Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R
ilustraciones a color, diagramas
- Autores:
-
Arévalo Corredor, Luis Fernando
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/85626
- Palabra clave:
- 610 - Medicina y salud::615 - Farmacología y terapéutica
Insulina glargina
Receptor IGF Tipo 1
Receptor de insulina
Insulin glargine
Receptor, IGF Type 1
Receptor, insulin
Glargina
Receptor Insulina
Receptor IGF1R
Docking molecular
Receptores
Insulin glargine
Insulin receptor
IGF1R receptor
Molecular docking
Receptors
Docking (molecular)
Acoplamiento molecular
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_d57a6467dbe3ac170492770df73a7a02 |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/85626 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R |
dc.title.translated.eng.fl_str_mv |
In silico study of the interaction between insulin glargine and the hybrid IR/IGF1R receptor. |
title |
Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R |
spellingShingle |
Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R 610 - Medicina y salud::615 - Farmacología y terapéutica Insulina glargina Receptor IGF Tipo 1 Receptor de insulina Insulin glargine Receptor, IGF Type 1 Receptor, insulin Glargina Receptor Insulina Receptor IGF1R Docking molecular Receptores Insulin glargine Insulin receptor IGF1R receptor Molecular docking Receptors Docking (molecular) Acoplamiento molecular |
title_short |
Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R |
title_full |
Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R |
title_fullStr |
Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R |
title_full_unstemmed |
Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R |
title_sort |
Estudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1R |
dc.creator.fl_str_mv |
Arévalo Corredor, Luis Fernando |
dc.contributor.advisor.spa.fl_str_mv |
Gómez Alegría, Claudio Jaime González Beltrán, Martha Margarita |
dc.contributor.author.spa.fl_str_mv |
Arévalo Corredor, Luis Fernando |
dc.contributor.researchgroup.spa.fl_str_mv |
Unimol |
dc.contributor.cvlac.spa.fl_str_mv |
AREVALO CORREDOR, LUIS FERNANDO |
dc.subject.ddc.spa.fl_str_mv |
610 - Medicina y salud::615 - Farmacología y terapéutica |
topic |
610 - Medicina y salud::615 - Farmacología y terapéutica Insulina glargina Receptor IGF Tipo 1 Receptor de insulina Insulin glargine Receptor, IGF Type 1 Receptor, insulin Glargina Receptor Insulina Receptor IGF1R Docking molecular Receptores Insulin glargine Insulin receptor IGF1R receptor Molecular docking Receptors Docking (molecular) Acoplamiento molecular |
dc.subject.decs.spa.fl_str_mv |
Insulina glargina Receptor IGF Tipo 1 Receptor de insulina |
dc.subject.decs.eng.fl_str_mv |
Insulin glargine Receptor, IGF Type 1 Receptor, insulin |
dc.subject.proposal.spa.fl_str_mv |
Glargina Receptor Insulina Receptor IGF1R Docking molecular Receptores |
dc.subject.proposal.eng.fl_str_mv |
Insulin glargine Insulin receptor IGF1R receptor Molecular docking Receptors |
dc.subject.wikidata.eng.fl_str_mv |
Docking (molecular) |
dc.subject.wikidata.spa.fl_str_mv |
Acoplamiento molecular |
description |
ilustraciones a color, diagramas |
publishDate |
2023 |
dc.date.issued.none.fl_str_mv |
2023-12 |
dc.date.accessioned.none.fl_str_mv |
2024-02-05T20:43:16Z |
dc.date.available.none.fl_str_mv |
2024-02-05T20:43:16Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/85626 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/85626 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.references.spa.fl_str_mv |
Abbott, A. M., Bueno, R., Pedrini, M. T., Murray, J. M., & Smith, R. J. (1992). Insulin- like growth factor I receptor gene structure. Journal of Biological Chemistry, 267(15), 10759–10763. https://doi.org/10.1016/S0021-9258(19)50083-7 Adams, G. G., Meal, A., Morgan, P. S., Alzahrani, Q. E., Zobel, H., Lithgo, R., Samil Kok, M., Besong, D. T. M., Jiwani, S. I., Ballance, S., Harding, S. E., Chayen, N., & Gillis, R. B. (2018). Characterisation of insulin analogues therapeutically available to patients. PLOS ONE, 13(3), e0195010. https://doi.org/10.1371/JOURNAL.PONE.0195010 Adams, T. E., Epa, V. C., Garrett, T. P. J., & Ward, C. W. (2000). Structure and function of the type 1 insulin-like growth factor receptor. Cellular and Molecular Life Sciences : CMLS, 57(7), 1050–1093. https://doi.org/10.1007/PL00000744 Agrawal, P., Singh, H., Srivastava, H. K., Singh, S., Kishore, G. I., & Raghava, G. P. S. (2019). Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics, 19(S13). https://doi.org/10.1186/s12859-018-2449-y Alberto, J., Reyes, O., & Plancarte, A. A. (2008). BASES MOLECULARES DE LAS ACCIONES DE LA INSULINA*. Revista de Educación Bioquímica, 27(1), 03–01. https://www.redalyc.org/pdf/490/49011452003.pdf AlphaFold Data Copyright (2022) DeepMind Technologies Limited. (2022). AlphaFold Protein Structure Database. Created with the AlphaFold Monomer v2.0 Pipeline. https://alphafold.ebi.ac.uk/entry/P06213 Annunziata, M., Granata, R., & Ghigo, E. (2011). The IGF system. Acta Diabetologica, 48(1), 1–9. https://doi.org/10.1007/S00592-010-0227-Z Backer, J. M., Myers Jnr., M. G., Shoelson, S. E., Chin, D. J., Sun, X. J., Miralpeix, M., Hu, P., Margolis, B., Skolnik, E. Y., Schlessinger, J., & White, M. F. (1992). Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. The EMBO Journal, 11(9), 3469–3479. https://doi.org/10.1002/J.1460-2075.1992.TB05426.X Baker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science (New York, N.Y.), 294(5540), 93–96. https://doi.org/10.1126/SCIENCE.1065659 Bastard, K., Saladin, A., & Prévost, C. (2011). Accounting for Large Amplitude Protein Deformation during in Silico Macromolecular Docking. International Journal of Molecular Sciences 2011, Vol. 12, Pages 1316-1333, 12(2), 1316–1333. https://doi.org/10.3390/ IJMS12021316 Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., & Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews, 30(6), 586–623. https://doi.org/10.1210/ER.2008- 004 Bello, L. G., Salinas, J. T., Belén Giménez, M., Flores, L. E., Gómez De Ruiz, N., Centurión, A., & Centurión, O. A. (2016). El riesgo de los que cuidan el riesgo: FINDRISK en personal de blanco The risk of those who care for risk: FIDRISK in healthcare personnel Autores: ARTÍCULO ORIGINAL. Rev. Virtual Soc. Parag. Med. Int. Setiembre, 3(2), 71–76. https://doi.org/10.18004/rvspmi/2016.03(02)71-076 Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(Web Server issue), W510. https://doi.org/10.1093/NAR/GKP322 Bentham Science Publisher (2006). Scoring functions for protein-ligand docking. Current Protein & Peptide Science, 7(5), 407–420. https://doi.org/10.2174/138920306778559395 Benyoucef, S., Surinya, K. H., Hadaschik, D., & Siddle, K. (2007). Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. The Biochemical Journal, 403(3), 603–613. https://doi.org/10.1042/BJ20061709 Biasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner, N., Schenk, A. D., Philippsen, A., & Schwede, T. (2013). OpenStructure: an integrated software framework for computational structural biology. Acta Crystallographica Section D, Structural Biology, 69(Pt 5), 701–709. https://doi.org/10.1107/S0907444913007051 Blanquart, C., Achi, J., & Issad, T. (2008). Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochemical Pharmacology, 76(7), 873–883. https://doi.org/10.1016/J.BCP.2008.07.027 Blundell, T., Dodson, G., Hodgkin, D., & Mercola, D. (1972). Insulin: The Structure in the Crystal and its Reflection in Chemistry and Biology by. Advances in Protein Chemistry, 26(C), 279–402. https://doi.org/10.1016/S0065-3233(08)60143-6 Blyth, A. J., Kirk, N. S., & Forbes, B. E. (2020). Understanding IGF-II Action through Insights into Receptor Binding and Activation. Cells, Vol. 9, Page 2276, 9(10), 2276. https://doi.org/10.3390/CELLS9102276 Bolli, G. B., di Marchi, R. D., Park, G. D., Pramming, S., & Koivisto, V. A. (1999). Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia, 42(10), 1151–1167. https://doi.org/10.1007/S001250051286 Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2008). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols 2009 4:1, 4(1), 1–13. https://doi.org/10.1038/nprot.2008.197 Brown, J., Delaine, C., Zaccheo, O. J., Siebold, C., Gilbert, R. J., van Boxel, G., Denley, A., Wallace, J. C., Hassan, A. B., Forbes, B. E., & Jones, E. Y. (2008). Structure and functional analysis of the IGF-II/IGF2R interaction. The EMBO Journal, 27(1), 265. https://doi.org/10.1038/SJ.EMBOJ.7601938 Chen, G., Seukep, A. J., & Guo, M. (2020). Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs. Marine Drugs, 18(11). https://doi.org/10.3390/MD18110545 Chen, R., & Weng, Z. (2002). Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins, 47(3), 281–294. https://doi.org/10.1002/PROT.10092 Chisalita, S. I., & Arnqvist, H. J. (2005). Expression and function of receptors for insulin-like growth factor-I and insulin in human coronary artery smooth muscle cells. Diabetologia, 48(10), 2155–2161. https://doi.org/10.1007/S00125-005-1890-4 hristoffer, C., Chen, S., Bharadwaj, V., Aderinwale, T., Kumar, V., Hormati, M., & Kihara, D. (2021). LZerD webserver for pairwise and multiple protein-protein docking. Nucleic Acids Research, 49(W1), W359–W365. https://doi.org/10.1093/NAR/GKAB336 Ciaraldi, T. P., & Sasaoka, T. (2011). Review on the in vitro interaction of insulin glargine with the insulin/insulin-like growth factor system: potential implications for metabolic and mitogenic activities. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Metabolisme, 43(1), 1–10. https://doi.org/10.1055/S-0030-1267203 Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004a). ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Research, 32(Web Server issue). https://doi.org/10.1093/NAR/GKH354 Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004b). ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics (Oxford, England), 20(1), 45–50. https://doi.org/10.1093/BIOINFORMATICS/BTG371 Costo, F. C. de emfermedades de alto (CAC). (2020). Enfermedad renal crónica. FMC Formacion Medica Continuada En Atencion Primaria, SUPPL. 4, 1–33 de Luis, D. A., & Romero, E. (2013). Análogos de insulina: modificaciones en la estructura, consecuencias moleculares y metabólicas. SEMERGEN - Medicina de Familia, 39(1), 34–40. https://doi.org/10.1016/J.SEMERG.2012.04.010 de Meyts, P. (1994). The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia, 37 Suppl 2(2 Supplement). https://doi.org/10.1007/BF00400837 de Meyts, P., & Whittaker, J. (2002). Structural biology of insulin and IGF1 receptors: implications for drug design. Nature Reviews Drug Discovery 2002 1:10, 1(10), 769–783. https://doi.org/10.1038/nrd917 De Meyts, P. (2004). Insulin and its receptor: structure, function and evolution. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 26(12), 1351–1362. https://doi.org/10.1002/BIES.20151 de Pagter-Holthuizen, P., van Schaik, F. M. A., Verduijn, G. M., van Ommen, G. J. B., Bouma, B. N., Jansen+, M., & Sussenbach, J. S. (1986). Organization of the human genes factors I and for insulin-like growth II. 195(1). https://doi.org/10.1016/0014-5793(86)80156-9 Dekker Nitert, M., Chisalita, S. I., Olsson, K., Bornfeldt, K. E., & Arnqvist, H. J. (2005). IGF-I/insulin hybrid receptors in human endothelial cells. Molecular and Cellular Endocrinology, 229(1–2), 31–37. https://doi.org/10.1016/J.MCE.2004.10.003 Denley, A., Cosgrove, L. J., Booker, G. W., Wallace, J. C., & Forbes, B. E. (2005). Molecular interactions of the IGF system. Cytokine & Growth Factor Reviews, 16(4–5), 421–439. https://doi.org/10.1016/J.CYTOGFR.2005.04.004 DHHS. (2020). Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020. National Diabetes Statistics Report, 2. https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/JA026939X Drejer, K. (1992). The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes/Metabolism Reviews, 8(3), 259–285. https://doi.org/10.1002/DMR.5610080305 Du, Z., & Lovly, C. M. (2018). Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer 2018 17:1, 17(1), 1–13. https://doi.org/10.1186/S12943-018-0782-4 gan, A. M., & Dinneen, S. F. (2014). What is diabetes? Medicine (United Kingdom), 42(12), 679–681. https://doi.org/10.1016/j.mpmed.2014.09.005 Esquivel-Rodriguez, J., Filos-Gonzalez, V., Li, B., & Kihara, D. (2014). Pairwise and multimeric protein–protein docking using the lzerd program suite. Methods in Molecular Biology, 1137, 209–234. https://doi.org/10.1007/978-1-4939-0366-5_15 Fan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7(2), 83–89. https://doi.org/10.1007/S40484-019-0172-Y Federici, M., Giaccari, A., Hribal, M. L., Giovannone, B., Lauro, D., Morviducci, L., Pastore, L., Tamburrano, G., Lauro, R., & Sesti, G. (1999). Evidence for glucose/hexosamine in vivo regulation of insulin/IGF-I hybrid receptor assembly. Diabetes, 48(12), 2277–2285. https://doi.org/10.2337/DIABETES.48.12.2277 Fernandez-Fuentes, N., Rai, B. K., Madrid-Aliste, C. J., Eduardo Fajardo, J., & Fiser, A. (2007). Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments. Bioinformatics (Oxford, England), 23(19), 2558–2565. https://doi.org/10.1093/BIOINFORMATICS/BTM37 Ferreira, L. G., dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), 13384. https://doi.org/10.3390/MOLECULES200713384 Fischer, D. (2006). Servers for protein structure prediction. Current Opinion in Structural Biology, 16(2), 178–182. https://doi.org/10.1016/J.SBI.2006.03.004 Fiser, A. (2010). Template-Based Protein Structure Modeling. Methods in Molecular Biology (Clifton, N.J.), 673, 73. https://doi.org/10.1007/978-1-60761-842-3_6 González-Beltrán, M., & Gómez-Alegría, C. (2021). Molecular Modeling and Bioinformatics Analysis of Drug-Receptor Interactions in the System Formed by Glargine, Its Metabolite M1, the Insulin Receptor, and the IGF1 Receptor. Bioinformatics and Biology Insights, 15. https://doi.org/10.1177/11779322211046403 Goodsell, D. S., & Olson, A. J. (1990). Automated docking of substrates to proteins by simulated annealing. Proteins, 8(3), 195–202. https://doi.org/10.1002/PROT.340080302 Grassot, J., Mouchiroud, G., & Perrière, G. (2003). RTKdb: database of receptor tyrosine kinase. Nucleic Acids Research, 31(1), 353–358. https://doi.org/10.1093/NAR/GKG036 Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor-ligand molecular docking. Biophysical Reviews, 6(1), 75–87. https://doi.org/10.1007/S12551-013-0130-2 Haddad, Y., Adam, V., & Heger, Z. (2020). Ten quick tips for homology modeling of high-resolution protein 3D structures. PLOS Computational Biology, 16(4), e1007449. https://doi.org/10.1371/journal.pcbi.1007449 Harris, R., Olson, A. J., & Goodsell, D. S. (2008). Automated prediction of ligand-binding sites in proteins. Proteins, 70(4), 1506–1517. https://doi.org/10.1002/PROT.21645 Hedeskov, C. J. (1980). Mechanism of glucose-induced insulin secretion. Physiological Reviews, 60(2), 442-509. https://doi.org/10.1152/physrev.1980.60.2.442 Heise, T., Nosek, L., Roønn, B. B., Endahl, L., Heinemann, L., Kapitza, C., & Draeger, E. (2004). Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes, 53(6), 1614–1620. https://doi.org/10.2337/DIABETES.53.6.1614 Honorato, R. V., Koukos, P. I., Jiménez‐García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A., & Bonvin, A. (2021). Structural biology in the clouds: the WENMR-EOSC ecosystem. Frontiers in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.729513 Hua, Q. (2010). Insulin: a small protein with a long journey. Protein & Cell, 1(6), 537–551. https://doi.org/10.1007/S13238-010-0069-Z Hubbard, S. R. (1999). Structural analysis of receptor tyrosine kinases. Progress in Biophysics and Molecular Biology, 71(3–4), 343–358.https://doi.org/10.1016/S0079- 6107(98)00047-9 Hubbard, S. R. (2013). The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harbor Perspectives in Biology, 5(3). https://doi.org/10.1101/CSHPERSPECT.A008946 International Diabetes Federation. (2019). IDF Diabetes Atlas, 9th edn. Brussels, Belgium. In Atlas de la Diabetes de la FID. http://www.idf.org/sites/default/files/Atlas-poster-2014_ES.pdf Janin, J., Henrick, K., Moult, J., Eyck, L. ten, Sternberg, M. J. E., Vajda, S., Vakser, I., & Wodak, S. J. (2003). CAPRI: a Critical Assessment of PRedicted Interactions. Proteins, 52(1), 2–9. https://doi.org/10.1002/PROT.10381 Jarosinski, M. A., Dhayalan, B., Chen, Y. S., Chatterjee, D., Varas, N., & Weiss, M. A. (2021). Structural principles of insulin formulation and analog design: A century of innovation. Molecular Metabolism, 52, 101325. https://doi.org/10.1016/J.MOLMET.2021.101325 Joshi, S., Parikh, R., & Das, A. (2007). Insulin--history, biochemistry, physiology and pharmacology. The Journal of the Association of Physicians of India, 55(Supp), 19–25 umper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583. https://doi.org/10.1038/s41586-021-03819-2 Kavran, J. M., McCabe, J. M., Byrne, P. O., Connacher, M. K., Wang, Z., Ramek, A., Sarabipour, S., Shan, Y., Shaw, D. E., Hristova, K., Cole, P. A., & Leahy, D. J. (2014). How IGF-1 activates its receptor. ELife, 3. https://doi.org/10.7554/ELIFE.03772 Kim, J. J., & Accili, D. (2002). Signalling through IGF-I and insulin receptors: where is the specificity? Growth Hormone & IGF Research, 12, 84–90. https://doi.org/10.1054/ghir.2002.0265 Knudsen, L., de Meyts, P., & Kiselyov, V. v. (2011). Insight into the molecular basis for the kinetic differences between the two insulin receptor isoforms. The Biochemical Journal, 440(3), 397–403. https://doi.org/10.1042/BJ20110550 Koukos, P. I., Faro, I., van Noort, C. W., & Bonvin, A. M. J. J. (2018). A Membrane Protein Complex Docking Benchmark. Journal of Molecular Biology, 430(24), 5246–5256. https://doi.org/10.1016/J.JMB.2018.11.005 Kozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2006). PIPER: an FFT-based protein docking program with pairwise potentials. Proteins, 65(2), 392–406. https://doi.org/10.1002/PROT.21117 Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255. https://doi.org/10.1038/NPROT.2016.169 Kuerzel, G. U., Shukla, U., Scholtz, H. E., Pretorius, S. G., Wessels, D. H., Venter, C., Potgieter, M. A., Lang, A. M., Koose, T., & Bernhardt, E. (2003). Biotransformation of insulin glargine after subcutaneous injection in healthy subjects. Current Medical Research and Opinion, 19(1), 34–40. https://doi.org/10.1185/030079902125001416 Lawrence, M. C. (2021). Understanding insulin and its receptor from their three-dimensional structures. Molecular Metabolism, 52, 101255. https://doi.org/10.1016/J.MOLMET.2021.101255 Lee, J., Miyazaki, M., Romeo, G. R., & Shoelson, S. E. (2014). Insulin receptor activation with transmembrane domain ligands. The Journal of Biological Chemistry, 289(28), 19769–19777. https://doi.org/10.1074/JBC.M114.578641 Leis, S., & Zacharias, M. (2011). Efficient inclusion of receptor flexibility in grid-based protein–ligand docking*. Journal of Computational Chemistry, 32(16), 3433–3439. https://doi.org/10.1002/JCC.21923 Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134. https://doi.org/10.1016/J.CELL.2010.06.011 Lensink, M. F., Velankar, S., & Wodak, S. J. (2016). Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins: Structure, Function and Bioinformatics, 85(3), 359–377. https://doi.org/10.1002/PROT.25215 Li, J., Choi, E., Yu, H., & Bai, X. chen. (2019). Structural basis of the activation of type 1 insulin-like growth factor receptor. Nature Communications 2019 10:1, 10(1), 1–11. https://doi.org/10.1038/s41467-019-12564-0 Lucas Morante, T., Aragón Alonso, A., Oliván Palacios, B., & Manzano Arroyo, P. (2004). Las nuevas insulinas: Revisión. Información Terapéutica Del Sistema Nacional de Salud, ISSN 1130-8427, Vol. 28, No. 2, 2004, Págs. 41-49, 28(2), 41–49. https://dialnet.unirioja.es/servlet/articulo?codigo=914248&info=resumen&idioma=SP A Ma, B., Tromp, J., & Li, M. (2002). PatternHunter: faster and more sensitive homology search. Bioinformatics (Oxford, England), 18(3), 440–445. https://doi.org/10.1093/BIOINFORMATICS/18.3.440 Madeira, F., Pearce, M., Tivey, A., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50(W1), W276–W279. https://doi.org/10.1093/NAR/GKAC240 Malaguarnera, R., & Belfiore, A. (2011). The insulin receptor: a new target for cancer therapy. Frontiers in Endocrinology, 2, 93. https://doi.org/10.3389/FENDO.2011.00093 Mandell, J. G., Roberts, V. A., Pique, M. E., Kotlovyi, V., Mitchell, J. C., Nelson, E., Tsigelny, I., & ten Eyck, L. F. (2001). Protein docking using continuum electrostatics and geometric fit. Protein Engineering, 14(2), 105–113. https://doi.org/10.1093/PROTEIN/14.2.105 Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science (New York, N.Y.), 298(5600), 1912–1934. https://doi.org/10.1126/SCIENCE.1075762 Marsh, J. A., & Teichmann, S. A. (2015). Structure, dynamics, assembly, and evolution of protein complexes. Annual Review of Biochemistry, 84, 551–575. https://doi.org/10.1146/ANNUREV-BIOCHEM-060614-034142 Menting, J. G., Whittaker, J., Margetts, M. B., Whittaker, L. J., Kong, G. K. W., Smith, B. J., Watson, C. J., Žáková, L., Kletvíková, E., Jiráček, J., Chan, S. J., Steiner, D. F., Dodson, G. G., Brzozowski, A. M., Weiss, M. A., Ward, C. W., & Lawrence, M. C. (2013). How insulin engages its primary binding site on the insulin receptor. Nature 2013 493:7431, 493(7431), 241–245. https://doi.org/10.1038/nature11781 Menting, J. G., Yang, Y., Chan, S. J., Phillips, N. B., Smith, B. J., Whittaker, J., Wickramasinghe, N. P., Whittaker, L. J., Pandyarajan, V., Wan, Z. L., Yadav, S. P., Carroll, J. M., Strokes, N., Roberts, C. T., Ismail-Beigi, F., Milewski, W., Steiner, D. F., Chauhan, V. S., Ward, C. W., … Lawrence, M. C. (2014). Protective hinge in insulin opens to enable its receptor engagement. Proceedings of the National Academy of Sciences of the United States of America,111(33). https://doi.org/10.1073/PNAS.1412897111 Menting, J. G., Lawrence, C. F., Kong, G. K. W., Margetts, M. B., Ward, C. W., & Lawrence, M. C. (2015). Structural Congruency of Ligand Binding to the Insulin and Insulin/Type 1 Insulin-like Growth Factor Hybrid Receptors. Structure, 23(7), 1271–1282. https://doi.org/10.1016/J.STR.2015.04.016 Michalska, K., & Joachimiak, A. (2021). Structural genomics and the Protein Data Bank. The Journal of Biological Chemistry, 296. https://doi.org/10.1016/J.JBC.2021.100747 Morris, G., Goodsell, D., Halliday, R., Huey, R., Hart, W., Belew, R., & Olson, A. (1999, January 6). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function - Morris - 1998 - Journal of Computational Chemistry - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096- 987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-B Muhammed, M. T., & Aki-Yalcin, E. (2019). Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chemical Biology & Drug Design, 93(1), 12–20. https://doi.org/10.1111/CBDD.13388 Mynarcik, D. C., Yu, G. Q., & Whittaker, J. (1996). Alanine-scanning Mutagenesis of a C-terminal Ligand Binding Domain of the Insulin Receptor α Subunit (*). Journal of Biological Chemistry, 271(5), 2439–2442. https://doi.org/10.1074/JBC.271.5.2439 Nagel, N., Graewert, M. A., Gao, M., Heyse, W., Jeffries, C. M., Svergun, D., & Berchtold, H. (2019). The quaternary structure of insulin glargine and glulisine under formulation conditions. Biophysical Chemistry, 253, 106226. https://doi.org/10.1016/J.BPC.2019.106226 National Institute of Diabetes and Digestive and Kidney Diseases. (2022, January 24). Diabetes Gestacional. https://www.niddk.nih.gov/health-information/informacion-de-la-salud/diabetes/informacion-general/que-es/gestacional Nooren, I. M. A., & Thornton, J. M. (2003). Diversity of protein-protein interactions. The EMBO Journal, 22(14), 3486–3492. https://doi.org/10.1093/EMBOJ/CDG359 Organización Mundial de la Salud. (2020). INFORME MUNDIAL SOBRE LA DIABETES. Retrieved January 23, 2022, from www.who.int Organización Mundial de la Salud. (2022, September 16). Diabetes. https://www.who.int/es/news-room/fact-sheets/detail/diabetes Organización Mundial de la Salud. (2022, September 16). Enfermedades no transmisibles. 16 septiembre. https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseases Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: a review. Biophysical Reviews, 9(2), 91–102. https://doi.org/10.1007/S12551-016-0247-1 Pandini, G., Frasca, F., Mineo, R., Sciacca, L., Vigneri, R., & Belfiore, A. (2002). Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. The Journal of Biological Chemistry, 277(42), 39684–39695. https://doi.org/10.1074/JBC.M202766200 Parodi, K., & José, S. (2016). Diabetes y embarazo. Rev. Fac. Cienc. Méd. (Impr.), 27–35. http://www.bvs.hn/RFCM/pdf/2016/pdf/RFCMVol13-1-2016-5.pdf Pierre-Eugene, C., Pagesy, P., Nguyen, T. T., Neuillé, M., Tschank, G., Tennagels, N., Hampe, C., & Issad, T. (2012). Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PloS One, 7(7). https://doi.org/10.1371/JOURNAL.PONE.0041992 Plank, J., Bodenlenz, M., Sinner, F., Magnes, C., Görzer, E., Regittnig, W., Endahl, L. A., Draeger, E., Zdravkovic, M., & Pieber, T. R. (2005). A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care, 28(5), 1107–1112. https://doi.org/10.2337/DIACARE.28.5.1107 Prieto Martínez Fernando D., & Medina Franco José L. (2018). Diseño de fármacos asistido por computadora: cuando la informática, la química y el arte se encuentran. TIP Revista Especializada En Ciencias Químico-Biológicas, 21(2), 124–134. https://doi.org/10.22201/fesz.23958723e.2018.2.139 Prieto-Martínez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Acoplamiento Molecular: Avances Recientes y Retos. TIP Revista Especializada En Ciencias Químico-Biológicas, 21, 65–87. https://doi.org/10.22201/fesz.23958723e.2018.0.143 Puche, J. E., & Castilla-Cortázar, I. (2012). Human conditions of insulin-like growth factor-I (IGF-I) deficiency. Journal of Translational Medicine, 10(1), 1–29. https://doi.org/10.1186/1479-5876-10-224 RCSB PDB - 7V3P: Cryo-EM structure of the IGF1R/insulin complex. (2022, August 17). https://www.rcsb.org/structure/7V3P Reyes, J.; R. A. (2017, August 17). RCSB PDB - 5VIZ: X-Ray structure of Insulin Glargine. 2017-10-18. https://www.rcsb.org/structure/5VIZ Robinson, D. R., Wu, Y. M., & Lin, S. F. (2000). The protein tyrosine kinase family of the human genome. Oncogene, 19(49), 5548–5557. https://doi.org/10.1038/SJ.ONC.1203957 Roy, A., & Zhang, Y. (2012). Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure (London, England: 1993), 20(6), 987–997. https://doi.org/10.1016/J.STR.2012.03.009 Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799–806. https://doi.org/10.1038/414799A Saltiel, A. R., & Pessin, J. E. (2002). Insulin signaling pathways in time and space. Trends in Cell Biology, 12(2), 65–71. https://doi.org/10.1016/S0962-8924(01)02207-3 Sánchez e Islas. (2016). Bases moleculares de la diabetes mellitus tipo 2 | Biología Molecular. Fundamentos y aplicaciones en las ciencias de la salud, 2e | AccessMedicina | McGraw Hill Medical. In R. A. B. J. eds. Montes A (Ed.), Biología Molecular. Fundamentos y aplicaciones en las ciencias de la salud (2nd ed., Vol. 1). McGraw-Hill Education. https://accessmedicina.mhmedical.com/content.aspx?bookid=1803§ionid=124156562 Saponaro, A., Maione, V., Bonvin, A. M. J. J., & Cantini, F. (2020). Understanding Docking Complexes of Macromolecules Using HADDOCK: The Synergy between Experimental Data and Computations. Bio-Protocol, 10(20). https://doi.org/10.21769/BIOPROTOC.3793 Saxena, A., Sangwan, R. S., & Mishra, S. (2013). Fundamentals of Homology Modeling Steps and Comparison among Important Bioinformatics Tools: An Overview. Science International, 1(7), 237–252. https://doi.org/10.17311/SCIINTL.2013.237.252 Schäffer, L., & Ljungqvist, L. (1992). Identification of a disulfide bridge connecting the alpha-subunits of the extracellular domain of the insulin receptor. Biochemical and Biophysical Research Communications, 189(2), 650–653. https://doi.org/10.1016/0006-291X(92)92250-2 Sciacca, L., le Moli, R., & Vigneri, R. (2012). Insulin analogs and cancer. Frontiers in Endocrinology, 3(FEB), 21. https://doi.org/10.3389/FENDO.2012.00021 Sciacca, L., Cassarino, M. F., Genua, M., Vigneri, P., Giovanna Pennisi, M., Malandrino, P., Squatrito, S., Pezzino, V., & Vigneri, R. (2014). Biological Effects of Insulin and Its Analogs on Cancer Cells With Different Insulin Family Receptor Expression. Journal of Cellular Physiology, 229(11), 1817–1821. https://doi.org/10.1002/JCP.24635 Sciacca, L., Vella, V., Frittitta, L., Tumminia, A., Manzella, L., Squatrito, S., Belfiore, A., & Vigneri, R. (2018). Long-acting insulin analogs and cancer. Nutrition, Metabolism and Cardiovascular Diseases, 28(5), 436–443. https://doi.org/10.1016/J.NUMECD.2018.02.010 Shooter, G. K., Magee, B., Soos, M. A., Francis, G. L., Siddle, K., & Wallace, J. C. (1996). Insulin-like growth factor (IGF)-I A- and B-domain analogues with altered type 1 IGF and insulin receptor binding specificities. Journal of Molecular Endocrinology, 17(3), 237–246. https://doi.org/10.1677/JME.0.0170237 Siebenmorgen, T., & Zacharias, M. (2019). Computational prediction of protein–protein binding affinities. Wiley Interdisciplinary Reviews: Computational Molecular Science, 10(3), e1448. https://doi.org/10.1002/WCMS.1448 Singh, P., Alex, J. M., & Bast, F. (2013). Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Medical Oncology 2013 31:1, 31(1), 1–14. https://doi.org/10.1007/S12032-013-0805-3 Slaaby, R., Schäffer, L., Lautrup-Larsen, I., Andersen, A. S., Shaw, A. C., Mathiasen, I. S., & Brandt, J. (2006). Hybrid Receptors Formed by Insulin Receptor (IR) and Insulin-like Growth Factor I Receptor (IGF-IR) Have Low Insulin and High IGF-1 Affinity Irrespective of the IR Splice Variant *. Journal of Biological Chemistry, 281(36), 25869–25874. https://doi.org/10.1074/JBC.M605189200 Slaaby, R. (2015). Specific insulin/IGF1 hybrid receptor activation assay reveals IGF1 as a more potent ligand than insulin. Scientific Reports 2015 5:1, 5(1), 1–5. https://doi.org/10.1038/srep07911 Smith, B. J., Huang, K., Kong, G., Chan, S. J., Nakagawa, S., Menting, J. G., Hu, S. Q., Whittaker, J., Steiner, D. F., Katsoyannis, P. G., Ward, C. W., Weiss, M. A., & Lawrence, M. C. (2010). Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proceedings of the National Academy of Sciences, 107(15), 6771–6776. https://doi.org/10.1073/PNAS.1001813107 Smith, G. D., Pangborn, W. A., & Blessing, R. H. (2003). The structure of T6 human insulin at 1.0 A resolution. Acta Crystallographica. Section D, Biological Crystallography, 59(Pt 3), 474–482. https://doi.org/10.1107/S0907444902023685 Sommerfeld, M. R., Müller, G., Tschank, G., Seipke, G., Habermann, P., Kurrle, R., & Tennagels, N. (2010). In Vitro Metabolic and Mitogenic Signaling of Insulin Glargine and Its Metabolites. PLOS ONE, 5(3). https://doi.org/10.1371/JOURNAL.PONE.0009540 Soos, M. A., Whittaker, J., Lammers, R., Ullrich, A., & Siddle, K. (1990). Receptors for insulin and insulin-like growth factor-I can form hybrid dimers. Characterisation of hybrid receptors in transfected cells. Biochemical Journal, 270(2), 383. https://doi.org/10.1042/BJ2700383 Soos, M. A., Field, C. E., & Siddle, K. (1993). Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochemical Journal, 290(Pt 2), 419. https://doi.org/10.1042/BJ2900419 Sparrow, L. G., McKern, N. M., Gorman, J. J., Strike, P. M., Robinson, C. P., Bentley, J. D., & Ward, C. W. (1997). The disulfide bonds in the C-terminal domains of the human insulin receptor ectodomain. The Journal of Biological Chemistry, 272(47), 29460–29467. https://doi.org/10.1074/JBC.272.47.29460 Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2019). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 1765–1771. https://doi.org/10.1093/bioinformatics/btz828 Studer, G., Tauriello, G., Bienert, S., Biasini, M., Johner, N., & Schwede, T. (2021). ProMod3—A versatile homology modelling toolbox. PLOS Computational Biology, 17(1), e1008667. https://doi.org/10.1371/JOURNAL.PCBI.1008667 THE MOLECULAR BASIS OF INSULIN ACTION. (2002). Insulin Signaling, 82–118. https://doi.org/10.1201/B12794-13 Uchikawa, E., Choi, E., Shang, G., Yu, H., & Xiao-Chen, B. (2019). Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. ELife, 8. https://doi.org/10.7554/ELIFE.48630 Ullrich, A., Gray, A., Tam, A. W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., le Bon, T., Kathuria, S., & Chen, E. (1986). Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. The EMBO Journal, 5(10), 2503. https://doi.org/10.1002/j.1460-2075.1986.tb04528.x Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2021). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/NAR/GKAB1061 Varewijck, A. J., Goudzwaard, J. A., Brugts, M. P., Lamberts, S. W. J., Hofland, L. J., & Janssen, J. A. M. J. L. (2010). Insulin glargine is more potent in activating the human IGF-I receptor than human insulin and insulin detemir. Growth Hormone and IGF Research, 20(6), 427–431. https://doi.org/10.1016/J.GHIR.2010.10.002 Varewijck, A. J., & Janssen, J. A. M. J. L. (2012). Insulin and its analogues and their affinities for the IGF1 receptor. Endocrine-Related Cancer, 19(5), F63–F75. https://doi.org/10.1530/ERC-12-0026 Vega Castro, N., & Reyes, E. (2020). Introducción al análisis estructural de proteínas y glicoproteínas (Coordinación de publicaciones - Facultad de Ciencias coorpub_fcbog@unal.edu.c, Ed.; 1st ed.). Centro Editorial de la Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá, Editado por la Centro Editorial de la Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá, Venkatraman, V., Yang, Y. D., Sael, L., & Kihara, D. (2009). Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics, 10. https://doi.org/10.1186/1471-2105-10-407 Vigneri, R., Sciacca, L., & Vigneri, P. (2020). Rethinking the Relationship between Insulin and Cancer. Trends in Endocrinology & Metabolism, 31(8), 551–560. https://doi.org/10.1016/J.TEM.2020.05.004 Wang, F., Carabino, J. M., & Vergara, C. M. (2003). Insulin glargine: a systematic review of a long-acting insulin analogue. Clinical Therapeutics, 25(6), 1541–1577. https://doi.org/10.1016/S0149-2918(03)80156-X Ward, Garrett, & Lou, et al. (2013). The Structure of the Type 1 Insulin-Like Growth Factor Receptor - Madame Curie Bioscience Database - NCBI Bookshelf. Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience. https://www.ncbi.nlm.nih.gov/books/NBK6216/ Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427 Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1-5.6.37. https://doi.org/10.1002/CPBI.3 Werner, T., Morris, M. B., Dastmalchi, S., & Church, W. B. (2012). Structural modelling and dynamics of proteins for insights into drug interactions. Advanced Drug Delivery Reviews, 64(4), 323–343. https://doi.org/10.1016/J.ADDR.2011.11.011 White, M. F., & Kahn, C. R. (2021). Insulin action at a molecular level – 100 years of progress. Molecular Metabolism, 52, 101304. https://doi.org/10.1016/J.MOLMET.2021.101304 Whittaker, J., Groth, A. v., Mynarcik, D. C., Pluzek, L., Gadsbøll, V. L., & Whittaker, L. J. (2001). Alanine Scanning Mutagenesis of a Type 1 Insulin-like Growth Factor Receptor Ligand Binding Site *. Journal of Biological Chemistry, 276(47), 43980–43986. https://doi.org/10.1074/JBC.M102863200 Whittaker, J., & Whittaker, L. (2005). Characterization of the functional insulin binding epitopes of the full-length insulin receptor. The Journal of Biological Chemistry, 280(22), 20932–20936. https://doi.org/10.1074/JBC.M411320200 Whittaker, L., Hao, C., Fu, W., & Whittaker, J. (2008). High-Affinity Insulin Binding: Insulin Interacts with Two Receptor Ligand Binding Sites†. Biochemistry, 47(48), 12900–12909. https://doi.org/10.1021/BI801693H Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science : A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/PRO.3330 Williams, P. F., Mynarcik, D. C., Gui Qin Yu, & Whittaker, J. (1995). Mapping of an NH--terminal Ligand Binding Site of the Insulin Receptor by Alanine Scanning Mutagenesis. Journal of Biological Chemistry, 270(7), 3012–3016. https://doi.org/10.1074/JBC.270.7.3012 Xu, Y., Kong, G. K. W., Menting, J. G., Margetts, M. B., Delaine, C. A., Jenkin, L. M., Kiselyov, V. v., de Meyts, P., Forbes, B. E., & Lawrence, M. C. (2018). How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications 2018, 9(1), 1–13. https://doi.org/10.1038/s41467-018-03219-7 Yamaguchi, Y., Flier, J. S., Benecke, H., Ransil, B. J., & Moller, D. E. (1993). Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology, 132(3), 1132–1138. https://doi.org/10.1210/EN.132.3.1132 Ye, L., Maji, S., Sanghera, N., Gopalasingam, P., Gorbunov, E., Tarasov, S., Epstein, O., & Klein-Seetharaman, J. (2017). Structure and dynamics of the insulin receptor: implications for receptor activation and drug discovery. Drug Discovery Today, 22(7), 1092–1102. https://doi.org/10.1016/J.DRUDIS.2017.04.011 Yuriev, E., & Ramsland, P. A. (2013). Latest developments in molecular docking: 2010-2011 in review. Journal of Molecular Recognition, 26(5), 215–239. https://doi.org/10.1002/JMR.2266 Zhang, L. I., & Skolnick, J. (1998). What should the Z-score of native protein structures be? Protein Science: A Publication of the Protein Society, 7(5), 1201. https://doi.org/10.1002/PRO.5560070515 Zhang, X., Yu, D., Sun, J., Wu, Y., Gong, J., Li, X., Liu, L., Liu, S., Liu, J., Wu, Y., Li, D., Ma, Y., Han, X., Zhu, Y., Wu, Z., Wang, Y., Ouyang, Q., & Wang, T. (2020). isualization of Ligand-Bound Ectodomain Assembly in the Full-Length Human IGF-1 Receptor by Cryo-EM Single-Particle Analysis. Structure, 28(5), 555-561.e4. https://doi.org/10.1016/J.STR.2020.03.007 Ruiter, R., Visser, L. E., P van Herk-Sukel, M. P., W Coebergh, J. W., Haak, H. R., Geelhoed-Duijvestijn, P. H., J M Straus, S. M., C Herings, R. M., Ch Stricker, B. H., & C Stricker, B. H. (2011). Risk of cancer in patients on insulin glargine and other insulin analogues in comparison with those on human insulin: results from a large population-based follow-up study. https://doi.org/10.1007/s00125-011-2312-4 Mannucci, E., Monami, M., Balzi, D., Cresci, B., Pala, L., Melani, C., Lamanna, C., Bracali, I., Bigiarini, M., Barchielli, A., Marchionni, N., & Rotella, C. M. (2010). Doses of Insulin and Its Analogues and Cancer Occurrence in Insulin-Treated Type 2 Diabetic Patients. Diabetes Care, 33(9), 1997. https://doi.org/10.2337/DC10-0476 Daniecki, N. J., Bhatt, M. R., Yap, G. P. A., & Zondlo, N. J. (2022). Proline C−H Bonds as Loci for Proline Assembly via C−H/O Interactions. ChemBioChem, 23(24), e202200409. https://doi.org/10.1002/CBIC.202200409 Hobza, P., & Havlas, Z. (2000). Blue-shifting hydrogen bonds. Chemical Reviews, 100(11), 4253–4264. https://doi.org/10.1021/CR990050Q Larsson, P., Wallner, B., Lindahl, E., & Elofsson, A. (2008). Using multiple templates to improve quality of homology models in automated homology modeling. Protein Science : A Publication of the Protein Society, 17(6), 990. https://doi.org/10.1110/PS.073344908 Moult, J. (2005). A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Current Opinion in Structural Biology, 15(3), 285–289. https://doi.org/10.1016/J.SBI.2005.05.011 |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
125 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Ciencias |
dc.publisher.place.spa.fl_str_mv |
Bogotá, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Bogotá |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/85626/3/license.txt https://repositorio.unal.edu.co/bitstream/unal/85626/4/Tesis_final_Luis_Final.pdf https://repositorio.unal.edu.co/bitstream/unal/85626/5/Tesis_final_Luis_Final.pdf.jpg |
bitstream.checksum.fl_str_mv |
eb34b1cf90b7e1103fc9dfd26be24b4a 8488cd9a3ba605ee5446615b66aa7ead 51e7df36bf127b9342a68670fd3b9bed |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089257122267136 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Gómez Alegría, Claudio Jaime14d6222499960e7da2ec46b1cf91a329600González Beltrán, Martha Margaritaab8cd0438ed94a8fa4239d2c0244d792600Arévalo Corredor, Luis Fernandocc61acb570c2bfe17a2d55e10307501dUnimolAREVALO CORREDOR, LUIS FERNANDO2024-02-05T20:43:16Z2024-02-05T20:43:16Z2023-12https://repositorio.unal.edu.co/handle/unal/85626Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/ilustraciones a color, diagramasIntroducción: La insulina glargina se une a receptores de la familia IR-IGF1R, incluyendo al receptor de insulina (IR) y de IGF1 (IGF1R) que regulan metabolismo, división y diferenciación celular. Las células también expresan receptores híbridos IR/IGF1R que se han asociado con efectos mitogénicos in vitro. Aunque existe bastante información de la estructura y mecanismo de activación de los receptores IR e IGF1R, se conoce muy poco del reconocimiento y activación de los receptores híbridos. Objetivo: Mediante acercamiento In silico, proponer un hipotético modelo estructural del receptor híbrido IR/IGF1R y estudiar la interacción glargina-receptor en dicho modelo. Metodología: Se utilizaron herramientas bioinformáticas (Swiss-model, ClusPro, LZerD y HADDOCK) para construir modelos computacionales del receptor híbrido. Resultados: Se obtuvo un total de 182 modelos computacionales del receptor híbrido IR/IGF1R, seleccionado finalmente un modelo del receptor libre (sin glargina o Apo-receptor) y otro del receptor con glargina unida (Holo-receptor), y se analizaron las interacciones ligando-receptor involucradas. Las afinidades teóricas calculadas (Kd) para el complejo glargina-receptor presentaron valores de 1.4 y 7.0 nM para los protómeros IR e IGF1R, respectivamente, lo que concuerda relativamente bien con datos experimentales reportados por otros autores. Conclusiones: Se proponen dos modelos computacionales de la estructura 3D del receptor híbrido IR/IGF1R, uno en su estado apo-y otro en su estado holo-receptor, describiendo las interacciones ligando-receptor encontradas. (Texto tomado de la fuente)Introduction: Insulin glargine binds to the IR-IGF1R family of receptors, which include the insulin receptor (IR) and the IGF1 receptor (IGF1R) governing cell metabolism, cell division, and differentiation. Cells also express hybrid IR/IGF1R receptors that have been associated with mitogenic effects in vitro. Although there is considerable information on the structure and activation mechanism of IR and IGF1R receptors, very little is known about the recognition and activation of the hybrid receptors. Aims: Using an in silico approach, to propose a hypothetical structural model of the hybrid IR/IGF1R receptor and to study the glargine-receptor interaction in this model. Methods: Bioinformatics tools (Swiss-model, ClusPro, LZerD and HADDOCK) were used to build computational models of the hybrid receptor. Results: A total of 182 computational models of the hybrid IR/IGF1R receptor were obtained, finally selecting a model of the free receptor without glargine (Apo-receptor) and another of the receptor with glargine bound (Holo-receptor), and the ligand-receptor interactions involved were analyzed. The calculated theoretical affinities (Kd) for the glargine-receptor complex presented values of 1.4 and 7.0 nM for the IR and IGF1R protomers, respectively, which agrees relatively well with experimental data reported by other authors. Conclusions: Two computational models for the 3D structure of the hybrid IR/IGF1R receptor are proposed, one for its apo-and the other for its holo-receptor state, and we describe the ligand-receptor interactions found.no aplicaMaestríaMagíster en Ciencias FarmacéuticasSe utilizaron herramientas bioinformáticas (Swiss-model, ClusPro, LZerD y HADDOCK) para construir modelos computacionales del receptor híbrido.Farmacología Molecular125 páginasapplication/pdfspaUniversidad Nacional de ColombiaBogotá - Ciencias - Maestría en Ciencias FarmacéuticasFacultad de CienciasBogotá, ColombiaUniversidad Nacional de Colombia - Sede Bogotá610 - Medicina y salud::615 - Farmacología y terapéuticaInsulina glarginaReceptor IGF Tipo 1Receptor de insulinaInsulin glargineReceptor, IGF Type 1Receptor, insulinGlarginaReceptor InsulinaReceptor IGF1RDocking molecularReceptoresInsulin glargineInsulin receptorIGF1R receptorMolecular dockingReceptorsDocking (molecular)Acoplamiento molecularEstudio in silico de la interacción entre la insulina glargina y el receptor híbrido IR/IGF1RIn silico study of the interaction between insulin glargine and the hybrid IR/IGF1R receptor.Trabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMAbbott, A. M., Bueno, R., Pedrini, M. T., Murray, J. M., & Smith, R. J. (1992). Insulin- like growth factor I receptor gene structure. Journal of Biological Chemistry, 267(15), 10759–10763. https://doi.org/10.1016/S0021-9258(19)50083-7Adams, G. G., Meal, A., Morgan, P. S., Alzahrani, Q. E., Zobel, H., Lithgo, R., Samil Kok, M., Besong, D. T. M., Jiwani, S. I., Ballance, S., Harding, S. E., Chayen, N., & Gillis, R. B. (2018). Characterisation of insulin analogues therapeutically available to patients. PLOS ONE, 13(3), e0195010. https://doi.org/10.1371/JOURNAL.PONE.0195010Adams, T. E., Epa, V. C., Garrett, T. P. J., & Ward, C. W. (2000). Structure and function of the type 1 insulin-like growth factor receptor. Cellular and Molecular Life Sciences : CMLS, 57(7), 1050–1093. https://doi.org/10.1007/PL00000744Agrawal, P., Singh, H., Srivastava, H. K., Singh, S., Kishore, G. I., & Raghava, G. P. S. (2019). Benchmarking of different molecular docking methods for protein-peptide docking. BMC Bioinformatics, 19(S13). https://doi.org/10.1186/s12859-018-2449-yAlberto, J., Reyes, O., & Plancarte, A. A. (2008). BASES MOLECULARES DE LAS ACCIONES DE LA INSULINA*. Revista de Educación Bioquímica, 27(1), 03–01. https://www.redalyc.org/pdf/490/49011452003.pdfAlphaFold Data Copyright (2022) DeepMind Technologies Limited. (2022). AlphaFold Protein Structure Database. Created with the AlphaFold Monomer v2.0 Pipeline. https://alphafold.ebi.ac.uk/entry/P06213Annunziata, M., Granata, R., & Ghigo, E. (2011). The IGF system. Acta Diabetologica, 48(1), 1–9. https://doi.org/10.1007/S00592-010-0227-ZBacker, J. M., Myers Jnr., M. G., Shoelson, S. E., Chin, D. J., Sun, X. J., Miralpeix, M., Hu, P., Margolis, B., Skolnik, E. Y., Schlessinger, J., & White, M. F. (1992). Phosphatidylinositol 3′-kinase is activated by association with IRS-1 during insulin stimulation. The EMBO Journal, 11(9), 3469–3479. https://doi.org/10.1002/J.1460-2075.1992.TB05426.XBaker, D., & Sali, A. (2001). Protein structure prediction and structural genomics. Science (New York, N.Y.), 294(5540), 93–96. https://doi.org/10.1126/SCIENCE.1065659Bastard, K., Saladin, A., & Prévost, C. (2011). Accounting for Large Amplitude Protein Deformation during in Silico Macromolecular Docking. International Journal of Molecular Sciences 2011, Vol. 12, Pages 1316-1333, 12(2), 1316–1333. https://doi.org/10.3390/ IJMS12021316Belfiore, A., Frasca, F., Pandini, G., Sciacca, L., & Vigneri, R. (2009). Insulin receptor isoforms and insulin receptor/insulin-like growth factor receptor hybrids in physiology and disease. Endocrine Reviews, 30(6), 586–623. https://doi.org/10.1210/ER.2008- 004Bello, L. G., Salinas, J. T., Belén Giménez, M., Flores, L. E., Gómez De Ruiz, N., Centurión, A., & Centurión, O. A. (2016). El riesgo de los que cuidan el riesgo: FINDRISK en personal de blanco The risk of those who care for risk: FIDRISK in healthcare personnel Autores: ARTÍCULO ORIGINAL. Rev. Virtual Soc. Parag. Med. Int. Setiembre, 3(2), 71–76. https://doi.org/10.18004/rvspmi/2016.03(02)71-076Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(Web Server issue), W510. https://doi.org/10.1093/NAR/GKP322Bentham Science Publisher (2006). Scoring functions for protein-ligand docking. Current Protein & Peptide Science, 7(5), 407–420. https://doi.org/10.2174/138920306778559395Benyoucef, S., Surinya, K. H., Hadaschik, D., & Siddle, K. (2007). Characterization of insulin/IGF hybrid receptors: contributions of the insulin receptor L2 and Fn1 domains and the alternatively spliced exon 11 sequence to ligand binding and receptor activation. The Biochemical Journal, 403(3), 603–613. https://doi.org/10.1042/BJ20061709Biasini, M., Schmidt, T., Bienert, S., Mariani, V., Studer, G., Haas, J., Johner, N., Schenk, A. D., Philippsen, A., & Schwede, T. (2013). OpenStructure: an integrated software framework for computational structural biology. Acta Crystallographica Section D, Structural Biology, 69(Pt 5), 701–709. https://doi.org/10.1107/S0907444913007051Blanquart, C., Achi, J., & Issad, T. (2008). Characterization of IRA/IRB hybrid insulin receptors using bioluminescence resonance energy transfer. Biochemical Pharmacology, 76(7), 873–883. https://doi.org/10.1016/J.BCP.2008.07.027Blundell, T., Dodson, G., Hodgkin, D., & Mercola, D. (1972). Insulin: The Structure in the Crystal and its Reflection in Chemistry and Biology by. Advances in Protein Chemistry, 26(C), 279–402. https://doi.org/10.1016/S0065-3233(08)60143-6Blyth, A. J., Kirk, N. S., & Forbes, B. E. (2020). Understanding IGF-II Action through Insights into Receptor Binding and Activation. Cells, Vol. 9, Page 2276, 9(10), 2276. https://doi.org/10.3390/CELLS9102276Bolli, G. B., di Marchi, R. D., Park, G. D., Pramming, S., & Koivisto, V. A. (1999). Insulin analogues and their potential in the management of diabetes mellitus. Diabetologia, 42(10), 1151–1167. https://doi.org/10.1007/S001250051286Bordoli, L., Kiefer, F., Arnold, K., Benkert, P., Battey, J., & Schwede, T. (2008). Protein structure homology modeling using SWISS-MODEL workspace. Nature Protocols 2009 4:1, 4(1), 1–13. https://doi.org/10.1038/nprot.2008.197Brown, J., Delaine, C., Zaccheo, O. J., Siebold, C., Gilbert, R. J., van Boxel, G., Denley, A., Wallace, J. C., Hassan, A. B., Forbes, B. E., & Jones, E. Y. (2008). Structure and functional analysis of the IGF-II/IGF2R interaction. The EMBO Journal, 27(1), 265. https://doi.org/10.1038/SJ.EMBOJ.7601938Chen, G., Seukep, A. J., & Guo, M. (2020). Recent Advances in Molecular Docking for the Research and Discovery of Potential Marine Drugs. Marine Drugs, 18(11). https://doi.org/10.3390/MD18110545Chen, R., & Weng, Z. (2002). Docking unbound proteins using shape complementarity, desolvation, and electrostatics. Proteins, 47(3), 281–294. https://doi.org/10.1002/PROT.10092Chisalita, S. I., & Arnqvist, H. J. (2005). Expression and function of receptors for insulin-like growth factor-I and insulin in human coronary artery smooth muscle cells. Diabetologia, 48(10), 2155–2161. https://doi.org/10.1007/S00125-005-1890-4hristoffer, C., Chen, S., Bharadwaj, V., Aderinwale, T., Kumar, V., Hormati, M., & Kihara, D. (2021). LZerD webserver for pairwise and multiple protein-protein docking. Nucleic Acids Research, 49(W1), W359–W365. https://doi.org/10.1093/NAR/GKAB336Ciaraldi, T. P., & Sasaoka, T. (2011). Review on the in vitro interaction of insulin glargine with the insulin/insulin-like growth factor system: potential implications for metabolic and mitogenic activities. Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones et Metabolisme, 43(1), 1–10. https://doi.org/10.1055/S-0030-1267203Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004a). ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Research, 32(Web Server issue). https://doi.org/10.1093/NAR/GKH354Comeau, S. R., Gatchell, D. W., Vajda, S., & Camacho, C. J. (2004b). ClusPro: an automated docking and discrimination method for the prediction of protein complexes. Bioinformatics (Oxford, England), 20(1), 45–50. https://doi.org/10.1093/BIOINFORMATICS/BTG371Costo, F. C. de emfermedades de alto (CAC). (2020). Enfermedad renal crónica. FMC Formacion Medica Continuada En Atencion Primaria, SUPPL. 4, 1–33de Luis, D. A., & Romero, E. (2013). Análogos de insulina: modificaciones en la estructura, consecuencias moleculares y metabólicas. SEMERGEN - Medicina de Familia, 39(1), 34–40. https://doi.org/10.1016/J.SEMERG.2012.04.010de Meyts, P. (1994). The structural basis of insulin and insulin-like growth factor-I receptor binding and negative co-operativity, and its relevance to mitogenic versus metabolic signalling. Diabetologia, 37 Suppl 2(2 Supplement). https://doi.org/10.1007/BF00400837de Meyts, P., & Whittaker, J. (2002). Structural biology of insulin and IGF1 receptors: implications for drug design. Nature Reviews Drug Discovery 2002 1:10, 1(10), 769–783. https://doi.org/10.1038/nrd917De Meyts, P. (2004). Insulin and its receptor: structure, function and evolution. BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, 26(12), 1351–1362. https://doi.org/10.1002/BIES.20151de Pagter-Holthuizen, P., van Schaik, F. M. A., Verduijn, G. M., van Ommen, G. J. B., Bouma, B. N., Jansen+, M., & Sussenbach, J. S. (1986). Organization of the human genes factors I and for insulin-like growth II. 195(1). https://doi.org/10.1016/0014-5793(86)80156-9Dekker Nitert, M., Chisalita, S. I., Olsson, K., Bornfeldt, K. E., & Arnqvist, H. J. (2005). IGF-I/insulin hybrid receptors in human endothelial cells. Molecular and Cellular Endocrinology, 229(1–2), 31–37. https://doi.org/10.1016/J.MCE.2004.10.003Denley, A., Cosgrove, L. J., Booker, G. W., Wallace, J. C., & Forbes, B. E. (2005). Molecular interactions of the IGF system. Cytokine & Growth Factor Reviews, 16(4–5), 421–439. https://doi.org/10.1016/J.CYTOGFR.2005.04.004DHHS. (2020). Centers for Disease Control and Prevention. National Diabetes Statistics Report, 2020. Atlanta, GA: Centers for Disease Control and Prevention, U.S. Dept of Health and Human Services; 2020. National Diabetes Statistics Report, 2. https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdfDominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein-protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/JA026939XDrejer, K. (1992). The bioactivity of insulin analogues from in vitro receptor binding to in vivo glucose uptake. Diabetes/Metabolism Reviews, 8(3), 259–285. https://doi.org/10.1002/DMR.5610080305Du, Z., & Lovly, C. M. (2018). Mechanisms of receptor tyrosine kinase activation in cancer. Molecular Cancer 2018 17:1, 17(1), 1–13. https://doi.org/10.1186/S12943-018-0782-4gan, A. M., & Dinneen, S. F. (2014). What is diabetes? Medicine (United Kingdom), 42(12), 679–681. https://doi.org/10.1016/j.mpmed.2014.09.005Esquivel-Rodriguez, J., Filos-Gonzalez, V., Li, B., & Kihara, D. (2014). Pairwise and multimeric protein–protein docking using the lzerd program suite. Methods in Molecular Biology, 1137, 209–234. https://doi.org/10.1007/978-1-4939-0366-5_15Fan, J., Fu, A., & Zhang, L. (2019). Progress in molecular docking. Quantitative Biology, 7(2), 83–89. https://doi.org/10.1007/S40484-019-0172-YFederici, M., Giaccari, A., Hribal, M. L., Giovannone, B., Lauro, D., Morviducci, L., Pastore, L., Tamburrano, G., Lauro, R., & Sesti, G. (1999). Evidence for glucose/hexosamine in vivo regulation of insulin/IGF-I hybrid receptor assembly. Diabetes, 48(12), 2277–2285. https://doi.org/10.2337/DIABETES.48.12.2277Fernandez-Fuentes, N., Rai, B. K., Madrid-Aliste, C. J., Eduardo Fajardo, J., & Fiser, A. (2007). Comparative protein structure modeling by combining multiple templates and optimizing sequence-to-structure alignments. Bioinformatics (Oxford, England), 23(19), 2558–2565. https://doi.org/10.1093/BIOINFORMATICS/BTM37Ferreira, L. G., dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular Docking and Structure-Based Drug Design Strategies. Molecules, 20(7), 13384. https://doi.org/10.3390/MOLECULES200713384Fischer, D. (2006). Servers for protein structure prediction. Current Opinion in Structural Biology, 16(2), 178–182. https://doi.org/10.1016/J.SBI.2006.03.004Fiser, A. (2010). Template-Based Protein Structure Modeling. Methods in Molecular Biology (Clifton, N.J.), 673, 73. https://doi.org/10.1007/978-1-60761-842-3_6González-Beltrán, M., & Gómez-Alegría, C. (2021). Molecular Modeling and Bioinformatics Analysis of Drug-Receptor Interactions in the System Formed by Glargine, Its Metabolite M1, the Insulin Receptor, and the IGF1 Receptor. Bioinformatics and Biology Insights, 15. https://doi.org/10.1177/11779322211046403Goodsell, D. S., & Olson, A. J. (1990). Automated docking of substrates to proteins by simulated annealing. Proteins, 8(3), 195–202. https://doi.org/10.1002/PROT.340080302Grassot, J., Mouchiroud, G., & Perrière, G. (2003). RTKdb: database of receptor tyrosine kinase. Nucleic Acids Research, 31(1), 353–358. https://doi.org/10.1093/NAR/GKG036Guedes, I. A., de Magalhães, C. S., & Dardenne, L. E. (2014). Receptor-ligand molecular docking. Biophysical Reviews, 6(1), 75–87. https://doi.org/10.1007/S12551-013-0130-2Haddad, Y., Adam, V., & Heger, Z. (2020). Ten quick tips for homology modeling of high-resolution protein 3D structures. PLOS Computational Biology, 16(4), e1007449. https://doi.org/10.1371/journal.pcbi.1007449Harris, R., Olson, A. J., & Goodsell, D. S. (2008). Automated prediction of ligand-binding sites in proteins. Proteins, 70(4), 1506–1517. https://doi.org/10.1002/PROT.21645Hedeskov, C. J. (1980). Mechanism of glucose-induced insulin secretion. Physiological Reviews, 60(2), 442-509. https://doi.org/10.1152/physrev.1980.60.2.442Heise, T., Nosek, L., Roønn, B. B., Endahl, L., Heinemann, L., Kapitza, C., & Draeger, E. (2004). Lower within-subject variability of insulin detemir in comparison to NPH insulin and insulin glargine in people with type 1 diabetes. Diabetes, 53(6), 1614–1620. https://doi.org/10.2337/DIABETES.53.6.1614Honorato, R. V., Koukos, P. I., Jiménez‐García, B., Tsaregorodtsev, A., Verlato, M., Giachetti, A., Rosato, A., & Bonvin, A. (2021). Structural biology in the clouds: the WENMR-EOSC ecosystem. Frontiers in Molecular Biosciences, 8. https://doi.org/10.3389/fmolb.2021.729513Hua, Q. (2010). Insulin: a small protein with a long journey. Protein & Cell, 1(6), 537–551. https://doi.org/10.1007/S13238-010-0069-ZHubbard, S. R. (1999). Structural analysis of receptor tyrosine kinases. Progress in Biophysics and Molecular Biology, 71(3–4), 343–358.https://doi.org/10.1016/S0079- 6107(98)00047-9Hubbard, S. R. (2013). The insulin receptor: both a prototypical and atypical receptor tyrosine kinase. Cold Spring Harbor Perspectives in Biology, 5(3). https://doi.org/10.1101/CSHPERSPECT.A008946International Diabetes Federation. (2019). IDF Diabetes Atlas, 9th edn. Brussels, Belgium. In Atlas de la Diabetes de la FID. http://www.idf.org/sites/default/files/Atlas-poster-2014_ES.pdfJanin, J., Henrick, K., Moult, J., Eyck, L. ten, Sternberg, M. J. E., Vajda, S., Vakser, I., & Wodak, S. J. (2003). CAPRI: a Critical Assessment of PRedicted Interactions. Proteins, 52(1), 2–9. https://doi.org/10.1002/PROT.10381Jarosinski, M. A., Dhayalan, B., Chen, Y. S., Chatterjee, D., Varas, N., & Weiss, M. A. (2021). Structural principles of insulin formulation and analog design: A century of innovation. Molecular Metabolism, 52, 101325. https://doi.org/10.1016/J.MOLMET.2021.101325Joshi, S., Parikh, R., & Das, A. (2007). Insulin--history, biochemistry, physiology and pharmacology. The Journal of the Association of Physicians of India, 55(Supp), 19–25umper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596, 583. https://doi.org/10.1038/s41586-021-03819-2Kavran, J. M., McCabe, J. M., Byrne, P. O., Connacher, M. K., Wang, Z., Ramek, A., Sarabipour, S., Shan, Y., Shaw, D. E., Hristova, K., Cole, P. A., & Leahy, D. J. (2014). How IGF-1 activates its receptor. ELife, 3. https://doi.org/10.7554/ELIFE.03772Kim, J. J., & Accili, D. (2002). Signalling through IGF-I and insulin receptors: where is the specificity? Growth Hormone & IGF Research, 12, 84–90. https://doi.org/10.1054/ghir.2002.0265Knudsen, L., de Meyts, P., & Kiselyov, V. v. (2011). Insight into the molecular basis for the kinetic differences between the two insulin receptor isoforms. The Biochemical Journal, 440(3), 397–403. https://doi.org/10.1042/BJ20110550Koukos, P. I., Faro, I., van Noort, C. W., & Bonvin, A. M. J. J. (2018). A Membrane Protein Complex Docking Benchmark. Journal of Molecular Biology, 430(24), 5246–5256. https://doi.org/10.1016/J.JMB.2018.11.005Kozakov, D., Brenke, R., Comeau, S. R., & Vajda, S. (2006). PIPER: an FFT-based protein docking program with pairwise potentials. Proteins, 65(2), 392–406. https://doi.org/10.1002/PROT.21117Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255. https://doi.org/10.1038/NPROT.2016.169Kuerzel, G. U., Shukla, U., Scholtz, H. E., Pretorius, S. G., Wessels, D. H., Venter, C., Potgieter, M. A., Lang, A. M., Koose, T., & Bernhardt, E. (2003). Biotransformation of insulin glargine after subcutaneous injection in healthy subjects. Current Medical Research and Opinion, 19(1), 34–40. https://doi.org/10.1185/030079902125001416Lawrence, M. C. (2021). Understanding insulin and its receptor from their three-dimensional structures. Molecular Metabolism, 52, 101255. https://doi.org/10.1016/J.MOLMET.2021.101255Lee, J., Miyazaki, M., Romeo, G. R., & Shoelson, S. E. (2014). Insulin receptor activation with transmembrane domain ligands. The Journal of Biological Chemistry, 289(28), 19769–19777. https://doi.org/10.1074/JBC.M114.578641Leis, S., & Zacharias, M. (2011). Efficient inclusion of receptor flexibility in grid-based protein–ligand docking*. Journal of Computational Chemistry, 32(16), 3433–3439. https://doi.org/10.1002/JCC.21923Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134. https://doi.org/10.1016/J.CELL.2010.06.011Lensink, M. F., Velankar, S., & Wodak, S. J. (2016). Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins: Structure, Function and Bioinformatics, 85(3), 359–377. https://doi.org/10.1002/PROT.25215Li, J., Choi, E., Yu, H., & Bai, X. chen. (2019). Structural basis of the activation of type 1 insulin-like growth factor receptor. Nature Communications 2019 10:1, 10(1), 1–11. https://doi.org/10.1038/s41467-019-12564-0Lucas Morante, T., Aragón Alonso, A., Oliván Palacios, B., & Manzano Arroyo, P. (2004). Las nuevas insulinas: Revisión. Información Terapéutica Del Sistema Nacional de Salud, ISSN 1130-8427, Vol. 28, No. 2, 2004, Págs. 41-49, 28(2), 41–49. https://dialnet.unirioja.es/servlet/articulo?codigo=914248&info=resumen&idioma=SP AMa, B., Tromp, J., & Li, M. (2002). PatternHunter: faster and more sensitive homology search. Bioinformatics (Oxford, England), 18(3), 440–445. https://doi.org/10.1093/BIOINFORMATICS/18.3.440Madeira, F., Pearce, M., Tivey, A., Basutkar, P., Lee, J., Edbali, O., Madhusoodanan, N., Kolesnikov, A., & Lopez, R. (2022). Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Research, 50(W1), W276–W279. https://doi.org/10.1093/NAR/GKAC240Malaguarnera, R., & Belfiore, A. (2011). The insulin receptor: a new target for cancer therapy. Frontiers in Endocrinology, 2, 93. https://doi.org/10.3389/FENDO.2011.00093Mandell, J. G., Roberts, V. A., Pique, M. E., Kotlovyi, V., Mitchell, J. C., Nelson, E., Tsigelny, I., & ten Eyck, L. F. (2001). Protein docking using continuum electrostatics and geometric fit. Protein Engineering, 14(2), 105–113. https://doi.org/10.1093/PROTEIN/14.2.105Manning, G., Whyte, D. B., Martinez, R., Hunter, T., & Sudarsanam, S. (2002). The protein kinase complement of the human genome. Science (New York, N.Y.), 298(5600), 1912–1934. https://doi.org/10.1126/SCIENCE.1075762Marsh, J. A., & Teichmann, S. A. (2015). Structure, dynamics, assembly, and evolution of protein complexes. Annual Review of Biochemistry, 84, 551–575. https://doi.org/10.1146/ANNUREV-BIOCHEM-060614-034142Menting, J. G., Whittaker, J., Margetts, M. B., Whittaker, L. J., Kong, G. K. W., Smith, B. J., Watson, C. J., Žáková, L., Kletvíková, E., Jiráček, J., Chan, S. J., Steiner, D. F., Dodson, G. G., Brzozowski, A. M., Weiss, M. A., Ward, C. W., & Lawrence, M. C. (2013). How insulin engages its primary binding site on the insulin receptor. Nature 2013 493:7431, 493(7431), 241–245. https://doi.org/10.1038/nature11781Menting, J. G., Yang, Y., Chan, S. J., Phillips, N. B., Smith, B. J., Whittaker, J., Wickramasinghe, N. P., Whittaker, L. J., Pandyarajan, V., Wan, Z. L., Yadav, S. P., Carroll, J. M., Strokes, N., Roberts, C. T., Ismail-Beigi, F., Milewski, W., Steiner, D. F., Chauhan, V. S., Ward, C. W., … Lawrence, M. C. (2014). Protective hinge in insulin opens to enable its receptor engagement. Proceedings of the National Academy of Sciences of the United States of America,111(33). https://doi.org/10.1073/PNAS.1412897111Menting, J. G., Lawrence, C. F., Kong, G. K. W., Margetts, M. B., Ward, C. W., & Lawrence, M. C. (2015). Structural Congruency of Ligand Binding to the Insulin and Insulin/Type 1 Insulin-like Growth Factor Hybrid Receptors. Structure, 23(7), 1271–1282. https://doi.org/10.1016/J.STR.2015.04.016Michalska, K., & Joachimiak, A. (2021). Structural genomics and the Protein Data Bank. The Journal of Biological Chemistry, 296. https://doi.org/10.1016/J.JBC.2021.100747Morris, G., Goodsell, D., Halliday, R., Huey, R., Hart, W., Belew, R., & Olson, A. (1999, January 6). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function - Morris - 1998 - Journal of Computational Chemistry - Wiley Online Library. https://onlinelibrary.wiley.com/doi/abs/10.1002/(SICI)1096- 987X(19981115)19:14%3C1639::AID-JCC10%3E3.0.CO;2-BMuhammed, M. T., & Aki-Yalcin, E. (2019). Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chemical Biology & Drug Design, 93(1), 12–20. https://doi.org/10.1111/CBDD.13388Mynarcik, D. C., Yu, G. Q., & Whittaker, J. (1996). Alanine-scanning Mutagenesis of a C-terminal Ligand Binding Domain of the Insulin Receptor α Subunit (*). Journal of Biological Chemistry, 271(5), 2439–2442. https://doi.org/10.1074/JBC.271.5.2439Nagel, N., Graewert, M. A., Gao, M., Heyse, W., Jeffries, C. M., Svergun, D., & Berchtold, H. (2019). The quaternary structure of insulin glargine and glulisine under formulation conditions. Biophysical Chemistry, 253, 106226. https://doi.org/10.1016/J.BPC.2019.106226National Institute of Diabetes and Digestive and Kidney Diseases. (2022, January 24). Diabetes Gestacional. https://www.niddk.nih.gov/health-information/informacion-de-la-salud/diabetes/informacion-general/que-es/gestacionalNooren, I. M. A., & Thornton, J. M. (2003). Diversity of protein-protein interactions. The EMBO Journal, 22(14), 3486–3492. https://doi.org/10.1093/EMBOJ/CDG359Organización Mundial de la Salud. (2020). INFORME MUNDIAL SOBRE LA DIABETES. Retrieved January 23, 2022, from www.who.intOrganización Mundial de la Salud. (2022, September 16). Diabetes. https://www.who.int/es/news-room/fact-sheets/detail/diabetesOrganización Mundial de la Salud. (2022, September 16). Enfermedades no transmisibles. 16 septiembre. https://www.who.int/es/news-room/fact-sheets/detail/noncommunicable-diseasesPagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: a review. Biophysical Reviews, 9(2), 91–102. https://doi.org/10.1007/S12551-016-0247-1Pandini, G., Frasca, F., Mineo, R., Sciacca, L., Vigneri, R., & Belfiore, A. (2002). Insulin/insulin-like growth factor I hybrid receptors have different biological characteristics depending on the insulin receptor isoform involved. The Journal of Biological Chemistry, 277(42), 39684–39695. https://doi.org/10.1074/JBC.M202766200Parodi, K., & José, S. (2016). Diabetes y embarazo. Rev. Fac. Cienc. Méd. (Impr.), 27–35. http://www.bvs.hn/RFCM/pdf/2016/pdf/RFCMVol13-1-2016-5.pdfPierre-Eugene, C., Pagesy, P., Nguyen, T. T., Neuillé, M., Tschank, G., Tennagels, N., Hampe, C., & Issad, T. (2012). Effect of insulin analogues on insulin/IGF1 hybrid receptors: increased activation by glargine but not by its metabolites M1 and M2. PloS One, 7(7). https://doi.org/10.1371/JOURNAL.PONE.0041992Plank, J., Bodenlenz, M., Sinner, F., Magnes, C., Görzer, E., Regittnig, W., Endahl, L. A., Draeger, E., Zdravkovic, M., & Pieber, T. R. (2005). A double-blind, randomized, dose-response study investigating the pharmacodynamic and pharmacokinetic properties of the long-acting insulin analog detemir. Diabetes Care, 28(5), 1107–1112. https://doi.org/10.2337/DIACARE.28.5.1107Prieto Martínez Fernando D., & Medina Franco José L. (2018). Diseño de fármacos asistido por computadora: cuando la informática, la química y el arte se encuentran. TIP Revista Especializada En Ciencias Químico-Biológicas, 21(2), 124–134. https://doi.org/10.22201/fesz.23958723e.2018.2.139Prieto-Martínez, F. D., Arciniega, M., & Medina-Franco, J. L. (2018). Acoplamiento Molecular: Avances Recientes y Retos. TIP Revista Especializada En Ciencias Químico-Biológicas, 21, 65–87. https://doi.org/10.22201/fesz.23958723e.2018.0.143Puche, J. E., & Castilla-Cortázar, I. (2012). Human conditions of insulin-like growth factor-I (IGF-I) deficiency. Journal of Translational Medicine, 10(1), 1–29. https://doi.org/10.1186/1479-5876-10-224RCSB PDB - 7V3P: Cryo-EM structure of the IGF1R/insulin complex. (2022, August 17). https://www.rcsb.org/structure/7V3PReyes, J.; R. A. (2017, August 17). RCSB PDB - 5VIZ: X-Ray structure of Insulin Glargine. 2017-10-18. https://www.rcsb.org/structure/5VIZRobinson, D. R., Wu, Y. M., & Lin, S. F. (2000). The protein tyrosine kinase family of the human genome. Oncogene, 19(49), 5548–5557. https://doi.org/10.1038/SJ.ONC.1203957Roy, A., & Zhang, Y. (2012). Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure (London, England: 1993), 20(6), 987–997. https://doi.org/10.1016/J.STR.2012.03.009Saltiel, A. R., & Kahn, C. R. (2001). Insulin signalling and the regulation of glucose and lipid metabolism. Nature, 414(6865), 799–806. https://doi.org/10.1038/414799ASaltiel, A. R., & Pessin, J. E. (2002). Insulin signaling pathways in time and space. Trends in Cell Biology, 12(2), 65–71. https://doi.org/10.1016/S0962-8924(01)02207-3Sánchez e Islas. (2016). Bases moleculares de la diabetes mellitus tipo 2 | Biología Molecular. Fundamentos y aplicaciones en las ciencias de la salud, 2e | AccessMedicina | McGraw Hill Medical. In R. A. B. J. eds. Montes A (Ed.), Biología Molecular. Fundamentos y aplicaciones en las ciencias de la salud (2nd ed., Vol. 1). McGraw-Hill Education. https://accessmedicina.mhmedical.com/content.aspx?bookid=1803§ionid=124156562Saponaro, A., Maione, V., Bonvin, A. M. J. J., & Cantini, F. (2020). Understanding Docking Complexes of Macromolecules Using HADDOCK: The Synergy between Experimental Data and Computations. Bio-Protocol, 10(20). https://doi.org/10.21769/BIOPROTOC.3793Saxena, A., Sangwan, R. S., & Mishra, S. (2013). Fundamentals of Homology Modeling Steps and Comparison among Important Bioinformatics Tools: An Overview. Science International, 1(7), 237–252. https://doi.org/10.17311/SCIINTL.2013.237.252Schäffer, L., & Ljungqvist, L. (1992). Identification of a disulfide bridge connecting the alpha-subunits of the extracellular domain of the insulin receptor. Biochemical and Biophysical Research Communications, 189(2), 650–653. https://doi.org/10.1016/0006-291X(92)92250-2Sciacca, L., le Moli, R., & Vigneri, R. (2012). Insulin analogs and cancer. Frontiers in Endocrinology, 3(FEB), 21. https://doi.org/10.3389/FENDO.2012.00021Sciacca, L., Cassarino, M. F., Genua, M., Vigneri, P., Giovanna Pennisi, M., Malandrino, P., Squatrito, S., Pezzino, V., & Vigneri, R. (2014). Biological Effects of Insulin and Its Analogs on Cancer Cells With Different Insulin Family Receptor Expression. Journal of Cellular Physiology, 229(11), 1817–1821. https://doi.org/10.1002/JCP.24635Sciacca, L., Vella, V., Frittitta, L., Tumminia, A., Manzella, L., Squatrito, S., Belfiore, A., & Vigneri, R. (2018). Long-acting insulin analogs and cancer. Nutrition, Metabolism and Cardiovascular Diseases, 28(5), 436–443. https://doi.org/10.1016/J.NUMECD.2018.02.010Shooter, G. K., Magee, B., Soos, M. A., Francis, G. L., Siddle, K., & Wallace, J. C. (1996). Insulin-like growth factor (IGF)-I A- and B-domain analogues with altered type 1 IGF and insulin receptor binding specificities. Journal of Molecular Endocrinology, 17(3), 237–246. https://doi.org/10.1677/JME.0.0170237Siebenmorgen, T., & Zacharias, M. (2019). Computational prediction of protein–protein binding affinities. Wiley Interdisciplinary Reviews: Computational Molecular Science, 10(3), e1448. https://doi.org/10.1002/WCMS.1448Singh, P., Alex, J. M., & Bast, F. (2013). Insulin receptor (IR) and insulin-like growth factor receptor 1 (IGF-1R) signaling systems: novel treatment strategies for cancer. Medical Oncology 2013 31:1, 31(1), 1–14. https://doi.org/10.1007/S12032-013-0805-3Slaaby, R., Schäffer, L., Lautrup-Larsen, I., Andersen, A. S., Shaw, A. C., Mathiasen, I. S., & Brandt, J. (2006). Hybrid Receptors Formed by Insulin Receptor (IR) and Insulin-like Growth Factor I Receptor (IGF-IR) Have Low Insulin and High IGF-1 Affinity Irrespective of the IR Splice Variant *. Journal of Biological Chemistry, 281(36), 25869–25874. https://doi.org/10.1074/JBC.M605189200Slaaby, R. (2015). Specific insulin/IGF1 hybrid receptor activation assay reveals IGF1 as a more potent ligand than insulin. Scientific Reports 2015 5:1, 5(1), 1–5. https://doi.org/10.1038/srep07911Smith, B. J., Huang, K., Kong, G., Chan, S. J., Nakagawa, S., Menting, J. G., Hu, S. Q., Whittaker, J., Steiner, D. F., Katsoyannis, P. G., Ward, C. W., Weiss, M. A., & Lawrence, M. C. (2010). Structural resolution of a tandem hormone-binding element in the insulin receptor and its implications for design of peptide agonists. Proceedings of the National Academy of Sciences, 107(15), 6771–6776. https://doi.org/10.1073/PNAS.1001813107Smith, G. D., Pangborn, W. A., & Blessing, R. H. (2003). The structure of T6 human insulin at 1.0 A resolution. Acta Crystallographica. Section D, Biological Crystallography, 59(Pt 3), 474–482. https://doi.org/10.1107/S0907444902023685Sommerfeld, M. R., Müller, G., Tschank, G., Seipke, G., Habermann, P., Kurrle, R., & Tennagels, N. (2010). In Vitro Metabolic and Mitogenic Signaling of Insulin Glargine and Its Metabolites. PLOS ONE, 5(3). https://doi.org/10.1371/JOURNAL.PONE.0009540Soos, M. A., Whittaker, J., Lammers, R., Ullrich, A., & Siddle, K. (1990). Receptors for insulin and insulin-like growth factor-I can form hybrid dimers. Characterisation of hybrid receptors in transfected cells. Biochemical Journal, 270(2), 383. https://doi.org/10.1042/BJ2700383Soos, M. A., Field, C. E., & Siddle, K. (1993). Purified hybrid insulin/insulin-like growth factor-I receptors bind insulin-like growth factor-I, but not insulin, with high affinity. Biochemical Journal, 290(Pt 2), 419. https://doi.org/10.1042/BJ2900419Sparrow, L. G., McKern, N. M., Gorman, J. J., Strike, P. M., Robinson, C. P., Bentley, J. D., & Ward, C. W. (1997). The disulfide bonds in the C-terminal domains of the human insulin receptor ectodomain. The Journal of Biological Chemistry, 272(47), 29460–29467. https://doi.org/10.1074/JBC.272.47.29460Studer, G., Rempfer, C., Waterhouse, A. M., Gumienny, R., Haas, J., & Schwede, T. (2019). QMEANDisCo-distance constraints applied on model quality estimation. Bioinformatics, 1765–1771. https://doi.org/10.1093/bioinformatics/btz828Studer, G., Tauriello, G., Bienert, S., Biasini, M., Johner, N., & Schwede, T. (2021). ProMod3—A versatile homology modelling toolbox. PLOS Computational Biology, 17(1), e1008667. https://doi.org/10.1371/JOURNAL.PCBI.1008667THE MOLECULAR BASIS OF INSULIN ACTION. (2002). Insulin Signaling, 82–118. https://doi.org/10.1201/B12794-13Uchikawa, E., Choi, E., Shang, G., Yu, H., & Xiao-Chen, B. (2019). Activation mechanism of the insulin receptor revealed by cryo-EM structure of the fully liganded receptor-ligand complex. ELife, 8. https://doi.org/10.7554/ELIFE.48630Ullrich, A., Gray, A., Tam, A. W., Yang-Feng, T., Tsubokawa, M., Collins, C., Henzel, W., le Bon, T., Kathuria, S., & Chen, E. (1986). Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. The EMBO Journal, 5(10), 2503. https://doi.org/10.1002/j.1460-2075.1986.tb04528.xVaradi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Zídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, S. (2021). AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/NAR/GKAB1061Varewijck, A. J., Goudzwaard, J. A., Brugts, M. P., Lamberts, S. W. J., Hofland, L. J., & Janssen, J. A. M. J. L. (2010). Insulin glargine is more potent in activating the human IGF-I receptor than human insulin and insulin detemir. Growth Hormone and IGF Research, 20(6), 427–431. https://doi.org/10.1016/J.GHIR.2010.10.002Varewijck, A. J., & Janssen, J. A. M. J. L. (2012). Insulin and its analogues and their affinities for the IGF1 receptor. Endocrine-Related Cancer, 19(5), F63–F75. https://doi.org/10.1530/ERC-12-0026Vega Castro, N., & Reyes, E. (2020). Introducción al análisis estructural de proteínas y glicoproteínas (Coordinación de publicaciones - Facultad de Ciencias coorpub_fcbog@unal.edu.c, Ed.; 1st ed.). Centro Editorial de la Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá, Editado por la Centro Editorial de la Facultad de Ciencias, Universidad Nacional de Colombia, sede Bogotá,Venkatraman, V., Yang, Y. D., Sael, L., & Kihara, D. (2009). Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics, 10. https://doi.org/10.1186/1471-2105-10-407Vigneri, R., Sciacca, L., & Vigneri, P. (2020). Rethinking the Relationship between Insulin and Cancer. Trends in Endocrinology & Metabolism, 31(8), 551–560. https://doi.org/10.1016/J.TEM.2020.05.004Wang, F., Carabino, J. M., & Vergara, C. M. (2003). Insulin glargine: a systematic review of a long-acting insulin analogue. Clinical Therapeutics, 25(6), 1541–1577. https://doi.org/10.1016/S0149-2918(03)80156-XWard, Garrett, & Lou, et al. (2013). The Structure of the Type 1 Insulin-Like Growth Factor Receptor - Madame Curie Bioscience Database - NCBI Bookshelf. Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience. https://www.ncbi.nlm.nih.gov/books/NBK6216/Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., De Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/NAR/GKY427Webb, B., & Sali, A. (2016). Comparative Protein Structure Modeling Using MODELLER. Current Protocols in Bioinformatics, 54, 5.6.1-5.6.37. https://doi.org/10.1002/CPBI.3Werner, T., Morris, M. B., Dastmalchi, S., & Church, W. B. (2012). Structural modelling and dynamics of proteins for insights into drug interactions. Advanced Drug Delivery Reviews, 64(4), 323–343. https://doi.org/10.1016/J.ADDR.2011.11.011White, M. F., & Kahn, C. R. (2021). Insulin action at a molecular level – 100 years of progress. Molecular Metabolism, 52, 101304. https://doi.org/10.1016/J.MOLMET.2021.101304Whittaker, J., Groth, A. v., Mynarcik, D. C., Pluzek, L., Gadsbøll, V. L., & Whittaker, L. J. (2001). Alanine Scanning Mutagenesis of a Type 1 Insulin-like Growth Factor Receptor Ligand Binding Site *. Journal of Biological Chemistry, 276(47), 43980–43986. https://doi.org/10.1074/JBC.M102863200Whittaker, J., & Whittaker, L. (2005). Characterization of the functional insulin binding epitopes of the full-length insulin receptor. The Journal of Biological Chemistry, 280(22), 20932–20936. https://doi.org/10.1074/JBC.M411320200Whittaker, L., Hao, C., Fu, W., & Whittaker, J. (2008). High-Affinity Insulin Binding: Insulin Interacts with Two Receptor Ligand Binding Sites†. Biochemistry, 47(48), 12900–12909. https://doi.org/10.1021/BI801693HWilliams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science : A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/PRO.3330Williams, P. F., Mynarcik, D. C., Gui Qin Yu, & Whittaker, J. (1995). Mapping of an NH--terminal Ligand Binding Site of the Insulin Receptor by Alanine Scanning Mutagenesis. Journal of Biological Chemistry, 270(7), 3012–3016. https://doi.org/10.1074/JBC.270.7.3012Xu, Y., Kong, G. K. W., Menting, J. G., Margetts, M. B., Delaine, C. A., Jenkin, L. M., Kiselyov, V. v., de Meyts, P., Forbes, B. E., & Lawrence, M. C. (2018). How ligand binds to the type 1 insulin-like growth factor receptor. Nature Communications 2018, 9(1), 1–13. https://doi.org/10.1038/s41467-018-03219-7Yamaguchi, Y., Flier, J. S., Benecke, H., Ransil, B. J., & Moller, D. E. (1993). Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology, 132(3), 1132–1138. https://doi.org/10.1210/EN.132.3.1132Ye, L., Maji, S., Sanghera, N., Gopalasingam, P., Gorbunov, E., Tarasov, S., Epstein, O., & Klein-Seetharaman, J. (2017). Structure and dynamics of the insulin receptor: implications for receptor activation and drug discovery. Drug Discovery Today, 22(7), 1092–1102. https://doi.org/10.1016/J.DRUDIS.2017.04.011Yuriev, E., & Ramsland, P. A. (2013). Latest developments in molecular docking: 2010-2011 in review. Journal of Molecular Recognition, 26(5), 215–239. https://doi.org/10.1002/JMR.2266Zhang, L. I., & Skolnick, J. (1998). What should the Z-score of native protein structures be? Protein Science: A Publication of the Protein Society, 7(5), 1201. https://doi.org/10.1002/PRO.5560070515Zhang, X., Yu, D., Sun, J., Wu, Y., Gong, J., Li, X., Liu, L., Liu, S., Liu, J., Wu, Y., Li, D., Ma, Y., Han, X., Zhu, Y., Wu, Z., Wang, Y., Ouyang, Q., & Wang, T. (2020). isualization of Ligand-Bound Ectodomain Assembly in the Full-Length Human IGF-1 Receptor by Cryo-EM Single-Particle Analysis. Structure, 28(5), 555-561.e4. https://doi.org/10.1016/J.STR.2020.03.007Ruiter, R., Visser, L. E., P van Herk-Sukel, M. P., W Coebergh, J. W., Haak, H. R., Geelhoed-Duijvestijn, P. H., J M Straus, S. M., C Herings, R. M., Ch Stricker, B. H., & C Stricker, B. H. (2011). Risk of cancer in patients on insulin glargine and other insulin analogues in comparison with those on human insulin: results from a large population-based follow-up study. https://doi.org/10.1007/s00125-011-2312-4Mannucci, E., Monami, M., Balzi, D., Cresci, B., Pala, L., Melani, C., Lamanna, C., Bracali, I., Bigiarini, M., Barchielli, A., Marchionni, N., & Rotella, C. M. (2010). Doses of Insulin and Its Analogues and Cancer Occurrence in Insulin-Treated Type 2 Diabetic Patients. Diabetes Care, 33(9), 1997. https://doi.org/10.2337/DC10-0476Daniecki, N. J., Bhatt, M. R., Yap, G. P. A., & Zondlo, N. J. (2022). Proline C−H Bonds as Loci for Proline Assembly via C−H/O Interactions. ChemBioChem, 23(24), e202200409. https://doi.org/10.1002/CBIC.202200409Hobza, P., & Havlas, Z. (2000). Blue-shifting hydrogen bonds. Chemical Reviews, 100(11), 4253–4264. https://doi.org/10.1021/CR990050QLarsson, P., Wallner, B., Lindahl, E., & Elofsson, A. (2008). Using multiple templates to improve quality of homology models in automated homology modeling. Protein Science : A Publication of the Protein Society, 17(6), 990. https://doi.org/10.1110/PS.073344908Moult, J. (2005). A decade of CASP: progress, bottlenecks and prognosis in protein structure prediction. Current Opinion in Structural Biology, 15(3), 285–289. https://doi.org/10.1016/J.SBI.2005.05.011No aplicaEstudiantesLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/85626/3/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD53ORIGINALTesis_final_Luis_Final.pdfTesis_final_Luis_Final.pdfTesis de Maestría en Ciencias Farmacéuticasapplication/pdf2865814https://repositorio.unal.edu.co/bitstream/unal/85626/4/Tesis_final_Luis_Final.pdf8488cd9a3ba605ee5446615b66aa7eadMD54THUMBNAILTesis_final_Luis_Final.pdf.jpgTesis_final_Luis_Final.pdf.jpgGenerated Thumbnailimage/jpeg4463https://repositorio.unal.edu.co/bitstream/unal/85626/5/Tesis_final_Luis_Final.pdf.jpg51e7df36bf127b9342a68670fd3b9bedMD55unal/85626oai:repositorio.unal.edu.co:unal/856262024-02-05 23:03:40.991Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |