Polymers: Synthesis and Stability Studies. E-Journal of Chemistry, 3(4), 186–201. https://doi.org/10.1155/2006/860413Arakawa, C. K., & DeForest, C. A. (2017). Chapter 19 - Polymer Design and Development (A. Vishwakarma & J. M. B. T.-B. and E. of S. C. N. Karp (eds.); pp. 295–314). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-802734-9.00019-6Asri, N. A. N., Mahat, M. M., Zakaria, A., Safian, M. F., & Abd Hamid, U. M. (2022). Fabrication Methods of Electroactive Scaffold-Based Conducting Polymers for Tissue Engineering Application: A Review. Frontiers in Bioengineering and Biotechnology, 10(July), 1–13. https://doi.org/10.3389/fbioe.2022.876696Avouris, P., & Dimitrakopoulos, C. (2012). Graphene: synthesis and applications. Materials Today, 15(3), 86–97. https://doi.org/https://doi.org/10.1016/S1369-7021(12)70044-5AWIN, Mclennan, K. M., Rebelo, C. J. R., Corke, M. J., Holmes, M. A., & Constantino-Casas. (2014). Using facial expression to assess pain in sheep. 9, 92281.Aziz, R., Falanga, M., Purenovic, J., Mancini, S., Lamberti, P., & Guida, M. (2023). A Review on the Applications of Natural Biodegradable Nano Polymers in Cardiac Tissue Engineering. Nanomaterials, 13(8), 1–28. https://doi.org/10.3390/nano13081374Baei, P., Jalili-Firoozinezhad, S., Rajabi-Zeleti, S., Tafazzoli-Shadpour, M., Baharvand, H., & Aghdami, N. (2016). Electrically conductive gold nanoparticle-chitosan thermosensitive hydrogels for cardiac tissue engineering. Materials Science and Engineering C, 63, 131–141. https://doi.org/10.1016/j.msec.2016.02.056Bagbi, Y., Pandey, A., & Solanki, P. R. (2019). Chapter 10 - Electrospun Nanofibrous Filtration Membranes for Heavy Metals and Dye Removal. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 275–288). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00015-XBahrami, S., Solouk, A., Mirzadeh, H., & Seifalian, A. M. (2019). Electroconductive polyurethane/graphene nanocomposite for biomedical applications. Composites Part B: Engineering, 168(March), 421–431. https://doi.org/10.1016/j.compositesb.2019.03.044Baker, S. R., Banerjee, S., Bonin, K., & Guthold, M. (2016). Determining the mechanical properties of electrospun poly-ε-caprolactone (PCL) nanofibers using AFM and a novel fiber anchoring technique. Materials Science and Engineering C, 59, 203–212. https://doi.org/10.1016/j.msec.2015.09.102Balint, R., Cassidy, N. J., & Cartmell, S. H. (2014). Conductive polymers: Towards a smart biomaterial for tissue engineering. Acta Biomaterialia, 10(6), 2341–2353. https://doi.org/10.1016/j.actbio.2014.02.015Barba Evia, J. R. (2009). Cardiomioplastia: El papel de las células madre en la regeneración miocárdica. Revista Latinoamericana de Patología Clínica y Medicina de Laboratorio, 56(1), 50–65.Bejaoui, M., Galai, H., Touati, F., & Kouass, S. (2021). Multifunctional Roles of PVP as a Versatile Biomaterial in Solid State. In U. Ahmad (Ed.), Dosage Forms. IntechOpen. https://doi.org/10.5772/intechopen.99431Bellet, P., Gasparotto, M., Pressi, S., Fortunato, A., Scapin, G., Mba, M., Menna, E., & Filippini, F. (2021). Graphene-Based Scaffolds for Regenerative MedicineBeltran-Vargas, N. E., Peña-Mercado, E., Sánchez-Gómez, C., Garcia-Lorenzana, M., Ruiz, J. C., Arroyo-Maya, I., Huerta-Yepez, S., & Campos-Terán, J. (2022). Sodium Alginate/Chitosan Scaffolds for Cardiac Tissue Engineering: The Influence of Its Three-Dimensional Material Preparation and the Use of Gold Nanoparticles. Polymers, 14(16). https://doi.org/10.3390/polym14163233Bertuoli, P. T., Ordono, J., Armelin, E., Pérez-Amodio, S., Baldissera, A. F., Ferreira, C. A., Puiggalí, J., Engel, E., Del Valle, L. J., & Alemán, C. (2019). Electrospun Conducting and Biocompatible Uniaxial and Core-Shell Fibers Having Poly(lactic acid), Poly(ethylene glycol), and Polyaniline for Cardiac Tissue Engineering. ACS Omega, 4(2), 3660–3672. https://doi.org/10.1021/acsomega.8b03411Biscaia, S., Silva, J. C., Moura, C., Viana, T., Tojeira, A., Mitchell, G. R., Pascoal-Faria, P., Ferreira, F. C., & Alves, N. (2022). Additive Manufactured Poly(ε-caprolactone)-graphene Scaffolds: Lamellar Crystal Orientation, Mechanical Properties and Biological Performance. Polymers, 14(9). https://doi.org/10.3390/polym14091669Blachowicz, T., & Ehrmann, A. (2020). Conductive electrospun nanofiber mats. Materials, 13(1). https://doi.org/10.3390/ma13010152Bolonduro, O. A., Duffy, B. M., Rao, A. A., Black, L. D., & Timko, B. P. (2020). From biomimicry to bioelectronics: Smart materials for cardiac tissue engineering. Nano Research, 12(1). https://doi.org/10.1007/s12274-020-2682-3Borges, M. H. R., Nagay, B. E., Costa, R. C., Souza, J. G. S., Mathew, M. T., & Barão, V. A. R. (2023). Recent advances of polypyrrole conducting polymer film for biomedical application: Toward a viable platform for cell-microbial interactions. In Advances in Colloid and Interface Science (Vol. 314, Issue February). https://doi.org/10.1016/j.cis.2023.102860Boroumand, S., Haeri, A., Nazeri, N., & Rabbani, S. (2021). Review Insights In Cardiac Tissue Engineering: Cells, Scaffolds and Pharmacological Agents. Iranian Journal of Pharmaceutical Research, 20(4), 467–496. https://doi.org/10.22037/IJPR.2021.114730.15012Boutry, C. M., Müller, M., & Hierold, C. (2012). Junctions between metals and blends of conducting and biodegradable polymers (PLLA-PPy and PCL-PPy). Materials Science and Engineering C, 32(6), 1610–1620. https://doi.org/10.1016/j.msec.2012.04.051Bronzino, J. D. (2006). Tissue Engineering and Artificial Organs (1st ed.) (1st ed.). CRC Press. https://doi.org/https://doi.org/10.1201/9781420003871Brugnara, M., Della Volpe, C., Siboni, S., & Zeni, D. (2006). Contact angle analysis on polymethylmethacrylate and commercial wax by using an environmental scanning electron microscope. Scanning, 28(5), 267–273. https://doi.org/10.1002/sca.4950280504Butt, H.-J., & Kappl, M. (2018). Surface and Interfacial Forces. Wiley VCH.Camacho, P., Fan, H., Liu, Z., & He, J. Q. (2016). Small mammalian animal models of heart disease. American Journal of Cardiovascular Disease, 6(3), 70–80. https://doi.org/10.3390/jcdd3040030Camman, M., Joanne, P., Agbulut, O., & Hélary, C. (2022). 3D models of dilated cardiomyopathy: Shaping the chemical, physical and topographical properties of biomaterials to mimic the cardiac extracellular matrix. Bioactive Materials, 7, 275–291. https://doi.org/10.1016/j.bioactmat.2021.05.040Centers for Disease Control and Prevention. (2022). Heart Disease Facts. https://www.cdc.gov/heartdisease/facts.htm#printCeretti, E., Ginestra, P. S., Ghazinejad, M., Fiorentino, A., & Madou, M. (2017). Electrospinning and characterization of polymer–graphene powder scaffolds. CIRP Annals - Manufacturing Technology, 66(1), 233–236. https://doi.org/10.1016/j.cirp.2017.04.122Chakraborty, M. (2020). Chitosan Biopolymer on Plant Growth. Encyclopedia. https://encyclopedia.pub/entry/3639Chang, W.-T., Chen, J.-S., Tsai, M.-H., Tsai, W.-C., Juang, J.-N., & Liu, P.-Y. (2016). Interplay of Aging and Hypertension in Cardiac Remodeling: A Mathematical Geometric Model. PloS One, 11(12), e0168071. https://doi.org/10.1371/journal.pone.0168071Chem, G., Thomas, M. S., Pillai, P. K. S., Farrowc, S. C., Pothan, L. A., & Thomas, S. (2021). Electrospinning as an Important Tool for Fabrication of Nanofibers for Advanced Applications — a Brief Review. Figure 1, 1–7. https://doi.org/10.21127/yaoyigc20200022behavior in tissue engineering. Biomaterials Research, 23(1), 1–12. https://doi.org/10.1186/s40824-019- Chen, C., Bai, X., Ding, Y., & Lee, I. S. (2019). Electrical stimulation as a novel tool for regulating cell 0176-8Chen, Q., Xiao, S., Shi, S. Q., & Cai, L. (2020). Synthesis, Characterization, and Antibacterial Activity of N-substituted Quaternized Chitosan and Its Cellulose-based Composite Film. BioResources, 15(1), 415.Chen, X., Feng, B., Zhu, D. Q., Chen, Y. W., Ji, W., Ji, T. J., & Li, F. (2019). Characteristics and toxicity assessment of electrospun gelatin/PCL nanofibrous scaffold loaded with graphene in vitro and in vivo. International Journal of Nanomedicine, 14, 3669–3678. https://doi.org/10.2147/IJN.S204971Chiesa, E., Dorati, R., Pisani, S., Bruni, G., Rizzi, L. G., Conti, B., Modena, T., & Genta, I. (2020). Graphene nanoplatelets for the development of reinforced PLA-PCL electrospun fibers as the next-generation of biomedical mats. Polymers, 12(6). https://doi.org/10.3390/polym12061390Chorro, F. J., & López-merino, L. S. V. (2009). Modelos animales de enfermedad cardiovascular. 62(I), 69–84.Číková, E., Mičušík, M., Šišková, A., Procházka, M., Fedorko, P., & Omastová, M. (2018). Conducting electrospun polycaprolactone/polypyrrole fibers. Synthetic Metals, 235(December 2017), 80–88. https://doi.org/10.1016/j.synthmet.2017.11.011Clavijo-Grimaldo, D., Casadiego-Torrado, C. A., Villalobos-Elías, J., Ocampo-Páramo, A., & Torres-Parada, M. (2022). Characterization of Electrospun Poly(ε-caprolactone) Nano/Micro Fibrous Membrane as Scaffolds in Tissue Engineering: Effects of the Type of Collector Used. Membranes, 12(6). https://doi.org/10.3390/membranes12060563ClinicalTrials.gov. (2024). ClinicalTrials.gov. https://clinicaltrials.gov/search?term=scaffold&cond=Myocardial Infarction&city=Cristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019a). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. March, 1253–1264. https://doi.org/10.1002/term.2875Cristallini, C., Barberis, R., Bellotti, E., Vaccari, G., Falzone, M., Cabiale, K., Perona, G., Rastaldo, R., Pascale, S., Pagliaro, P., & Giachino, C. (2019b). Cardioprotection of PLGA / gelatine cardiac patches functionalised with adenosine in a large animal model of ischaemia and reperfusion injury : A feasibility study. April, 1253–1264. https://doi.org/10.1002/term.2875Cui, J., Li, J., Mathison, M., Tondato, F., Mulkey, S. P., Micko, C., Chronos, N. A. F., & Robinson, K. A. (2005). A clinically relevant large-animal model for evaluation of tissue-engineered cardiac surgical patch materials. Cardiovascular Revascularization Medicine, 6(3), 113–120. https://doi.org/10.1016/j.carrev.2005.07.006Cui, S., Mao, J., Rouabhia, M., Elkoun, S., & Zhang, Z. (2021). A biocompatible polypyrrole membrane for biomedical applications. RSC Advances, 11(28), 16996–17006. https://doi.org/10.1039/d1ra01338fCui, S., Mao, J., Zhang, Z., & Rouabhia, M. (2021). A biocompatible polypyrrole membrane for biomedical applications. 16996–17006. https://doi.org/10.1039/d1ra01338fDa Silva, A. B., Marini, J., Gelves, G., Sundararaj, U., Gregório, R., & Bretas, R. E. S. (2013). Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. European Polymer Journal, 49(10), 3318–3327. https://doi.org/10.1016/j.eurpolymj.2013.06.039for activation and inactivation of an HCN channel. Nature Communications, 12(1), 2802. https://doi.org/10.1038/s41467-021-23062-7 Dai, G., Aman, T. K., DiMaio, F., & Zagotta, W. N. (2021). Electromechanical coupling mechanismDane. (2018). Estadísticas vitales. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/nacimientos-y-defuncionesDas, S., Wajid, A. S., Bhattacharia, S. K., Wilting, M. D., Rivero, I. V., & Green, M. J. (2013). Electrospinning of polymer nanofibers loaded with noncovalently functionalized graphene. Journal of Applied Polymer Science, 128(6), 4040–4046. https://doi.org/10.1002/app.38694Dayan V, Benech A, Rodríguez C, Ado S, Guedes I, Sotelo V, Laguzzi F, Kapitán M, Langhain M, Ferrando R, T. C. (2011). MODELO DE INFARTO AGUDO DE MIOCARDIO MEDIANTE ISQUEMIA-REPERFUSIÓN EN OVEJAS. Revista Uruguaya de Cardiología, 31–93. http://www.scielo.edu.uy/scielo.php?pid=S1688-04202011000400007&script=sci_arttextDe Vrieze, S., Van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & De Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44(5), 1357–1362. https://doi.org/10.1007/s10853-008-3010-6Deitzel, J. M., Kleinmeyer, J., Harris, D., & Beck Tan, N. C. (2001). The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42(1), 261–272. https://doi.org/https://doi.org/10.1016/S0032-3861(00)00250-0del Maria Javier, M. F., Delmo, E. M. J., & Hetzer, R. (2021). Evolution of heart transplantation since Barnard’s first. Cardiovascular Diagnosis and Therapy, 11(1), 171–182. https://doi.org/10.21037/CDT-20-289Deliormanlı, A. M. (2019). Direct Write Assembly of Graphene/Poly(ε-Caprolactone) Composite Scaffolds and Evaluation of Their Biological Performance Using Mouse Bone Marrow Mesenchymal Stem Cells. Applied Biochemistry and Biotechnology, 188(4), 1117–1133. https://doi.org/10.1007/s12010-019-02976-5Deshmukh, K., Basheer Ahamed, M., Deshmukh, R. R., Khadheer Pasha, S. K., Bhagat, P. R., & Chidambaram, K. (2017). 3 - Biopolymer Composites With High Dielectric Performance: Interface Engineering. In K. K. Sadasivuni, D. Ponnamma, J. Kim, J.-J. Cabibihan, & M. A. AlMaadeed (Eds.), Biopolymer Composites in Electronics (pp. 27–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-809261-3.00003-6Devlin, G., Matthews, K., McCracken, G., Stuart, S., Jensen, J., Conaglen, J., & Bass, J. (2000). An ovine model of chronic stable heart failure. Journal of Cardiac Failure, 6(2), 140–143. https://doi.org/10.1054/jcaf.2000.7279Diaz, A., Ignacio, E., & Fischer, C. (2016). Modelos Experimentales de Insuficiencia Cardiaca en Grandes Animales (Issue February).Ding, B., Wang, X., & Yu, J. (2019). Electrospinning and nanofabrication and applications. Elsevier.Dozois, M. D., Bahlmann, L. C., Zilberman, Y., & Tang, X. (Shirley). (2017). Carbon nanomaterial-enhanced scaffolds for the creation of cardiac tissue constructs: A new frontier in cardiac tissue engineering. Carbon, 120, 338–349. https://doi.org/10.1016/j.carbon.2017.05.050Echegaray, K., Andreu, I., Lazkano, A., Villanueva, I., Sáenz, A., Elizalde, M. R., Echeverría, T., López, B., Garro, A., González, A., Zubillaga, E., Solla, I., Sanz, I., González, J., Elósegui-Artola, A., Roca-Cusachs, P., Díez, J., Ravassa, S., & Querejeta, R. (2017). Role of Myocardial Collagen in SevereAortic Stenosis With Preserved Ejection Fraction and Symptoms of Heart Failure. Revista Espanola de Cardiologia (English Ed.), 70(10), 832–840. https://doi.org/10.1016/j.rec.2016.12.038Edrisi, F., Baheiraei, N., Razavi, M., Roshanbinfar, K., Imani, R., & Jalilinejad, N. (2023). Potential of graphene-based nanomaterials for cardiac tissue engineering. Journal of Materials Chemistry B, 11(31), 7280–7299. https://doi.org/10.1039/d3tb00654aEl-Sayed, N. M., El-Bakary, M. A., Ibrahim, M. A., Elgamal, M. A., & Hamza, A. A. (2021). Characterization of the mechanical and structural properties of PGA/TMC copolymer for cardiac tissue engineering. Microscopy Research and Technique, 84(7), 1596–1606. https://doi.org/10.1002/jemt.23720Elamparithi, A., Punnoose, A. M., Paul, S. F. D., & Kuruvilla, S. (2017). Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 66(1), 20–27. https://doi.org/10.1080/00914037.2016.1180616Elkhoury, K., Morsink, M., Sanchez-Gonzalez, L., Kahn, C., Tamayol, A., & Arab-Tehrany, E. (2021). Biofabrication of natural hydrogels for cardiac, neural, and bone Tissue engineering Applications. Bioactive Materials, 6(11), 3904–3923. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.03.040Eroğlu, N. S. (2022). Production of Nanofibers from Plant Extracts by Electrospinning Method (T. Tański & P. Jarka (eds.); p. Ch. 3). IntechOpen. https://doi.org/10.5772/intechopen.102614Eslahi, N., Lotfi, R., Zandi, N., Mazaheri, M., Soleimani, F., & Simchi, A. (2022). 8 - Graphene-based polymer nanocomposites in biomedical applications. In S. M. Rangappa, J. Parameswaranpillai, V. Ayyappan, M. G. Motappa, S. Siengchin, & C. Soutis (Eds.), Innovations in Graphene-Based Polymer Composites (pp. 199–245). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-823789-2.00016-9Fakhrali, A., Nasari, M., Poursharifi, N., Semnani, D., Salehi, H., Ghane, M., & Mohammadi, S. (2021). Biocompatible graphene-embedded PCL/PGS-based nanofibrous scaffolds: A potential application for cardiac tissue regeneration. Journal of Applied Polymer Science, 138(40), 1–14. https://doi.org/10.1002/app.51177Fakhrali, A., Semnani, D., Salehi, H., & Ghane, M. (2022). Electro-conductive nanofibrous structure based on PGS/PCL coated with PPy by in situ chemical polymerization applicable as cardiac patch: Fabrication and optimization. Journal of Applied Polymer Science, 139(19), 1–20. https://doi.org/10.1002/app.52136Ferreira, C. L., Valente, C. A., Zanini, M. L., Sgarioni, B., Henrique, P., Tondo, F., Chagastelles, P. C., Braga, J., Campos, M. M., Malmonge, A., Regina, N., & Basso, D. S. (2019). Biocompatible PCL / PLGA / Polypyrrole Composites for Regenerating Nerves. 1800028, 1–8. https://doi.org/10.1002/masy.201800028Flaig, F., Ragot, H., Simon, A., Revet, G., Kitsara, M., Kitasato, L., Hébraud, A., Agbulut, O., & Schlatter, G. (2020). Design of Functional Electrospun Scaffolds Based on Poly(glycerol sebacate)Elastomer and Poly(lactic acid) for Cardiac Tissue Engineering. ACS Biomaterials Science and Engineering, 6(4), 2388–2400. https://doi.org/10.1021/acsbiomaterials.0c00243Fleischer, S., Feiner, R., & Dvir, T. (2017). Cardiac tissue engineering: From matrix design to the engineering of bionic hearts. Regenerative Medicine, 12(3), 275–284. https://doi.org/10.2217/rme-2016-0150Flores-Rojas, G. G. ., Gómez-Lazaro, B. ., López-Saucedo, F. ., Vera-Graziano, R. ., Bucio, E. ., & Mendizábal, E. (2023). Electrospun Scaffolds for Tissue Engineering : A Review. Macromol, 3, 524–553. https://doi.org/https://doi.org/10.3390/macromol3030031Forward, K., & Rutledge, G. (2012). Free surface electrospinning from a wire electrode. Chemical Engineering Journal, 183, 492–503. https://doi.org/10.1016/j.cej.2011.12.045Fujihara, K., Teo, E., Teik-Cheng, L., & Ma, Z. (2005). An Introduction To Electrospinning And Nanofibers. In World Scientific: Singapore (Vol. 3). https://doi.org/10.1142/9789812567611_0003Fujita, B., & Zimmermann, W. H. (2017). Engineered Heart Repair. Clinical Pharmacology and Therapeutics, 102(2), 197–199. https://doi.org/10.1002/cpt.724Furth, M. E., & Atala, A. (2014). Chapter 6 - Tissue Engineering: Future Perspectives. In R. Lanza, R. Langer, & J. Vacanti (Eds.), Principles of Tissue Engineering (Fourth Edition) (Fourth Edi, pp. 83–123). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-398358-9.00006-9Gabriel, S., Lau, R. W., & Gabriel, C. (1996). The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Physics in Medicine and Biology, 41(11), 2251–2269. https://doi.org/10.1088/0031-9155/41/11/002Gálvez-Montón, C., Prat-Vidal, C., Díaz-Güemes, I., Crisóstomo, V., Soler-Botija, C., Roura, S., Llucià-Valldeperas, A., Perea-Gil, I., Sánchez-Margallo, F. M., & Bayes-Genis, A. (2014). Comparison of two preclinical myocardial infarct models: Coronary coil deployment versus surgical ligation. Journal of Translational Medicine, 12(1), 1–9. https://doi.org/10.1186/1479-5876-12-137Gálvez-Montón, C., Prat-Vidal, C., Roura, S., Soler-Botija, C., & Bayes-Genis, A. (2013). Ingeniería tisular cardiaca y corazón bioartificial. Revista Espanola de Cardiologia, 66(5), 391–399. https://doi.org/10.1016/j.recesp.2012.11.013Gelmi, A., Zhang, J., Cieslar-Pobuda, A., Ljunngren, M. K., Los, M. J., Rafat, M., & Jager, E. W. H. (2015). Electroactive 3D materials for cardiac tissue engineering. Electroactive Polymer Actuators and Devices (EAPAD) 2015, 9430, 94301T. https://doi.org/10.1117/12.2084165Ghovvati, M., Kharaziha, M., Ardehali, R., & Annabi, N. (2022). Recent Advances in Designing Electroconductive Biomaterials for Cardiac Tissue Engineering. Advanced Healthcare Materials, 2200055.Ghuran, A. V., & Camm, A. J. (2001). Ischaemic heart disease presenting as arrhythmias. British Medical Bulletin, 59, 193–210. https://doi.org/10.1093/bmb/59.1.193Ginestra, P. (2019). Manufacturing of polycaprolactone - Graphene fibers for nerve tissue engineering. Journal of the Mechanical Behavior of Biomedical Materials, 100(July), 103387. https://doi.org/10.1016/j.jmbbm.2019.103387Gómez, J., Vásquez, M., Mantione, D., & Alegret, N. (2021). Carbon Nanomaterials Embedded in Conductive Polymers : A State of the Art.Greenlund, K. J., Giles, W. H., Keenan, N. L., Malarcher, A. M., Zheng, Z. J., Casper, M. L., & Croft, J. B. (2006). 381Heart Disease and Stroke Mortality in the Twentieth Century. In J. W. Ward & C. Warren (Eds.), Silent Victories: The History and Practice of Public Health in Twentieth Century America (p. 0). Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195150698.003.18Gryshkov, O., Al Halabi, F., Kuhn, A. I., Leal-Marin, S., Freund, L. J., Förthmann, M., Meier, N., Barker, S. A., Haastert-Talini, K., & Glasmacher, B. (2021). Pvdf and p(Vdf-trfe) electrospun scaffolds for nerve graft engineering: A comparative study on piezoelectric and structural properties, and in vitro biocompatibility. International Journal of Molecular Sciences, 22(21), 1–27. https://doi.org/10.3390/ijms222111373Grzeszczuk, M. (2018). Polymer electrodes: Preparation, properties, and applications. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry. Elsevier. https://doi.org/10.1016/B978-0-12-409547-2.11676-2Gu, H., Huang, J., Li, N., Yang, H., Wang, Y., Zhang, Y., Dong, C., Chen, G., & Guan, H. (2022). Polystyrene-Modulated Polypyrrole to Achieve Controllable Electromagnetic-Wave Absorption with Enhanced Environmental Stability. Nanomaterials, 12(15). https://doi.org/10.3390/nano12152698Guo, B., & Ma, P. X. (2018). Conducting Polymers for Tissue Engineering [Review-article]. Biomacromolecules, 19(6), 1764–1782. https://doi.org/10.1021/acs.biomac.8b00276Guo, Q.-Y., Yang, J.-Q., Feng, X.-X., & Zhou, Y.-J. (2023). Regeneration of the heart: from molecular mechanisms to clinical therapeutics. Military Medical Research, 10(1), 18. https://doi.org/10.1186/s40779-023-00452-0Hagen, R. (2012). 10.12 - Polylactic Acid. In K. Matyjaszewski & M. Möller (Eds.), Polymer Science: A Comprehensive Reference (pp. 231–236). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-53349-4.00269-7Haider, A., Haider, S., & Kang, I. K. (2018). A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arabian Journal of Chemistry, 11(8), 1165–1188. https://doi.org/10.1016/j.arabjc.2015.11.015Han, J., Li, H., Xu, X., Yuan, L., Wang, N., & Yu, H. (2016). Cu2(OH)PO4 pretreated by composite surfactants for the micro-domino effect: A high-efficiency Fenton catalyst for the total oxidation of dyes. Materials Letters, 166, 71–74. https://doi.org/https://doi.org/10.1016/j.matlet.2015.12.046Hao, D., Swindell, H. S., Ramasubramanian, L., Liu, R., Lam, K. S., Farmer, D. L., & Wang, A. (2020). Extracellular Matrix Mimicking Nanofibrous Scaffolds Modified With Mesenchymal Stem Cell-Derived Extracellular Vesicles for Improved Vascularization. Frontiers in Bioengineering and Biotechnology, 8(June). https://doi.org/10.3389/fbioe.2020.00633Hao, L., Dong, C., Zhang, L., Zhu, K., & Yu, D. (2022). Polypyrrole Nanomaterials: Structure, Preparation and Application. Polymers, 14(23). https://doi.org/10.3390/polym14235139Haq, A. U., Carotenuto, F., De Matteis, F., Prosposito, P., Francini, R., Teodori, L., Pasquo, A., & Di Nardo, P. (2021). Intrinsically conductive polymers for striated cardiac muscle repair. International Journal of Molecular Sciences, 22(16). https://doi.org/10.3390/ijms22168550Harlin, A., & Ferenets, M. (2006). Introduction to conductive materials. Intelligent Textiles and Clothing, 217–238. https://doi.org/10.1533/9781845691622.3.217Hashizume, R., Fujimoto, K. L., Hong, Y., Guan, J., Toma, C., Tobita, K., & Wagner, W. R. (2013). Biodegradable elastic patch plasty ameliorates left ventricular adverse remodeling after ischemia-reperfusion injury: A preclinical study of a porous polyurethane material in a porcine model. Journal of Thoracic and Cardiovascular Surgery, 146(2), 391-399.e1. https://doi.org/10.1016/j.jtcvs.2012.11.013He, S., Wu, J., Li, S., Wang, L., Sun, Y., Xie, J., & Ramnath, D. (2020). The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure. Biomaterials, 120285. https://doi.org/10.1016/j.biomaterials.2020.120285Heidari, M., Bahrami, H., & Ranjbar-Mohammadi, M. (2017). Fabrication, optimization and characterization of electrospun poly(caprolactone)/gelatin/graphene nanofibrous mats. Materials Science and Engineering C, 78, 218–229. https://doi.org/10.1016/j.msec.2017.04.095Heidari, M., Bahrami, S. H., Ranjbar-Mohammadi, M., & Milan, P. B. (2019). Smart electrospun nanofibers containing PCL/gelatin/graphene oxide for application in nerve tissue engineering. Materials Science and Engineering C, 103(May), 109768. https://doi.org/10.1016/j.msec.2019.109768Heikhmakhtiar, A. K., & Lim, K. M. (2018). Computational Prediction of the Combined Effect of CRT and LVAD on Cardiac Electromechanical Delay in LBBB and RBBB. Computational and Mathematical Methods in Medicine, 2018(September), 10–12. https://doi.org/10.1155/2018/4253928Heng, B. C., Bai, Y., Li, X., Lim, L. W., Li, W., Ge, Z., Zhang, X., & Deng, X. (2023). Electroactive Biomaterials for Facilitating Bone Defect Repair under Pathological Conditions. Advanced Science, 10(2), 2204502. https://doi.org/https://doi.org/10.1002/advs.202204502Hirenkumar, M., & Steven, S. (2012). Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers, 3(3), 1–19. https://doi.org/10.3390/polym3031377.PolyHohman, M., Shin, M., Rutledge, G., & Brenner, M. (2001). Electrospinning and Electrically Forced Jets. I. Stability Theory. Physics of Fluids - PHYS FLUIDS, 13. https://doi.org/10.1063/1.1383791House, A., Atalla, I., Lee, E. J., & Guvendiren, M. (2021). Designing Biomaterial Platforms for Cardiac Tissue and Disease Modeling. 2000022, 1–16. https://doi.org/10.1002/anbr.202000022Hu, S., Mi, L., Fu, J., Ma, W., Ni, J., Zhang, Z., Li, B., Guan, G., Wang, J., & Zhao, N. (2022). Model Embraced Electromechanical Coupling Time for Estimation of Heart Failure in Patients With Hypertrophic Cardiomyopathy. Frontiers in Cardiovascular Medicine, 9, 895035. https://doi.org/10.3389/fcvm.2022.895035Huang, C., Niu, H., Wu, J., Ke, Q., Mo, X., & Lin, T. (2012). Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. Journal of Nanomaterials, 2012, 473872. https://doi.org/10.1155/2012/473872Huang, P., Liu, Y., Chen, Z., Zheng, Y., Vasilovna, K. V., Faritovich, G. R., & Xin, B. (2023). Preparation and Characterization of PU/PDA/PPy Flexible Composite Film for Electric Heating. Fibers and Polymers. https://doi.org/10.1007/s12221-023-00416-0Huang, Z.-M., Zhang, Y.-Z., Kotaki, M., & Ramakrishna, S. (2003). A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 63(15), 2223–2253. https://doi.org/https://doi.org/10.1016/S0266-3538(03)00178-7Ibrahim, I. M., Yunus, S., & Hashim, M. A. (2013). Relative performance of isoproopylamine, pyrrole and pyridine as corrosion inhibitors for carbon steels in saline water at mildly elevated temperatures. International Journal of Scientific & Engineering Research, 4(2), 1–12.Ikram, H., Rogers, S. J., Charles, C. J., Sands, J., Richards, A. M., Bridgman, P. G., & Gooneratne, R. (1997). An ovine model of acute myocardial infarction and chronic left ventricular dysfunction. Angiology, 48(8), 679–688. https://doi.org/10.1177/000331979704800803Imani, F., Karimi-Soflou, R., Shabani, I., & Karkhaneh, A. (2021). PLA electrospun nanofibers modified with polypyrrole-grafted gelatin as bioactive electroconductive scaffold. Polymer, 218(September 2020), 123487. https://doi.org/10.1016/j.polymer.2021.123487Jain, A., Nabeel, A. N., Bhagwat, S., Kumar, R., Sharma, S., Kozak, D., Hunjet, A., Kumar, A., & Singh, R. (2023). Fabrication of polypyrrole gas sensor for detection of NH3 using an oxidizing agent and pyrrole combinations: Studies and characterizations. Heliyon, 9(7), e17611. https://doi.org/10.1016/j.heliyon.2023.e17611Jana, S., Bhagia, A., & Lerman, A. (2019). Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Biomedical Materials (Bristol), 14(6). https://doi.org/10.1088/1748-605X/ab3d24Jang, Y., Park, Y., & Kim, J. (2020). Engineering Biomaterials to Guide Heart Cells for Matured Cardiac Tissue. Coatings, 10, 925. https://doi.org/10.3390/coatings10100925Jiang, L., Chen, D., Wang, Z., Zhang, Z., Xia, Y., Xue, H., & Liu, Y. (2019). Preparation of an Electrically Conductive Graphene Oxide/Chitosan Scaffold for Cardiac Tissue Engineering. Applied Biochemistry and Biotechnology, 188(4), 952–964. https://doi.org/10.1007/s12010-019-02967-6John, J., & Jayalekshmi, S. (2023). Polypyrrole with appreciable solubility, crystalline order and electrical conductivity synthesized using various dopants appropriate for device applications. Polymer Bulletin, 80(6), 6099–6116. https://doi.org/10.1007/s00289-022-04354-4Jung, H.-S., Kim, M. H., Shin, J. Y., Park, S. R., Jung, J.-Y., & Park, W. H. (2018). Electrospinning and wound healing activity of β-chitin extracted from cuttlefish bone. Carbohydr. Polym., 193, 205.Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011a). Guided orientation of cardiomyocytes on electrospun aligned nanofibers for cardiac tissue engineering. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 98 B(2), 379–386. https://doi.org/10.1002/jbm.b.31862Kai, D., Prabhakaran, M. P., Jin, G., & Ramakrishna, S. (2011b). Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. Journal of Biomedical Materials Research - Part A, 99 A(3), 376–385. https://doi.org/10.1002/jbm.a.33200Kalimuldina, G., Turdakyn, N., Abay, I., Medeubayev, A., Nurpeissova, A., Adair, D., & Bakenov, Z. (2020). A review of piezoelectric pvdf film by electrospinning and its applications. Sensors (Switzerland), 20(18), 1–42. https://doi.org/10.3390/s20185214Kariduraganavar, M. Y., Kittur, A. A., & Kamble, R. R. (2014). Chapter 1 - Polymer Synthesis and Processing. In S. G. Kumbar, C. T. Laurencin, & M. Deng (Eds.), Natural and Synthetic Biomedical Polymers (pp. 1–31). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-396983-5.00001-6Karimi, S. N. H., Aghdam, R. M., Ebrahimi, S. A. S., & Chehrehsaz, Y. (2022). Tri-layered alginate/poly(epsilon-caprolactone) electrospun scaffold for cardiac tissue engineering. POLYMER INTERNATIONAL, 71(9), 1099–1108. https://doi.org/10.1002/pi.6371Karkan, S. F., Davaran, S., Rahbarghazi, R., Salehi, R., & Akbarzadeh, A. (2019). Electrospun nanofibers for the fabrication of engineered vascular grafts. Journal of Biological Engineering, 7, 1–13.Kashou, A. H., & Chhabra, H. B. L. (2020). Physiology, Sinoatrial Node. StatPearls [Internet], 1–6.Kausar, A. (2021). Chapter 5 - Perspectives on nanocomposite with polypyrrole and nanoparticles. In A. Kausar (Ed.), Conducting Polymer-Based Nanocomposites (pp. 103–128). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-822463-2.00006-3Kazu Kikuchi, & Poss, K. D. (2008). Cardiac Regenerative Capacity and Mechanisms. Annual Review of Cell and Developmental Biology, 28(1), 719–741. https://doi.org/doi.org/10.1146/annurev-cellbio-101011-155739Kesornsit, S., Direksilp, C., Phasuksom, K., Thummarungsan, N., Sakunpongpitiporn, P., Rotjanasuworapong, K., Sirivat, A., & Niamlang, S. (2022). Synthesis of Highly Conductive Poly(3-hexylthiophene) by Chemical Oxidative Polymerization Using Surfactant Templates. Polymers, 14(18), 1–19. https://doi.org/10.3390/polym14183860Kharaziha, M., Shin, S. R., Nikkhah, M., Topkaya, S. N., Masoumi, N., Annabi, N., Dokmeci, M. R., & Khademhosseini, A. (2014). Tough and flexible CNT-polymeric hybrid scaffolds for engineeringcardiac constructs. Biomaterials, 35(26), 7346–7354. https://doi.org/10.1016/j.biomaterials.2014.05.014Khatti, T., Naderi-Manesh, H., & Kalantar, S. M. (2019). Polypyrrole-Coated Polycaprolactone-Gelatin Conductive Nanofibers: Fabrication and Characterization. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 250(October), 114440. https://doi.org/10.1016/j.mseb.2019.114440Kierszenbaum, Abraham L.; Tres, Laura L.; Fernández Aceñero, M. J. (2016). Histología y biología celular : introducción a la anatomía patológica (Elsevier (ed.)).Kim, S., Tserengombo, B., Choi, S.-H., Noh, J., Huh, S., Choi, B., Chung, H., Kim, J., & Jeong, H. (2018). Experimental investigation of dispersion characteristics and thermal conductivity of various surfactants on carbon based nanomaterial. International Communications in Heat and Mass Transfer, 91, 95–102. https://doi.org/https://doi.org/10.1016/j.icheatmasstransfer.2017.12.011Kotadia, I., Whitaker, J., Roney, C., Niederer, S., O’Neill, M., Bishop, M., & Wright, M. (2020). Anisotropic Cardiac Conduction. Arrhythmia & Electrophysiology Review, 9(4), 202–210. https://doi.org/10.15420/aer.2020.04Krista McLennan. (n.d.). Recognising, assessing and alleviating pain in sheep. Farm Animal Well Being.Kumar, A., & Kumar, A. (2019). Poly(lactic acid) and poly(lactic-co-glycolic) acid nanoparticles: Versatility in biomedical applications. In Materials for Biomedical Engineering: Absorbable Polymers. Elsevier Inc. https://doi.org/10.1016/B978-0-12-818415-8.00007-3Kumar, M., & Kumari, P. (2020). The effect of reciprocating motion of drum collector on electrospun PVDF nanofiber for energy harvesting application. WCMNM, 18–21.Kumar, S., & Chatterjee, K. (2016). Comprehensive Review on the Use of Graphene-Based Substrates for Regenerative Medicine and Biomedical Devices. In ACS Applied Materials and Interfaces (Vol. 8, Issue 40, pp. 26431–26457). American Chemical Society. https://doi.org/10.1021/acsami.6b09801Kurakula, M., & Koteswara Rao, G. S. N. (2020). Moving polyvinyl pyrrolidone electrospun nanofibers and bioprinted scaffolds toward multidisciplinary biomedical applications. European Polymer Journal, 136(July). https://doi.org/10.1016/j.eurpolymj.2020.109919Laforgue, A., & Robitaille, L. (2010). Deposition of ultrathin coatings of polypyrrole and poly(3,4- ethylenedioxythiophene) onto electrospun nanofibers using a vapor-phase polymerization method. Chemistry of Materials, 22(8), 2474–2480. https://doi.org/10.1021/cm902986gLanger, R., & Vacanti, J. P. (1993). Tissue Engineering. Science, 260(5110), 920–926. https://doi.org/10.1126/science.8493529Le, T. H., Kim, Y., & Yoon, H. (2017). Electrical and electrochemical properties of conducting polymers. Polymers, 9(4). https://doi.org/10.3390/polym9040150Lee, J. K. Y., Chen, N., Peng, S., Li, L., Tian, L., Thakor, N., & Ramakrishna, S. (2018). Polymer-based composites by electrospinning: Preparation & functionalization with nanocarbons. Progress in Polymer Science, 86, 40–84. https://doi.org/10.1016/j.progpolymsci.2018.07.002Lee, J. Y., Bashur, C. A., Goldstein, A. S., & Schmidt, C. E. (2009). Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials, 30(26), 4325–4335. https://doi.org/10.1016/j.biomaterials.2009.04.042Lee, M., Kim, M. C., & Lee, J. Y. (2022). Nanomaterial-Based Electrically Conductive Hydrogels for Cardiac Tissue Repair. International Journal of Nanomedicine, 17, 6181–6200. https://doi.org/10.2147/IJN.S386763Leung, V., & Ko, F. (2011). Biomedical applications of nanofibers. Polymers for Advanced Technologies, 22, 350–365. https://doi.org/10.1002/pat.1813Lewis, T. W. (1998). A Study of The Overoxidation of The Conducting Polymer Polypyrrole. 230.Li, J., Xu, C., Tian, H., Zha, F., Qi, W., & Wang, Q. (2018). Blend-electrospun poly(vinylidene fluoride)/stearic acid membranes for efficient separation of water-in-oil emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538, 494–499. https://doi.org/https://doi.org/10.1016/j.colsurfa.2017.11.043Li, J., Zhang, X., Jiang, J., Wang, Y., Jiang, H., Zhang, J., Nie, X., & Liu, B. (2018). Systematic Assessment of the Toxicity and Potential Mechanism of Graphene Derivatives In Vitro and In Vivo. Toxicological Sciences, 167(1), 269–281. https://doi.org/10.1093/toxsci/kfy235Li, S., Yu, X., & Li, Y. (2022). Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fibrous mat : influence of drug delivery and Schwann cells proliferation Conductive polypyrrole-coated electrospun chitosan nanoparticles / poly ( D , L-lactide ) fi. Biomedical Physics & Engineering Express, 8.Li, T. T., Yan, M., Zhong, Y., Ren, H. T., Lou, C. W., Huang, S. Y., & Lin, J. H. (2019). Processing and characterizations of rotary linear needleless electrospun polyvinyl alcohol(PVA)/Chitosan(CS)/Graphene(Gr) nanofibrous membranes. Journal of Materials Research and Technology, 8(6), 5124–5132. https://doi.org/10.1016/j.jmrt.2019.08.035Li, Y., Wei, L., Lan, L., Gao, Y., Zhang, Q., Dawit, H., Mao, J., Guo, L., Shen, L., & Wang, L. (2022). Conductive biomaterials for cardiac repair: A review. Acta Biomaterialia, 139, 157–178. https://doi.org/10.1016/j.actbio.2021.04.018Liang, Y., & Goh, J. C.-H. (2020). Polypyrrole-Incorporated Conducting Constructs for Tissue Engineering Applications: A Review. Bioelectricity, 2(2), 101–119. https://doi.org/10.1089/bioe.2020.0010Liang, Y., Mitriashkin, A., Lim, T. T., & Goh, J. C. H. (2021). Conductive polypyrrole-encapsulated silk fibroin fibers for cardiac tissue engineering. Biomaterials, 276(January), 121008. https://doi.org/10.1016/j.biomaterials.2021.121008Liau, B., Zhang, D., & Bursac, N. (2012). Functional cardiac tissue engineering. Regenerative Medicine, 7(2), 187–206. https://doi.org/10.2217/rme.11.122Lindsey, M. L., Bolli, R., Canty, J. M., Du, X. J., Frangogiannis, N. G., Frantz, S., Gourdie, R. G., Holmes, J. W., Jones, S. P., Kloner, R. A., Lefer, D. J., Liao, R., Murphy, E., Ping, P., Przyklenk, K., Recchia, F. A., Longacre, L. S., Ripplinger, C. M., Van Eyk, J. E., & Heusch, G. (2018). Guidelines for experimental models of myocardial ischemia and infarction. American Journal of Physiology - Heart and Circulatory Physiology, 314(4), H812–H838. https://doi.org/10.1152/ajpheart.00335.2017Liu, H., Paul, C., & Xu, M. (2017). Optimal environmental stiffness for stem cell mediated ischemic myocardium repair. Adult Stem Cells, 293–304.Liu, Y., & Wu, F. (2023). Synthesis and application of polypyrrole nanofibers: a review. Nanoscale Advances, 3606–3618. https://doi.org/10.1039/d3na00138eLonghin, E. M., El Yamani, N., Rundén-Pran, E., & Dusinska, M. (2022). The alamar blue assay in the context of safety testing of nanomaterials. Frontiers in Toxicology, 4, 981701. https://doi.org/10.3389/ftox.2022.981701Loyo, C., Cordoba, A., Palza, H., Canales, D., Melo, F., Vivanco, J. F., Baier, R. V., Millán, C., Corrales, T., & Zapata, P. A. (2023). Effect of Gelatin Coating and GO Incorporation on the Properties and Degradability of Electrospun PCL Scaffolds for Bone Tissue Regeneration. Polymers, 16(1), 129. https://doi.org/10.3390/polym16010129Lu, H., Li, X., & Lei, Q. (2021). Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Frontiers in Chemistry, 9(September), 6–11. https://doi.org/10.3389/fchem.2021.732132Lukin, I., Erezuma, I., Maeso, L., Zarate, J., Desimone, M. F., Al-Tel, T. H., Dolatshahi-Pirouz, A., & Orive, G. (2022). Progress in Gelatin as Biomaterial for Tissue Engineering. Pharmaceutics, 14(6), 1–19. https://doi.org/10.3390/pharmaceutics14061177Ma, Z., Shi, W., Yan, K., Pan, L., & Yu, G. (2019). Doping engineering of conductive polymer hydrogels and their application in advanced sensor technologies. Chemical Science, 10(25), 6232–6244. https://doi.org/10.1039/c9sc02033kMacDonald, E. A., Rose, R. A., & Quinn, T. A. (2020). Neurohumoral Control of Sinoatrial Node Activity and Heart Rate: Insight From Experimental Models and Findings From Humans. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00170Maharjan, B., Kaliannagounder, V. K., Jang, S. R., Awasthi, G. P., Bhattarai, D. P., Choukrani, G., Park, C. H., & Kim, C. S. (2020). In-situ polymerized polypyrrole nanoparticles immobilized poly(ε-caprolactone) electrospun conductive scaffolds for bone tissue engineering. Materials Science and Engineering C, 114(April), 111056. https://doi.org/10.1016/j.msec.2020.111056Mahmoudi, T., Wang, Y., & Hahn, Y.-B. (2018). Graphene and its derivatives for solar cells application. Nano Energy, 47, 51–65. https://doi.org/https://doi.org/10.1016/j.nanoen.2018.02.047Mahun, A., Abbrent, S., Bober, P., Brus, J., & Kobera, L. (2020). Effect of structural features of polypyrrole (PPy) on electrical conductivity reflected on 13C ssNMR parameters. Synthetic Metals, 259, 116250. https://doi.org/https://doi.org/10.1016/j.synthmet.2019.116250Majid, Q. A., Fricker, A. T. R., Gregory, D. A., Davidenko, N., Hernandez Cruz, O., Jabbour, R. J., Owen, T. J., Basnett, P., Lukasiewicz, B., Stevens, M., Best, S., Cameron, R., Sinha, S., Harding, S. E., & Roy, I. (2020). Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Frontiers in Cardiovascular Medicine, 7(October), 1–32. https://doi.org/10.3389/fcvm.2020.554597Malmivuo, J., & Plonsey, R. (1995). Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780195058239.001.0001Mancino, C., Hendrickson, T., Whitney, L. V., Paradiso, F., Abasi, S., Tasciotti, E., Taraballi, F., & Guiseppi-Elie, A. (2022). Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 44, 102567. https://doi.org/10.1016/j.nano.2022.102567Mannhardt, I., Breckwoldt, K., Letuffe-Brenière, D., Schaaf, S., Schulz, H., Neuber, C., Benzin, A., Werner, T., Eder, A., Schulze, T., Klampe, B., Christ, T., Hirt, M. N., Huebner, N., Moretti, A., Eschenhagen, T., & Hansen, A. (2016). Human Engineered Heart Tissue: Analysis of Contractile Force. Stem Cell Reports, 7(1), 29–42. https://doi.org/10.1016/j.stemcr.2016.04.011Manousiouthakis, E., Park, J., Hardy, J. G., Lee, J. Y., & Schmidt, C. E. (2022). Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomaterialia, 139, 22–42. https://doi.org/https://doi.org/10.1016/j.actbio.2021.07.065Manteca, X., Temple, D., Mainau, E., & Llonch, P. (2017). Evaluación del dolor en el ganado ovino. Fawec, 17(1), 1–2. https://doi.org/10.13130/AWINMao, J., & Zhang, Z. (2018). Polypyrrole as Electrically Conductive Biomaterials: Synthesis, Biofunctionalization, Potential Applications and Challenges. Advances in Experimental Medicine and Biology, 1078, 347–370. https://doi.org/10.1007/978-981-13-0950-2_18Margerrison, E., Argentieri, M., Kommala, D., & Schabowsky, C. N. (2021). Polycaprolactone (PCL) Safety Profile Report Details Date of Submission ECRI Corporate Governance Project Manager. 540.Markowitz, S. M., & Lerman, B. B. (2018). A contemporary view of atrioventricular nodal physiology. Journal of Interventional Cardiac Electrophysiology, 52(3), 271–279. https://doi.org/10.1007/s10840-018-0392-5Matysiak, W., Tański, T., Smok, W., Gołombek, K., & Schab-Balcerzak, E. (2020). Effect of conductive polymers on the optical properties of electrospun polyacrylonitryle nanofibers filled by polypyrrole, polythiophene and polyaniline. Applied Surface Science, 509(December 2019). https://doi.org/10.1016/j.apsusc.2019.145068Mbayachi, V. B., Ndayiragije, E., Sammani, T., Taj, S., Mbuta, E. R., & ullah khan, A. (2021). Graphene synthesis, characterization and its applications: A review. Results in Chemistry, 3, 100163. https://doi.org/https://doi.org/10.1016/j.rechem.2021.100163McClelland, R., Dennis, R., Reid, L. M., Palsson, B., & Macdonald, J. M. (2005). 7 - TISSUE ENGINEERING. In J. D. Enderle, S. M. Blanchard, & J. D. Bronzino (Eds.), Introduction to Biomedical Engineering (Second Edition) (Second Edi, pp. 313–402). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-238662-6.50009-4Mcivor, M. J., Maolmhuaidh, F. Ó., Meenagh, A., Hussain, S., Bhattacharya, G., Fishlock, S., Ward, J., Mcferran, A., Acheson, J. G., Cahill, P. A., Forster, R., Mceneaney, D. J., Boyd, A. R., & Meenan, B. J. (2022). 3D Fabrication and Characterisation of Electrically Receptive Tissue ModelsMckee, C. T., Last, J. A., Russell, P., & Murphy, C. J. (2011). Indentation versus tensile measurements of Young’s modulus for soft biological tissues. Tissue Engineering. Part B, Reviews, 17 3, 155–164.McKeen, L. (2021). Chapter11 - The effect of heat aging on the properties of sustainable polymers. In L. McKeen (Ed.), The Effect of Long Term Thermal Exposure on Plastics and Elastomers (Second Edition) (Second Edi, pp. 313–332). William Andrew Publishing. https://doi.org/https://doi.org/10.1016/B978-0-323-85436-8.00001-1McMahan, S., Taylor, A., Copeland, K. M., Pan, Z., Liao, J., & Hong, Y. (2020). Current advances in biodegradable synthetic polymer based cardiac patches. Journal of Biomedical Materials Research - Part A, 108(4), 972–983. https://doi.org/10.1002/jbm.a.36874McMillen, C. (2001). The sheep - an ideal model for biomedical research? Anzccart News, 14(2), 1–4.Megelski, S., Stephens, J. S., Chase, D. B., & Rabolt, J. F. (2002). Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers. Macromolecules, 35(22), 8456–8466. https://doi.org/10.1021/ma020444aMehta, P. P., & Pawar, V. S. (2018). 22 - Electrospun nanofiber scaffolds: Technology and applications. In Inamuddin, A. M. Asiri, & A. Mohammad (Eds.), Applications of Nanocomposite Materials in Drug Delivery (pp. 509–573). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-12-813741-3.00023-6Mit-uppatham, C., Nithitanakul, M., & Supaphol, P. (2004). Ultrafine Electrospun Polyamide-6 Fibers: Effect of Solution Conditions on Morphology and Average Fiber Diameter. Macromolecular Chemistry and Physics, 205(17), 2327–2338. https://doi.org/https://doi.org/10.1002/macp.200400225Mittal, T. (2005). Pacemakers- A journey through the years. Indian Journal of Thoracic and Cardiovascular Surgery, 21, 236–249. https://doi.org/doi.org/10.1007/s12055-005-0060-0Mohan, V. B., Lau, K., Hui, D., & Bhattacharyya, D. (2018). Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering, 142, 200–220. https://doi.org/https://doi.org/10.1016/j.compositesb.2018.01.013Montes, A., Valor, D., Penabad, Y., Dom, M., Pereyra, C., Mart, E., & Ossa, D. (2023). Formation of PLGA – PEDOT : PSS Conductive Scaffolds by Supercritical Foaming. 1–20.Morsink, M., Severino, P., Luna-Ceron, E., Hussain, M. A., Sobahi, N., & Shin, S. R. (2022). Effects of electrically conductive nano-biomaterials on regulating cardiomyocyte behavior for cardiac repair and regeneration. Acta Biomaterialia, 139, 141–156. https://doi.org/10.1016/j.actbio.2021.11.022Mota, K. O., & Corrêa, C. B. (2021). Effect of Preparation Additives on the Antimicrobial Activity and Cytotoxicity of Polypyrrole. 32(6), 1203–1212.Murugan, S. S., Dalavi, P. A., Devi G.V., Y., Chatterjee, K., & Venkatesan, J. (2022). Natural and Synthetic Biopolymeric Biomaterials for Bone Tissue Engineering Applications. In M. S. J. Hashmi (Ed.), Encyclopedia of Materials: Plastics and Polymers (pp. 746–757). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-820352-1.00246-7Mutepfa, A. R., Hardy, J. G., & Adams, C. F. (2022). Electroactive Scaffolds to Improve Neural Stem Cell Therapy for Spinal Cord Injury. Frontiers in Medical Technology, 4(February). https://doi.org/10.3389/fmedt.2022.693438Nag, A., Mitra, A., & Mukhopadhyay, S. C. (2018). Graphene and its sensor-based applications: A review. Sensors and Actuators A: Physical, 270, 177–194. https://doi.org/https://doi.org/10.1016/j.sna.2017.12.028Nagiah, N., El Khoury, R., Othman, M. H., Akimoto, J., Ito, Y., Roberson, D. A., & Joddar, B. (2022). Development and Characterization of Furfuryl-Gelatin Electrospun Scaffolds for Cardiac Tissue Engineering. ACS Omega, 7(16), 13894–13905. https://doi.org/10.1021/acsomega.2c00271Nair, N. R., Sekhar, V. C., Nampoothiri, K. M., & Pandey, A. (2017). 32 - Biodegradation of Biopolymers. In A. Pandey, S. Negi, & C. R. Soccol (Eds.), Current Developments in Biotechnology and Bioengineering (pp. 739–755). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-444-63662-1.00032-4Najafi Tireh Shabankareh, A., Samadi Pakchin, P., Hasany, M., & Ghanbari, H. (2023). Development of a new electroconductive nanofibrous cardiac patch based on polyurethane-reduced graphene oxide nanocomposite scaffolds. Materials Chemistry and Physics, 305(May), 127961. https://doi.org/10.1016/j.matchemphys.2023.127961Namsheer, K., & Rout, C. S. (2021). Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Advances, 11(10), 5659–5697. https://doi.org/10.1039/d0ra07800jNasr, S. M., Rabiee, N., Hajebi, S., Ahmadi, S., Fatahi, Y., Hosseini, M., Bagherzadeh, M., Ghadiri, A. M., Rabiee, M., Jajarmi, V., & Webster, T. J. (2020). Biodegradable nanopolymers in cardiac tissue engineering: From concept towards nanomedicine. International Journal of Nanomedicine, 15, 4205–4224. https://doi.org/10.2147/IJN.S245936National Farm Animal Care Council. (2013). Code of practice for the care and handling of sheep. In Practice.National Research Council. (1992). 4 Recognition and Assessment of Pain, Stress, and Distress. In Recognition and Alleviation of Pain and Distress in Laboratory Animals. The National Academies Press. https://doi.org/doi: 10.17226/1542Nekounam, H., Gholizadeh, S., Allahyari, Z., Samadian, H., Nazeri, N., Shokrgozar, M. A., & Faridi-Majidi, R. (2021). Electroconductive scaffolds for tissue regeneration: Current opportunities, pitfalls, and potential solutions. Materials Research Bulletin, 134(June 2020), 111083. https://doi.org/10.1016/j.materresbull.2020.111083Nguyen-truong, M., & Li, Y. V. (2020). Mechanical Considerations of Electrospun Sca ff olds for Myocardial Tissue and Regenerative Engineering. 1–22.Nguyen, T. D., Roh, S., Thi, M., Nguyen, N., & Lee, J. S. (2023). Structural Control of Nanofibers According to Electrospinning Process Conditions and Their Applications.Nikkhah, M., Akbari, M., Paul, A., Memic, A., Dolatshahi-Pirouz, A., & Khademhosseini, A. (2016). Gelatin-Based Biomaterials For Tissue Engineering And Stem Cell Bioengineering. In Biomaterials from Nature for Advanced Devices and Therapies (pp. 37–62). John Wiley & Sons, Ltd. https://doi.org/https://doi.org/10.1002/9781119126218.ch3Nostril, A., & Lip, A. (n.d.). Sheep Pain Facial Expression Scale * Sheep Pain Facial Expression Scale ( SPFES ). 0–1.O’Brien, J., Wilson, I., Orton, T., & Pognan, F. (2000). Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. European Journal of Biochemistry, 267(17), 5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.xOjrzynska, M., Wroblewska, A., Judek, J., Malolepszy, A., Duzynska, A., & Zdrojek, M. (2020). Study of optical properties of graphene flakes and its derivatives in aqueous solutions. Optics Express, 28(5), 7274. https://doi.org/10.1364/oe.382523Oprea, A. E., Ficai, A., & Andronescu, E. (2019). Electrospun nanofibers for tissue engineering applications. In Materials for Biomedical Engineering. Elsevier Inc. https://doi.org/10.1016/b978-0-12-816909-4.00004-xPang, A. L., Arsad, A., & Ahmadipour, M. (2021). Synthesis and factor affecting on the conductivity of polypyrrole: a short review. Polymers for Advanced Technologies, 32(4), 1428–1454. https://doi.org/10.1002/pat.5201Park, D. W., Ness, J. P., Brodnick, S. K., Esquibel, C., Novello, J., Atry, F., Baek, D. H., Kim, H., Bong, J., Swanson, K. I., Suminski, A. J., Otto, K. J., Pashaie, R., Williams, J. C., & Ma, Z. (2018). Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. ACS Nano, 12(1), 148–157. https://doi.org/10.1021/acsnano.7b04321Patino, M. G., Neiders, M. E., Andreana, S., Noble, B., & Cohen, R. E. (2002). Collagen : An Overview. 280–285. https://doi.org/10.1097/01.ID.0000019547.50849.3BPfeiffer, E. R., Tangney, J. R., Omens, J. H., & McCulloch, A. D. (2014). Biomechanics of cardiac electromechanical coupling and mechanoelectric feedback. Journal of Biomechanical Engineering, 136(2), 21007. https://doi.org/10.1115/1.4026221Pomeroy, J. E., Helfer, A., & Bursac, N. (2020). Biomaterializing the promise of cardiac tissue engineering. Biotechnology Advances, 42, 107353. https://doi.org/https://doi.org/10.1016/j.biotechadv.2019.02.009Potdar, A., Kale, A., Marathe, P., Talekar, P., & Yadav, S. (2020). A Review On Applications Of Graphene. IJRAR1AA1390 International Journal of Research and Analytical Reviews (IJRAR) Www.Ijrar.Org, 80(4), 80–85. www.ijrar.orgPrecedence Research. (2022). Transplantation Market Size, Share and Growth Analysis.Pushp, P., Bhaskar, R., Kelkar, S., Sharma, N., Pathak, D., & Gupta, M. K. (2021). Plasticized poly(vinylalcohol) and poly(vinylpyrrolidone) based patches with tunable mechanical properties for cardiac tissue engineering applications. Biotechnology and Bioengineering, 118(6), 2312–2325. https://doi.org/10.1002/bit.27743Qasim, M., Arunkumar, P., Powell, H. M., & Khan, M. (2019). Current research trends and challenges in tissue engineering for mending broken hearts. Life Sciences, 229(March), 233–250. https://doi.org/10.1016/j.lfs.2019.05.012Rabbani, S., Ahmadi, H., Fayazzadeh, E., Sahebjam, M., Boroumand, M. A., Sotudeh, M., & Nassiri, S. M. (2008). Development of an ovine model of myocardial infarction. ANZ Journal of Surgery, 78(1–2), 78–81. https://doi.org/10.1111/j.1445-2197.2007.04359.xRandviir, E. P., Brownson, D. A. C., & Banks, C. E. (2014). A decade of graphene research: Production, applications and outlook. In Materials Today (Vol. 17, Issue 9, pp. 426–432). Elsevier. https://doi.org/10.1016/j.mattod.2014.06.001Rashid, S. T., Salacinski, H. J., Hamilton, G., & Seifalian, A. M. (2004). The use of animal models in developing the discipline of cardiovascular tissue engineering: A review. Biomaterials, 25(9), 1627–1637. https://doi.org/10.1016/S0142-9612(03)00522-2Ratih, D., Siburian, R., & Andriayani. (2018). The performance of graphite/n-graphene and graphene/n-graphene as electrode in primary cell batteries. Rasayan Journal of Chemistry, 11(4), 1649–1656. https://doi.org/10.31788/RJC.2018.1145007Ray, S. S., Chen, S.-S., Nguyen, N. C., & Nguyen, H. T. (2019). Chapter 9 - Electrospinning: A Versatile Fabrication Technique for Nanofibrous Membranes for Use in Desalination. In S. Thomas, D. Pasquini, S.-Y. Leu, & D. A. Gopakumar (Eds.), Nanoscale Materials in Water Purification (pp. 247–273). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-813926-4.00014-8Refate, A., Mohamed, Y., Mohamed, M., Sobhy, M., Samhy, K., Khaled, O., Eidaroos, K., Batikh, H., El-Kashif, E., El-Khatib, S., & Mehanny, S. (2023). Influence of electrospinning parameters on biopolymers nanofibers, with emphasis on cellulose & chitosan. Heliyon, 9(6), e17051. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e17051Ren, X., Jiang, Z., & Tang, M. (2023). Application of conductive hydrogels in cardiac tissue engineering. 4(2), 1–7.Reneker, D. H., & Yarin, A. L. (2008). Electrospinning jets and polymer nanofibers. Polymer, 49(10), 2387–2425. https://doi.org/10.1016/j.polymer.2008.02.002Reneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547. https://doi.org/10.1063/1.373532Research, P. (2022). Scaffold Technology Market (By Product: Hydrogels, Micropatterned Surface Microplates, and Nanofiber Based Scaffolds; By Application: Neurology, Orthopedics, Dental, Cardiology & Vascular, Cancer, Skin & Integumentary, GI & Gynecologyand Urology; By End-U. https://www.precedenceresearch.com/scaffold-technology-marketReshmy, R., Philip, E., Vaisakh, P. H., Sindhu, R., Binod, P., Madhavan, A., Pandey, A., Sirohi, R., & Tarafdar, A. (2021). Chapter 14 - Biodegradable polymer composites (P. Binod, S. Raveendran, & A. B. T.-B. Pandey Biofuels, Biochemicals (eds.); pp. 393–412). Elsevier. https://doi.org/https://doi.org/10.1016/B978-0-12-821888-4.00003-4Riehle, C., & Bauersachs, J. (2019). Small animal models of heart failure. 1838–1849. https://doi.org/10.1093/cvr/cvz161Roacho-p, J. A., Garza-treviño, E. N., Moncada-saucedo, N. K., Carriquiry-chequer, P. A., Valencia-g, L. E., Matthews, E. R., G, V., Simental-mend, M., Delgado-gonzalez, P., Delgado-gallegos, J. L., Padilla-rivas, G. R., & Islas, J. F. (2022). Artificial Scaffolds in Cardiac Tissue Engineering. 1–21.Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A. F., Matheny, R. G., & Badylak, S. F. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 SUPPL.), 135–143. https://doi.org/10.1161/CIRCULATIONAHA.104.525436Rodrigues, I. C. P., Kaasi, A., Maciel Filho, R., Jardini, A. L., & Gabriel, L. P. (2018). Cardiac tissue engineering: current state-of-the-art materials, cells and tissue formation. Einstein (Sao Paulo, Brazil), 16(3), eRB4538. https://doi.org/10.1590/S1679-45082018RB4538Roser, M., & Ritchie, H. (2023). How has world population growth changed over time? Our World in Data.Roshanbinfar, K., Vogt, L., Ruther, F., Roether, J. A., Boccaccini, A. R., & Engel, F. B. (2020). Nanofibrous Composite with Tailorable Electrical and Mechanical Properties for Cardiac Tissue Engineering. 1908612. https://doi.org/10.1002/adfm.201908612Saberi, A., Jabbari, F., Zarrintaj, P., Saeb, M. R., & Mozafari, M. (2019). Electrically conductive materials: Opportunities and challenges in tissue engineering. In Biomolecules (Vol. 9, Issue 9). https://doi.org/10.3390/biom9090448Sack, K. L., Baillargeon, B., Acevedo-Bolton, G., Genet, M., Rebelo, N., Kuhl, E., Klein, L., Weiselthaler, G. M., Burkhoff, D., Franz, T., & Guccione, J. M. (2016). Partial LVAD restores ventricular outputs and normalizes LV but not RV stress distributions in the acutely failing heart insilico. The International Journal of Artificial Organs, 39(8), 421–430. https://doi.org/10.5301/ijao.5000520Sadeghi, A., Moztarzadeh, F., & Aghazadeh Mohandesi, J. (2019). Investigating the effect of chitosan on hydrophilicity and bioactivity of conductive electrospun composite scaffold for neural tissue engineering. International Journal of Biological Macromolecules, 121, 625–632. https://doi.org/10.1016/j.ijbiomac.2018.10.022Sadeghianmaryan, A., Karimi, Y., Naghieh, S., Alizadeh Sardroud, H., Gorji, M., & Chen, X. (2019). Electrospinning of Scaffolds from the Polycaprolactone/Polyurethane Composite with Graphene Oxide for Skin Tissue Engineering. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-019-03192-xSartoretto, S. C., Uzeda, M. J., Miguel, F. B., Nascimento, J. R., Ascoli, F., & Calasans-Maia, M. D. (2016). Sheep as an experimental model for biomaterial implant evaluation. Acta Ortopedica Brasileira, 24(5), 262–266. https://doi.org/10.1590/1413-785220162405161949Sasso, C., Beneventi, D., Zeno, E., Chaussy, D., Petit-Conil, M., & Belgacem, N. (2011). Polypyrrole and polypyrrole/wood-derived materials conducting composites: A review. BioResources, 6(3), 3585–3620. https://doi.org/10.15376/biores.6.3.3585-3620Savchenko, A., Yin, R. T., Kireev, D., Efimov, I. R., & Molokanova, E. (2021). Graphene-Based Scaffolds: Fundamentals and Applications for Cardiovascular Tissue Engineering. Frontiers in Bioengineering and Biotechnology, 9(December), 1–8. https://doi.org/10.3389/fbioe.2021.797340Saxena, P., & Shukla, P. (2021). A comprehensive review on fundamental properties and applications of poly(vinylidene fluoride) (PVDF). Advanced Composites and Hybrid Materials, 4(1), 8–26. https://doi.org/10.1007/s42114-021-00217-0Scheetz, S. D., & Upadhyay, G. A. (2022). Physiologic Pacing Targeting the His Bundle and Left Bundle Branch: a Review of the Literature. Current Cardiology Reports, 24(8), 959–978. https://doi.org/10.1007/s11886-022-01723-3Schmitt, P. R., Dwyer, K. D., & Coulombe, K. L. K. (2022). Current Applications of Polycaprolactone as a Scaffold Material for Heart Regeneration. ACS Applied Bio Materials, 5(6), 2461–2480. https://doi.org/10.1021/acsabm.2c00174Schmitt, P. R., Dwyer, K. D., Minor, A. J., & Coulombe, K. L. K. (2022). Wet-Spun Polycaprolactone Scaffolds Provide Customizable Anisotropic Viscoelastic Mechanics for Engineered Cardiac Tissues.Sell, S. A., McClure, M. J., Garg, K., Wolfe, P. S., & Bowlin, G. L. (2009). Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Advanced Drug Delivery Reviews, 61(12), 1007–1019. https://doi.org/https://doi.org/10.1016/j.addr.2009.07.012Senthil, T., & Anandhan, S. (2017). Effect of Solvents on the Solution Electrospinning of Discover more interesting articles and news on the subject ! Entdecken Sie weitere interessante Artikel und News zum Thema !Serafin, A., Murphy, C., Rubio, M. C., & Collins, M. N. (2021). Printable alginate/gelatin hydrogel reinforced with carbon nanofibers as electrically conductive scaffolds for tissue engineering. Materials Science and Engineering C, 122(January), 111927. https://doi.org/10.1016/j.msec.2021.111927Shafei, S., Foroughi, J., Chen, Z., Wong, C. S., & Naebe, M. (2017). Short oxygen plasma treatment leading to long-term hydrophilicity of conductive PCL-PPy nanofiber scaffolds. Polymers, 9(11). https://doi.org/10.3390/polym9110614Shafei, S., Foroughi, J., Stevens, L., Wong, C. S., Zabihi, O., & Naebe, M. (2017). Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Research on Chemical Intermediates, 43(2), 1235–1251. https://doi.org/10.1007/s11164-016-2695-4Shang, L., Qi, Y., Lu, H., Pei, H., Li, Y., Paul, J. A., Chool, S. O. N. S., Engineering, O. F., & S, A. P. P. S. C. (2019). 7. Graphene and Graphene Oxide for Tissue Engineering and Regeneration. In Theranostic Bionanomaterials. Elsevier Inc. https://doi.org/10.1016/B978-0-12-815341-3.00007-9Shao, H., Fang, J., Wang, H., & Lin, T. (2015). Effect of electrospinning parameters and polymer concentrations on mechanical-to-electrical energy conversion of randomly-oriented electrospun poly(vinylidene fluoride) nanofiber mats. RSC Advances, 5(19), 14345–14350. https://doi.org/10.1039/c4ra16360eSharma, V., Dash, S. K., Govarthanan, K., Gahtori, R., Negi, N., Barani, M., Tomar, R., Chakraborty, S., Mathapati, S., Bishi, D. K., Negi, P., Dua, K., Singh, S. K., Gundamaraju, R., Dey, A., Ruokolainen, J., Thakur, V. K., Kesari, K. K., Jha, N. K., … Ojha, S. (2021). Recent advances in cardiac tissue engineering for the management of myocardium infarction. In Cells (Vol. 10, Issue 10). https://doi.org/10.3390/cells10102538Shinde, S. S., Gund, G. S., Dubal, D. P., Jambure, S. B., & Lokhande, C. D. (2014). Morphological modulation of polypyrrole thin films through oxidizing agents and their concurrent effect on supercapacitor performance. Electrochimica Acta, 119, 1–10. https://doi.org/10.1016/j.electacta.2013.10.174Shokrollahi, P., Omidi, Y., Cubeddu, L. X., & Omidian, H. (2023). Conductive polymers for cardiac tissue engineering and regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 111(11), 1979–1995. https://doi.org/10.1002/jbm.b.35293Sigaroodi, F., Rahmani, M., Parandakh, A., Boroumand, S., Rabbani, S., & Khani, M. M. (2023). Designing cardiac patches for myocardial regeneration–a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 0(0), 1–19. https://doi.org/10.1080/00914037.2023.2180510Socci, M. C., Rodríguez, G., Oliva, E., Fushimi, S., Takabatake, K., Nagatsuka, H., Felice, C. J., & Rodríguez, A. P. (2023). Polymeric Materials, Advances and Applications in Tissue Engineering: A Review. Bioengineering, 10(2). https://doi.org/10.3390/bioengineering10020218Solazzo, M., O’Brien, F. J., Nicolosi, V., & Monaghan, M. G. (2019). The rationale and emergence of electroconductive biomaterial scaffolds in cardiac tissue engineering. APL Bioengineering, 3(4), 041501. https://doi.org/10.1063/1.5116579Son, W. K., Youk, J. H., Lee, T. S., & Park, W. H. (2004). The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45(9), 2959–2966. https://doi.org/10.1016/j.polymer.2004.03.006Song, H., Li, T., Han, Y., Wang, Y., Zhang, C., & Wang, Q. (2016). Optimizing the polymerization conditions of conductive polypyrrole. Journal of Photopolymer Science and Technology, 29(6), 803–808. https://doi.org/10.2494/photopolymer.29.803Sovilj, S., Magjarević, R., Al Abed, A., Lovell, N. H., & Dokos, S. (2014). Simplified 2D bidomain model of whole heart electrical activity and ECG generation. Measurement Science Review, 14(3), 136–143. https://doi.org/10.2478/msr-2014-0018Sowmya, B., Hemavathi, A. B., & Panda, P. K. (2021). Poly (ε-caprolactone)-based electrospun nano-featured substrate for tissue engineering applications: a review. Progress in Biomaterials, 10(2), 91–117. https://doi.org/10.1007/s40204-021-00157-4Sudwilai, T., Ng, J. J., Boonkrai, C., Israsena, N., Chuangchote, S., & Supaphol, P. (2014). Polypyrrole-coated electrospun poly(lactic acid) fibrous scaffold: Effects of coating on electrical conductivity and neural cell growth. Journal of Biomaterials Science, Polymer Edition, 25(12), 1240–1252. https://doi.org/10.1080/09205063.2014.926578Suh, T. C., Amanah, A. Y., & Gluck, J. M. (2020). Electrospun Sca ff olds and Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Cardiac Tissue Engineering Applications. 1–21.Sun, M., Chi, G., Li, P., Lv, S., Xu, J., Xu, Z., Xia, Y., Tan, Y., Xu, J., Li, L., & Li, Y. (2018). Effects of Matrix Stiffness on the Morphology, Adhesion, Proliferation and Osteogenic Differentiation of Mesenchymal Stem Cells. International Journal of Medical Sciences, 15(3), 257–268. https://doi.org/10.7150/ijms.21620Sun, Y., Liu, J., Xu, Z., Lin, X., Zhang, X., Li, L., & Li, Y. (2021). Matrix stiffness regulates myocardial differentiation of human umbilical cord mesenchymal stem cells. 13(2), 2231–2250.Surekha, G., Krishnaiah, K. V., Ravi, N., & Padma Suvarna, R. (2020). FTIR, Raman and XRD analysis of graphene oxide films prepared by modified Hummers method. Journal of Physics: Conference Series, 1495(1). https://doi.org/10.1088/1742-6596/1495/1/012012Szewczyk, P. K., & Stachewicz, U. (2020). The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology. Advances in Colloid and Interface Science, 286, 102315. https://doi.org/https://doi.org/10.1016/j.cis.2020.102315Takada, T., Sasaki, D., Matsuura, K., Miura, K., Sakamoto, S., Goto, H., Ohya, T., Iida, T., Homma, J., Shimizu, T., & Hagiwara, N. (2022). Aligned human induced pluripotent stem cell-derived cardiac tissue improves contractile properties through promoting unidirectional and synchronous cardiomyocyte contraction. Biomaterials, 281, 121351. https://doi.org/https://doi.org/10.1016/j.biomaterials.2021.121351Talebi, A., Labbaf, S., & Karimzadeh, F. (2019). A conductive film of chitosan-polycaprolcatone-polypyrrole with potential in heart patch application. Polymer Testing, 75(December 2018), 254–261. https://doi.org/10.1016/j.polymertesting.2019.02.029Tamimi, M., Rajabi, S., & Pezeshki-Modaress, M. (2020). Cardiac ECM/chitosan/alginate ternary scaffolds for cardiac tissue engineering application. International Journal of Biological Macromolecules, 164, 389–402. https://doi.org/10.1016/j.ijbiomac.2020.07.134Tavakkol, E., Tavanai, H., Abdolmaleki, A., & Morshed, M. (2017). Production of conductive electrospun polypyrrole/poly(vinyl pyrrolidone) nanofibers. Synthetic Metals, 231(July), 95–106. https://doi.org/10.1016/j.synthmet.2017.06.017Tayebi, T., Baradaran-Rafii, A., Hajifathali, A., Rahimpour, A., Zali, H., Shaabani, A., & Niknejad, H. (2021). Biofabrication of chitosan/chitosan nanoparticles/polycaprolactone transparent membrane for corneal endothelial tissue engineering. Scientific Reports, 11(1), 1–12. https://doi.org/10.1038/s41598-021-86340-wTenreiro, M. F., Louro, A. F., Alves, P. M., & Serra, M. (2021). Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. Npj Regenerative Medicine, 6(1). https://doi.org/10.1038/s41536-021-00140-4Tian, L., Prabhakaran, M. P., Hu, J., Chen, M., Besenbacher, F., & Ramakrishna, S. (2016). Synergistic effect of topography, surface chemistry and conductivity of the electrospun nanofibrous scaffold on cellular response of PC12 cells. Colloids and Surfaces B: Biointerfaces. https://doi.org/10.1016/j.colsurfb.2016.05.032Tiwari, S. K., & Venkatraman, S. S. (2012). Importance of viscosity parameters in electrospinning: Of monolithic and core–shell fibers. Materials Science and Engineering: C, 32(5), 1037–1042. https://doi.org/https://doi.org/10.1016/j.msec.2012.02.019Topuz, F., Abdulhamid, M. A., Holtzl, T., & Szekely, G. (2021). Nanofiber engineering of microporous polyimides through electrospinning: Influence of electrospinning parameters and salt addition. Materials & Design, 198, 109280. https://doi.org/https://doi.org/10.1016/j.matdes.2020.109280Torabi, M., Abazari, M. F., Zare Karizi, S., Kohandani, M., Hajati-Birgani, N., Norouzi, S., Nejati, F., Mohajerani, A., Rahmati, T., & Mokhames, Z. (2021). Efficient cardiomyocyte differentiation of induced pluripotent stem cells on PLGA nanofibers enriched by platelet-rich plasma. Polymers for Advanced Technologies, 32(3), 1168–1175. https://doi.org/10.1002/pat.5164Tortora, G., & Derrickson, B. (2006). Principios de Anatomía y Fisiología. In Editorial Panamericana (Vol. 1). https://doi.org/10.1017/CBO9781107415324.004Tsao, Connie W; Aday, Aaron W.; Almarzooq, Z. I. (2022). Heart Disease and Stroe Statistics-2022 Update: A Report From the american Heart Association. Circulation, 145(8). https://doi.org/10.1161/IR.0000000000001052Tsui, J. H., Leonard, A., Camp, N. D., Long, J. T., Nawas, Z. Y., Chavanachat, R., Choi, J. S., Wolf-Yadlin, A., Murry, C. E., Sniadecki, N. J., & Kim, D.-H. (2019). Functional Maturation of Human iPSC-based Cardiac Microphysiological Systems with Tunable Electroconductive Decellularized Extracellular Matrices. BioRxiv, 786657. https://doi.org/10.1101/786657Ţucureanu, V., Matei, A., & Avram, A. M. (2016). FTIR Spectroscopy for Carbon Family Study. Critical Reviews in Analytical Chemistry, 46(6), 502–520. https://doi.org/10.1080/10408347.2016.1157013U.S. FDA Center for Devices and Radiological Health. (2020). Medical Device Material Performance Study Poly Lactic-co-Glycolic Acid [ P ( L / G ) A ] Safety Profile Submitted to. 804.United Nations, Department of Economic and Social Affairs, P. D. (2022). World Population Prospects 2022.Vacanti, C. (2006). The history of tissue engineering. Journal of Cellular and Molecular Medicine, 1(3), 569–576. https://doi.org/10.2755/jcmm010.003.20Valdoz, J. C., Johnson, B. C., Jacobs, D. J., Franks, N. A., Dodson, E. L., Sanders, C., Cribbs, C. G., & Van Ry, P. M. (2021). The ECM: To scaffold, or not to scaffold, that is the question. International Journal of Molecular Sciences, 22(23). https://doi.org/10.3390/ijms222312690Valverde, I. (2017). Impresión tridimensional de modelos cardiacos : aplicaciones en el campo de la educación y el intervencionismo estructural. 70(4), 282–291.Vogt, L., Rivera, L. R., Liverani, L., Piegat, A., El Fray, M., & Boccaccini, A. R. (2019). Poly(ε-caprolactone)/poly(glycerol sebacate) electrospun scaffolds for cardiac tissue engineering using benign solvents. Materials Science and Engineering C, 103(February), 109712. https://doi.org/10.1016/j.msec.2019.04.091Vunjak-Novakovic, G. (2017). Tissue engineering of the heart: An evolving paradigm. Journal of Thoracic and Cardiovascular Surgery, 153(3), 593–595. https://doi.org/10.1016/j.jtcvs.2016.08.057Vunjak-Novakovic, G., Tandon, N., Godier, A., Maidhof, R., Marsano, A., Martens, T. P., & Radisic, M. (2010). Challenges in cardiac tissue engineering. Tissue Engineering. Part B, Reviews, 16(2), 169–187. https://doi.org/10.1089/ten.teb.2009.0352Wang, J. (2021). Meta-analysis of Cellular Toxicity for Graphene via Data-Mining the Literature and Machine Learning.Wang, L., Wu, Y., Hu, T., Guo, B., & Ma, P. X. (2017). Electrospun conductive nanofibrous scaffolds for engineering cardiac tissue and 3D bioactuators. Acta Biomaterialia, 59, 68–81. https://doi.org/10.1016/j.actbio.2017.06.036Wang, Y., & Feng, W. (2022). Conductive Polymers and Their Composites. In Conductive Polymers and their Composites. https://doi.org/10.1007/978-981-19-5363-7Waremra, R. S., & Betaubun, P. (2018). Analysis of Electrical Properties Using the four point Probe Method. E3S Web of Conferences, 73, 1–4. https://doi.org/10.1051/e3sconf/20187313019Wee, J. H., Yoo, K. D., Sim, S. B., Kim, H. J., Kim, H. J., Park, K. N., Kim, G. H., Moon, M. H., You, S. J., Ha, M. Y., Yang, D. H., Chun, H. J., Ko, J. H., & Kim, C. H. (2022). Stem cell laden nano and microcollagen / PLGA bimodal fibrous patches for myocardial regeneration. Biomaterials Research, 1–17. https://doi.org/10.1186/s40824-022-00319-wWHO, W. H. O. (2022). Cardiovascular diseases (CVDs). 11 June 2021. https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)World Heart Federation. (2022). World Heart Vision 2030. 4–9.Xu, B., Li, Y., Deng, B., Liu, X., Wang, L., & Zhu, Q. L. (2017). Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats. Experimental and Therapeutic Medicine, 13(2), 588–594. https://doi.org/10.3892/etm.2017.4026Xu, H., Holzwarth, J. M., Yan, Y., Xu, P., Zheng, H., Yin, Y., Li, S., & Ma, P. X. (2014). Conductive PPY/PDLLA conduit for peripheral nerve regeneration. Biomaterials, 35(1), 225–235. https://doi.org/10.1016/j.biomaterials.2013.10.002Xu, M., Qin, M., Cheng, Y., Niu, X., Kong, J., Zhang, X., Huang, D., & Wang, H. (2021). Alginate microgels as delivery vehicles for cell-based therapies in tissue engineering and regenerative medicine. Carbohydrate Polymers, 266, 118128. https://doi.org/10.1016/j.carbpol.2021.118128Yalcinkaya, F., Yalcinkaya, B., & Jirsak, O. (2015). Influence of Salts on Electrospinning of Aqueous and Nonaqueous Polymer Solutions. Journal of Nanomaterials, 2015, 134251. https://doi.org/10.1155/2015/134251Yang, Q., Li, Z., Hong, Y., Zhao, Y., Qiu, S., Wang, C., & Wei, Y. (2004). Influence of Solvents on the Formation of Ultrathin Uniform Poly(Vinyl Pyrrolidone) Nanofibers with Electrospinning. Journal of Polymer Science Part B: Polymer Physics, 42, 3721–3726. https://doi.org/10.1002/polb.20222Ye, G., & Qiu, X. (2017). Conductive biomaterials in cardiac tissue engineering. Biotarget, 1(5), 9–9. https://doi.org/10.21037/biotarget.2017.08.01You, J. O., Rafat, M., Ye, G. J. C., & Auguste, D. T. (2011). Nanoengineering the heart: Conductive scaffolds enhance connexin 43 expression. Nano Letters, 11(9), 3643–3648. https://doi.org/10.1021/nl201514aYuan, S., Xiong, G., Wang, X., Zhang, S., & Choong, C. (2012). Surface modification of polycaprolactone substrates using collagen-conjugated poly(methacrylic acid) brushes for the regulation of cell proliferation and endothelialisation. Journal of Materials Chemistry, 22, 13039–13049. https://doi.org/10.1039/C2JM31213AYue, B. (2014). NIH Public Access Author Manuscript J Glaucoma. Author manuscript; available in PMC 2015 October 01. Published in final edited form as: J Glaucoma. 2014 ; : S20–S23. doi:10.1097/IJG.0000000000000108. Biology of the Extracellular Matrix: An Overview Beatri. J Glaucoma., 23(1), 1–7. https://doi.org/10.1097/IJG.0000000000000108.BiologyYussuf, A., Al-Saleh, M., Al-Enezi, S., & Abraham, G. (2018). Synthesis and Characterization of Conductive Polypyrrole: The Influence of the Oxidants and Monomer on the Electrical, Thermal, and Morphological Properties. International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/4191747Zaarour, B., Zhang, W., Zhu, L., Jin, X. Y., & Huang, C. (2019). Maneuvering surface structures of polyvinylidene fluoride nanofibers by controlling solvent systems and polymer concentration. Textile Research Journal, 89(12), 2406–2422. https://doi.org/10.1177/0040517518792748Zaarour, B., Zhu, L., & Jin, X. (2019). Controlling the surface structure, mechanical properties, crystallinity, and piezoelectric properties of electrospun PVDF nanofibers by maneuvering molecular weight. Soft Materials, 17(2), 181–189. https://doi.org/10.1080/1539445X.2019.1582542Zahari, A. S., Mazwir, M. H., & Misnon, I. I. (2021). Influence of molecular weight on dielectric properties and piezoelectric constant of poly(vinylidene fluoride) membranes obtained by electrospinning. Polimery/Polymers, 66(10), 532–537. https://doi.org/10.14314/polimery.2021.10.4Zaragoza, C., Gomez-guerrero, C., Martin-ventura, J. L., Blanco-colio, L., Tarin, C., Mas, S., Ortiz, A., & Egido, J. (2011). Animal Models of Cardiovascular Diseases. 2011. https://doi.org/10.1155/2011/497841Zarei, M., Samimi, A., Khorram, M., Abdi, M. M., & Golestaneh, S. I. (2021). Fabrication and characterization of conductive polypyrrole/chitosan/collagen electrospun nanofiber scaffold for tissue engineering application. International Journal of Biological Macromolecules, 168, 175–186. https://doi.org/10.1016/j.ijbiomac.2020.12.031Zargham, S., Bazgir, S., Tavakoli, A., Rashidi, A. S., & Damerchely, R. (2012). The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber. Journal of Engineered Fibers and Fabrics, 7(4), 155892501200700400. https://doi.org/10.1177/155892501200700414Zhang, H., Cheng, J., & Ao, Q. (2021). Preparation of alginate-based biomaterials and their applications in biomedicine. Marine Drugs, 19(5), 1–24. https://doi.org/10.3390/md19050264Zhang, X, Peng, X., & Zhang, S. W. (2017). 7 - Synthetic biodegradable medical polymers: Polymer blends. In Xiang Zhang (Ed.), Science and Principles of Biodegradable and Bioresorbable Medical Polymers (pp. 217–254). Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100372-5.00007-6Zhang, Xuewei, Chen, X., Hong, H., Hu, R., Liu, J., & Liu, C. (2022). Decellularized extracellular matrix scaffolds: Recent trends and emerging strategies in tissue engineering. Bioactive Materials, 10, 15–31. https://doi.org/https://doi.org/10.1016/j.bioactmat.2021.09.014Zhao, G., Qing, H., Huang, G., Genin, G. M., Lu, T. J., Luo, Z., Xu, F., & Zhang, X. (2018). Reduced graphene oxide functionalized nanofibrous silk fibroin matrices for engineering excitable tissues. NPG Asia Materials, 10(10), 982–994. https://doi.org/https://doi.org/10.1038/s41427-018-0092-8Zhao, W., Tu, H., Chen, J., Wang, J., Liu, H., Zhang, F., & Li, J. (2023). Functionalized hydrogels in neural injury repairing. Frontiers in Neuroscience, 17(June), 1–9. https://doi.org/10.3389/fnins.2023.1199299Zhou, J., Chen, J., Sun, H., Qiu, X., Mou, Y., Liu, Z., Zhao, Y., Li, X., Han, Y., Duan, C., Tang, R., Wang, C., Zhong, W., Liu, J., Luo, Y., Xing, M. M., & Wang, C. (2014). Engineering the heart: Evaluation of conductive nanomaterials for improving implant integration and cardiac function. Scientific Reports, 4, 1–11. https://doi.org/10.1038/srep03733Zimmermann, W.-H., Schneiderbanger, K., Schubert, P., Didié, M., Münzel, F., Heubach, J. F., Kostin, S., Neuhuber, W. L., & Eschenhagen, T. (2002). Tissue engineering of a differentiated cardiac muscle construct. Circulation Research, 90(2), 223–230. https://doi.org/10.1161/hh0202.103644Zhuang, R. Z., Lock, R., Liu, B., & Vunjak-Novakovic, G. (2022). Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nature Biomedical Engineering, 6(4), 327–338. https://doi.org/10.1038/s41551-022-00885-3Materiales Biocompatibles/análisisIngeniería de Tejidos/métodosMiocardio/patologíaBiocompatible Materials/analysisTissue Engineering/methodsMyocardium/pathologyElectrospinningNanofillerElectroconductivePolycaprolactonePolypyrroleGrapheneScaffoldTissue engineeringElectrohiladoRelleno conductorNanorellenoPolicaprolactonaPolipirrolGrafenoAndamioIngeniería de tejidosInvestigadoresLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86396/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL1018457635.2024.pdf1018457635.2024.pdfTesis de Doctorado en Ingeniería - Ciencia y Tecnología de Materialesapplication/pdf8351722https://repositorio.unal.edu.co/bitstream/unal/86396/2/1018457635.2024.pdf2b2c977576b138d0ee47089d03cb9283MD52THUMBNAIL1018457635.2024.pdf.jpg1018457635.2024.pdf.jpgGenerated Thumbnailimage/jpeg4947https://repositorio.unal.edu.co/bitstream/unal/86396/3/1018457635.2024.pdf.jpg3b8c2a7e44eb7d73b807bfcaeb5d78f2MD53unal/86396oai:repositorio.unal.edu.co:unal/863962024-07-04 23:25:43.808Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |