Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine

ilustraciones

Autores:
Vallejo Pareja, Samuel
Tipo de recurso:
Fecha de publicación:
2023
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/85234
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/85234
https://repositorio.unal.edu.co/
Palabra clave:
610 - Medicina y salud
620 - Ingeniería y operaciones afines
Método de elementos finitos
Biomecánica
Finite Elements Method
Spondylolisthesis
Fusion In Situ
Reduction
Lumbar interbody fusion
Spinal fusion
Método de elementos finitos
Espondilolistesis
Fusión in situ
Reducción
Fusión lumbar
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d5983086e0edd83167f1bb9b076231b6
oai_identifier_str oai:repositorio.unal.edu.co:unal/85234
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine
dc.title.translated.spa.fl_str_mv Comportamiento biomecánico de la columna vertebral lumbopélvica deformada postquirúrgica
title Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine
spellingShingle Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine
610 - Medicina y salud
620 - Ingeniería y operaciones afines
Método de elementos finitos
Biomecánica
Finite Elements Method
Spondylolisthesis
Fusion In Situ
Reduction
Lumbar interbody fusion
Spinal fusion
Método de elementos finitos
Espondilolistesis
Fusión in situ
Reducción
Fusión lumbar
title_short Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine
title_full Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine
title_fullStr Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine
title_full_unstemmed Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine
title_sort Biomechanical behavior of the postsurgical deformed lumbo-pelvic spine
dc.creator.fl_str_mv Vallejo Pareja, Samuel
dc.contributor.advisor.none.fl_str_mv Ramírez Patiño, Juan Fernando
Ruiz Wills, Carlos Eduardo
dc.contributor.author.none.fl_str_mv Vallejo Pareja, Samuel
dc.contributor.researchgroup.spa.fl_str_mv Grupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (Gibir)
dc.contributor.orcid.spa.fl_str_mv Vallejo Pareja, Samuel [0000-0002-5324-9251]
dc.contributor.cvlac.spa.fl_str_mv Vallejo Pareja, Samuel
dc.contributor.googlescholar.spa.fl_str_mv Vallejo Pareja, Samuel
dc.subject.ddc.spa.fl_str_mv 610 - Medicina y salud
620 - Ingeniería y operaciones afines
topic 610 - Medicina y salud
620 - Ingeniería y operaciones afines
Método de elementos finitos
Biomecánica
Finite Elements Method
Spondylolisthesis
Fusion In Situ
Reduction
Lumbar interbody fusion
Spinal fusion
Método de elementos finitos
Espondilolistesis
Fusión in situ
Reducción
Fusión lumbar
dc.subject.lemb.none.fl_str_mv Método de elementos finitos
Biomecánica
dc.subject.proposal.eng.fl_str_mv Finite Elements Method
Spondylolisthesis
Fusion In Situ
Reduction
Lumbar interbody fusion
Spinal fusion
dc.subject.proposal.spa.fl_str_mv Método de elementos finitos
Espondilolistesis
Fusión in situ
Reducción
Fusión lumbar
description ilustraciones
publishDate 2023
dc.date.issued.none.fl_str_mv 2023
dc.date.accessioned.none.fl_str_mv 2024-01-11T20:10:28Z
dc.date.available.none.fl_str_mv 2024-01-11T20:10:28Z
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/85234
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.repo.none.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/85234
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Akpolat, Y. T., Inceoglu, S., Kinne, N., Hunt, D., & Cheng, W. K. (2016). Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine, 41(6), E335–E341. https://doi.org/10.1097/BRS.0000000000001233
Ambati, D. V., Wright, E. K., Lehman, R. A., Kang, D. G., Wagner, S. C., & Dmitriev, A. E. (2015). Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: A finite element study. Spine Journal, 15(8), 1812–1822. https://doi.org/10.1016/j.spinee.2014.06.015
Ambellan, F., Lamecker, H., von Tycowicz, C., & Zachow, S. (2019). Statistical Shape Models: Understanding and Mastering Variation in Anatomy. Advances in Experimental Medicine and Biology, 1156, 67–84. https://doi.org/10.1007/978-3-030-19385-0_5
Andersson, B. J. G., Ortengren, R., Nachemson, A., & Elfstrom, G. (1974). Lumbar disc pressure and myoelectric back muscle activity during sitting. I. Studies on an experimental chair. Scandinavian Journal of Rehabilitation Medicine, 6(3), 104–114. https://europepmc.org/article/MED/4417801
Anitha, D. P., Baum, T., Kirschke, J. S., & Subburaj, K. (2020). Effect of the intervertebral disc on vertebral bone strength prediction: a finite-element study. Spine Journal, 20(4), 665–671. https://doi.org/10.1016/j.spinee.2019.11.015
Argoubi, M., & Shirazi-Adl, A. (1996). Poroelastic creep response analysis of a lumbar motion segment in compression. Journal of Biomechanics, 29(10), 1331–1339. https://doi.org/10.1016/0021-9290(96)00035-8
Aubin, C. É., Petit, Y., Stokes, I. A. F., Poulin, F., Gardner-Morse, M., & Labelle, H. (2003). Biomechanical modeling of posterior instrumentation of the scoliotic spine. Computer Methods in Biomechanics and Biomedical Engineering, 6(1), 27–32. https://doi.org/10.1080/1025584031000072237
Barrey, C., & Darnis, A. (2015). Current strategies for the restoration of adequate lordosis during lumbar fusion. World Journal of Orthopedics, 6(1), 117–126. https://doi.org/10.5312/wjo.v6.i1.117
Barroso Monteiro, N. M. (2009). Analysis of the intervertebral discs adjacent to interbody fusion using a multibody and finite element co-simulation [Universidade Técnica de Lisboa]. https://fenix.ist.utl.pt/dissertacoes/177425
Beck, A. W., & Simpson, A. K. (2019). High-Grade Lumbar Spondylolisthesis. In Neurosurgery Clinics of North America (Vol. 30, Issue 3, pp. 291–298). W.B. Saunders. https://doi.org/10.1016/j.nec.2019.02.002
Belytschko, T. B., Andriacchi, T. P., Schultz, A. B., & Galante, J. O. (1973). Analog studies of forces in the human spine: Computational techniques. Journal of Biomechanics, 6(4), 361–371. https://doi.org/10.1016/0021-9290(73)90096-1
Bereczki, F., Turbucz, M., Kiss, R., Eltes, P. E., & Lazary, A. (2021). Stability Evaluation of Different Oblique Lumbar Interbody Fusion Constructs in Normal and Osteoporotic Condition – A Finite Element Based Study. Frontiers in Bioengineering and Biotechnology, 9, 1. https://doi.org/10.3389/FBIOE.2021.749914/FULL
Bianco, R.-J., Aubin, C.-E., Mac-Thiong, J.-M., Wagnac, E., & Arnoux, P.-J. (2016). Pedicle Screw Fixation Under Nonaxial Loads. SPINE, 41(3), E124–E130. https://doi.org/10.1097/BRS.0000000000001200
Biot, M. A. (2004). General Theory of Three‐Dimensional Consolidation. Journal of Applied Physics, 12(2). https://doi.org/10.1063/1.1712886
Biswas, J. K., Rana, M., Majumder, S., Karmakar, S. K., & Roychowdhury, A. (2018). Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine: A finite element study. Journal of Orthopaedic Science, 23(2), 258–265. https://doi.org/10.1016/j.jos.2017.10.009
Brodke, D., Kalfas, I., Dezsö Jeszenszky, M., & Shufflebarger, H. (2019). Surgical Technique EXPEDIUM 5.5 TITANIUM. http://synthes.vo.llnwd.net/o16/LLNWMB8/INT Mobile/Synthes International/Product Support Material/legacy_Synthes_PDF/105717.pdf
Bruno, A. G., Bouxsein, M. L., & Anderson, D. E. (2015). Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage. Journal of Biomechanical Engineering, 137(8). https://doi.org/10.1115/1.4030408
Cailliet, R. (2006). Anatomía funcional, Biomecánica. Marbán.
Calvert, G. C., III, G. V. H., Jr, W. M. R., Smith, M. W., McEntire, B. J., & Bal, B. S. (2020). Clinical outcomes for lumbar fusion using silicon nitride versus other biomaterials. Journal of Spine Surgery, 6(1), 33–48. https://doi.org/10.21037/jss.2019.12.11
Center for Devices and Radiological Health - FDA. (2020). Spinal Plating Systems – Performance Criteria for Safety and Performance Based Pathway (FDA-2019-D-1647). Center for Devices and Radiological Health - FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/spinal-plating-systems-performance-criteria-safety-and-performance-based-pathway
Chen, C. S., Chen, W. J., Cheng, C. K., Jao, S. H. E., Chueh, S. C., & Wang, C. C. (2005). Failure analysis of broken pedicle screws on spinal instrumentation. Medical Engineering & Physics, 27(6), 487–496. https://doi.org/10.1016/J.MEDENGPHY.2004.12.007
Chen, C. S., Cheng, C. K., Liu, C. L., & Lo, W. H. (2001). Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering and Physics, 23(7), 485–493. https://doi.org/10.1016/s1350-4533(01)00076-5
Chen, L., Feng, Y. Y., Che, C.-Q. Q., Gu, Y., Wang, L.-J. J., & Yang, H.-L. L. (2016). Influence of Sacral Slope on the Loading of Pedicle Screws in Postoperative L5/S1 Isthmic Spondylolisthesis Patient A Finite Element Analysis. Spine, 41(23), E1388–E1393. https://doi.org/10.1097/BRS.0000000000001632
Chen, M. R., Moore, T. A., Cooperman, D. R., & Lee, M. J. (2013). Anatomic Variability of 120 L5 Spondylolytic Defects. Global Spine Journal, 3(4), 243–247. https://doi.org/10.1055/s-0033-1356765
Cheng, W. K., & Inceoglu, S. (2015). Cortical and standard trajectory pedicle screw fixation techniques in stabilizing multisegment lumbar spine with low grade spondylolisthesis. International Journal of Spine Surgery, 9. https://doi.org/10.14444/2046
Chosa, E., Totoribe, K., & Tajima, N. (2004). A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method. Journal of Orthopaedic Research, 22(1), 158–163. https://doi.org/10.1016/S0736-0266(03)00160-8
Christophy, M., Adila, N., Senan, F., Lotz, J. C., O ’reilly, O. M., Christophy, M., Senan, N. A. F., O ’reilly, O. M., & Lotz, J. C. (2012). A Musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol, 11, 19–34. https://doi.org/10.1007/s10237-011-0290-6
Clin, J., Aubin, C. É., Lalonde, N., Parent, S., & Labelle, H. (2011). A new method to include the gravitational forces in a finite element model of the scoliotic spine. Medical & Biological Engineering & Computing, 49(8), 967–977. https://doi.org/10.1007/S11517-011-0793-4
CoreLink Surgical. (2023). Tiger Iliac Pedicle Screw System. https://corelinksurgical.com/product/tiger-iliac/
De Kunder, S. L., Rijkers, K., Caelers, I. J. M. H., De Bie, R. A., Koehler, P. J., & Van Santbrink, H. (2018). Lumbar interbody fusion. In Spine (Vol. 43, Issue 16, pp. 1161–1168). Lippincott Williams and Wilkins. https://doi.org/10.1097/BRS.0000000000002534
Do Vale Mendonça, L., Kusabara, R., Mastromauro De Oliveira, F., Nagasse, Y., Ribeiro, I., Yamazato, C., & Soares De Souza, E. (2019). SACROPELVIC FIXATION USING ILIAC SCREWS: EVALUATION OF TECHNIQUE AND COMPLICATIONS. Coluna/Columna, 18(1), 70–73. https://doi.org/10.1590/S1808-185120191801163218
Dong, E., Shi, L., Kang, J., Li, D., Liu, B., Guo, Z., Wang, L., & Li, X. (2020). Biomechanical characterization of vertebral body replacement in situ: Effects of different fixation strategies. Computer Methods and Programs in Biomedicine, 197. https://doi.org/10.1016/J.CMPB.2020.105741
Dumas, R., Lafage, V., Lafon, Y., Steib, J.-P., Mitton, D., & Skalli, W. (2005). Finite element simulation of spinal deformities correction by in situ contouring technique. Computer Methods in Biomechanics and Biomedical Engineering, 8(5), 331–337. https://doi.org/10.1080/10255840500309653
Eberlein, R., Holzapfel, G. A., & Schulze-Bauer, C. A. J. (2001). An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies. Computer Methods in Biomechanics and Biomedical Engineering, 4(3), 209–229. https://doi.org/10.1080/10255840108908005
Ebraheim, N., Elgafy, H., Gagnet, P., Andrews, K., & Kern, K. (2018). Spondylolysis and spondylolisthesis: A review of the literature. In Journal of Orthopaedics (Vol. 15, Issue 2, pp. 404–407). Reed Elsevier India Pvt. Ltd. https://doi.org/10.1016/j.jor.2018.03.008
El-Rich, M., Villemure, I., Labelle, H., & Aubin, C. E. (2009). Mechanical loading effects on isthmic spondylolytic lumbar segment: Finite element modelling using a personalised geometry. Computer Methods in Biomechanics and Biomedical Engineering, 12(1), 13–23. https://doi.org/10.1080/10255840802069823
El-Rich, Marwan, Aubin, C.-E., Villemure, I., & Labelle, H. (2006). A Biomechanical Study of L5-S1 Low-Grade Isthmic Spondylolisthesis Using a Personalized Finite Element Model.
Ferguson, S. J., Ito, K., & Nolte, L. P. (2004). Fluid flow and convective transport of solutes within the intervertebral disc. Journal of Biomechanics, 37(2), 213–221. https://doi.org/10.1016/S0021-9290(03)00250-1
Foley, M. J., Calenoff, L., Hendnix, R. W., & Schafer, M. F. (1983). Thoracic and Lumbar Spine Fusion: Postoperative Radiologic Evaluation.
Friis, E. A., Arnold, P. M., & Goel, V. K. (2017). Mechanical testing of cervical, thoracolumbar, and lumbar spine implants. Mechanical Testing of Orthopaedic Implants, 161–180. https://doi.org/10.1016/B978-0-08-100286-5.00009-3
Gangwar, A., & Pheroz, M. (2016). Correlation between intraoperative insertional torque of pedicle screws and bone mineral density in thoracic and lumbar spine injuries. ~ 154 ~ International Journal of Orthopaedics Sciences, 2(3), 154–157. www.orthopaper.com
Ghista, D. N., Viviani, G. R., Subbaraj, K., Lozada, P. J., Srinivasan, T. M., & Barnes, G. (1988). Biomechanical basis of optimal scoliosis surgical correction. Journal of Biomechanics, 21(2), 77–88. https://doi.org/10.1016/0021-9290(88)90001-2
González Gutiérrez, R. A. (2013). Biomecánica Del Disco Intervertebral a Compresion. MEMORIAS DEL XIX CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 25 Al 27 DE SEPTIEMBRE, 2013 PACHUCA, HIDALGO, MÉXICO, 86–96.
Green, T. P., Allvey, J. C., & Adams, M. A. (1994). Spondylolysis. Bending of the inferior articular processes of lumbar vertebrae during simulated spinal movements. Spine, 19(23), 2683–2691. https://doi.org/10.1097/00007632-199412000-00016
Han, K. S., Zander, T., Taylor, W. R., & Rohlmann, A. (2012). An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Medical Engineering and Physics, 34(6), 709–716. https://doi.org/10.1016/j.medengphy.2011.09.014
Hirose, O. (2022). Geodesic-Based Bayesian Coherent Point Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2022.3214191
Holzapfel, G. A., Schulze-Bauer, C. A. J., Feigl, G., & Regitnig, P. (2005). Single lamellar mechanics of the human lumbar anulus fibrosus. Biomechanics and Modeling in Mechanobiology, 3(3), 125–140. https://doi.org/10.1007/S10237-004-0053-8
Huber, G., Nagel, K., Skrzypiec, D. M., Klein, A., Püschel, K., & Morlock, M. M. (2016). A description of spinal fatigue strength. Journal of Biomechanics, 49(6), 875–880. https://doi.org/10.1016/J.JBIOMECH.2016.01.041
Ichikawa, N., Ohara, Y., Morishita, T., Taniguichi, Y., Koshikawa, A., & Matsukura, N. (1982). AN AETIOLOGICAL STUDY ON SPONDYLOLYSIS FROM A BIOMECHANICAL ASPECT. J. Sports Med, 16(3), 135–141. https://doi.org/10.1136/bjsm.16.3.135
ISO 5832-3:2021 Implants for surgery — Metallic materials — Part 3: Wrought titanium 6-aluminium 4-vanadium alloy, (2021).
Ivancic, P. C., Panjabi, M. M., & Ito, S. (2006). Cervical spine loads and intervertebral motions during whiplash. Traffic Injury Prevention, 7(4), 389–399. https://doi.org/10.1080/15389580600789127
Jamshidnejad, S., & Arjmand, N. (2015). Variations in trunk muscle activities and spinal loads following posterior lumbar surgery: A combined in vivo and modeling investigation. Clinical Biomechanics (Bristol, Avon), 30(10), 1036–1042. https://doi.org/10.1016/J.CLINBIOMECH.2015.09.010
Jazini, E., Klocke, N., Tannous, O., Johal, H. S., Hao, J., Salloum, K., Gelb, D. E., Nascone, J. W., Belin, E., Hoshino, C. M., Hussain, M., OʼToole, R. V., Bucklen, B., & Ludwig, S. C. (2017). Does Lumbopelvic Fixation Add Stability? A Cadaveric Biomechanical Analysis of an Unstable Pelvic Fracture Model. Journal of Orthopaedic Trauma, 31(1), 37–46. https://doi.org/10.1097/BOT.0000000000000703
Kajiura, K., Katoh, S., Sairyo, K., Ikata, T., Goel, V. K., & Murakami, R. I. (2001). Slippage mechanism of pediatric spondylolysis: biomechanical study using immature calf spines. Spine, 26(20), 2208–2212. https://doi.org/10.1097/00007632-200110150-00010
Karsy, M., Jensen, M. R., Cole, K., Guan, J., Brock, A., Cole, C., Karsy, M., Jensen, M. R., Cole, K., Guan, J., Brock, A., & Cole, C. (2017). Thoracolumbar Cortical Screw Placement with Interbody Fusion: Technique and Considerations. Cureus, 9(7). https://doi.org/10.7759/CUREUS.1419
Kasliwal, M. K., Smith, J. S., Kanter, A., Chen, C. J., Mummaneni, P. V., Hart, R. A., & Shaffrey, C. I. (2013). Management of High-Grade Spondylolisthesis. In Neurosurgery Clinics of North America (Vol. 24, Issue 2, pp. 275–291). Elsevier. https://doi.org/10.1016/j.nec.2012.12.002
Kim, Y. E., & Choi, H. W. (2017). Does stabilization of the degenerative lumbar spine itself produce multifidus atrophy? Medical Engineering and Physics, 49, 63–70. https://doi.org/10.1016/j.medengphy.2017.07.008
Kurutz, M. (2010). Finite Element Modeling of the Human Lumbar Spine 209 x Finite Element Modeling of the Human Lumbar Spine. IntechOpen. https://doi.org/10.5772/INTECHOPEN.83983
La Barbera, L., Galbusera, F., Villa, T., Costa, F., & Wilke, H. J. (2014). ASTM F1717 standard for the preclinical evaluation of posterior spinal fixators: can we improve it? Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 228(10), 1014–1026. https://doi.org/10.1177/0954411914554244
La Barbera, L., Galbusera, F., Wilke, H. J., & Villa, T. (2016). Preclinical evaluation of posterior spine stabilization devices: can the current standards represent basic everyday life activities? European Spine Journal, 25(9), 2909–2918. https://doi.org/10.1007/s00586-016-4622-1
La Barbera, L., & Villa, T. (2016). ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices--I: Assembly procedure and validation. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 230(2), 122–133. https://doi.org/10.1177/0954411915621587
Lafage, V., Dubousset, J., Lavaste, F., & Skalli, W. (2004). 3D finite element simulation of Cotrel–Dubousset correction. Computer Aided Surgery, 9(42006), 17–25. https://doi.org/10.3109/10929080400006390
Laubach, M., Kobbe, P., & Hutmacher, D. W. (2022). Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials, 288, 121699. https://doi.org/10.1016/J.BIOMATERIALS.2022.121699
Le Borgne, P., Skalli, W., Lecire, C., Dubousset, J., Zeller, R., & Lavaste, F. (1999). Simulation of CD Surgery on a Personalized Finite Element Model: Preliminary results. Studies in Health Technology and Informatics, 59, 126–129. https://doi.org/10.3233/978-1-60750-903-5-126
Lemus Cruz, L. M., Almagro Urrutia, Z. E., Sáez Carriera, R., Justo Díaz, M., & Sánchez Silot, C. (2012). Fallas mecánicas y biológicas en las prótesis sobre implantes. Revista Habanera de Ciencias Médicas, 11(4), 563–577. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2012000400017&lng=es&tlng=es
Lindsey, D. P., Kiapour, A., Yerby, S. A., & Goel, V. K. (2015). Sacroiliac joint fusion minimally affects adjacent lumbar segment motion: A finite element study. International Journal of Spine Surgery, 9. https://doi.org/10.14444/2064
Little, J. P. (2019). The spine: Biomechanics and subject-specific finite element models. In DHM and Posturography (pp. 287–293). Elsevier. https://doi.org/10.1016/B978-0-12-816713-7.00022-2
Liu, H. L., Sun, M. T., Lin, C. L., Cheng, H. Y., Wei, K. C., & Su, W. K. (2008). Biomechanical analysis of interbody and posterolateral fusion with transpedicular screw fixation for spondylolisthesis: A finite element study. Biomedical Engineering - Applications, Basis and Communications, 20(3), 145–151. https://doi.org/10.4015/S1016237208000702
Liu, X., Huang, Z., Zhou, R., Zhu, Q., Ji, W., Long, Y., & Wang, J. (2018). The Effects of Orientation of Lumbar Facet Joints on the Facet Joint Contact Forces. SPINE, 43(4), E216–E220. https://doi.org/10.1097/BRS.0000000000002290
Wu, C., Deng, J., Li, T., Tan, L., & Yuan, D. (2020). Percutaneous Pedicle Screw Placement Aided by a New Drill Guide Template Combined with Fluoroscopy: An Accuracy Study. Orthopaedic Surgery, 12(2). https://doi.org/10.1111/os.12642
Xiao, Z., Wang, L., Gong, H., & Zhu, D. (2012). Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomedical Engineering Online, 11. https://doi.org/10.1186/1475-925X-11-31
Xiao, Z., Wang, L., Gong, H., Zhu, D., & Zhang, X. (2011). A non-linear finite element model of human L4-L5 lumbar spinal segment with three-dimensional solid element ligaments. Theoretical and Applied Mechanics Letters, 1(6), 064001. https://doi.org/10.1063/2.1106401
Yan, D. L., Pei, F. X., Li, J., & Soo, C. L. (2008). Comparative study of PILF and TLIF treatment in adult degenerative spondylolisthesis. European Spine Journal, 17(10), 1311–1316. https://doi.org/10.1007/s00586-008-0739-1
Yang, S., Sun, T., Zhang, L., Cong, M., Guo, A., Liu, D., & Song, M. (2023). Stress Distribution of Different Pedicle Screw Insertion Techniques Following Single-Segment TLIF: A Finite Element Analysis Study. Orthopaedic Surgery, 15(4). https://doi.org/10.1111/OS.13671
Ye, Y., Jin, S., Zou, Y., Fang, Y., Xu, P., Zhang, Z., Wu, N., & Zhang, C. (2022). Biomechanical evaluation of lumbar spondylolysis repair with various fixation options: A finite element analysis. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/FBIOE.2022.1024159
Youssef, E. M. (2023). Sacropelvic fixation. Egyptian Journal of Neurosurgery 2023 38:1, 38(1), 1–14. https://doi.org/10.1186/S41984-022-00182-W
Zahaf, S., Kebdani, S., Ghalem, M., Mestar, A., Zina, N., & Aour, B. (2018). Biomechanical Evaluation of Two Posterior Lumbar Intervertebral Fusion Surgical Scenarios Reinforced by a Rigid Posterior Fixation System in the Vertebral Column Analyzed by the Finite Element Method. Nano Biomed. Eng, 10(3), 258–278. https://doi.org/10.5101/nbe.v10i3.p258-278
Zhang, T., Ren, X., Feng, X., Diwan, A., Luk, K. D. K., Lu, W. W., Wong, T. M., Li, C., & Cheung, J. P. Y. (2020). Failure mechanisms of pedicle screws and cortical screws fixation under large displacement: A biomechanical and microstructural study based on a clinical case scenario. Journal of the Mechanical Behavior of Biomedical Materials, 104. https://doi.org/10.1016/J.JMBBM.2020.103646
Zhang, X., He, J., Feng, W., & Chen, X. (2019). Estimation Requiring Torque of Prosthetic Screw by Finite Element Analysis and Experiment. IOP Conference Series: Materials Science and Engineering, 631(3), 032030. https://doi.org/10.1088/1757-899X/631/3/032030
Zhu, R., Niu, W. xin, Zeng, Z. li, Tong, J. hua, Zhen, Z. wei, Zhou, S., Yu, Y., & Cheng, L. ming. (2017). The effects of muscle weakness on degenerative spondylolisthesis: A finite element study. Clinical Biomechanics (Bristol, Avon), 41, 34–38. https://doi.org/10.1016/J.CLINBIOMECH.2016.11.007
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 263 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Minas - Maestría en Ingeniería Mecánica
dc.publisher.faculty.spa.fl_str_mv Facultad de Minas
dc.publisher.place.spa.fl_str_mv Medellín
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/85234/4/1152456017.2023.pdf
https://repositorio.unal.edu.co/bitstream/unal/85234/3/license.txt
bitstream.checksum.fl_str_mv 0c0da5e5fe7e85f2d8888f8ff52b3ec5
eb34b1cf90b7e1103fc9dfd26be24b4a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1806886708975763456
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Ramírez Patiño, Juan Fernando069795e173fc573dbe842cf4713e1ddeRuiz Wills, Carlos Eduardo32f1db9d6c024b1b3912f4bf4dcfea7c600Vallejo Pareja, Samuelaad6cf4708642b3a543a3e811677babd600Grupo de Investigación en Biomecánica e Ingeniería de Rehabilitación (Gibir)Vallejo Pareja, Samuel [0000-0002-5324-9251]Vallejo Pareja, SamuelVallejo Pareja, Samuel2024-01-11T20:10:28Z2024-01-11T20:10:28Z2023https://repositorio.unal.edu.co/handle/unal/85234Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustracionesBased on literature, one of the common lumbar spine disorders reported is the isthmic high-grade spondylolisthesis (HGS), and there is no consensus on its surgical treatment selection. Thus, the present thesis aims to evaluate from an engineering point of view the influence of the fixation configuration for deformed or fractured spine surgery on the stabilization, biomechanical behavior, and stress state of the post-surgical lumbo-pelvic spine, providing a useful source of information for surgical planning and decision making. To evaluate the pathology as HGS (as literature-based selected case of study of deformed spine), a patient specific lumbosacral spine model was obtained with Scalismo and CAD modeling and used as a base to recreate a HGS condition. The diagnosis was made based on clinical literature and consisted of a lumbosacral spine with grade 3 isthmic spondylolisthesis, low dysplasia (L5 rectangular), an unbalanced spine (C7PL in front of FH), and a retroverted pelvis (low SS/high PT, vertical sacrum). Fusion In situ (FIS) with laminotomy and Lumbar interbody fusion (LIF) with reduction and laminotomy techniques were identified as suggested treatments, based on the Mac-Thiong classification scheme and clinical reports. Six variations of each fixation technique, involving adding or removing screws by spine level, were defined as possible instrument configurations, and compared. Based on the case of study and geometrical model, biomechanical Finite element models were developed to evaluate the mechanical response of HGS lumbosacral spine treated with FIS and LIF techniques, along with the proposed configurations. Thirteen models, divided into two groups (FIS and LIF models), were developed as variations of FIS and LIF base models. The spine mesh was built up in Abaqus from the vertebrae, supported by BCPD morphing process. To simulate the mechanical conditions of the surgical procedure in the two groups of FIS and LIF models, Swelling, Reduction/ Displacement, and Fixation standing steps were defined. A comparison between variations by level in the FIS and LIF instrumentation configurations for HGS was developed using FEM. The results obtained can be used to establish which levels are required to fix the system while ensuring the safety of both the biological systems and the instrumental. For model validation, a comparison of FIS and LIF models with experimental, numerical, and clinical outcomes reported in the literature is suggested as an alternative.Con base en la literatura, uno de los trastornos comunes de la columna lumbar reportados es la espondilolistesis ístmica de alto grado (HGS), y no existe un consenso sobre su selección de tratamiento quirúrgico. Por lo tanto, la presente tesis tiene como objetivo evaluar, desde una visión ingenieril, la incidencia de la configuración de fijación para cirugía de columna vertebral deformada o fracturada sobre la estabilización, comportamiento biomecánico y estado de esfuerzos de la columna vertebral lumbo-pélvica postquirúrgica, proporcionando una fuente útil de información en la planificación y toma de decisiones quirúrgicas. Para evaluar una patología como HGS (como un caso de estudio de columna deformada seleccionado basado en la literatura), se obtuvo un modelo de columna lumbosacra de paciente específico utilizando el software Scalismo y modelado CAD, y se utilizó como base para recrear una condición de HGS. El diagnóstico se basó en la literatura clínica y consistió en una columna lumbosacra con espondilolistesis ístmica de grado 3, displasia baja (L5 rectangular), una columna desbalanceada (Línea de gravedad delante de la cabeza del fémur) y una pelvis retroversa (Inclinación sacra baja, inclinación pélvica alta, sacro vertical). Las técnicas de fusión in situ (FIS) con laminotomía y fusión intervertebral lumbar (LIF) con reducción y laminotomía se identificaron como los tratamientos sugeridos, basados en el esquema de clasificación de Mac-Thiong y reportes clínicos. Se definieron seis variaciones de cada técnica de fijación, que implicaban agregar o quitar los tornillos de columna por nivel, como posibles configuraciones de instrumentación y se compararon entre sí. Basándose en el caso de estudio y el modelo geométrico, se desarrollaron modelos biomecánicos de elementos finitos para evaluar la respuesta mecánica de la columna lumbosacra HGS tratada con las técnicas FIS y LIF, junto con las configuraciones propuestas. Se desarrollaron trece modelos divididos en dos grupos (modelos FIS y LIF) como variaciones de los modelos FIS y LIF base. La malla de la columna se construyó en Abaqus a partir de las vértebras, apoyado por el proceso de transformación de malla BCPD. Para simular las condiciones mecánicas del procedimiento quirúrgico en los dos grupos de modelos FIS y LIF, se definieron las etapas de estabilización (estado de hinchamiento de discos intervertebrales), reducción/ desplazamiento y fijación. Se desarrolló un comparativo entre las variaciones por nivel en las configuraciones de instrumentación FIS y LIF para HGS mediante el uso del método de elementos finitos (MEF). Los resultados obtenidos pueden ser utilizados para establecer qué niveles son necesarios para fijar el sistema y, al mismo tiempo, asegurar la seguridad tanto de los sistemas biológicos como de la instrumentación. Como alternativa para la validación del modelo, se propone una comparación de los modelos FIS y LIF con resultados experimentales, numéricos y clínicos reportados en la literatura. (texto tomado de la fuente)MaestríaMagíster en Ingeniería MecánicaBiomecánicaÁrea Curricular de Ingeniería Mecánica263 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería MecánicaFacultad de MinasMedellínUniversidad Nacional de Colombia - Sede Medellín610 - Medicina y salud620 - Ingeniería y operaciones afinesMétodo de elementos finitosBiomecánicaFinite Elements MethodSpondylolisthesisFusion In SituReductionLumbar interbody fusionSpinal fusionMétodo de elementos finitosEspondilolistesisFusión in situReducciónFusión lumbarBiomechanical behavior of the postsurgical deformed lumbo-pelvic spineComportamiento biomecánico de la columna vertebral lumbopélvica deformada postquirúrgicaTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAkpolat, Y. T., Inceoglu, S., Kinne, N., Hunt, D., & Cheng, W. K. (2016). Fatigue performance of cortical bone trajectory screw compared with standard trajectory pedicle screw. Spine, 41(6), E335–E341. https://doi.org/10.1097/BRS.0000000000001233Ambati, D. V., Wright, E. K., Lehman, R. A., Kang, D. G., Wagner, S. C., & Dmitriev, A. E. (2015). Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: A finite element study. Spine Journal, 15(8), 1812–1822. https://doi.org/10.1016/j.spinee.2014.06.015Ambellan, F., Lamecker, H., von Tycowicz, C., & Zachow, S. (2019). Statistical Shape Models: Understanding and Mastering Variation in Anatomy. Advances in Experimental Medicine and Biology, 1156, 67–84. https://doi.org/10.1007/978-3-030-19385-0_5Andersson, B. J. G., Ortengren, R., Nachemson, A., & Elfstrom, G. (1974). Lumbar disc pressure and myoelectric back muscle activity during sitting. I. Studies on an experimental chair. Scandinavian Journal of Rehabilitation Medicine, 6(3), 104–114. https://europepmc.org/article/MED/4417801Anitha, D. P., Baum, T., Kirschke, J. S., & Subburaj, K. (2020). Effect of the intervertebral disc on vertebral bone strength prediction: a finite-element study. Spine Journal, 20(4), 665–671. https://doi.org/10.1016/j.spinee.2019.11.015Argoubi, M., & Shirazi-Adl, A. (1996). Poroelastic creep response analysis of a lumbar motion segment in compression. Journal of Biomechanics, 29(10), 1331–1339. https://doi.org/10.1016/0021-9290(96)00035-8Aubin, C. É., Petit, Y., Stokes, I. A. F., Poulin, F., Gardner-Morse, M., & Labelle, H. (2003). Biomechanical modeling of posterior instrumentation of the scoliotic spine. Computer Methods in Biomechanics and Biomedical Engineering, 6(1), 27–32. https://doi.org/10.1080/1025584031000072237Barrey, C., & Darnis, A. (2015). Current strategies for the restoration of adequate lordosis during lumbar fusion. World Journal of Orthopedics, 6(1), 117–126. https://doi.org/10.5312/wjo.v6.i1.117Barroso Monteiro, N. M. (2009). Analysis of the intervertebral discs adjacent to interbody fusion using a multibody and finite element co-simulation [Universidade Técnica de Lisboa]. https://fenix.ist.utl.pt/dissertacoes/177425Beck, A. W., & Simpson, A. K. (2019). High-Grade Lumbar Spondylolisthesis. In Neurosurgery Clinics of North America (Vol. 30, Issue 3, pp. 291–298). W.B. Saunders. https://doi.org/10.1016/j.nec.2019.02.002Belytschko, T. B., Andriacchi, T. P., Schultz, A. B., & Galante, J. O. (1973). Analog studies of forces in the human spine: Computational techniques. Journal of Biomechanics, 6(4), 361–371. https://doi.org/10.1016/0021-9290(73)90096-1Bereczki, F., Turbucz, M., Kiss, R., Eltes, P. E., & Lazary, A. (2021). Stability Evaluation of Different Oblique Lumbar Interbody Fusion Constructs in Normal and Osteoporotic Condition – A Finite Element Based Study. Frontiers in Bioengineering and Biotechnology, 9, 1. https://doi.org/10.3389/FBIOE.2021.749914/FULLBianco, R.-J., Aubin, C.-E., Mac-Thiong, J.-M., Wagnac, E., & Arnoux, P.-J. (2016). Pedicle Screw Fixation Under Nonaxial Loads. SPINE, 41(3), E124–E130. https://doi.org/10.1097/BRS.0000000000001200Biot, M. A. (2004). General Theory of Three‐Dimensional Consolidation. Journal of Applied Physics, 12(2). https://doi.org/10.1063/1.1712886Biswas, J. K., Rana, M., Majumder, S., Karmakar, S. K., & Roychowdhury, A. (2018). Effect of two-level pedicle-screw fixation with different rod materials on lumbar spine: A finite element study. Journal of Orthopaedic Science, 23(2), 258–265. https://doi.org/10.1016/j.jos.2017.10.009Brodke, D., Kalfas, I., Dezsö Jeszenszky, M., & Shufflebarger, H. (2019). Surgical Technique EXPEDIUM 5.5 TITANIUM. http://synthes.vo.llnwd.net/o16/LLNWMB8/INT Mobile/Synthes International/Product Support Material/legacy_Synthes_PDF/105717.pdfBruno, A. G., Bouxsein, M. L., & Anderson, D. E. (2015). Development and Validation of a Musculoskeletal Model of the Fully Articulated Thoracolumbar Spine and Rib Cage. Journal of Biomechanical Engineering, 137(8). https://doi.org/10.1115/1.4030408Cailliet, R. (2006). Anatomía funcional, Biomecánica. Marbán.Calvert, G. C., III, G. V. H., Jr, W. M. R., Smith, M. W., McEntire, B. J., & Bal, B. S. (2020). Clinical outcomes for lumbar fusion using silicon nitride versus other biomaterials. Journal of Spine Surgery, 6(1), 33–48. https://doi.org/10.21037/jss.2019.12.11Center for Devices and Radiological Health - FDA. (2020). Spinal Plating Systems – Performance Criteria for Safety and Performance Based Pathway (FDA-2019-D-1647). Center for Devices and Radiological Health - FDA. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/spinal-plating-systems-performance-criteria-safety-and-performance-based-pathwayChen, C. S., Chen, W. J., Cheng, C. K., Jao, S. H. E., Chueh, S. C., & Wang, C. C. (2005). Failure analysis of broken pedicle screws on spinal instrumentation. Medical Engineering & Physics, 27(6), 487–496. https://doi.org/10.1016/J.MEDENGPHY.2004.12.007Chen, C. S., Cheng, C. K., Liu, C. L., & Lo, W. H. (2001). Stress analysis of the disc adjacent to interbody fusion in lumbar spine. Medical Engineering and Physics, 23(7), 485–493. https://doi.org/10.1016/s1350-4533(01)00076-5Chen, L., Feng, Y. Y., Che, C.-Q. Q., Gu, Y., Wang, L.-J. J., & Yang, H.-L. L. (2016). Influence of Sacral Slope on the Loading of Pedicle Screws in Postoperative L5/S1 Isthmic Spondylolisthesis Patient A Finite Element Analysis. Spine, 41(23), E1388–E1393. https://doi.org/10.1097/BRS.0000000000001632Chen, M. R., Moore, T. A., Cooperman, D. R., & Lee, M. J. (2013). Anatomic Variability of 120 L5 Spondylolytic Defects. Global Spine Journal, 3(4), 243–247. https://doi.org/10.1055/s-0033-1356765Cheng, W. K., & Inceoglu, S. (2015). Cortical and standard trajectory pedicle screw fixation techniques in stabilizing multisegment lumbar spine with low grade spondylolisthesis. International Journal of Spine Surgery, 9. https://doi.org/10.14444/2046Chosa, E., Totoribe, K., & Tajima, N. (2004). A biomechanical study of lumbar spondylolysis based on a three-dimensional finite element method. Journal of Orthopaedic Research, 22(1), 158–163. https://doi.org/10.1016/S0736-0266(03)00160-8Christophy, M., Adila, N., Senan, F., Lotz, J. C., O ’reilly, O. M., Christophy, M., Senan, N. A. F., O ’reilly, O. M., & Lotz, J. C. (2012). A Musculoskeletal model for the lumbar spine. Biomech Model Mechanobiol, 11, 19–34. https://doi.org/10.1007/s10237-011-0290-6Clin, J., Aubin, C. É., Lalonde, N., Parent, S., & Labelle, H. (2011). A new method to include the gravitational forces in a finite element model of the scoliotic spine. Medical & Biological Engineering & Computing, 49(8), 967–977. https://doi.org/10.1007/S11517-011-0793-4CoreLink Surgical. (2023). Tiger Iliac Pedicle Screw System. https://corelinksurgical.com/product/tiger-iliac/De Kunder, S. L., Rijkers, K., Caelers, I. J. M. H., De Bie, R. A., Koehler, P. J., & Van Santbrink, H. (2018). Lumbar interbody fusion. In Spine (Vol. 43, Issue 16, pp. 1161–1168). Lippincott Williams and Wilkins. https://doi.org/10.1097/BRS.0000000000002534Do Vale Mendonça, L., Kusabara, R., Mastromauro De Oliveira, F., Nagasse, Y., Ribeiro, I., Yamazato, C., & Soares De Souza, E. (2019). SACROPELVIC FIXATION USING ILIAC SCREWS: EVALUATION OF TECHNIQUE AND COMPLICATIONS. Coluna/Columna, 18(1), 70–73. https://doi.org/10.1590/S1808-185120191801163218Dong, E., Shi, L., Kang, J., Li, D., Liu, B., Guo, Z., Wang, L., & Li, X. (2020). Biomechanical characterization of vertebral body replacement in situ: Effects of different fixation strategies. Computer Methods and Programs in Biomedicine, 197. https://doi.org/10.1016/J.CMPB.2020.105741Dumas, R., Lafage, V., Lafon, Y., Steib, J.-P., Mitton, D., & Skalli, W. (2005). Finite element simulation of spinal deformities correction by in situ contouring technique. Computer Methods in Biomechanics and Biomedical Engineering, 8(5), 331–337. https://doi.org/10.1080/10255840500309653Eberlein, R., Holzapfel, G. A., & Schulze-Bauer, C. A. J. (2001). An Anisotropic Model for Annulus Tissue and Enhanced Finite Element Analyses of Intact Lumbar Disc Bodies. Computer Methods in Biomechanics and Biomedical Engineering, 4(3), 209–229. https://doi.org/10.1080/10255840108908005Ebraheim, N., Elgafy, H., Gagnet, P., Andrews, K., & Kern, K. (2018). Spondylolysis and spondylolisthesis: A review of the literature. In Journal of Orthopaedics (Vol. 15, Issue 2, pp. 404–407). Reed Elsevier India Pvt. Ltd. https://doi.org/10.1016/j.jor.2018.03.008El-Rich, M., Villemure, I., Labelle, H., & Aubin, C. E. (2009). Mechanical loading effects on isthmic spondylolytic lumbar segment: Finite element modelling using a personalised geometry. Computer Methods in Biomechanics and Biomedical Engineering, 12(1), 13–23. https://doi.org/10.1080/10255840802069823El-Rich, Marwan, Aubin, C.-E., Villemure, I., & Labelle, H. (2006). A Biomechanical Study of L5-S1 Low-Grade Isthmic Spondylolisthesis Using a Personalized Finite Element Model.Ferguson, S. J., Ito, K., & Nolte, L. P. (2004). Fluid flow and convective transport of solutes within the intervertebral disc. Journal of Biomechanics, 37(2), 213–221. https://doi.org/10.1016/S0021-9290(03)00250-1Foley, M. J., Calenoff, L., Hendnix, R. W., & Schafer, M. F. (1983). Thoracic and Lumbar Spine Fusion: Postoperative Radiologic Evaluation.Friis, E. A., Arnold, P. M., & Goel, V. K. (2017). Mechanical testing of cervical, thoracolumbar, and lumbar spine implants. Mechanical Testing of Orthopaedic Implants, 161–180. https://doi.org/10.1016/B978-0-08-100286-5.00009-3Gangwar, A., & Pheroz, M. (2016). Correlation between intraoperative insertional torque of pedicle screws and bone mineral density in thoracic and lumbar spine injuries. ~ 154 ~ International Journal of Orthopaedics Sciences, 2(3), 154–157. www.orthopaper.comGhista, D. N., Viviani, G. R., Subbaraj, K., Lozada, P. J., Srinivasan, T. M., & Barnes, G. (1988). Biomechanical basis of optimal scoliosis surgical correction. Journal of Biomechanics, 21(2), 77–88. https://doi.org/10.1016/0021-9290(88)90001-2González Gutiérrez, R. A. (2013). Biomecánica Del Disco Intervertebral a Compresion. MEMORIAS DEL XIX CONGRESO INTERNACIONAL ANUAL DE LA SOMIM 25 Al 27 DE SEPTIEMBRE, 2013 PACHUCA, HIDALGO, MÉXICO, 86–96.Green, T. P., Allvey, J. C., & Adams, M. A. (1994). Spondylolysis. Bending of the inferior articular processes of lumbar vertebrae during simulated spinal movements. Spine, 19(23), 2683–2691. https://doi.org/10.1097/00007632-199412000-00016Han, K. S., Zander, T., Taylor, W. R., & Rohlmann, A. (2012). An enhanced and validated generic thoraco-lumbar spine model for prediction of muscle forces. Medical Engineering and Physics, 34(6), 709–716. https://doi.org/10.1016/j.medengphy.2011.09.014Hirose, O. (2022). Geodesic-Based Bayesian Coherent Point Drift. IEEE Transactions on Pattern Analysis and Machine Intelligence. https://doi.org/10.1109/TPAMI.2022.3214191Holzapfel, G. A., Schulze-Bauer, C. A. J., Feigl, G., & Regitnig, P. (2005). Single lamellar mechanics of the human lumbar anulus fibrosus. Biomechanics and Modeling in Mechanobiology, 3(3), 125–140. https://doi.org/10.1007/S10237-004-0053-8Huber, G., Nagel, K., Skrzypiec, D. M., Klein, A., Püschel, K., & Morlock, M. M. (2016). A description of spinal fatigue strength. Journal of Biomechanics, 49(6), 875–880. https://doi.org/10.1016/J.JBIOMECH.2016.01.041Ichikawa, N., Ohara, Y., Morishita, T., Taniguichi, Y., Koshikawa, A., & Matsukura, N. (1982). AN AETIOLOGICAL STUDY ON SPONDYLOLYSIS FROM A BIOMECHANICAL ASPECT. J. Sports Med, 16(3), 135–141. https://doi.org/10.1136/bjsm.16.3.135ISO 5832-3:2021 Implants for surgery — Metallic materials — Part 3: Wrought titanium 6-aluminium 4-vanadium alloy, (2021).Ivancic, P. C., Panjabi, M. M., & Ito, S. (2006). Cervical spine loads and intervertebral motions during whiplash. Traffic Injury Prevention, 7(4), 389–399. https://doi.org/10.1080/15389580600789127Jamshidnejad, S., & Arjmand, N. (2015). Variations in trunk muscle activities and spinal loads following posterior lumbar surgery: A combined in vivo and modeling investigation. Clinical Biomechanics (Bristol, Avon), 30(10), 1036–1042. https://doi.org/10.1016/J.CLINBIOMECH.2015.09.010Jazini, E., Klocke, N., Tannous, O., Johal, H. S., Hao, J., Salloum, K., Gelb, D. E., Nascone, J. W., Belin, E., Hoshino, C. M., Hussain, M., OʼToole, R. V., Bucklen, B., & Ludwig, S. C. (2017). Does Lumbopelvic Fixation Add Stability? A Cadaveric Biomechanical Analysis of an Unstable Pelvic Fracture Model. Journal of Orthopaedic Trauma, 31(1), 37–46. https://doi.org/10.1097/BOT.0000000000000703Kajiura, K., Katoh, S., Sairyo, K., Ikata, T., Goel, V. K., & Murakami, R. I. (2001). Slippage mechanism of pediatric spondylolysis: biomechanical study using immature calf spines. Spine, 26(20), 2208–2212. https://doi.org/10.1097/00007632-200110150-00010Karsy, M., Jensen, M. R., Cole, K., Guan, J., Brock, A., Cole, C., Karsy, M., Jensen, M. R., Cole, K., Guan, J., Brock, A., & Cole, C. (2017). Thoracolumbar Cortical Screw Placement with Interbody Fusion: Technique and Considerations. Cureus, 9(7). https://doi.org/10.7759/CUREUS.1419Kasliwal, M. K., Smith, J. S., Kanter, A., Chen, C. J., Mummaneni, P. V., Hart, R. A., & Shaffrey, C. I. (2013). Management of High-Grade Spondylolisthesis. In Neurosurgery Clinics of North America (Vol. 24, Issue 2, pp. 275–291). Elsevier. https://doi.org/10.1016/j.nec.2012.12.002Kim, Y. E., & Choi, H. W. (2017). Does stabilization of the degenerative lumbar spine itself produce multifidus atrophy? Medical Engineering and Physics, 49, 63–70. https://doi.org/10.1016/j.medengphy.2017.07.008Kurutz, M. (2010). Finite Element Modeling of the Human Lumbar Spine 209 x Finite Element Modeling of the Human Lumbar Spine. IntechOpen. https://doi.org/10.5772/INTECHOPEN.83983La Barbera, L., Galbusera, F., Villa, T., Costa, F., & Wilke, H. J. (2014). ASTM F1717 standard for the preclinical evaluation of posterior spinal fixators: can we improve it? Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 228(10), 1014–1026. https://doi.org/10.1177/0954411914554244La Barbera, L., Galbusera, F., Wilke, H. J., & Villa, T. (2016). Preclinical evaluation of posterior spine stabilization devices: can the current standards represent basic everyday life activities? European Spine Journal, 25(9), 2909–2918. https://doi.org/10.1007/s00586-016-4622-1La Barbera, L., & Villa, T. (2016). ISO 12189 standard for the preclinical evaluation of posterior spinal stabilization devices--I: Assembly procedure and validation. Proceedings of the Institution of Mechanical Engineers. Part H, Journal of Engineering in Medicine, 230(2), 122–133. https://doi.org/10.1177/0954411915621587Lafage, V., Dubousset, J., Lavaste, F., & Skalli, W. (2004). 3D finite element simulation of Cotrel–Dubousset correction. Computer Aided Surgery, 9(42006), 17–25. https://doi.org/10.3109/10929080400006390Laubach, M., Kobbe, P., & Hutmacher, D. W. (2022). Biodegradable interbody cages for lumbar spine fusion: Current concepts and future directions. Biomaterials, 288, 121699. https://doi.org/10.1016/J.BIOMATERIALS.2022.121699Le Borgne, P., Skalli, W., Lecire, C., Dubousset, J., Zeller, R., & Lavaste, F. (1999). Simulation of CD Surgery on a Personalized Finite Element Model: Preliminary results. Studies in Health Technology and Informatics, 59, 126–129. https://doi.org/10.3233/978-1-60750-903-5-126Lemus Cruz, L. M., Almagro Urrutia, Z. E., Sáez Carriera, R., Justo Díaz, M., & Sánchez Silot, C. (2012). Fallas mecánicas y biológicas en las prótesis sobre implantes. Revista Habanera de Ciencias Médicas, 11(4), 563–577. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519X2012000400017&lng=es&tlng=esLindsey, D. P., Kiapour, A., Yerby, S. A., & Goel, V. K. (2015). Sacroiliac joint fusion minimally affects adjacent lumbar segment motion: A finite element study. International Journal of Spine Surgery, 9. https://doi.org/10.14444/2064Little, J. P. (2019). The spine: Biomechanics and subject-specific finite element models. In DHM and Posturography (pp. 287–293). Elsevier. https://doi.org/10.1016/B978-0-12-816713-7.00022-2Liu, H. L., Sun, M. T., Lin, C. L., Cheng, H. Y., Wei, K. C., & Su, W. K. (2008). Biomechanical analysis of interbody and posterolateral fusion with transpedicular screw fixation for spondylolisthesis: A finite element study. Biomedical Engineering - Applications, Basis and Communications, 20(3), 145–151. https://doi.org/10.4015/S1016237208000702Liu, X., Huang, Z., Zhou, R., Zhu, Q., Ji, W., Long, Y., & Wang, J. (2018). The Effects of Orientation of Lumbar Facet Joints on the Facet Joint Contact Forces. SPINE, 43(4), E216–E220. https://doi.org/10.1097/BRS.0000000000002290Wu, C., Deng, J., Li, T., Tan, L., & Yuan, D. (2020). Percutaneous Pedicle Screw Placement Aided by a New Drill Guide Template Combined with Fluoroscopy: An Accuracy Study. Orthopaedic Surgery, 12(2). https://doi.org/10.1111/os.12642Xiao, Z., Wang, L., Gong, H., & Zhu, D. (2012). Biomechanical evaluation of three surgical scenarios of posterior lumbar interbody fusion by finite element analysis. Biomedical Engineering Online, 11. https://doi.org/10.1186/1475-925X-11-31Xiao, Z., Wang, L., Gong, H., Zhu, D., & Zhang, X. (2011). A non-linear finite element model of human L4-L5 lumbar spinal segment with three-dimensional solid element ligaments. Theoretical and Applied Mechanics Letters, 1(6), 064001. https://doi.org/10.1063/2.1106401Yan, D. L., Pei, F. X., Li, J., & Soo, C. L. (2008). Comparative study of PILF and TLIF treatment in adult degenerative spondylolisthesis. European Spine Journal, 17(10), 1311–1316. https://doi.org/10.1007/s00586-008-0739-1Yang, S., Sun, T., Zhang, L., Cong, M., Guo, A., Liu, D., & Song, M. (2023). Stress Distribution of Different Pedicle Screw Insertion Techniques Following Single-Segment TLIF: A Finite Element Analysis Study. Orthopaedic Surgery, 15(4). https://doi.org/10.1111/OS.13671Ye, Y., Jin, S., Zou, Y., Fang, Y., Xu, P., Zhang, Z., Wu, N., & Zhang, C. (2022). Biomechanical evaluation of lumbar spondylolysis repair with various fixation options: A finite element analysis. Frontiers in Bioengineering and Biotechnology, 10. https://doi.org/10.3389/FBIOE.2022.1024159Youssef, E. M. (2023). Sacropelvic fixation. Egyptian Journal of Neurosurgery 2023 38:1, 38(1), 1–14. https://doi.org/10.1186/S41984-022-00182-WZahaf, S., Kebdani, S., Ghalem, M., Mestar, A., Zina, N., & Aour, B. (2018). Biomechanical Evaluation of Two Posterior Lumbar Intervertebral Fusion Surgical Scenarios Reinforced by a Rigid Posterior Fixation System in the Vertebral Column Analyzed by the Finite Element Method. Nano Biomed. Eng, 10(3), 258–278. https://doi.org/10.5101/nbe.v10i3.p258-278Zhang, T., Ren, X., Feng, X., Diwan, A., Luk, K. D. K., Lu, W. W., Wong, T. M., Li, C., & Cheung, J. P. Y. (2020). Failure mechanisms of pedicle screws and cortical screws fixation under large displacement: A biomechanical and microstructural study based on a clinical case scenario. Journal of the Mechanical Behavior of Biomedical Materials, 104. https://doi.org/10.1016/J.JMBBM.2020.103646Zhang, X., He, J., Feng, W., & Chen, X. (2019). Estimation Requiring Torque of Prosthetic Screw by Finite Element Analysis and Experiment. IOP Conference Series: Materials Science and Engineering, 631(3), 032030. https://doi.org/10.1088/1757-899X/631/3/032030Zhu, R., Niu, W. xin, Zeng, Z. li, Tong, J. hua, Zhen, Z. wei, Zhou, S., Yu, Y., & Cheng, L. ming. (2017). The effects of muscle weakness on degenerative spondylolisthesis: A finite element study. Clinical Biomechanics (Bristol, Avon), 41, 34–38. https://doi.org/10.1016/J.CLINBIOMECH.2016.11.007EstudiantesInvestigadoresMaestrosORIGINAL1152456017.2023.pdf1152456017.2023.pdfTesis de Maestría en Ingeniería Mecánicaapplication/pdf20568463https://repositorio.unal.edu.co/bitstream/unal/85234/4/1152456017.2023.pdf0c0da5e5fe7e85f2d8888f8ff52b3ec5MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85234/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53unal/85234oai:repositorio.unal.edu.co:unal/852342024-01-11 15:10:32.084Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=