Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales

Ilustraciones, fotografías, mapas

Autores:
Santa Ceballos, Juan Pablo
Tipo de recurso:
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/87034
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/87034
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnolias
580 - Plantas::581 - Temas específicos en historia natural de las plantas
570 - Biología::578 - Historia natural de los organismos y temas relacionados
500 - Ciencias naturales y matemáticas::508 - Historia natural
Ecosistemas vulnerables - Colombia
Plantas - Hábitat - Colombia
Flores - Conservación
Cambios climáticos
Andes tropicales
especies amenazadas
conservación
nicho ecológico
polinizadores
Tropical Andes
Endangered species
Conservation
Ecological niche
Pollinators
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
id UNACIONAL2_d5932c62bab5e07d8e89832d1f9ff229
oai_identifier_str oai:repositorio.unal.edu.co:unal/87034
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.none.fl_str_mv Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales
dc.title.translated.eng.fl_str_mv Interaction of environmental and landscape variables in the distribution of two Andean Magnolias and their floral visitors
title Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales
spellingShingle Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales
570 - Biología::577 - Ecología
580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnolias
580 - Plantas::581 - Temas específicos en historia natural de las plantas
570 - Biología::578 - Historia natural de los organismos y temas relacionados
500 - Ciencias naturales y matemáticas::508 - Historia natural
Ecosistemas vulnerables - Colombia
Plantas - Hábitat - Colombia
Flores - Conservación
Cambios climáticos
Andes tropicales
especies amenazadas
conservación
nicho ecológico
polinizadores
Tropical Andes
Endangered species
Conservation
Ecological niche
Pollinators
title_short Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales
title_full Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales
title_fullStr Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales
title_full_unstemmed Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales
title_sort Relación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes florales
dc.creator.fl_str_mv Santa Ceballos, Juan Pablo
dc.contributor.advisor.none.fl_str_mv Urrego Giraldo, Ligia Estela
Serna González, Marcela
dc.contributor.author.none.fl_str_mv Santa Ceballos, Juan Pablo
dc.contributor.orcid.spa.fl_str_mv Santa Ceballos, Juan Pablo [0000-0002-4380-1276]
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnolias
580 - Plantas::581 - Temas específicos en historia natural de las plantas
570 - Biología::578 - Historia natural de los organismos y temas relacionados
500 - Ciencias naturales y matemáticas::508 - Historia natural
topic 570 - Biología::577 - Ecología
580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnolias
580 - Plantas::581 - Temas específicos en historia natural de las plantas
570 - Biología::578 - Historia natural de los organismos y temas relacionados
500 - Ciencias naturales y matemáticas::508 - Historia natural
Ecosistemas vulnerables - Colombia
Plantas - Hábitat - Colombia
Flores - Conservación
Cambios climáticos
Andes tropicales
especies amenazadas
conservación
nicho ecológico
polinizadores
Tropical Andes
Endangered species
Conservation
Ecological niche
Pollinators
dc.subject.lemb.none.fl_str_mv Ecosistemas vulnerables - Colombia
Plantas - Hábitat - Colombia
Flores - Conservación
Cambios climáticos
dc.subject.proposal.spa.fl_str_mv Andes tropicales
especies amenazadas
conservación
nicho ecológico
polinizadores
dc.subject.proposal.eng.fl_str_mv Tropical Andes
Endangered species
Conservation
Ecological niche
Pollinators
description Ilustraciones, fotografías, mapas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-10-23T21:41:56Z
dc.date.available.none.fl_str_mv 2024-10-23T21:41:56Z
dc.date.issued.none.fl_str_mv 2024
dc.type.spa.fl_str_mv Trabajo de grado - Maestría
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TM
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/87034
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/87034
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.indexed.spa.fl_str_mv LaReferencia
dc.relation.references.spa.fl_str_mv Adhikari D., R. Tiwary y S. K. Barik. 2015. Modelling hotspots for invasive alien plants in India. PLoS One 10(7): e0134665.
Adhikari, D., P. P. Singh, R. Tiwari y S. K. Baril. 2019. Modelling the environmental niche and potential distribution of Magnolia campbelli Hook. f. and Thomson for its conservation in eastern Himalaya. Plants of commercial values, 79-88.
Aguilar-Cano, J., H. Mendoza-Cifuentes y M. Ayala-Joya. 2018. Dos nuevas especies de árboles molinillo (Magnolia: Magnoliaceae) de la Serranía de los Yariguíes, departamento de Santander, Colombia. Biota Colombiana, 19: 27–42. DOI: https://doi.org/10.21068/c2018.v19s1a04
Aguirre, A, R. Guevara y R. Dirzo. 2011. Effects of forest fragmentation on assemblages of pollinators and floral visitors to male- and female-phase inflorescences of Astrocaryum mexicanum (Arecaceae) in a Mexican rain forest. Journal of Tropical Ecology, 27(1): 25–33. DOI: Https://doi.org/10.1017/s0266467410000556 
Ahmad, I., S. Verma, S. Mushtaq, A. Abdullah, M. Nasser, M. Tariq y S. Pant. 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soo: A conservation approach for critically endangered medicinal orchid. Saudi J. Biol. Sci., 28, 2109–2122.
Aizen, M.A., y P. Feinsinger. 1994. Habitat fragmentation, native insect pollinators, and feral honeybees in argentine Chaco Serrano. Ecological Applications, 4: 378-392
Aizen, M.A., y P. Feinsinger. 2003. Bees not to be? Responses of insect pollinator faunas and flower pollination to habitat fragmentation In: G.A. Bradshaw, P.A. Marquet, H.A. Mooney (Eds.), Disruptions and Variability: the Dynamics of Climate, Human Disturbance and Ecosystems in the Americas, Springer-Verlag, Berlin pp. 111-129.
Arnett, R. H. y M. C. Thomas (Eds.). 2000. American Beetles, Volume I: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia (Vol. 1). CRC press.
Arnett, R. H., Thomas, M. C., Skelley, P. E., y J. H. Frank, (Eds.). 2002. American Beetles, Volume II: Polyphaga: Scarabaeoidea through Curculionoidea (Vol. 2). CRC press.
Ashworth, L., R. Aguilar, L. Galetto y M.A. Aizen. 2004. Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation?. Journal of Ecology, 92: 717-719.
Aubry-Kientz, M., V. Rossi, F. Wagner y B. Hérault. 2015. Identifying climatic drivers of tropical forest dynamics. Biogeosciences 12(19): 5583-5596. DOI: http://doi.org/10.5194/bg-12-5583-2015
Bachman, S. P., R. Field, T. Reader, D. Raimondo, J. Donaldson, G. E. Schatz y E. N. Lughadha. 2019. Progress, challenges and opportunities for Red Listing. Biological Conservation, 234: 45–55. DOI: https://doi.org/10.1016/j.biocon.2019.03.002
Bachman, S., J. Moat, A. Hill, J. de la Torre y B. Scott. 2011. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. In: Smith, V. and L. Penev (eds.). e-Infrastructures for data publishing in biodiversity science. ZooKeys 150: 117-126. DOI: http://doi.org/10.3897/zookeys.150.2109
Barik, S. K., O. N. Tiwari, D. Adhikari, P. P. Singh, R. Tiwary y S. Barua. 2018. Geographic distribution pattern of threatened plants of India and steps taken for their conservation. Current Science 114(3): 470-503.
Bartomeus, I., D. P. Cariveau, T. Harrison y R. Winfree. 2018. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127(2): 306-315. DOI: https://doi.org/10.1111/oik.04507
Bennett, A. B., y S. Lovell. 2019. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One, 14(2): e0212034.
Bray, J. R., y J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological monographs, 27(4): 326-349.
Brown, B. V., A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley y M. A. Zumbado. 2009. Manual of Central America Diptera. Volume 1. Ottawa, NRC Research Press, 714 p.
Brown, B. V., A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley y M. A. Zumbado. 2010. Manual of Central America Diptera. Volume 2. Ottawa, NRC Research Press, 715 -1442 pp.
Brückmann, S. V., J. Krauss y I. Steffan-Dewenter. 2010. Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. Journal of Applied Ecology, 47: 799–809
Brummitt, N. A., S. P. Bachman, J. Griffiths-Lee, M. Lutz, J. F. Moat, A. Farjon, ... y E.M, Nic Lughadha. 2015. Green plants in the red: A baseline global assessment for the IUCN sampled Red List Index for plants. PloS one, 10(8): e0135152. DOI: https://doi.org/10.1371/journal.pone.0135152
Buchhorn, M., B. Smets, L. Bertels, B. D. Roo, M. Lesiv, N. E. Tsendbazar, M. Herold, y S. Fritz. 2020. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe (Version V3.0.1) [Data set]. Zenodo.
Burd, M. 1994. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Botanical Reviews, 60: 83-139.
Calderón, E., A. Cogollo, C. Velasquez-Rua, M. Serna-González, N. García y M. C. Rivers. 2016b. Magnolia yarumalensis. The IUCN Red List of Threatened Species 2016: e.T38863A2884340. DOI: https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T38863A2884340.en
Calderón, E., A. Cogollo, M. C. Rivers y M. Serna-González. 2016a. Magnolia jardinensis. The IUCN Red List of Threatened Species 2016: e.T14050337A67514058. DOI: https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T14050337A67514058.en
Calderón-Caro, J. y A. M. Benavides. 2022. Deforestación y fragmentación en las áreas más biodiversas de la Cordillera Occidental de Antioquia (Colombia). Biota Colombiana, 23(1): e942
Chen, Y., G. Chen, J. Yang y W. Sun. 2016. Reproductive biology of Magnolia sinica (Magnoliaceae), a threatened species with extremely small populations in Yunnan, China. Plant Diversity, 38(5): 253–258. DOI: https://doi.org/10.1016/j.pld.2016.09.003
Clarke, K. R. 1993. Non‐parametric multivariate analyses of changes in community structure. Australian journal of ecology, 18(1), 117-143. DOI: https://doi.org/10.1111/j.1442-9993.1993.tb00438.x
Cogollo-Pacheco, A., S. Hoyos-Gómez, y M. Serna-González. 2019. Una nueva especie y otros registros de Magnoliaceae para Colombia. Brittonia, 71(1): 32–38. DOI: https://doi.org/10.1007/s12228-018-9554-0
Corral-Aguirre, J., y L. R. Sánchez-Velásquez. 2006. Seed ecology and germination treatments in Magnolia dealbata: an endangered species. Flora-Morphology, Distribution, Functional Ecology of Plants 201(3): 227-232. DOI: https://doi.org/10.1016/j.flora.2005.07.004
Coto, D. 1998. Estados inmaduros de insectos de los órdenes Coleoptera, Diptera y Lepidoptera: manual de reconocimiento. CATIE. Serie Técnica. Manual Técnico 27. 153 p.
Cunningham, S. A. 2000. Depressed pollination in habitat fragments causes low fruit set. Proceedings of the Royal Society of London B., 267: 1149-1152.
De Frenne, P., J. Lenoir, M. Luoto, B. R. Scheffers, F. Zellweger, J. Aalto, M. B. Ashcroft, D. M. Christiansen, G. Decocq, K. De Pauw, S. Govaert, C. Greiser, E. Gril, A. Hampe, T. Jucker, D. H. Klinges, I. A. Koeslemeijer, J. J. Lembrechts, R. Marrec, C. Meeussen, J. Ogée, V. Tyystjärvi, P. Vangansbeke y K. Hylander. 2021. Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology 27(11): 2279-2297. DOI: https://doi.org/10.1111/gcb.15569
Deguines, N., R. Julliard, M. Flores y C. Fontaine. 2016. Functional homogenization of flower visitor communities with urbanization. Ecology and Evolution, 6, pp. 1967 - 1976. DOI: https://doi.org/10.1002/ece3.2009.
Donaldson, J., I. Nanni, C. Zachariades y J. Kemper. 2002. Effects of habitat fragmentation on pollinator diversity and plant reproductive success in Renosterveld shrublands of South Africa. Conservation Biology, 16: 1267-1276.
Dubayah, R.O., J. Armston, S. P. Healey, Z. Yang, P. L. Patterson, S. Saarela, G. Stahl, L. Duncanson, J. R. Kellner, J. Bruening y A. Pascual. 2023. GEDI L4B Gridded Aboveground Biomass Density, Version 2.1. ORNL DAAC, Oak Ridge, Tennessee, USA. DOI: https://doi.org/10.3334/ORNLDAAC/2299
Dyer, L. A., M. S. Singer, J. T. Lill, J. O. Stireman, G. L. Gentry, R. J. Marquis, R. E. Ricklefs, H. F. Greeney, D. L. Wagner y H.C. Morais. 2007. Host specificity of Lepidoptera in tropical and temperate forests. 448(7154): 696–699. DOI: https://doi.org/10.1038/nature05884
Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee y C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17: 43-57. DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x
Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual review of Ecology, Evolution, and Systematics 34: 487-515. DOI: https://doi.org/10.1146/annurev.ecolsys.34.011802.132419
FAO. 2009. Guía para la descripción de suelos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia. 111 pp.
Figlar, R.B., y H.P. Nooteboom. 2004. Notes on Magnoliaceae IV. Blumea Biodiversity, Evolution and Biogeography of Plants, 49: 87–100. DOI: https://doi.org/10. 3767/00065 1904x 486214
Fletcher, R. J., T. A. H. Smith, N. Kortessis, E. M. Bruna y R. D. Holt. 2023. Landscape experiments unlock relationships among habitat loss, fragmentation, and patch-size effects. Ecology, March 1-16. DOI: https://doi.org/10.1002/ecy.4037
Franklin, J. 2013. Species distribution models in conservation biogeography: developments and challenges. Diversity and distributions. 19(10): 1217-1223. DOI: https://doi.org/10.1111/ddi.12125
Freeman, B. G., J. A. Lee‐Yaw, J. M. Sunday y A. L. Hargreaves. 2018. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Global Ecology and Biogeography 27(11): 1268-1276. DOI: https://doi.org/10.1111/geb.12774
Gaviria, J., B. L. Turner y B. M. J. Engelbrecht. 2017. Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8(2): e01712. DOI: https://doi.org/10.1002/ecs2.1712
GBIF. 2023. Global Biodiversity Information Facility (GBIF) Occurrence Download. DOI: https://doi.org/10.15468/dl.d49vkg
Ge, Q., H. Wang, T. Rutishauser y J. Dai. 2015. Phenological response to climate change in China: a meta‐analysis. Global Change Biology, 21. DOI: https://doi.org/10.1111/gcb.12648.
González‐Robles, A., T. Salido, A. Manzaneda, F. Valera y P. Rey, 2020. Habitat loss and degradation due to farming intensification modify the floral visitor assemblages of a semiarid keystone shrub. Ecological Entomology, 45. DOI: https://doi.org/10.1111/een.12933.
Gottsberger, G., I. Silberbauer-Gottsberger, R. S. Seymour y S. Dötterl. 2012. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora, 207(2): 107–118. DOI: https://doi.org/10.1016/j.flora.2011.11.003
Groom, M.J. 1998. Allee effects limit population viability of an annual plant. The American Naturalist, 151: 487-496.
Hammer, Ø., D. A. T. Harper y P.D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9pp.
Harris, I., T. J. Osborn, P. Jones y D. Lister. 2020. Version 4 of the CRUTS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1): 1-18. DOI: https://doi.org/10.1038/s41597-020-0453-3
Harrisson, T. 2021 CMIP6: The next generation of climate models explained, CMIP6: the next generation of climate models explained. https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained/ (consultado diciembre 15 de 2023).
Hernández-Vera, G., J. L. Navarrete-Heredia y J.A. Vázquez-García. 2021. Beetles as floral visitors in the Magnoliaceae: an evolutionary perspective. Arthropod-Plant Interactions 15: 273–283. DOI: https://doi.org/10.1007/s11829-021-09819-3
Hijmans, R. J., S. Cameron y J. Parra. 2017. WorldClim - Global Climate Data | Free climate data for ecological modeling and GIS. https://worldclim.org/ (consultado julio de 2023)
Holdridge, L. R. 1947. Determination of world plant formations from simple climate data. Science 105(2727): 367-368. DOI: https://doi.org/10.1126/science.105.2727.36
IDEAM. 2021. Mapa de Cobertura de la Tierra. Adaptación Corine Land Cover. República de Colombia. Escala 1:100.000. Periodo 2018. Instituto de Hidrología, Meteorología y Estudios Ambientales. Colombia. https://www.colombiaenmapas.gov.co/?e=-92.48484485351355,-9.347822580715487,-56.01023547852323,19.283565789165777,4686&b=igac&u=0&t=43&servicio=881 (consultado julio, 2023).
IGAC. 2011. Modelo Digital de Elevación. SRTM 30 Metros. Instituto geográfico Agustín Codazzi. Colombia. https://www.colombiaenmapas.gov.co/?e=-92.48484485351355,-9.347822580715487,-56.01023547852323,19.283565789165777,4686&b=igac&u=0&t=23&servicio=159 (consultado julio, 2023).
IGAC. 2014. Base de datos vectorial básica. Colombia. Escala 1:500.000. Año 2014. Instituto geográfico Agustín Codazzi. Colombia. https://www.colombiaenmapas.gov.co/?e=-87.3432432910149,-6.999782382052668,-61.15183704102185,17.112163412738656,4686&b=igac&u=0&t=23&servicio=204 (consultado julio10 de 2023).
IPBES. 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) secretariat. Bonn, Germany. 56 pp. DOI: https://doi.org/10.5281/zenodo.3553579
Iralu, V., A. H. Mir, D. Adhikari, H. Choudhury, y K. Upadhaya. 2023. Complementing habitat distribution model with land use land cover for conservation of the rare and threatened tree Magnolia punduana Hk. f & Th. in northeast India. Landscape and Ecological Engineering, 19: 617-632. DOI: https://doi.org/10.1007/s11355-023-00567-5
IUCN. 2022. Guidelines for Using the IUCN Red List Categories and Criteria. Version 15.1. Prepared by the Standards and Petitions Committee. https://www.iucnredlist.org/documents/RedListGuidelines.pdf. (consultado julio, 2023).
IUCN. 2023. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (consultado julio, 2023).
Iverson R.L. y A. M. Prasad. 1998. Predicting abundance of 80 tree species following climate change in the Eastern United States. Ecological Monographs 68:465-485.
Kinho, J., D. I. D. Arini, L. Abdulah, R. Susanti, A. Irawan, M. Yulianti, ... y A. Tampang. 2022. Habitat characteristics of magnolia based on spatial analysis: Landscape protection to conserve endemic and endangered Magnolia sulawesiana Brambach, Noot., and Culmsee. Forests, 13(5): 802. DOI: https://doi.org/10.3390/f13050802
Klimaszewski, J., R. O. Webster, D. W. Langor, A. Brunke, A. Davies, C. Bourdon, M. Labrecque, A. F. Newton, J. A. Dorval y J. H. Frank. 2018. Aleocharine Rove Beetles of Eastern Canada (Coleoptera, Staphylinidae, Aleocharinae): A Glimpse of Megadiversity. Cham: Springer International Publishing. 901 pp. DOI: https://doi.org/10.1007/978-3-319-77344-5_9
Klimaszewski, J., y H. Sturm. 1991. Four new species of the oxypodine genus Polylobus solier (Coleoptera: Staphylinidae: Aleocharinae) collected on the flower heads of some high Andean giant rosette plants (Espeletiinae: Asteraceae). The Coleopterists Bulletin, 45(1), 1–13
La Sorte, F. A. y W. Jetz. 2010. Projected range contractions of montane biodiversity under global warming. Proceedings of the Royal Society B: Biological Sciences 277(1699): 3401-3410. DOI: https://doi.org/10.1098/rspb.2010.0612
Lal, R., S. Chauhan, A. Kaur, V. Jaryan, R. K. Kohli, R. Singh, ... y D. R. Batish. 2023. Projected Impacts of Climate Change on the Range Expansion of the Invasive Straggler Daisy (Calyptocarpus vialis) in the Northwestern Indian Himalayan Region. Plants, 13(1): 68. DOI: https://doi.org/10.3390/plants13010068
Lamont, B.B., P. G. L. Klinkhamer y E.T.F Witkowski. 1993. Population fragmentation may reduce fertility to zero in Banksia goodii – a demonstration of the Allee effect. Oecologia, 94: 446-450
Lang, N., W. Jetz, K. Schindler y J.D. Wegner. 2023. A high-resolution canopy height model of the Earth. Nature Ecology & Evolution, 7(11): 1778-1789.
Leidner, A., N. Haddad y T. Lovejoy. 2010. Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?. PLoS ONE, 5. DOI: https://doi.org/10.1371/journal.pone.0009534.
Lindenmayer, D. B., y J. F. Franklin. 2013. Conserving Forest biodiversity: a comprehensive multiscaled approach. Island press. Washington. United States of America. 351 pp.
Linsky, J., D. Crowley, E. Beckman-Bruns y E. E. D. Coffey. 2022b. Global Conservation Gap Analysis of Magnolia. Atlanta Botanical Garden. https://www.globalconservationconsortia.org/resources/global-conservation-gap-analysis-of-magnolia/ (consultado enero, 2024).
Linsky, J., E. E. Coffey, E. Beech, M. Rivers, D. Cicuzza, S. Oldfield y D. Crowley. 2022. Assessing Magnoliaceae through time: Major global efforts to track extinction risk status and ex situ conservation. Plants, People, Planet, 5(4): 496-501.
Lozano-Contreras, G. 1994. Dugandiodendron and Talauma (Magnoliaceae) en el Neotrópico. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Editora Guadalupe Ltda. Colombia, Colombia. 147 pp.
Luck, M., y J. Wu. 2002. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape ecology, 17: 327-339.
Lughadha, N. E., S. P. Bachman, T. C. Leão, F. Forest, J. M. Halley, J. Moat, ... y B. E. Walker. 2020. Extinction risk and threats to plants and fungi. Plants, People, Planet, 2(5): 389-408. DOI: https://doi.org/10.1002/ppp3.10146
Mellanby, K.1939. Low Temperature and Insect Activity. Proceedings of The Royal Society B: Biological Sciences, 127, pp. 473-487. DOI: https://doi.org/10.1098/RSPB.1939.0035.
MementoDB Inc. 2023. Memento database (Versión 5.1.0) (Software). MementoDB Inc. https://mementodatabase.com/ (consultado julio, 2023).
Menéndez, R., A. González‐Megías, P. Jay‐Robert y R. Marquéz‐Ferrando. 2014. Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges. Global Ecology and Biogeography 23(6): 646-657. DOI: https://doi.org/10.1111/geb.12142
MIROC6 AGCM Document Writing Team. 2021, Description of MIROC6 AGCM, CCSR Report No. 65, Division of Climate System Research, Atmosphere and Ocean Research Institute, The University of Tokyo. DOI: https://doi.org/10.15083/0002000180
Montoya-López, A. F. y C. A. Bota-Sierra. 2023. Magnolia unicarmensis (Magnolia subsect. Dugandiodendron; Magnoliaceae): a new species from tropical montane forests of Antioquia, Colombia. Phytotaxa 626(1): 41-50. DOI: https://doi.org/10.11646/PHYTOTAXA.626.1.5
Moritz, C., J. L. Patton, C. J. Conroy, J. L. Parra, G. C. White y S. R. Beissinger. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322(5899): 261-264. DOI: https://doi.org/10.1126/science.1163428
Mountain Research Initiative EDW Working Group. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5: 424-430. DOI: https://doi.org/10.1038/nclimate2563
Myers, N., R. A. Mittermeler, C. G. Mittermeler, G. A. B. Da Fonseca y J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858. DOI: https://doi.org/10.1038/35002501
Navarrete-Heredia, J.L., Newton, A.F., Thayer, M.K. y D. S. Chandler, D.S. 2002. Guía Ilustrada Para los Generos de Staphylinidae (Coleoptera) deMexico; Universidad de Guadalajara y CONABIO: Coyoacan, Mexico. pp. 1–371.
Neuschulz, E. L., T. Mueller, M. Schleuning y K. Böhning-Gaese. 2016. Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports 6(1): 29839. DOI: https://doi.org/10.1038/srep29839
Núñez-Avellaneda, L. A., y R. Rojas-Robles. 2008. Biología reproductiva y ecología de la polinización de la palma milpesos Oenocarpus bataua en los Andes colombianos. Caldasia, 30(1): 101-125.
Pautasso, M., y M. L. McKinney. 2007. The botanist effect revisited: plant species richness, county area, and human population size in the United States. Conservation Biology, 21(5): 1333-1340.
Pearson R.G. 2007. Species' distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. http://ncep.amnh.org
Pepin, N., R. S. Bradley, H. F. Diaz, M. Baraer, E. B. Caceres, N. Forsythe, ... y D. Q. Yang. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Changr, 5: 424–430
Phillips, S. J., M. Dudík y R. E. Schapire. 2020. Maxent software for modeling species niches and distributions (Version 3.4.4) [Software]. http://biodiversityinformatics.amnh.org/open_source/maxent/.
Phillips, S. J., R. P. Anderson y R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling 190(3-4): 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026
Planet Labs PCB. 2023. Planet Application Program Interface: In Space for Life on Earth. Planet. https://api.planet.com
Pronaturaleza. 2021. Perfil de Ecosistema del Hotspot de Biodiversidad de los Andes Tropicales. Critical Ecosystem Partnership Fund. 60 pp.
QGIS Development Team. 2022. QGIS Geographic Information System (Version 3.26.3) [Software]. Open Source Geospatial Foundation (OSGeo). https://qgis.org.
R Core Team. 2022. R: A language and environment for statistical computing (Version 4.2.2) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/.
Rebetez, M. y M. Reinhard. 2008. Monthly air temperature trends in Switzerland 1901-2000 and 1975-2004. Theoretical and Applied Climatology 91: 27-34.
Rivers, M., E. Beech, L. Murphy y S. Oldfield. 2016. The Red List of Magnoliaceae-revised and extended. Botanic Gardens Conservation International (BGCI). Richmond, UK. 63 pp.
Rodríguez-Duque, D. L., M. Escobar-Alba, J. D. García-González, J. E. Carvajal-Cogollo y G. A. Aymard-Corredor. 2022. A new Andean species of Magnolia (section Talauma, Magnolioideae, Magnoliaceae), and a key to the species found in Colombia. Harvard Papers in Botany 27(2): 131-141. DOI: https://doi.org/10.3100/hpib.v27iss2.2022.n1
Rowe, K. C., K. M. C. Rowe, M. W. Tingley, M. S. Koo, J. L. Patton, C. J. Conroy, J. D. Perrine, S. R. Beissinger y C. Moritz. 2015. Spatially heterogeneous impact of climate change on small mammals of montane California. Proceedings of the Royal Society B: Biological Sciences 282(1799): 20141857. DOI: https://doi.org/10.1098/rspb.2014.1857
Santos, T. y J. Tellería. 2006. Pérdida y fragmentación del hábitat: efecto sobre la conservación de las especies. Ecosistemas 15(2): 3-12.
Serna, M., C. Velásquez y A. Cogollo. 2009. Novedades taxonómicas y un nuevo registro de Magnoliaceae para Colombia. Brittonia 61: 35-40. DOI: https://doi.org/10.1007/s12228-008-9055-7
Serna‐González, M., L. E. Urrego‐Giraldo, J. P. Santa‐Ceballos y H. Suzuki‐Azuma. 2022. Flowering, floral visitors and climatic drivers of reproductive phenology of two endangered magnolias from neotropical endangered magnolias from neotropical Andean forests. Plant Species Biology 37(1): 20-37. DOI: https://doi.org/10.1111/1442-1984.12351
Setsuko, S., T. Nagamitsu y N. Tomaru. 2013. Pollen flow and effects of population structure on selfing rates and female and male reproductive success in fragmented Magnolia stellata populations. BMC Ecology 13: 1-12. DOI: https://doi.org/10.1186/1472-6785-13-10
Seymour, R.S., I. Silberbauer-Gottsberger y G. Gottsberger. 2010. Respiration and temperature patterns in thermogenic flowers of Magnolia ovata under natural conditions in Brazil. Functional Plant Biology, 37: 870–878. DOI: https://doi.org/10.1071/fp10039
Shahbazi, A., S. Matinkhah, J. Khajeali, H. Bashari y M.T. Esfahani. 2016. The effects of pollinators and seed predators (Bruchidius koenigi Schilsky) on the breeding biology of Hedysarum criniferum Boiss. Plant Species Biology, 32(1): 36–44. DOI: https://dpi.org/10.1111/1442-1984.12126
Shapiro, S. S. y M. B. Wilk. 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52(3/4): 591-611. DOI: https://doi.org/10.2307/2333709
Shi, X., Q. Yin, Z. Sang, Z. Zhu, Z. Jia y L. Ma. 2021. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecological Indicators 127: 107762. DOI: https://doi.org/10.1016/j.ecolind.2021.107762
Silva, L., A. Rocha y C. Silva. 2022. Surface temperature behavior in view of the conversion of tropical dry forest into anthropic uses, northern Minas Gerais–Brazil. PLoS ONE, 17. DOI: https://doi.org/10.1371/journal.pone.0270991.
Steffan‐Dewenter, I., y T. Tscharntke. 2002. Insect communities and biotic interactions on fragmented calcareous grasslands - a mini review. Biological Conservation, 104, 275-284. https://doi.org/10.1016/S0006-3207(01)00192-6.
Steffan-Dewenter, I., y T. Tscharntke. 1999. Effects of habitat isolation on pollinator communities and seed set. Oecologia, 121: 432-440.
Steffan-Dewenter, I., U. Münzenberg, C. Bürger, C. Thies y T. Tscharntke. 2002a. Scale-dependent effects of landscape context on three pollinator guilds. Ecology, 83: 1421-1432.
Suárez-Castro, A. F., M. M. Mayfield, M. G. E. Mitchell, L. Cattarino, M. Maron y J. R. Rhodes. 2020. Correlations and variance among species traits explain contrasting impacts of fragmentation and habitat loss on functional diversity. Landscape Ecology 35(10): 2239-2253. DOI: https://doi.org/10.1007/s10980-020-01098-2
Sun, W. B., Y. P. Ma y S. Blackmore. 2019. How a new conservation action concept has accelerated plant conservation in China. Trends in Plant Science 24(1): 4-6. DOI: https://doi.org/10.1016/j.tplants.2018.10.009
Terlau, J., U. Brose, N. Eisenhauer, A. Amyntas, T. Boy, A. Dyer, A. Gebler, C. Hof, T. Liu, C. Scherber, U Schlägel, A. Schmidt y M. Hirt. 2023. Microhabitat conditions remedy heat stress effects on insect activity. Global Change Biology, 29, pp. 3747 - 3758. DOI: https://doi.org/10.1111/gcb.16712.
Thien, L.B. 1974. Floral biology of Magnolia. American Journal of Botany, 61(10): 1037–1045. DOI: https://doi.org/10.1002/j.1537-2197.1974.tb12321.x
Traveset, A., R. Castro-Urgal,X. Rotllan-Puig y A. Lázaro. 2018. Effects of habitat loss on the plant–flower visitor network structure of a dune community. Oikos, 127, 45-55. DOI: https://doi.org/10.1111/OIK.04154.
Turner, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91(10): 2833-2849. DOI: https://doi.org/10.1890/10-0097.1
Vásquez-Morales, S. G., O. Téllez-Valdés, M. D. R. Pineda-López, L. R. Sánchez-Velásquez, N. Flores-Estevez y H. Viveros-Viveros. 2014. Effect of climate change on the distribution of Magnolia schiedeana: a threatened species. Botanical Sciences, 92(4): 575-585.
Vázquez-García, J. A., D. A. Neill, M. Asanza, A. J. Pérez, A. Dahua-Machoa, E. Merino-Santi, A. F. Delgado-Chaves y S. M. Urbano-Apraez. 2017. Magnolia mindoensis (subsect. Talauma, Magnoliaceae): Una especie nueva del Chocó biogeográfico premontano en Colombia y Ecuador. Brittonia, 69: 197–208. DOI: https://doi.org/10.1007/s12228-016-9449-x
Vranckx, G., J. Mergeay, K. Cox, B. Muys, H. Jacquemyn y O. Honnay. 2014. Tree density and population size affect pollen flow and mating patterns in small fragmented forest stands of pedunculate oak (Quercus robur L.). Forest Ecology and Management, 328: 254-261.
Walters, M. y R. J. Scholes (eds.). 2017. The GEO Handbook on Biodiversity Observation Networks. Springer. Cham, Switzerland. DOI: https://doi.org/10.1007/978-3-319-27288-7
Wang, R., H. Jia, J. Wang y Z. Zhang. 2010. Flowering and pollination patterns of Magnolia denudata with emphasis on anatomical changes in ovule and seed development. Flora, 205(4): 259–265. DOI: https://doi.org/10.1016/j.flora.2009.04.003
Wang, R., S. Sai-Xu, X. Liu, Y. Zhang, J. Wang y Z. Zhang. 2014. Thermogenesis, flowering and the association with variation in floral odour attractants in Magnolia sprengeri (Magnoliaceae). PLoS ONE, 9(6): e99356. DOI: https://doi.org/10.1371/journal.pone.0099356
Wang, R., y Z. Zhang. 2015. Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae. Communicative and Integrative Biology, 8(1): e992746. DOI: https://dx.doi.org/10.4161%2F19420889.2014.992746
Wani, I. A., S. Verma, S. Mushtaq, A. A. Alsahli, M. N. Alyemeni, M. Tariq y S. Pant. 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soo: A conservation approach for critically endangered medicinal orchid. Saudi Journal of Biological Sciences, 28(4): 2109-2122. DOI: https://doi.org/10.1016/j.sjbs.2021.01.054
Wilcock, C., y R. Neiland. 2002. Pollination failure in plants: why it happens and when it matters. Trends in Plant Sciences, 7: 270-277
Wilcoxon, F. 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6): 80-83. DOI: https://doi.org/10.2307/3001968
Yang, J. T., Jiang, X., Chen, H., Jiang, P., Liu, M., and Y. Huang. 2022. Predicting the Potential Distribution of the Endangered Plant Magnolia wilsonii Using MaxEnt under Climate Change in China. Polish Journal of Environmental Studies, 31(5).
Young, N., L. Carter y P. Evangelista. 2011. A MaxEnt Model v3.3.3e Tutorial (ArcGIS v10). Natural Resource Ecology Laboratory. Colorado State University. http://ibis.colostate.edu/webcontent/ws/coloradoview/tutorialsdownloads/a_maxent_model_v7.pdf (consultado septiembre 25 de 2023)
Zambrano, J., C. X. Garzon-Lopez, L. Yeager, C. Fortunel, N. J. Cordeiro y N. G. Beckman. 2019. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far? Oecologia 191(3): 505-518. DOI: https://doi.org/10.1007/s00442-019-04505-x
Zhang, M. y X. Yi. 2021. Seedling recruitment in response to artificial gaps: predicting the ecological consequence of forest disturbance. Plant Ecology 222: 81-92. DOI: https://doi.org/10.1007/s11258-020-01089-y
Zu, K., Z. Wang, X. Zhu, J. Lenoir, N. Shrestha, T. Lyu, A. Luo, Y. Li, C. Ji, S. Peng, J. Meng y J. Zhou. 2021. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Science of the Total Environment 783: 146896. DOI: https://doi.org/10.1016/j.scitotenv.2021.146896
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial 4.0 Internacional
http://creativecommons.org/licenses/by-nc/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 150 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agrarias
dc.publisher.place.spa.fl_str_mv Medellín, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Medellín
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/87034/3/license.txt
https://repositorio.unal.edu.co/bitstream/unal/87034/5/JuanPabloSantaCeballos.pdf
https://repositorio.unal.edu.co/bitstream/unal/87034/4/1041328891.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/87034/6/1041328891.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
2439645cdf0defd4efe245246f250d4b
483e011c1265fdaf616bdaa38c522ce0
f42285c2546a1ac916dcad8f3e730d1a
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089961300819968
spelling Atribución-NoComercial 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Urrego Giraldo, Ligia Estela1bd0f711821676da0f9f0df2c85b378cSerna González, Marcela4c9554afc46c5822ab62cdc5f685a506Santa Ceballos, Juan Pablo4825ca486df54ef8a0a048eb0b9e735aSanta Ceballos, Juan Pablo [0000-0002-4380-1276]2024-10-23T21:41:56Z2024-10-23T21:41:56Z2024https://repositorio.unal.edu.co/handle/unal/87034Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, fotografías, mapasMagnolia jardinensis y M. yarumalensis, son especies con distribución restringida al Noroccidente de Colombia. Estas especies enfrentan una amenaza inminente de extinción, principalmente a causa de la degradación de su hábitat. En este estudio se plantean como objetivos: i) determinar los ambientes y coberturas vegetales donde se encuentran M. jardinensis y M. yarumalensis; ii) identificar las variables climáticas, topográficas y del paisaje más relevantes que afectan la distribución de estas especies; iii) Identificar cambios en la distribución de áreas potenciales bajo condiciones de cambio climático para su crecimiento; iv) analizar las diferencias en la composición y abundancia de las comunidades de visitantes florales de M. yarumalensis en distintos niveles de heterogeneidad del paisaje. Los resultados indican que M. jardinensis se distribuye entre 1995-2667 m s.n.m. y M. yarumalensis entre 1648-2760 m s.n.m. Magnolia jardinensis crece en zonas con precipitación media anual de 2364 mm/año, M. yarumalensis en zonas con 2465 mm/año. Una proporción considerable de los individuos se encuentra en sitios cubiertos por vegetación secundaria, pastos limpios y plantaciones forestales. El 10% del área de distribución corresponde a zonas con idoneidad ambiental alta para M. jardinensis y el 5% para M. yarumalensis. Se evidencia una reducción del área idónea para M. yarumalensis en los escenarios futuros cambio climático. Se encontraron nueve especies de visitantes florales en 17 flores de M. yarumalensis colectadas en tres sitios. Solo la especie Hoplandria sp., considerada como polinizador efectivo, fue encontrada en todos los sitios, en asociación a sitios con mayor diversidad de coberturas. Un herbívoro especializado del orden Lepidoptera se encuentra asociado a bosques densos (BD) y con alta biomasa (biomasa). (Tomado de la fuente)Magnolia jardinensis and M. yarumalensis are species with a restricted distribution in the Northwest of Colombia. These species face an imminent threat of extinction, mainly due to habitat degradation. This study aims to: i) determine the environments and vegetation coverages where M. jardinensis and M. yarumalensis are found; ii) identify the most relevant climatic, topographic, and landscape variables affecting the distribution of these species; iii) Identify changes in the distribution of potential areas under climate change conditions for their growth; iv) analyze differences in the composition and abundance of floral visitor communities of M. yarumalensis at different levels of landscape heterogeneity. The results indicate that M. jardinensis is distributed between 1995-2667 m above sea level, and M. yarumalensis between 1648-2760 m above sea level. Magnolia jardinensis grows in areas with an average annual precipitation of 2364 mm/year, M. yarumalensis in areas with 2465 mm/year. A considerable proportion of individuals are found in sites covered by secondary vegetation, clean pastures, and forest plantations. 10% of the distribution area corresponds to zones with high environmental suitability for M. jardinensis and 5% for M. yarumalensis. There is evidence of a reduction in the suitable area for M. yarumalensis in future scenarios of climate change. Nine species of floral visitors were found on 17 flowers of M. yarumalensis collected at three sites. Only the species Hoplandria sp., considered an effective pollinator, was found in all sites, associated with areas of higher coverage diversity. A specialized herbivore of the Lepidoptera order is associated with dense forests (BD) and high biomass.MaestríaMagister en Bosques y Conservación AmbientalEcología de bosques tropicalesCambio climáticoBosques Y Conservación Ambiental.Sede Medellín150 páginasapplication/pdfspaUniversidad Nacional de ColombiaMedellín - Ciencias Agrarias - Maestría en Bosques y Conservación AmbientalFacultad de Ciencias AgrariasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín570 - Biología::577 - Ecología580 - Plantas::584 - Monocotiledóneas, angiospermas basales, clorantales, magnolias580 - Plantas::581 - Temas específicos en historia natural de las plantas570 - Biología::578 - Historia natural de los organismos y temas relacionados500 - Ciencias naturales y matemáticas::508 - Historia naturalEcosistemas vulnerables - ColombiaPlantas - Hábitat - ColombiaFlores - ConservaciónCambios climáticosAndes tropicalesespecies amenazadasconservaciónnicho ecológicopolinizadoresTropical AndesEndangered speciesConservationEcological nichePollinatorsRelación de variables ambientales y de paisaje en la distribución de dos Magnolias andinas y sus visitantes floralesInteraction of environmental and landscape variables in the distribution of two Andean Magnolias and their floral visitorsTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAdhikari D., R. Tiwary y S. K. Barik. 2015. Modelling hotspots for invasive alien plants in India. PLoS One 10(7): e0134665.Adhikari, D., P. P. Singh, R. Tiwari y S. K. Baril. 2019. Modelling the environmental niche and potential distribution of Magnolia campbelli Hook. f. and Thomson for its conservation in eastern Himalaya. Plants of commercial values, 79-88.Aguilar-Cano, J., H. Mendoza-Cifuentes y M. Ayala-Joya. 2018. Dos nuevas especies de árboles molinillo (Magnolia: Magnoliaceae) de la Serranía de los Yariguíes, departamento de Santander, Colombia. Biota Colombiana, 19: 27–42. DOI: https://doi.org/10.21068/c2018.v19s1a04Aguirre, A, R. Guevara y R. Dirzo. 2011. Effects of forest fragmentation on assemblages of pollinators and floral visitors to male- and female-phase inflorescences of Astrocaryum mexicanum (Arecaceae) in a Mexican rain forest. Journal of Tropical Ecology, 27(1): 25–33. DOI: Https://doi.org/10.1017/s0266467410000556 Ahmad, I., S. Verma, S. Mushtaq, A. Abdullah, M. Nasser, M. Tariq y S. Pant. 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soo: A conservation approach for critically endangered medicinal orchid. Saudi J. Biol. Sci., 28, 2109–2122.Aizen, M.A., y P. Feinsinger. 1994. Habitat fragmentation, native insect pollinators, and feral honeybees in argentine Chaco Serrano. Ecological Applications, 4: 378-392Aizen, M.A., y P. Feinsinger. 2003. Bees not to be? Responses of insect pollinator faunas and flower pollination to habitat fragmentation In: G.A. Bradshaw, P.A. Marquet, H.A. Mooney (Eds.), Disruptions and Variability: the Dynamics of Climate, Human Disturbance and Ecosystems in the Americas, Springer-Verlag, Berlin pp. 111-129.Arnett, R. H. y M. C. Thomas (Eds.). 2000. American Beetles, Volume I: Archostemata, Myxophaga, Adephaga, Polyphaga: Staphyliniformia (Vol. 1). CRC press.Arnett, R. H., Thomas, M. C., Skelley, P. E., y J. H. Frank, (Eds.). 2002. American Beetles, Volume II: Polyphaga: Scarabaeoidea through Curculionoidea (Vol. 2). CRC press.Ashworth, L., R. Aguilar, L. Galetto y M.A. Aizen. 2004. Why do pollination generalist and specialist plant species show similar reproductive susceptibility to habitat fragmentation?. Journal of Ecology, 92: 717-719.Aubry-Kientz, M., V. Rossi, F. Wagner y B. Hérault. 2015. Identifying climatic drivers of tropical forest dynamics. Biogeosciences 12(19): 5583-5596. DOI: http://doi.org/10.5194/bg-12-5583-2015Bachman, S. P., R. Field, T. Reader, D. Raimondo, J. Donaldson, G. E. Schatz y E. N. Lughadha. 2019. Progress, challenges and opportunities for Red Listing. Biological Conservation, 234: 45–55. DOI: https://doi.org/10.1016/j.biocon.2019.03.002Bachman, S., J. Moat, A. Hill, J. de la Torre y B. Scott. 2011. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. In: Smith, V. and L. Penev (eds.). e-Infrastructures for data publishing in biodiversity science. ZooKeys 150: 117-126. DOI: http://doi.org/10.3897/zookeys.150.2109Barik, S. K., O. N. Tiwari, D. Adhikari, P. P. Singh, R. Tiwary y S. Barua. 2018. Geographic distribution pattern of threatened plants of India and steps taken for their conservation. Current Science 114(3): 470-503.Bartomeus, I., D. P. Cariveau, T. Harrison y R. Winfree. 2018. On the inconsistency of pollinator species traits for predicting either response to land-use change or functional contribution. Oikos 127(2): 306-315. DOI: https://doi.org/10.1111/oik.04507Bennett, A. B., y S. Lovell. 2019. Landscape and local site variables differentially influence pollinators and pollination services in urban agricultural sites. PLoS One, 14(2): e0212034.Bray, J. R., y J. T. Curtis. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological monographs, 27(4): 326-349.Brown, B. V., A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley y M. A. Zumbado. 2009. Manual of Central America Diptera. Volume 1. Ottawa, NRC Research Press, 714 p.Brown, B. V., A. Borkent, J. M. Cumming, D. M. Wood, N. E. Woodley y M. A. Zumbado. 2010. Manual of Central America Diptera. Volume 2. Ottawa, NRC Research Press, 715 -1442 pp.Brückmann, S. V., J. Krauss y I. Steffan-Dewenter. 2010. Butterfly and plant specialists suffer from reduced connectivity in fragmented landscapes. Journal of Applied Ecology, 47: 799–809Brummitt, N. A., S. P. Bachman, J. Griffiths-Lee, M. Lutz, J. F. Moat, A. Farjon, ... y E.M, Nic Lughadha. 2015. Green plants in the red: A baseline global assessment for the IUCN sampled Red List Index for plants. PloS one, 10(8): e0135152. DOI: https://doi.org/10.1371/journal.pone.0135152Buchhorn, M., B. Smets, L. Bertels, B. D. Roo, M. Lesiv, N. E. Tsendbazar, M. Herold, y S. Fritz. 2020. Copernicus Global Land Service: Land Cover 100m: collection 3: epoch 2019: Globe (Version V3.0.1) [Data set]. Zenodo.Burd, M. 1994. Bateman’s principle and plant reproduction: the role of pollen limitation in fruit and seed set. Botanical Reviews, 60: 83-139.Calderón, E., A. Cogollo, C. Velasquez-Rua, M. Serna-González, N. García y M. C. Rivers. 2016b. Magnolia yarumalensis. The IUCN Red List of Threatened Species 2016: e.T38863A2884340. DOI: https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T38863A2884340.enCalderón, E., A. Cogollo, M. C. Rivers y M. Serna-González. 2016a. Magnolia jardinensis. The IUCN Red List of Threatened Species 2016: e.T14050337A67514058. DOI: https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T14050337A67514058.enCalderón-Caro, J. y A. M. Benavides. 2022. Deforestación y fragmentación en las áreas más biodiversas de la Cordillera Occidental de Antioquia (Colombia). Biota Colombiana, 23(1): e942Chen, Y., G. Chen, J. Yang y W. Sun. 2016. Reproductive biology of Magnolia sinica (Magnoliaceae), a threatened species with extremely small populations in Yunnan, China. Plant Diversity, 38(5): 253–258. DOI: https://doi.org/10.1016/j.pld.2016.09.003Clarke, K. R. 1993. Non‐parametric multivariate analyses of changes in community structure. Australian journal of ecology, 18(1), 117-143. DOI: https://doi.org/10.1111/j.1442-9993.1993.tb00438.xCogollo-Pacheco, A., S. Hoyos-Gómez, y M. Serna-González. 2019. Una nueva especie y otros registros de Magnoliaceae para Colombia. Brittonia, 71(1): 32–38. DOI: https://doi.org/10.1007/s12228-018-9554-0Corral-Aguirre, J., y L. R. Sánchez-Velásquez. 2006. Seed ecology and germination treatments in Magnolia dealbata: an endangered species. Flora-Morphology, Distribution, Functional Ecology of Plants 201(3): 227-232. DOI: https://doi.org/10.1016/j.flora.2005.07.004Coto, D. 1998. Estados inmaduros de insectos de los órdenes Coleoptera, Diptera y Lepidoptera: manual de reconocimiento. CATIE. Serie Técnica. Manual Técnico 27. 153 p.Cunningham, S. A. 2000. Depressed pollination in habitat fragments causes low fruit set. Proceedings of the Royal Society of London B., 267: 1149-1152.De Frenne, P., J. Lenoir, M. Luoto, B. R. Scheffers, F. Zellweger, J. Aalto, M. B. Ashcroft, D. M. Christiansen, G. Decocq, K. De Pauw, S. Govaert, C. Greiser, E. Gril, A. Hampe, T. Jucker, D. H. Klinges, I. A. Koeslemeijer, J. J. Lembrechts, R. Marrec, C. Meeussen, J. Ogée, V. Tyystjärvi, P. Vangansbeke y K. Hylander. 2021. Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology 27(11): 2279-2297. DOI: https://doi.org/10.1111/gcb.15569Deguines, N., R. Julliard, M. Flores y C. Fontaine. 2016. Functional homogenization of flower visitor communities with urbanization. Ecology and Evolution, 6, pp. 1967 - 1976. DOI: https://doi.org/10.1002/ece3.2009.Donaldson, J., I. Nanni, C. Zachariades y J. Kemper. 2002. Effects of habitat fragmentation on pollinator diversity and plant reproductive success in Renosterveld shrublands of South Africa. Conservation Biology, 16: 1267-1276.Dubayah, R.O., J. Armston, S. P. Healey, Z. Yang, P. L. Patterson, S. Saarela, G. Stahl, L. Duncanson, J. R. Kellner, J. Bruening y A. Pascual. 2023. GEDI L4B Gridded Aboveground Biomass Density, Version 2.1. ORNL DAAC, Oak Ridge, Tennessee, USA. DOI: https://doi.org/10.3334/ORNLDAAC/2299Dyer, L. A., M. S. Singer, J. T. Lill, J. O. Stireman, G. L. Gentry, R. J. Marquis, R. E. Ricklefs, H. F. Greeney, D. L. Wagner y H.C. Morais. 2007. Host specificity of Lepidoptera in tropical and temperate forests. 448(7154): 696–699. DOI: https://doi.org/10.1038/nature05884Elith, J., S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee y C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17: 43-57. DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.xFahrig, L. 2003. Effects of habitat fragmentation on biodiversity. Annual review of Ecology, Evolution, and Systematics 34: 487-515. DOI: https://doi.org/10.1146/annurev.ecolsys.34.011802.132419FAO. 2009. Guía para la descripción de suelos. Organización de las Naciones Unidas para la Agricultura y la Alimentación. Roma, Italia. 111 pp.Figlar, R.B., y H.P. Nooteboom. 2004. Notes on Magnoliaceae IV. Blumea Biodiversity, Evolution and Biogeography of Plants, 49: 87–100. DOI: https://doi.org/10. 3767/00065 1904x 486214Fletcher, R. J., T. A. H. Smith, N. Kortessis, E. M. Bruna y R. D. Holt. 2023. Landscape experiments unlock relationships among habitat loss, fragmentation, and patch-size effects. Ecology, March 1-16. DOI: https://doi.org/10.1002/ecy.4037Franklin, J. 2013. Species distribution models in conservation biogeography: developments and challenges. Diversity and distributions. 19(10): 1217-1223. DOI: https://doi.org/10.1111/ddi.12125Freeman, B. G., J. A. Lee‐Yaw, J. M. Sunday y A. L. Hargreaves. 2018. Expanding, shifting and shrinking: The impact of global warming on species’ elevational distributions. Global Ecology and Biogeography 27(11): 1268-1276. DOI: https://doi.org/10.1111/geb.12774Gaviria, J., B. L. Turner y B. M. J. Engelbrecht. 2017. Drivers of tree species distribution across a tropical rainfall gradient. Ecosphere 8(2): e01712. DOI: https://doi.org/10.1002/ecs2.1712GBIF. 2023. Global Biodiversity Information Facility (GBIF) Occurrence Download. DOI: https://doi.org/10.15468/dl.d49vkgGe, Q., H. Wang, T. Rutishauser y J. Dai. 2015. Phenological response to climate change in China: a meta‐analysis. Global Change Biology, 21. DOI: https://doi.org/10.1111/gcb.12648.González‐Robles, A., T. Salido, A. Manzaneda, F. Valera y P. Rey, 2020. Habitat loss and degradation due to farming intensification modify the floral visitor assemblages of a semiarid keystone shrub. Ecological Entomology, 45. DOI: https://doi.org/10.1111/een.12933.Gottsberger, G., I. Silberbauer-Gottsberger, R. S. Seymour y S. Dötterl. 2012. Pollination ecology of Magnolia ovata may explain the overall large flower size of the genus. Flora, 207(2): 107–118. DOI: https://doi.org/10.1016/j.flora.2011.11.003Groom, M.J. 1998. Allee effects limit population viability of an annual plant. The American Naturalist, 151: 487-496.Hammer, Ø., D. A. T. Harper y P.D. Ryan. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9pp.Harris, I., T. J. Osborn, P. Jones y D. Lister. 2020. Version 4 of the CRUTS monthly high-resolution gridded multivariate climate dataset. Scientific Data, 7(1): 1-18. DOI: https://doi.org/10.1038/s41597-020-0453-3Harrisson, T. 2021 CMIP6: The next generation of climate models explained, CMIP6: the next generation of climate models explained. https://www.carbonbrief.org/cmip6-the-next-generation-of-climate-models-explained/ (consultado diciembre 15 de 2023).Hernández-Vera, G., J. L. Navarrete-Heredia y J.A. Vázquez-García. 2021. Beetles as floral visitors in the Magnoliaceae: an evolutionary perspective. Arthropod-Plant Interactions 15: 273–283. DOI: https://doi.org/10.1007/s11829-021-09819-3Hijmans, R. J., S. Cameron y J. Parra. 2017. WorldClim - Global Climate Data | Free climate data for ecological modeling and GIS. https://worldclim.org/ (consultado julio de 2023)Holdridge, L. R. 1947. Determination of world plant formations from simple climate data. Science 105(2727): 367-368. DOI: https://doi.org/10.1126/science.105.2727.36IDEAM. 2021. Mapa de Cobertura de la Tierra. Adaptación Corine Land Cover. República de Colombia. Escala 1:100.000. Periodo 2018. Instituto de Hidrología, Meteorología y Estudios Ambientales. Colombia. https://www.colombiaenmapas.gov.co/?e=-92.48484485351355,-9.347822580715487,-56.01023547852323,19.283565789165777,4686&b=igac&u=0&t=43&servicio=881 (consultado julio, 2023).IGAC. 2011. Modelo Digital de Elevación. SRTM 30 Metros. Instituto geográfico Agustín Codazzi. Colombia. https://www.colombiaenmapas.gov.co/?e=-92.48484485351355,-9.347822580715487,-56.01023547852323,19.283565789165777,4686&b=igac&u=0&t=23&servicio=159 (consultado julio, 2023).IGAC. 2014. Base de datos vectorial básica. Colombia. Escala 1:500.000. Año 2014. Instituto geográfico Agustín Codazzi. Colombia. https://www.colombiaenmapas.gov.co/?e=-87.3432432910149,-6.999782382052668,-61.15183704102185,17.112163412738656,4686&b=igac&u=0&t=23&servicio=204 (consultado julio10 de 2023).IPBES. 2019. Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES) secretariat. Bonn, Germany. 56 pp. DOI: https://doi.org/10.5281/zenodo.3553579Iralu, V., A. H. Mir, D. Adhikari, H. Choudhury, y K. Upadhaya. 2023. Complementing habitat distribution model with land use land cover for conservation of the rare and threatened tree Magnolia punduana Hk. f & Th. in northeast India. Landscape and Ecological Engineering, 19: 617-632. DOI: https://doi.org/10.1007/s11355-023-00567-5IUCN. 2022. Guidelines for Using the IUCN Red List Categories and Criteria. Version 15.1. Prepared by the Standards and Petitions Committee. https://www.iucnredlist.org/documents/RedListGuidelines.pdf. (consultado julio, 2023).IUCN. 2023. The IUCN Red List of Threatened Species. https://www.iucnredlist.org (consultado julio, 2023).Iverson R.L. y A. M. Prasad. 1998. Predicting abundance of 80 tree species following climate change in the Eastern United States. Ecological Monographs 68:465-485.Kinho, J., D. I. D. Arini, L. Abdulah, R. Susanti, A. Irawan, M. Yulianti, ... y A. Tampang. 2022. Habitat characteristics of magnolia based on spatial analysis: Landscape protection to conserve endemic and endangered Magnolia sulawesiana Brambach, Noot., and Culmsee. Forests, 13(5): 802. DOI: https://doi.org/10.3390/f13050802Klimaszewski, J., R. O. Webster, D. W. Langor, A. Brunke, A. Davies, C. Bourdon, M. Labrecque, A. F. Newton, J. A. Dorval y J. H. Frank. 2018. Aleocharine Rove Beetles of Eastern Canada (Coleoptera, Staphylinidae, Aleocharinae): A Glimpse of Megadiversity. Cham: Springer International Publishing. 901 pp. DOI: https://doi.org/10.1007/978-3-319-77344-5_9Klimaszewski, J., y H. Sturm. 1991. Four new species of the oxypodine genus Polylobus solier (Coleoptera: Staphylinidae: Aleocharinae) collected on the flower heads of some high Andean giant rosette plants (Espeletiinae: Asteraceae). The Coleopterists Bulletin, 45(1), 1–13La Sorte, F. A. y W. Jetz. 2010. Projected range contractions of montane biodiversity under global warming. Proceedings of the Royal Society B: Biological Sciences 277(1699): 3401-3410. DOI: https://doi.org/10.1098/rspb.2010.0612Lal, R., S. Chauhan, A. Kaur, V. Jaryan, R. K. Kohli, R. Singh, ... y D. R. Batish. 2023. Projected Impacts of Climate Change on the Range Expansion of the Invasive Straggler Daisy (Calyptocarpus vialis) in the Northwestern Indian Himalayan Region. Plants, 13(1): 68. DOI: https://doi.org/10.3390/plants13010068Lamont, B.B., P. G. L. Klinkhamer y E.T.F Witkowski. 1993. Population fragmentation may reduce fertility to zero in Banksia goodii – a demonstration of the Allee effect. Oecologia, 94: 446-450Lang, N., W. Jetz, K. Schindler y J.D. Wegner. 2023. A high-resolution canopy height model of the Earth. Nature Ecology & Evolution, 7(11): 1778-1789.Leidner, A., N. Haddad y T. Lovejoy. 2010. Does Tropical Forest Fragmentation Increase Long-Term Variability of Butterfly Communities?. PLoS ONE, 5. DOI: https://doi.org/10.1371/journal.pone.0009534.Lindenmayer, D. B., y J. F. Franklin. 2013. Conserving Forest biodiversity: a comprehensive multiscaled approach. Island press. Washington. United States of America. 351 pp.Linsky, J., D. Crowley, E. Beckman-Bruns y E. E. D. Coffey. 2022b. Global Conservation Gap Analysis of Magnolia. Atlanta Botanical Garden. https://www.globalconservationconsortia.org/resources/global-conservation-gap-analysis-of-magnolia/ (consultado enero, 2024).Linsky, J., E. E. Coffey, E. Beech, M. Rivers, D. Cicuzza, S. Oldfield y D. Crowley. 2022. Assessing Magnoliaceae through time: Major global efforts to track extinction risk status and ex situ conservation. Plants, People, Planet, 5(4): 496-501.Lozano-Contreras, G. 1994. Dugandiodendron and Talauma (Magnoliaceae) en el Neotrópico. Academia Colombiana de Ciencias Exactas, Físicas y Naturales. Editora Guadalupe Ltda. Colombia, Colombia. 147 pp.Luck, M., y J. Wu. 2002. A gradient analysis of urban landscape pattern: a case study from the Phoenix metropolitan region, Arizona, USA. Landscape ecology, 17: 327-339.Lughadha, N. E., S. P. Bachman, T. C. Leão, F. Forest, J. M. Halley, J. Moat, ... y B. E. Walker. 2020. Extinction risk and threats to plants and fungi. Plants, People, Planet, 2(5): 389-408. DOI: https://doi.org/10.1002/ppp3.10146Mellanby, K.1939. Low Temperature and Insect Activity. Proceedings of The Royal Society B: Biological Sciences, 127, pp. 473-487. DOI: https://doi.org/10.1098/RSPB.1939.0035.MementoDB Inc. 2023. Memento database (Versión 5.1.0) (Software). MementoDB Inc. https://mementodatabase.com/ (consultado julio, 2023).Menéndez, R., A. González‐Megías, P. Jay‐Robert y R. Marquéz‐Ferrando. 2014. Climate change and elevational range shifts: Evidence from dung beetles in two European mountain ranges. Global Ecology and Biogeography 23(6): 646-657. DOI: https://doi.org/10.1111/geb.12142MIROC6 AGCM Document Writing Team. 2021, Description of MIROC6 AGCM, CCSR Report No. 65, Division of Climate System Research, Atmosphere and Ocean Research Institute, The University of Tokyo. DOI: https://doi.org/10.15083/0002000180Montoya-López, A. F. y C. A. Bota-Sierra. 2023. Magnolia unicarmensis (Magnolia subsect. Dugandiodendron; Magnoliaceae): a new species from tropical montane forests of Antioquia, Colombia. Phytotaxa 626(1): 41-50. DOI: https://doi.org/10.11646/PHYTOTAXA.626.1.5Moritz, C., J. L. Patton, C. J. Conroy, J. L. Parra, G. C. White y S. R. Beissinger. 2008. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322(5899): 261-264. DOI: https://doi.org/10.1126/science.1163428Mountain Research Initiative EDW Working Group. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5: 424-430. DOI: https://doi.org/10.1038/nclimate2563Myers, N., R. A. Mittermeler, C. G. Mittermeler, G. A. B. Da Fonseca y J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403(6772): 853-858. DOI: https://doi.org/10.1038/35002501Navarrete-Heredia, J.L., Newton, A.F., Thayer, M.K. y D. S. Chandler, D.S. 2002. Guía Ilustrada Para los Generos de Staphylinidae (Coleoptera) deMexico; Universidad de Guadalajara y CONABIO: Coyoacan, Mexico. pp. 1–371.Neuschulz, E. L., T. Mueller, M. Schleuning y K. Böhning-Gaese. 2016. Pollination and seed dispersal are the most threatened processes of plant regeneration. Scientific Reports 6(1): 29839. DOI: https://doi.org/10.1038/srep29839Núñez-Avellaneda, L. A., y R. Rojas-Robles. 2008. Biología reproductiva y ecología de la polinización de la palma milpesos Oenocarpus bataua en los Andes colombianos. Caldasia, 30(1): 101-125.Pautasso, M., y M. L. McKinney. 2007. The botanist effect revisited: plant species richness, county area, and human population size in the United States. Conservation Biology, 21(5): 1333-1340.Pearson R.G. 2007. Species' distribution modeling for conservation educators and practitioners. Synthesis. American Museum of Natural History. http://ncep.amnh.orgPepin, N., R. S. Bradley, H. F. Diaz, M. Baraer, E. B. Caceres, N. Forsythe, ... y D. Q. Yang. 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Changr, 5: 424–430Phillips, S. J., M. Dudík y R. E. Schapire. 2020. Maxent software for modeling species niches and distributions (Version 3.4.4) [Software]. http://biodiversityinformatics.amnh.org/open_source/maxent/.Phillips, S. J., R. P. Anderson y R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological modelling 190(3-4): 231-259. DOI: https://doi.org/10.1016/j.ecolmodel.2005.03.026Planet Labs PCB. 2023. Planet Application Program Interface: In Space for Life on Earth. Planet. https://api.planet.comPronaturaleza. 2021. Perfil de Ecosistema del Hotspot de Biodiversidad de los Andes Tropicales. Critical Ecosystem Partnership Fund. 60 pp.QGIS Development Team. 2022. QGIS Geographic Information System (Version 3.26.3) [Software]. Open Source Geospatial Foundation (OSGeo). https://qgis.org.R Core Team. 2022. R: A language and environment for statistical computing (Version 4.2.2) [Software]. R Foundation for Statistical Computing. https://www.R-project.org/.Rebetez, M. y M. Reinhard. 2008. Monthly air temperature trends in Switzerland 1901-2000 and 1975-2004. Theoretical and Applied Climatology 91: 27-34.Rivers, M., E. Beech, L. Murphy y S. Oldfield. 2016. The Red List of Magnoliaceae-revised and extended. Botanic Gardens Conservation International (BGCI). Richmond, UK. 63 pp.Rodríguez-Duque, D. L., M. Escobar-Alba, J. D. García-González, J. E. Carvajal-Cogollo y G. A. Aymard-Corredor. 2022. A new Andean species of Magnolia (section Talauma, Magnolioideae, Magnoliaceae), and a key to the species found in Colombia. Harvard Papers in Botany 27(2): 131-141. DOI: https://doi.org/10.3100/hpib.v27iss2.2022.n1Rowe, K. C., K. M. C. Rowe, M. W. Tingley, M. S. Koo, J. L. Patton, C. J. Conroy, J. D. Perrine, S. R. Beissinger y C. Moritz. 2015. Spatially heterogeneous impact of climate change on small mammals of montane California. Proceedings of the Royal Society B: Biological Sciences 282(1799): 20141857. DOI: https://doi.org/10.1098/rspb.2014.1857Santos, T. y J. Tellería. 2006. Pérdida y fragmentación del hábitat: efecto sobre la conservación de las especies. Ecosistemas 15(2): 3-12.Serna, M., C. Velásquez y A. Cogollo. 2009. Novedades taxonómicas y un nuevo registro de Magnoliaceae para Colombia. Brittonia 61: 35-40. DOI: https://doi.org/10.1007/s12228-008-9055-7Serna‐González, M., L. E. Urrego‐Giraldo, J. P. Santa‐Ceballos y H. Suzuki‐Azuma. 2022. Flowering, floral visitors and climatic drivers of reproductive phenology of two endangered magnolias from neotropical endangered magnolias from neotropical Andean forests. Plant Species Biology 37(1): 20-37. DOI: https://doi.org/10.1111/1442-1984.12351Setsuko, S., T. Nagamitsu y N. Tomaru. 2013. Pollen flow and effects of population structure on selfing rates and female and male reproductive success in fragmented Magnolia stellata populations. BMC Ecology 13: 1-12. DOI: https://doi.org/10.1186/1472-6785-13-10Seymour, R.S., I. Silberbauer-Gottsberger y G. Gottsberger. 2010. Respiration and temperature patterns in thermogenic flowers of Magnolia ovata under natural conditions in Brazil. Functional Plant Biology, 37: 870–878. DOI: https://doi.org/10.1071/fp10039Shahbazi, A., S. Matinkhah, J. Khajeali, H. Bashari y M.T. Esfahani. 2016. The effects of pollinators and seed predators (Bruchidius koenigi Schilsky) on the breeding biology of Hedysarum criniferum Boiss. Plant Species Biology, 32(1): 36–44. DOI: https://dpi.org/10.1111/1442-1984.12126Shapiro, S. S. y M. B. Wilk. 1965. An Analysis of Variance Test for Normality (Complete Samples). Biometrika 52(3/4): 591-611. DOI: https://doi.org/10.2307/2333709Shi, X., Q. Yin, Z. Sang, Z. Zhu, Z. Jia y L. Ma. 2021. Prediction of potentially suitable areas for the introduction of Magnolia wufengensis under climate change. Ecological Indicators 127: 107762. DOI: https://doi.org/10.1016/j.ecolind.2021.107762Silva, L., A. Rocha y C. Silva. 2022. Surface temperature behavior in view of the conversion of tropical dry forest into anthropic uses, northern Minas Gerais–Brazil. PLoS ONE, 17. DOI: https://doi.org/10.1371/journal.pone.0270991.Steffan‐Dewenter, I., y T. Tscharntke. 2002. Insect communities and biotic interactions on fragmented calcareous grasslands - a mini review. Biological Conservation, 104, 275-284. https://doi.org/10.1016/S0006-3207(01)00192-6.Steffan-Dewenter, I., y T. Tscharntke. 1999. Effects of habitat isolation on pollinator communities and seed set. Oecologia, 121: 432-440.Steffan-Dewenter, I., U. Münzenberg, C. Bürger, C. Thies y T. Tscharntke. 2002a. Scale-dependent effects of landscape context on three pollinator guilds. Ecology, 83: 1421-1432.Suárez-Castro, A. F., M. M. Mayfield, M. G. E. Mitchell, L. Cattarino, M. Maron y J. R. Rhodes. 2020. Correlations and variance among species traits explain contrasting impacts of fragmentation and habitat loss on functional diversity. Landscape Ecology 35(10): 2239-2253. DOI: https://doi.org/10.1007/s10980-020-01098-2Sun, W. B., Y. P. Ma y S. Blackmore. 2019. How a new conservation action concept has accelerated plant conservation in China. Trends in Plant Science 24(1): 4-6. DOI: https://doi.org/10.1016/j.tplants.2018.10.009Terlau, J., U. Brose, N. Eisenhauer, A. Amyntas, T. Boy, A. Dyer, A. Gebler, C. Hof, T. Liu, C. Scherber, U Schlägel, A. Schmidt y M. Hirt. 2023. Microhabitat conditions remedy heat stress effects on insect activity. Global Change Biology, 29, pp. 3747 - 3758. DOI: https://doi.org/10.1111/gcb.16712.Thien, L.B. 1974. Floral biology of Magnolia. American Journal of Botany, 61(10): 1037–1045. DOI: https://doi.org/10.1002/j.1537-2197.1974.tb12321.xTraveset, A., R. Castro-Urgal,X. Rotllan-Puig y A. Lázaro. 2018. Effects of habitat loss on the plant–flower visitor network structure of a dune community. Oikos, 127, 45-55. DOI: https://doi.org/10.1111/OIK.04154.Turner, M. G. 2010. Disturbance and landscape dynamics in a changing world. Ecology 91(10): 2833-2849. DOI: https://doi.org/10.1890/10-0097.1Vásquez-Morales, S. G., O. Téllez-Valdés, M. D. R. Pineda-López, L. R. Sánchez-Velásquez, N. Flores-Estevez y H. Viveros-Viveros. 2014. Effect of climate change on the distribution of Magnolia schiedeana: a threatened species. Botanical Sciences, 92(4): 575-585.Vázquez-García, J. A., D. A. Neill, M. Asanza, A. J. Pérez, A. Dahua-Machoa, E. Merino-Santi, A. F. Delgado-Chaves y S. M. Urbano-Apraez. 2017. Magnolia mindoensis (subsect. Talauma, Magnoliaceae): Una especie nueva del Chocó biogeográfico premontano en Colombia y Ecuador. Brittonia, 69: 197–208. DOI: https://doi.org/10.1007/s12228-016-9449-xVranckx, G., J. Mergeay, K. Cox, B. Muys, H. Jacquemyn y O. Honnay. 2014. Tree density and population size affect pollen flow and mating patterns in small fragmented forest stands of pedunculate oak (Quercus robur L.). Forest Ecology and Management, 328: 254-261.Walters, M. y R. J. Scholes (eds.). 2017. The GEO Handbook on Biodiversity Observation Networks. Springer. Cham, Switzerland. DOI: https://doi.org/10.1007/978-3-319-27288-7Wang, R., H. Jia, J. Wang y Z. Zhang. 2010. Flowering and pollination patterns of Magnolia denudata with emphasis on anatomical changes in ovule and seed development. Flora, 205(4): 259–265. DOI: https://doi.org/10.1016/j.flora.2009.04.003Wang, R., S. Sai-Xu, X. Liu, Y. Zhang, J. Wang y Z. Zhang. 2014. Thermogenesis, flowering and the association with variation in floral odour attractants in Magnolia sprengeri (Magnoliaceae). PLoS ONE, 9(6): e99356. DOI: https://doi.org/10.1371/journal.pone.0099356Wang, R., y Z. Zhang. 2015. Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae. Communicative and Integrative Biology, 8(1): e992746. DOI: https://dx.doi.org/10.4161%2F19420889.2014.992746Wani, I. A., S. Verma, S. Mushtaq, A. A. Alsahli, M. N. Alyemeni, M. Tariq y S. Pant. 2021. Ecological analysis and environmental niche modelling of Dactylorhiza hatagirea (D. Don) Soo: A conservation approach for critically endangered medicinal orchid. Saudi Journal of Biological Sciences, 28(4): 2109-2122. DOI: https://doi.org/10.1016/j.sjbs.2021.01.054Wilcock, C., y R. Neiland. 2002. Pollination failure in plants: why it happens and when it matters. Trends in Plant Sciences, 7: 270-277Wilcoxon, F. 1945. Individual Comparisons by Ranking Methods. Biometrics Bulletin 1(6): 80-83. DOI: https://doi.org/10.2307/3001968Yang, J. T., Jiang, X., Chen, H., Jiang, P., Liu, M., and Y. Huang. 2022. Predicting the Potential Distribution of the Endangered Plant Magnolia wilsonii Using MaxEnt under Climate Change in China. Polish Journal of Environmental Studies, 31(5).Young, N., L. Carter y P. Evangelista. 2011. A MaxEnt Model v3.3.3e Tutorial (ArcGIS v10). Natural Resource Ecology Laboratory. Colorado State University. http://ibis.colostate.edu/webcontent/ws/coloradoview/tutorialsdownloads/a_maxent_model_v7.pdf (consultado septiembre 25 de 2023)Zambrano, J., C. X. Garzon-Lopez, L. Yeager, C. Fortunel, N. J. Cordeiro y N. G. Beckman. 2019. The effects of habitat loss and fragmentation on plant functional traits and functional diversity: what do we know so far? Oecologia 191(3): 505-518. DOI: https://doi.org/10.1007/s00442-019-04505-xZhang, M. y X. Yi. 2021. Seedling recruitment in response to artificial gaps: predicting the ecological consequence of forest disturbance. Plant Ecology 222: 81-92. DOI: https://doi.org/10.1007/s11258-020-01089-yZu, K., Z. Wang, X. Zhu, J. Lenoir, N. Shrestha, T. Lyu, A. Luo, Y. Li, C. Ji, S. Peng, J. Meng y J. Zhou. 2021. Upward shift and elevational range contractions of subtropical mountain plants in response to climate change. Science of the Total Environment 783: 146896. DOI: https://doi.org/10.1016/j.scitotenv.2021.146896Efectos de la fragmentación en la conservación de dos Magnolias andinasCODEI -TdeA I.U.EstudiantesGrupos comunitariosInvestigadoresResponsables políticosLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/87034/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53JuanPabloSantaCeballos.pdfJuanPabloSantaCeballos.pdfLicencia tesisapplication/pdf475656https://repositorio.unal.edu.co/bitstream/unal/87034/5/JuanPabloSantaCeballos.pdf2439645cdf0defd4efe245246f250d4bMD55ORIGINAL1041328891.2024.pdf1041328891.2024.pdfTesis de Maestría en Bosques y Conservación Ambientalapplication/pdf5488967https://repositorio.unal.edu.co/bitstream/unal/87034/4/1041328891.2024.pdf483e011c1265fdaf616bdaa38c522ce0MD54THUMBNAIL1041328891.2024.pdf.jpg1041328891.2024.pdf.jpgGenerated Thumbnailimage/jpeg4925https://repositorio.unal.edu.co/bitstream/unal/87034/6/1041328891.2024.pdf.jpgf42285c2546a1ac916dcad8f3e730d1aMD56unal/87034oai:repositorio.unal.edu.co:unal/870342024-10-23 23:48:31.73Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=