Métodos analíticos para la determinación de Glifosato en matrices ambientales

El Glifosato es el herbicida más utilizado y comercializado a nivel mundial usado principalmente para el control de malezas. El uso excesivo y su impacto en el medio ambiente, ha promovido el análisis químico del Glifosato en el agua, el suelo y alimentos. Debido a la complejidad y características e...

Full description

Autores:
Bohórquez Vivas, Dianny Jesmid
Tipo de recurso:
Work document
Fecha de publicación:
2020
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/77955
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/77955
Palabra clave:
632 - Lesiones, enfermedades, plagas vegetales
338 - Producción
AMPA
herbicida
glifosato
cromatografía
derivatización
AMPA
herbicide
chromatography
derivatization
glyphosate
Rights
openAccess
License
Atribución-SinDerivadas 4.0 Internacional
id UNACIONAL2_d574f369983dea3116159865c08463e2
oai_identifier_str oai:repositorio.unal.edu.co:unal/77955
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.spa.fl_str_mv Métodos analíticos para la determinación de Glifosato en matrices ambientales
title Métodos analíticos para la determinación de Glifosato en matrices ambientales
spellingShingle Métodos analíticos para la determinación de Glifosato en matrices ambientales
632 - Lesiones, enfermedades, plagas vegetales
338 - Producción
AMPA
herbicida
glifosato
cromatografía
derivatización
AMPA
herbicide
chromatography
derivatization
glyphosate
title_short Métodos analíticos para la determinación de Glifosato en matrices ambientales
title_full Métodos analíticos para la determinación de Glifosato en matrices ambientales
title_fullStr Métodos analíticos para la determinación de Glifosato en matrices ambientales
title_full_unstemmed Métodos analíticos para la determinación de Glifosato en matrices ambientales
title_sort Métodos analíticos para la determinación de Glifosato en matrices ambientales
dc.creator.fl_str_mv Bohórquez Vivas, Dianny Jesmid
dc.contributor.advisor.spa.fl_str_mv Martínez Cordón, María José
dc.contributor.author.spa.fl_str_mv Bohórquez Vivas, Dianny Jesmid
dc.contributor.researchgroup.spa.fl_str_mv Residualidad y Destino Ambiental de Plaguicidas en Sistemas Agricolas
dc.subject.ddc.spa.fl_str_mv 632 - Lesiones, enfermedades, plagas vegetales
338 - Producción
topic 632 - Lesiones, enfermedades, plagas vegetales
338 - Producción
AMPA
herbicida
glifosato
cromatografía
derivatización
AMPA
herbicide
chromatography
derivatization
glyphosate
dc.subject.proposal.spa.fl_str_mv AMPA
herbicida
glifosato
cromatografía
derivatización
dc.subject.proposal.eng.fl_str_mv AMPA
herbicide
chromatography
derivatization
glyphosate
description El Glifosato es el herbicida más utilizado y comercializado a nivel mundial usado principalmente para el control de malezas. El uso excesivo y su impacto en el medio ambiente, ha promovido el análisis químico del Glifosato en el agua, el suelo y alimentos. Debido a la complejidad y características específicas de la molécula para ser analizada, es necesario implementar e introducir mejoras en las metodologías que permitan realizar procedimientos de detección a niveles de trazas. El Glifosato es un compuesto que no contiene una estructura química compleja, pero al tener cuatro grupos altamente polares, dificulta el análisis por métodos convencionales. Para la química, sigue siendo un desafío desarrollar técnicas que arrojen resultados confiables en tiempos cortos, teniendo en cuenta cada uno de los parámetros para que, en el momento de realizar la operación, el método elegido sea óptimo, confiable, eficaz y no se presenten errores en los procedimientos que pueden generar resultados incorrectos. Este trabajo se realiza a fin de recopilar las técnicas analíticas instrumentales usadas en la actualidad para la cuantificación y detección de Glifosato. Se describen los parámetros que deben ser relevantes para la determinación de Glifosato y su metabolito principal AMPA (ácido aminometilfosfónico) y procesos asociados a técnicas cromatográficas, que van desde rutas de degradación del contaminante, procedimientos de tratamiento de las muestras, reacciones de derivatización química, uso de columnas y detectores. Así mismo, se presentan metodologías de análisis que involucran otras técnicas más avanzadas siendo estas, una alternativa favorable para la detección de este herbicida.
publishDate 2020
dc.date.accessioned.spa.fl_str_mv 2020-08-06T05:56:28Z
dc.date.available.spa.fl_str_mv 2020-08-06T05:56:28Z
dc.date.issued.spa.fl_str_mv 2020-03-19
dc.type.spa.fl_str_mv Documento de trabajo
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/workingPaper
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_8042
dc.type.coarversion.spa.fl_str_mv http://purl.org/coar/version/c_970fb48d4fbd8a85
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/WP
format http://purl.org/coar/resource_type/c_8042
status_str publishedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/77955
url https://repositorio.unal.edu.co/handle/unal/77955
dc.language.iso.spa.fl_str_mv spa
language spa
dc.relation.references.spa.fl_str_mv H. Anson Moye and A. Boning, “A versatile fluorogenic labelling reagent for primary and secondary amines: 9-fluorenylmethyl chloroformate,” Anal. Lett., vol. 12, no. 1, pp. 25–35, 1979.
J.Tarazona., D. Court-Marques., M. Tiramani., H. Reich., R. Pfeil., F. Istace, “Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC,” Arch. Toxicol., vol. 91, no. 8, pp. 2723–2743, 2017.
S. Powles and C. Preston, “Evolved Glyphosate Resistance in Plants: Biochemical and Genetic Basis of Resistance,” Weed Technol., vol. 20, no. 02, pp. 282–289, 2006.
E. Perry, D. Hennessy, and G. Moschini, “Product concentration and usage: Behavioral effects in the glyphosate market,” J. Econ. Behav. Organ., vol. 158, no. 20156702322954, pp. 543–559, 2019.
K. Qian, T. Tang, T. Shi, F. Wang, J. Li, and Y. Cao, “Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride,” Anal. Chim. Acta, vol. 635, no. 2, pp. 222–226, Mar. 2009.
C. Maqueda, T. Undabeytia, J. Villaverde, and E. Morillo, “Behaviour of glyphosate in a reservoir and the surrounding agricultural soils,” Sci. Total Environ., vol. 593–594, pp. 787–795, 2017.
E. Bolaños, “La suspensión del glifosato en la erradicación de cultivos ilícitos en Colombia: ¿Una solución humanitaria o un cambio para que todo siga igual?,”Tesis de Pregrado, Universidad Católica de Colombia,Bogotá, 2008.
K. Guyton., D. Loomis., Y. Grosse., F. El Ghissassi., L. Benbrahim-Tallaa., N. Guh., C. Scoccianti., H. Mattock., K. Straif, K, “Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate,” Lancet Oncol., vol. 16, no. 5, pp. 490–491, 2015.
A. Connolly, K. Jones, K.S. Galea, I. Basinas, L. Kenny, P. McGowan, M. Coggins, “Exploring the half-life of glyphosate in human urine samples,” Int. J. Hyg. Environ. Health, no. July, pp. 0–1, 2018.
A. Van Bruggen., Van Bruggen, M.M. He., K. Shin., V. Mai., K.C. Jeong., M.R. Finckh, and J.G. Morris, Environmental “Environmental and health effects of the herbicide glyphosate,” Sci. Total Environ., vol. 616–617, pp. 255–268, 2018.
L. Sun., D. Kong, W. Gu, X. Guo, W. Tao, Z. Shan, Y. Wang and N. Wang “Determination of glyphosate in soil/sludge by high performance liquid chromatography,” J. Chromatogr. A, vol. 1502, pp. 8–13, Jun. 2017.
Y. Liao, J. M. Berthion, I. Colet, M. Merlo, A. Nougadère, and R. Hu, “Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry,” J. Chromatogr. A, vol. 1549, pp. 31–38, 2018.
FAO, “Glyphosate, N-(phosphonomethyl)glycine: specifications and evaluations for plant protection products,” Food Agric. Organ. United Nations, p. 33, 2000.
E.Çetin, S. Şahan, A. Ülgen, and U. Şahin, “DLLME-spectrophotometric determination of glyphosate residue in legumes,” Food Chem., vol. 230, pp. 567–571, 2017.
D. J. Padilla, “Estudio de líquidos iónicos como solventes de extracción en el análisis de glifosato en agua,” Tesis de maestría, Universidad Autónoma de Nuevo Leon, Monterrey, Nuevo Leon, 2014.
R. Rojas-Rodríguez, “Desarrollo de métodos para la reducción de la contaminación por plaguicidas en aguas subterráneas mediante la adición de residuos orgánicos a los suelos, Tesis doctoral, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Sevilla, 2015.
A. M. Rojano, “Plataformas analíticas en metabolómica y su aplicación para el estudio de la resistencia‒sensibilidad a herbicidas,” Tesis Doctoral, Departamento de Química Agrícola y Edafología, Universidad de Córdoba, Córdoba, 2012.
H. Rodríguez, J. Guerrero, and R. Castro, “Determinación de residuos de glifosato y de su metabolito ácido Aminometilfosfónico en aguas mediante Cromatografía Liquida de Alta Eficiencia con derivación postcolumna y detección por fluorescencia,” Rev. Col. Química, vol. 31, no. 1, p. 12, 2002.
T. V. Nedelkoska and G. K. C. Low, “High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate,” Anal. Chim. Acta, vol. 511, no. 1, pp. 145–153, 2004.
E. Mallat and D. Barceló, “Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection,” J. Chromatogr. A, vol. 823, no. 1–2, pp. 129–136, 1998.
M. Piriyapittaya, S. Jayanta, S. Mitra, and N. Leepipatpiboon, “Micro-scale membrane extraction of glyphosate and aminomethylphosphonic acid in water followed by high-performance liquid chromatography and post-column derivatization with fluorescence detector,” J. Chromatogr. A, vol. 1189, no. 1–2, pp. 483–492, 2008.
J. Patsias, A. Papadopoulou, and E. Papadopoulou-Mourkidou, “Automated trace level determination of glyphosate and aminomethyl phosphonic acid in water by on-line anion-exchange solid-phase extraction followed by cation-exchange liquid chromatography and post-column derivatization,” J. Chromatogr. A, vol. 932, no. 1–2, pp. 83–90, Oct. 2001.
R. Colin, E. Le Fur, C. Charrêteur, C. Dufau, and J.-J. Péron, “Determination of glyphosate herbicide and (aminomethyl)phosphonic acid (AMPA) in water by liquid chromatography and fluorescence detection. Part II: Direct determination using pre-column derivatization with NBD-Cl,” Analusis, vol. 28, no. 9, pp. 819–824, Nov. 2000.
M. Sun, H. Li, and D. P. Jaisi, “Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system,” Water Res., vol. 163, p. 114840, 2019.
W. C. Koskinen, L. J. Marek, and K. E. Hall, “Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil,” Pest Manag. Sci., vol. 72, no. 3, pp. 423–432, 2016.
M. Ibáñez, Ó. J. Pozo, J. V. Sancho, F. J. López, and F. Hernández, “Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry,” J. Chromatogr. A, vol. 1081, no. 2, pp. 145–155, 2005.
I. Hanke, H. Singer, and J. Hollender, “Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: Performance tuning of derivatization, enrichment and detection,” Anal. Bioanal. Chem., vol. 391, no. 6, pp. 2265–2276, 2008.
E. Okada, T. Coggan, T. Anumol, B. Clarke, and G. Allinson, “A simple and rapid direct injection method for the determination of glyphosate and AMPA in environmental water samples,” Anal. Bioanal. Chem., vol. 411, no. 3, pp. 715–724, 2019.
R. J. Vreeken, P. Speksnijder, I. Bobeldijk-Pastorova, and T. H. M. Noij, “Selective analysis of the herbicides glyphosate and aminomethylphosphonic acid in water by on-line solid-phase extraction-high- performance liquid chromatography-electrospray ionization mass spectrometry,” J. Chromatogr. A, vol. 794, no. 1–2, pp. 187–199, 1998.
T. Poiger, I. J. Buerge, A. Bächli, M. D. Müller, and M. E. Balmer, “Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS,” Environ. Sci. Pollut. Res., vol. 24, no. 2, pp. 1588–1596, 2017.
C. E. Ramirez, S. Bellmund, and P. R. Gardinali, “A simple method for routine monitoring of glyphosate and its main metabolite in surface waters using lyophilization and LC-FLD + MS/MS. Case study: Canals with influence on Biscayne National Park,” Sci. Total Environ., vol. 496, pp. 389–401, 2014.
C. Losada, Desenvolupament de metodes de preconcentracio emprant membranes liquides supotades i extracció en fase sólid per a la detreminació de Iherbicida glifosat i el seu metabólit ampa en aigües natural. Departamento de Quimica, Universitat de Girona, Girona, 2004.
M. Herrera, “Implementación de una metodología para la determinación de glifosato en muestras de agua,” Tesis de Pregrado, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, 2011.
IARC Director, “IARC response to criticisms of the Monographs and the glyphosate evaluation,” no. March 2015, p. 10, 2018.
W. A. Battaglin, M. T. Meyer, K. M. Kuivila, and J. E. Dietze, “Glyphosate and its degradation product ampa occur frequently and widely in u.s. soils, surface water, groundwater, and precipitation.,” J. Am. Water Resour. Assoc., vol. 50, no. 2, pp. 275–290, 2014.
P. Laitinen, S. Rämö, U. Nikunen, L. Jauhiainen, K. Siimes, and E. Turtola, “Glyphosate and phosphorus leaching and residues in boreal sandy soil,” Plant Soil, vol. 323, no. 1, pp. 267–283, 2009.
K. Grunewald, W. Schmidt, C. Unger and G. Hanschmann, “Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany),” J. plant Nutr. soil Sci., vol. 164, pp. 65–70, 2001.
G. Johal and D. M. Huber, “Glyphosate effects on diseases of plants,” Eur. J. Agron., vol. 31, no. 3, pp. 144–152, 2009.
S. H.Bai and S. M. Ogbourne, “Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination,” Environ. Sci. Pollut. Res., vol. 23, no. 19, pp. 18988–19001, 2016.
R. Mesnage and M. N. Antoniou, Roundup Ready! Glyphosate and the Current Controversy Over the World’s Leading Herbicide. Elsevier Inc., 2017.
A. M. Rojano-Delgado, J. Ruiz-Jiménez, M. D. L. De Castro, and R. De Prado, “Determination of glyphosate and its metabolites in plant material by reversed-polarity CE with indirect absorptiometric detection,” Electrophoresis, vol. 31, no. 8, pp. 1423–1430, 2010.
M. Sun, J. Alikhani, A. Massoudieh, R. Greiner, D.P. Jaisi, "Phytate degradation by different phosphohydrolase enzymes: contrasting kinetics, decay rates, pathways, and isotope effects". Soil Sci. Soc. Am. vol. 81 no.1, pp. 61-75, 2009.
E. A. Oliveira Pereira, V. Freitas Melo, G. Abate, and J. C. Masini, “Determination of glyphosate and aminomethylphosphonic acid by sequential-injection reversed-phase chromatography: method improvements and application in adsorption studies,” Anal. Bioanal. Chem., vol. 411, no. 11, pp. 2317–2326, 2019.
F. Cortés, Herbicida, “Identificacion del herbicida glifosato propiedades y toxicidad 1.,” pp. 1–51, 2000.
S. K. Konar and D. N. Roy, “Method for the determination of residues of the herbicide glyphosate and its principal metabolite, aminomethylphosphonic acid, in plant materials by nitrogen-selective gas chromatography,” Anal. Chim. Acta, vol. 229, pp. 277–280, 1990.
Y. Liao, J. M. Berthion, I. Colet, M. Merlo, A. Nougadère, and R. Hu, “Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry,” J. Chromatogr. A, vol. 1549, pp. 31–38, May 2018.
M. Dickeduisberg, H.-H. Steinmann, and L. Theuvsen, “Erhebungen zum Einsatz von Glyphosat im deutschen Ackerbau,” 25 th Ger. Conf. Weed Biol. Weed Control. March 13-15, 2012, Braunschweig, Ger., no. 2010, pp. 2010–2013, 2012.
A. L. Valle, F. C. C. Mello, R. P. Alves-Balvedi, L. P. Rodrigues, and L. R. Goulart, “Glyphosate detection: methods, needs aValle, A. L., Mello, F. C. C., Alves-Balvedi, R. P., Rodrigues, L. P., & Goulart, L. R. (2019). Glyphosate detection: methods, needs and challenges. Environmental Chemistry Letters, 17(1), 291–317. https://doi.org/10.,” Environ. Chem. Lett., vol. 17, no. 1, pp. 291–317, 2019.
S. Wang, B. Liu, D. Yuan, and J. Ma, “A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection,” Talanta, vol. 161, no. September, pp. 700–706, 2016.
V. Fauvelle, N. Montero, J. F. Mueller, A. Banks, N. Mazzella, and S. L. Kaserzon, “Glyphosate and AMPA passive sampling in freshwater using a microporous polyethylene diffusion sampler,” Chemosphere, vol. 188, pp. 241–248, 2017.
J. Valls, “Extracción en fase sólida (SPE) para tratamiento de muestras de alimentos para análisis por cromatografía”, Tesis Doctoral, Universidad Central de Venezuela, Caracas, 2004.
M. Camino and A. Virginia, “Aspectos Ambientales del Uso de Glifosato,” Instituto Nacional de Tecnología Agropecuaria, Balcarce - Argentina, p. 114, 2010.
G. Islas, “Determinación de glifosato y ácido aminometilfosfónico en suelos mediante HPLC con derivatización pre-columna,” Tesis de Maestría, Instituto de Ciencias Básicas en Ingeniería, Universidad Autónoma del estado de Hidalgo, Hidalgo, 2013.
J. Sheals, S. Sjöberg, and P. Persson, “Adsorption of glyphosate on goethite: Molecular characterization of surface complexes,” Environ. Sci. Technol., vol. 36, no. 14, pp. 3090–3095, 2002.
F. Pedemonte , “Problemática del uso de glifosato,” Univ. Nac. Agrar. La Molina, 2017.
Organización Mundial de la Salud, “Anexo B: Clasificación Toxicológica de los Plaguicidas,” pp. 245–247, 2010.
S. H. Bai and S. M. Ogbourne, “Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination,” Environ. Sci. Pollut. Res., vol. 23, no. 19, pp. 18988–19001, 2016.
J.Corley, “Best practices in establishing detection and quantification limits for pesticide residues in foods,” Handb. Residue Anal. Methods Agrochem., vol. 409, no. 23 pp. 59–75, 2003.
L. Mamy, E. Barriuso, and B. Gabrielle, “Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops,” Pest Manag. Sci., vol. 61, no. 9, pp. 905–916, 2005.
L. Piola, “Ensayos ecotoxicológicos para la evaluación del impacto de plaguicidas en suelos agrícolas de Argentina,” p. 162, 2011.
S. González, “Programa de erradicación de cultivos ilícitos mediante aspersión aérea de glifosato: hacia la clasificación de la política y su debate,” p. 41, 2006.
T. C. Sparks and R. Nauen, “IRAC: Mode of action classification and insecticide resistance management,” Pestic. Biochem. Physiol., vol. 121, pp. 122–128, 2015.
A. Rico, O. Scoppetta and J. Alzate, “Verdades científicas sobre glifosato y salud pública,” Revista Semana, vol. 1, Bogotá, Nov -2016.
C. Campuzano, L. Feijoó, K. Manzur, M. Palacio, J. Rendón, and J. Zapata, “Efectos de la intoxicación por glifosato en la población agrícola: revisión de tema,” Rev. CES Salud Pública, vol. 8, no. 1, pp. 121–133, 2017.
ICA, “Registros nacionales marzo de 2018,” Inst. Colomb. Agropecu., 2018.
G. M. Williams, R. Kroes, and I. C. Munro, “Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans,” Regul. Toxicol. Pharmacol., vol. 31, no. 2 I, pp. 117–165, 2000.
M. Tsui and L. Chu, “Comparative Toxicity of Glyphosate-Based Herbicides: Aqueous and Sediment Porewater Exposures,” Arch. Environ. Contam. Toxicol., vol. 46, no. 3, pp. 316–323, 2004.
M. Bustos, “Destino ambiental del glifosato en una zona arrocera del Tolima- Colombia,” Tesis Doctoral, Universidad Nacional de Colombia, Bogotá, 2012.
M. Ibáñez, Ó. Pozo, J. Sancho, F. López, and F. Hernández, “Re-evaluation of glyphosate determination in water by liquid chromatography coupled to electrospray tandem mass spectrometry,” J. Chromatogr. A, vol. 1134, no. 1–2, pp. 51–55, 2006.
Y. Sun, C. Wang, Q. Wen, G. Wang, H. Wang, Q. Qu and X. Hu, “Determination of glyphosate and aminomethylphosphonic acid in water by LC using a new labeling reagent, 4-methoxybenzenesulfonyl fluoride,” Chromatographia, vol. 72, no. 7–8, pp. 679–686, 2010.
Y. Zhu, F. Zhang, C. Tong, W. Liu, " Determination of glyphosate by ion chromatography" J. Chromatogr. A, vol. 1589, pp. 116–121, 1999.
O. Botggaard and A. Gimsing, “Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review,” Pest Manag. Sci., vol. 64, no. April, pp. 441–456, 2008.
B.H. Zainudin, S. Salleh, R. Mohamed, K.C. Yap, H. Muhamad, "Development, validation and determination of multiclass pesticide residues in cocoa beans using gas chromatography and liquid chromatography tandem mass spectrometry", Food Chem. vol. 172 pp. 585–595, 2015.
V. G. Amelin, D. S. Bol’shakov, and A. V. Tretiakov, “Determination of glyphosate and aminomethylphosphonic acid in surface water and vegetable oil by capillary zone electrophoresis,” J. Anal. Chem., vol. 67, no. 4, pp. 386–391, 2012.
T. J. Rose, L. van Zwieten, A. Claassens, C. Scanlan, and M. T. Rose, “Phytotoxicity of soilborne glyphosate residues is influenced by the method of phosphorus fertiliser application,” Plant Soil, vol. 422, no. 1–2, pp. 455–465, 2018.
S. Bott, T. Tesfamariam, A. Kania, E. Birceyudum, A. Nergiz, R. Volker, NGünter Neumann “Phytotoxicity of glyphosate soil residues re-mobilised by phosphate fertilisation,” Plant Soil, vol. 342, no. 1–2, pp. 249–263, 2011.
K. Herrmann and L. Weaver, “the Shikimate Pathway,” Annu. Rev. Plant Physiol. Plant Mol. Biol., vol. 50, no. 1, pp. 473–503, 1999.
B.Li X.Deng, D.Guo, and S.Jin, “Determination of Glyphosate and Aminomethylphosphonic Acid Residues in Foods Using High Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry,” Chinese J. Chromatogr., vol. 25, no. 4, pp. 486–490, 2007.
M. Tu, C. Hurd, and J. Randall, "Weed Control Methods Handbook : Tools & Techniques for Use in Natural Areas", no. April. pp. 15- 50, 2001.
M. Molinillo, R. Varela, J. Galindo, and F. A. Mac, “Allelopathy – a natural alternative for weed control,” Pest Manag. Sci., vol. 348, no. April 2006, pp. 327–348, 2007.
M. Bernal, K. Solomon, and G. Carrasquilla, "Toxicity of formulated glyphosate (glyphos) and cosmo-flux to larval Colombian frogs". Laboratory acute toxicity. J Toxicol Environ Hlth. no. 72, pp.961–965, 2009.
R. Annett, H. Habibi, and A. Hontela, “Impact of glyphosate and glyphosate-based herbicides on the freshwater environment,” J. Appl. Toxicol., vol. 34, no. 5, pp. 458–479, 2014.
L. Sikorski, M. Baciak, A. Bęś, and B. Adomas, “The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species,” Aquat. Toxicol., vol. 209, no. January, pp. 70–80, 2019.
J. Gill, N. Sethi, and A. Mohan, “Analysis of the glyphosate herbicide in water, soil and food using derivatising agents,” Environ. Chem. Lett., vol. 15, no. 1, pp. 85–100, 2017.
M. Arregui, Beldoménico H, and A. Cassano. Alberto, “Informe acerca del grado de toxicidad del glifosato,” Tesis de Pregrado, Universidad Nacional del Litoral, Santa fe, 2010.
G. Kishore and G. Jacob, “Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate.,” J. Biol. Chem., vol. 262, no. 25, pp. 12164–12168, 1987.
C. M. Liu, P. A. McLean, C. C. Sookdeo, and F. C. Cannon, “Degradation of the herbicide glyphosate by members of the family Rhizobiaceae,” Appl. Environ. Microbiol., vol. 57, no. 6, pp. 1799–1804, 1991.
S. V. Kononova and M. A. Nesmeyanova, “Phosphonates and their degradation by microorganisms,” Biochem., vol. 67, no. 1, pp. 184–195, 2002.
G. S. Jacob, J. R. Garbow, L. E. Hallas, N. M. Kimack, G. M. Kishore, and J. Schaeffer, “Metabolism of glyophosate in Pseudomonas sp. strain LBr,” Appl. Environ. Microbiol., vol. 54, no. 12, pp. 2953–2958, 1988.
Commission regulation (EU) No 293/2013 of 20 March 2013 “maximum residue levels for emamectin benzoate, etofenprox, etoxazole, flutriafol, glyphosate, phosmet, pyraclostrobin, spinosad and spirotetramat in or on certain products" vol. 10, no. 2, pp. 1–30, 2013.
J. García, “Límites maximos de residuos de plaguicidas en productos alimenticios de origen vegetal: Situación en Costa Rica,” Agron. Costarric., vol. 16, no. 1, pp. 153–162, 1992.
P. Taylor, C. A. Harris, and C. P. Gaston, “Effects of refining predicted chronic dietary intakes of pesticide residues : a case study using glyphosate Effects of refining predicted chronic dietary intakes of pesticide residues : a case study using glyphosate,” Food Addit. Contam., no. July 2013, pp. 37–41, 2007.
B. Lajin and W. Goessler, “Direct speciation analysis of organophosphorus environmental pollutants in water by HPLC-ICPMS/MS,” Talanta, vol. 196, no. October 2018, pp. 357–361, 2019.
C. Coutinho, L. Coutinho, L. H. Mazo, S. L. Nixdorf, C. A. P. Camara, and F. M. Lanças, “Direct determination of glyphosate using hydrophilic interaction chromatography with coulometric detection at copper microelectrode,” Anal. Chim. Acta, vol. 592, no. 1, pp. 30–35, 2007.
C. Hidalgo, “Simplificación del tratamiento de muestra en el análisis de residuos de herbicidas en aguas mediante aplicación de las técnicas cromatográficas acopladas LC-LC y SPE-LC,” Tesis de Maestría, Universitat Jaume I, Castelló,1999.
S. Viera Santana and J. Santana Rodríguez, “Técnicas analíticas avanzadas para la extracción y preconcentración de contaminantes emergentes en muestras líquidas,” Rev. la Acad. Canar. Ciencias = Folia Canar. Acad. Sci., vol. 25, no. 2, pp. 77–95, 2013.
Y. Tao, B. Chen, B. (Helen) Zhang, Z. (Joy) Zhu, and Q. Cai, Occurrence, Impact, Analysis and Treatment of Metformin and Guanylurea in Coastal Aquatic Environments of Canada, USA and Europe, 1st ed., vol. 81. Elsevier Ltd., 2018.
J. Sanchís, L. Kantiani, M. Llorca, F. Rubio, A. Ginebreda, J. Fraile, T. Garrido, M. Farre, “Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry,” Anal. Bioanal. Chem., vol. 402, no. 7, pp. 2335–2345, 2012.
C. Ortiz, “Simplificación del tratamiento de muestra en el análisis de residuos de herbicidas en aguas mediante aplicación de las técnicas cromatográficas acopladas LC-LC y SPE-LC", Tesis Doctoral, Universitat Jaume I, Castelló de la Plana,1999.
M. Corbera, “Desenvolupament de metodologia analítica per a la determinació de glifosat I adjuvants,” Tesis Doctoral, Departamento de Quimica, Universitat de Girona, Girona, 2007.
M. Kruger, W. Schledorn, A. Schrodl, H. Hoppe, W. Lutz and A. Shehata, "Detection of glyphosate residues in animals and humans", J Environ Anal Toxicol vol 4 pp.210-215, 2014.
Nagatomi Y, Yoshioka T, Yanagisawa M, Uyama A and Mochizuki N, "Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients". Biosci Biotechnol Biochem, vol 77, pp.2218–2221, 2013.
L. C. Schrübbers, M. Masís-Mora, E. Carazo Rojas, B. E. Valverde, J. H. Christensen, and N. Cedergreen, “Analysis of glyphosate and aminomethylphosphonic acid in leaves from Coffea arabica using high performance liquid chromatography with quadrupole mass spectrometry detection,” Talanta, vol. 146, pp. 609–620, 2016.
S. H. Tseng, Y. W. Lo, P. C. Chang, S. S. Chou, and H. M. Chang, “Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector,” J. Agric. Food Chem., vol. 52, no. 13, pp. 4057–4063, 2004.
M. S. Garba, Jamilu; Abd Wahid, Samsuri; Othman Radziah; Ahmad Hamdani, “Simplified method for derivatization of extractable glyphosate and aminomethylphosphonic acid and their determination by high performance liquid chromatography,” Environ. Res. Technol., vol. 1, no. 2, pp. 19–30, 2018.
M. De Fátima Alpendurada, “Solid-phase microextraction: A promising technique for sample preparation in environmental analysis,” J. Chromatogr. A, vol. 889, no. 1–2, pp. 3–14, 2000.
H. P. Ahokas, J. Kuronen, and Y. Wang, “Extraction Liquid-liquid and aqueous two-phase extraction,” Programme in Chemical, Biochemical and Materials Engineering. University School of Chemical Technology. 2017.
Z. Berk and Z. Berk, “Chapter 11 – Extraction,” Food Process Eng. Technol., pp. 287–309, 2013.
E. L. Delmonico, J. Bertozzi, N. E. de Souza, and C. C. Oliveira, “Determinação de glifosato e ácido aminometilfosfônico para verificar a qualidade da água de abastecimento público utilizando EFS e CLAE,” Acta Sci. - Technol., vol. 36, no. 3, pp. 513–519, 2014.
M. Faria, "Glyphosate, neurological diseases and the scientific method" Surg Neurol vol. 6, pp.132–137, 2015.
L. Carretta, A. Cardinali, E. Marotta, G. Zanin, and R. Masin, “A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub μg/L level,” J. Chromatogr. A, vol. 1600, pp. 65–72, 2019.
O. Pindado, R. Pérez, S. García, A. Barrado, M. Sevillano, and D. González, “Desarrollo de metodologías para la determinación de componentes orgánicos del Aerosol atmosférico,” ACS Natl. Meet. B. Abstr., 2006.
A. Jones, S. Pravadali-Cekic, G. R. Dennis, and R. A. Shalliker, “Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?,” Anal. Chim. Acta, vol. 889, pp. 58–70, 2015.
C. Zacharis and P.Tzanavaras, “Liquid chromatography coupled to on-line post column derivatization for the determination of organic compounds: A review on instrumentation and chemistries,” Anal. Chim. Acta, vol. 798, pp. 1–24, 2013.
D. R. Knapp, “Handbook of Analytical Derivatization Reactions,” Environ. Health Perspect., vol. 103 Suppl, no. 9, p. 741, 1979.
H. Monica, “Implementacion de una metodología para la determinacion de glifosato en muestras de agua,” Universidad Industrial de Santander, 2011. tesis de pregrado.
E. A. Hogendoorn, R. Huls, E. Dijkman, and R. Hoogerbrugge, “Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection,” J. Chromatogr. A, vol. 938, no. 1–2, pp. 23–33, 2001.
F. Fang, R. Wei, and X. Liu, “Novel pre-column derivatisation reagent for glyphosate by high-performance liquid chromatography and ultraviolet detection,” Int. J. Environ. Anal. Chem., vol. 94, no. 7, pp. 661–667, 2014.
C. C. Hsu and C. W. Whang, “Microscale solid phase extraction of glyphosate and aminomethylphosphonic acid in water and guava fruit extract using alumina-coated iron oxide nanoparticles followed by capillary electrophoresis and electrochemiluminescence detection,” J. Chromatogr. A, vol. 1216, no. 49, pp. 8575–8580, 2009.
Z. H. Kudzin, D. K. Gralak, J. Drabowicz, and J. Łuczak, “Novel approach for the simultaneous analysis of glyphosate and its metabolites,” J. Chromatogr. A, vol. 947, no. 1, pp. 129–141, 2002.
P. Husek and P. Simek, “Alkyl Chloroformates in Sample Derivatization Strategies for GC Analysis. Review on a Decade Use of the Reagents as Esterifying Agents,” vol. 2, pp. 23–43, 2006.
M. G. Cikalo, D. M. Goodall, and W. Matthews, “Analysis of glyphosate using capillary electrophoresis with indirect detection,” J. Chromatogr. A, vol. 745, no. 1–2, pp. 189–200, 1996.
WHO, “Glyphosate: Environmental Health Criteria 159,” World Heal. Organ., p. 181, 1994.
J. Ding, H. Guo, W. Liu, W. Zhang, and J. Wang, “Current progress on the detection of glyphosate in environmental samples,” J. Sci. Appl. Biomed., vol. 03, no. 06, pp. 88–95, 2015.
Y. Ishida, “Tecniques derivatization,” Br. J. Psychiatry, vol. 111, no. 479, pp. 1009–1010, 1965.
W. Bashe and T. Baker, “METHOD 547: Determination of glypfosate in drinking water by direct-aqueous injection HPLC, post-column derivatization and fluorescence detection,” J. Inf. Process. Manag., vol. 4, no. 12, pp. 19-21,28, 1990.
M. C. G. Alvarezcoque, M. J. M. Hernández, R. M. V Camañas, and C. M. Fernández, “Formation and Instability of Ortho-Phthalaldehyde Derivatives of Amino-Acids,” Anal. Biochem., vol. 178, no. 1, pp. 1–7, 1989.
M. Rigobello-Masini, E. A. O. Pereira, G. Abate, and J. C. Masini, “Solid-Phase Extraction of Glyphosate in the Analyses of Environmental, Plant, and Food Samples,” Chromatographia, vol. 82, no. 8, pp. 1121–1138, 2019.
P. Barat, “Improved method for the determination of glyphosate in water,” vol. 697, pp. 363–369, 1995.
R. Gilbert, G. Gonzalez, L. Hawel, and C. Byus, “An ion-exchange chromatography procedure for the isolation and concentration of basic amino acids and polyamines from complex biological samples prior to high-performance liquid chromatography,” Anal. Biochem., vol. 199, no. 1, pp. 86–92, 1991.
I. Molnár-Perl, “Advancement in the derivatizations of the amino groups with the o-phthaldehyde-thiol and with the 9-fluorenylmethyloxycarbonyl chloride reagents,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 879, no. 17–18, pp. 1241–1269, 2011.
A. Jámbor and I. Molnár-Perl, “Amino acid analysis by high-performance liquid chromatography after derivatization with 9-fluorenylmethyloxycarbonyl chloride. Literature overview and further study,” J. Chromatogr. A, vol. 1216, no. 15, pp. 3064–3077, 2009.
T. Arkan and I. Molnár-Perl, “The role of derivatization techniques in the analysis of glyphosate and aminomethyl-phosphonic acid by chromatography,” Microchem. J., vol. 121, pp. 99–106, 2015.
T. Shi, T. Tang, K. Qian, F. Wang, J. Li, and Y. Cao, “High-performance liquid chromatographic method for determination of amino acids by precolumn derivatization with 4-chloro-3,5-dinitrobenzotrifluoride,” Anal. Chim. Acta, vol. 654, no. 2, pp. 154–161, 2009.
Q. Lin, L. Che, J. Guo, and R. Wang, “Use of 4-chloro-3, 5-dinitrobenzotrifluoride (CNBF) Derivatization and Ultrahigh-performance Liquid Chromatography Tandem Mass Spectrometry for the Determination of 20 Free Amino Acids in Chinese Jujube Date,” Food Anal. Methods, vol. 7, no. 3, pp. 571–579, 2014.
I. Durán, T. Galeano, and M. Alexandre, “Simultaneous fluorimetric determination of glyphosate and its metabolite, aminomethylphosphonic acid, in water, previous derivatization with NBD-Cl and by partial least squares calibration (PLS),” Talanta, vol. 65, no. 1, pp. 7–14, Jan. 2005.
L. Carretta, A. Cardinali, E. Marotta, G. Zanin, and R. Masin, “A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub μg/L level,” J. Chromatogr. A, vol. 1600, pp. 65–72, Aug. 2019.
S. A. Cohen and D. P. Michaud, “Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N- hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography,” Analytical Biochemistry, vol. 211, no. 2. pp. 279–287, 1993.
J. Hernández, “Nuevas metodologías de análisis de pesticidas por electroforesis capilar,” Universidad de La Laguna, 2006.
X. Wei, X. Gao, L. Zhao, X. Peng, L. Zhou, J. Wang and Q. Pu, “Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips,” J. Chromatogr. A, vol. 1281, pp. 148–154, 2013.
L. P. Olguín, H. Magadán, and M. Rodríguez, “Metodos en biotecnología,” Inst. Biotecnol., pp. 3–45, 2004.
A. Technologies, “Guía de selección de columnas Agilent J & W para GC,” Introd. a la Cromatogr. gases básica, p. 148, 2000.
C. Stalikas and C. Konidari, “Analytical methods to determine phosphonic and amino acid group-containing pesticides.,” J. Chromatogr. A, vol. 907, pp. 1–19, 2001.
Catálogo Agilents: “LC y LC / MS Su recurso imprescindible para columnas y consumibles LC Y LC / MS.”
J. Sancho, F. López, F. Hernández, E.Hogendoorn, and P. van Zoonen, “Rapid determination of glufosinate in environmental water samples using 9- fluorenylmethoxycarbonyl precolumn derivatization, large-volume injection and coupled-column liquid chromatography,” J. Chromatogr. A, vol. 678, no. 1, pp. 59–67, 1994.
A. Valle, F. Mello, R. Alves-Balvedi, L. Rodrigues, and L. Goulart, “Glyphosate detection: methods, needs and challenges,” Environ. Chem. Lett., vol. 17, no. 1, pp. 291–317, 2019.
J. Hu, C. Chen, and J. Li, “A simple method for the determination of glyphosate residues in soil by capillary gas chromatography with nitrogen phosphorus,” J. Anal. Chem., vol. 63, no. 4, pp. 371–375, 2008.
E. Tammekivi, S. Vahur, O. Kekisev, L. Toom, K. Herodesa and I. Leito, “Comparison of derivatization methods for the quantitative gas chromatographic analysis of oils,” Anal. Methods, vol. 11, no. 28, pp. 3514–3522, 2019.
C. F. Poole, “Ionization-based detectors for gas chromatography,” J. Chromatogr. A, vol. 1421, pp. 137–153, 2015.
L. S. Ettre, “The Invention, Development and Triumph of the Flame Ionization Detector,” LC GC Eur., vol. 15, no. 6, pp. 364–373, 2002.
C. W. Gehrke, “9. The Flame Photometric Detector (FPD),” J. Chromatogr. Libr., vol. 4, no. C, pp. 145–164, 1976.
M. Godula, J. Hajšlová, and K. Alterová, “Pulsed splitless injection and the extent of matrix effects in the analysis of pesticides,” HRC J. High Resolut. Chromatogr., vol. 22, no. 7, pp. 395–402, 1999.
S. García and R. Pérez, “Aplicaciones de la Cromatografía Líquida con Detector de Diodos y Fluorescencia al Análisis de Contaminantes Medioambientales,” Inf. técnicos Ciemat, pp. 37–53, 2012.
P. Mercurio, F. Flores, J. F. Mueller, S. Carter, and A. P. Negri, “Glyphosate persistence in seawater,” Mar. Pollut. Bull., vol. 85, no. 2, pp. 385–390, 2014.
H. Kataoka, S. Ryu, N. Sakiyama, and M. Makita, “Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot.,” J. Chromatogr. A, vol. 726, no. 1–2, pp. 253–258, 1996.
E. Soboleva and Á. Ambrus, “Application of a system suitability test for quality assurance and performance optimisation of a gas chromatographic system for pesticide residue analysis,” J. Chromatogr. A, vol. 1027, no. 1–2, pp. 55–65, 2004.
H. Kataoka, S. Ryu, N. Sakiyama, and M. Makita, “Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection,” J. Chromatogr. A, vol. 726, no. 1–2, pp. 253–258, 1996.
A. L. Pérez, G. Tibaldo, G. H. Sánchez, G. G. Siano, N. R. Marsili, and A. V. Schenone, “A novel fluorimetric method for glyphosate and AMPA determination with NBD-Cl and MCR-ALS,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 214, pp. 119–128, May 2019.
E. Pinto, A. Soares, and I. Ferreira, “Quantitative analysis of glyphosate, glufosinate and AMPA in irrigation water by: In situ derivatization-dispersive liquid-liquid microextraction combined with UPLC-MS/MS,” Anal. Methods, vol. 10, no. 5, pp. 554–561, 2018.
R. Hanczko, Á. Korös, F. Tóth, and I. Molnár-Perl, “Behavior and characteristics of biogenic amines, ornithine and lysine derivatized with the o-phthalaldehyde-ethanethiol-fluorenylmethyl chloroformate reagent,” J. Chromatogr. A, vol. 1087, no. 1–2, pp. 210–222, 2005.
L. D. Demonte, N. Michlig, M. Gaggiotti, C. G. Adam, H. R. Beldoménico, and M. R. Repetti, “Determination of glyphosate, AMPA and glufosinate in dairy farm water from Argentina using a simplified UHPLC-MS/MS method,” Sci. Total Environ., vol. 645, pp. 34–43, Dec. 2018.
C. Druart, O. Delhomme, A. De Vaufleury, E. Ntcho, and M. Millet, “Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil,” Anal. Bioanal. Chem., vol. 399, no. 4, pp. 1725–1732, 2011.
H. Aboul-Enein and X. Sun, “Determination of glyphosate herbicide and (aminomethyl)phosphonic acid (AMPA) in water by liquid chromatography and fluorescence detection. Part II: Direct determination using pre-column derivatization with NBD-Cl,” Analusis, vol. 28, no. 9, pp. 819–824, 2000.
S. Kawai, B. Uno, and M. Tomita, “Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after derivatization with p-toluenesulphonyl chloride,” J. Chromatogr. A, vol. 540, no. C, pp. 411–415, 1991.
j. Chow and J. Orenberg, “Comparison of automated pre-column and post-column analysis of amino acid oligomers,” J. Chromatogr., vol. 386, no. 9, pp. 243–249, 1987.
M. Alvarezcoque, M. Hernandez, R. Camanas, and C. Fernandez, “Formation and Instability of Ortho-Phthalaldehyde Derivatives of Amino-Acids,” Anal. Biochem., vol. 178, no. 1, pp. 1–7, 1989.
Y. Zhang, Y. Zhang, Q. Qu, G. Wang, and C. Wang, “Determination of glyphosate and aminomethylphosphonic acid in soybean samples by high performance liquid chromatography using a novel fluorescent labeling reagent,” Anal. Methods, vol. 5, no. 22, pp. 6465–6472, 2013.
A. L. Pérez, G. Tibaldo, G. H. Sánchez, G. G. Siano, N. R. Marsili, and A. V. Schenone, “A novel fluorimetric method for glyphosate and AMPA determination with NBD-Cl and MCR-ALS,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 214, pp. 119–128, 2019.
Y. Zhu, F. Zhang, C. Tong, and W. Liu, “Determination of glyphosate by ion chromatography,” J. Chromatogr. A, vol. 850, no. 1–2, pp. 297–301, 1999.
H. M. Qiu, J. J. Geng, C. Han, and H. Q. Ren, “Determination of phosphite, phosphate, glyphosate and aminomethylphosphonic acid by two-dimensional ion chromatography system coupled with capillary ion chromatography,” Fenxi Huaxue/ Chinese J. Anal. Chem., vol. 41, no. 12, pp. 1910–1914, 2013.
A. Botero, M. Ibáñez, J. Sancho, and F. Hernández, “Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry,” J. Chromatogr. A, vol. 1292, pp. 132–141, 2013.
R. Bandu, H. Soo, J. Won Lee, Y. Woo, S. Hee, H. Jin, K. Pyo, “Liquid chromatography electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) study for the identification and characterization of in vivo metabolites of cisplatin in rat kidney cancer tissues: Online Hydrogen/Deuterium (H/D) exchange study,” PLoS One, vol. 10, no. 8, pp. 1–27, 2015.
A. Ammann, “Inductively coupled plasma mass spectrometry (ICP MS): A versatile tool,” J. Mass Spectrom., vol. 42, no. 4, pp. 419–427, 2007.
D. Skoog, F. Holler, and S. Crouch, “The easy guide to: Inductively Coupled Plasma Mass Spectrometery (ICP-MS),” Princ. Instrum. Anal., no. December, pp. 1–11, 2007.
Y. Kazui, Y. Seto, and H. Inoue, “Phosphorus-specific determination of glyphosate, glufosinate, and their hydrolysis products in biological samples by liquid chromatography-inductively coupled plasma-mass spectrometry,” Forensic Toxicol., vol. 32, no. 2, pp. 317–322, 2014.
D. Skoog, F. Holler, and S. Crouch, “The easy guide to: Inductively Coupled Plasma Mass Spectrometery (ICP-MS),” Princ. Instrum. Anal., no. December, pp. 1–11, 2007.
N. Sugiyama, “Application note Agilent: The accurate measurement of selenium in twelve diverse reference materials using on-line isotope dilution with the 8800 Triple Quadrupole ICP-MS in MS / MS mode,” pp. 1–8, 2012.
K. Minakata, I. Yamagishi, H. Nozawa, K. Gonmori, K. Hasegawa, M. Suzuki, . Horio, K. Watanabe, O. Suzuki “Simultaneous determination of coinage metals, copper, silver, and gold in tissues using electrospray ionization tandem mass spectrometry,” Forensic Toxicol., vol. 30, no. 2, pp. 149–155, 2012.
M. Sousa, A. Silva, S. Araújo, and R. Rigotto, “Evaluation of the atmospheric contamination level for the use of herbicide glyphosate in the northeast region of Brazil,” 2019.
R. Osatinsky, “¿Que es la electroforesis capilar?,” Bioquímica y Patol. Clínica, vol. 71, no. 2, pp. 60–66, 2007.
Dale Baker and John Wiley, Capillary electrophoresis, vol. 53, no. 9. New York, 1995.
J. Fritsch and K. I, “Electrophoresis,” Spiritual. Educ., pp. 141–142, 2010.
S. Moldoveanu and V. David, Chapter 6 Solvent Extraction, no. January. 2015.
L. Goodwin, J. R. Startin, B. J. Keely, and D. M. Goodall, “Analysis of glyphosate and glufosinate by capillary electrophoresis-mass spectrometry utilising a sheathless microelectrospray interface,” J. Chromatogr. A, vol. 1004, no. 1–2, pp. 107–119, 2003.
F. Rubio, L. J. Veldhuis, B. S. Clegg, J. R. Fleeker, and J. C. Hall, “Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water,” J. Agric. Food Chem., vol. 51, no. 3, pp. 691–696, 2003.
S. Clegg, G. Stephenson, and C. Hall, “Development of an Enzyme-Linked Immunosorbent Assay for the Detection of Glyphosate,” J. Agric. Food Chem., vol. 47, no. 14, pp. 5031–5037, 1999.
V. L. De Elisa and E. Guzmán-vázquez, “V. Las pruebas de Elisa,” Gac. Med. Mex., vol. 140, no. 3, pp. 48–49, 2004.
D. A. d’Avignon and X. Ge, “In vivo NMR investigations of glyphosate influences on plant metabolism,” J. Magn. Reson., vol. 292, pp. 59–72, 2018.
R. Garrido, H. Vélez, and V. Vérez, “Resonancia magnética nuclear: Nuevas aplicaciones en la cuantificación y la evaluación de intermediarios de vacunas basadas en polisacáridos,” Vaccimonitor, vol. 22, no. 1, pp. 35–42, 2013.
A. S. Marfunin, “4. Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) 4.1 The Principle of the Phenomenon and Types of Interaction in,” 1979.
T. S. Al-Deen, D. B. Hibbert, J. M. Hook, and R. J. Wells, “An uncertainty budget for the determination of the purity of glyphosate by quantitative nuclear magnetic resonance (QNMR) spectroscopy,” Accredit. Qual. Assur., vol. 9, no. 1–2, pp. 55–63, 2004.
B. Cartigny, N. Azaroual, M. Imbenotte, D. Mathieu, G. Vermeersch, J.P. Goulle, M. Lhermitte “Determination of glyphosate in biological fluids by 1H and 31P NMR spectroscopy,” Forensic Sci. Int., vol. 143, no. 2–3, pp. 141–145, 2004.
R. De Góes, M. Muller, and J. Fabris, “Spectroscopic detection of glyphosate in water assisted by laser-ablated silver nanoparticles,” Sensors (Switzerland), vol. 17, no. 5, 2017.
D. Gutiérrez, E. Montero, N. Murillo, and L. Rojas, “Uso de la espectroscopia Raman en el análisis de fragmentos de pintura automotriz como evidencia forense,” Rev. Tecnol. en Marcha, vol. 29, no. 8, p. 57, 2016.
J. Chalmers, E. Howell, and M. Hargreaeves, Infrared and raman spectroscopy in forensic science. 2012.
R. E. Littleford, D. Graham, W. E. Smith, and I. Khan, Raman Spectroscopy—Surface-Enhanced, no. June. Elsevier Inc., 2018.
H. Wei, S. M. Hossein Abtahi, and P. J. Vikesland, “Plasmonic colorimetric and SERS sensors for environmental analysis,” Environ. Sci. Nano, vol. 2, no. 2, pp. 120–135, 2015.
F. Celis, M. Garcia, G. Diaz-Fleming, and M. Campos-Vallette, “A review of raman, SURFACE-enhanced raman scattering (SERS) and related spectroscopic techniques applied to biomolecules in biomaterials,” J. Chil. Chem. Soc., vol. 62, no. 3, pp. 3627–3632, 2017.
R. E. Littleford, D. Graham, W. E. Smith, and I. Khan, Raman Spectroscopy—Surface-Enhanced, no. June. Elsevier Inc., 2018.
M. L. Xu et al., “Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 197, pp. 78–82, 2018.
dc.rights.spa.fl_str_mv Derechos reservados - Universidad Nacional de Colombia
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-SinDerivadas 4.0 Internacional
dc.rights.spa.spa.fl_str_mv Acceso abierto
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-SinDerivadas 4.0 Internacional
Derechos reservados - Universidad Nacional de Colombia
Acceso abierto
http://creativecommons.org/licenses/by-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv 103
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.publisher.program.spa.fl_str_mv Bogotá - Ciencias - Maestría en Ciencias - Química
dc.publisher.department.spa.fl_str_mv Departamento de Química
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Bogotá
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/77955/6/license_rdf
https://repositorio.unal.edu.co/bitstream/unal/77955/4/1023906433.2020.pdf
https://repositorio.unal.edu.co/bitstream/unal/77955/5/license.txt
https://repositorio.unal.edu.co/bitstream/unal/77955/7/1023906433.2020.pdf.jpg
bitstream.checksum.fl_str_mv dab767be7a093b539031785b3bf95490
d16e3c27918df93ddec7d849fe021b97
e2f63a891b6ceb28c3078128251851bf
be4bba067086d60ca6a5a36728ea62d4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814090239318163456
spelling Atribución-SinDerivadas 4.0 InternacionalDerechos reservados - Universidad Nacional de ColombiaAcceso abiertohttp://creativecommons.org/licenses/by-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Martínez Cordón, María José7a66331a-a93b-4028-98f3-4e19d695a278-1Bohórquez Vivas, Dianny Jesmid506be0a8-0980-4dc8-acfd-f649f5478d8dResidualidad y Destino Ambiental de Plaguicidas en Sistemas Agricolas2020-08-06T05:56:28Z2020-08-06T05:56:28Z2020-03-19https://repositorio.unal.edu.co/handle/unal/77955El Glifosato es el herbicida más utilizado y comercializado a nivel mundial usado principalmente para el control de malezas. El uso excesivo y su impacto en el medio ambiente, ha promovido el análisis químico del Glifosato en el agua, el suelo y alimentos. Debido a la complejidad y características específicas de la molécula para ser analizada, es necesario implementar e introducir mejoras en las metodologías que permitan realizar procedimientos de detección a niveles de trazas. El Glifosato es un compuesto que no contiene una estructura química compleja, pero al tener cuatro grupos altamente polares, dificulta el análisis por métodos convencionales. Para la química, sigue siendo un desafío desarrollar técnicas que arrojen resultados confiables en tiempos cortos, teniendo en cuenta cada uno de los parámetros para que, en el momento de realizar la operación, el método elegido sea óptimo, confiable, eficaz y no se presenten errores en los procedimientos que pueden generar resultados incorrectos. Este trabajo se realiza a fin de recopilar las técnicas analíticas instrumentales usadas en la actualidad para la cuantificación y detección de Glifosato. Se describen los parámetros que deben ser relevantes para la determinación de Glifosato y su metabolito principal AMPA (ácido aminometilfosfónico) y procesos asociados a técnicas cromatográficas, que van desde rutas de degradación del contaminante, procedimientos de tratamiento de las muestras, reacciones de derivatización química, uso de columnas y detectores. Así mismo, se presentan metodologías de análisis que involucran otras técnicas más avanzadas siendo estas, una alternativa favorable para la detección de este herbicida.Glyphosate is the most widely used and marketed herbicide worldwide used primarily for weed control. Excessive use and its impact on the environment has promoted the chemical analysis of glyphosate in water, soil and food. Due to the complexity and specific characteristics of the molecule to be analyzed, it is necessary to implement and introduce improvements in the methodologies that allow detection procedures at trace levels. Glyphosate is a compound that does not contain a complex chemical structure, but having four highly polar groups makes analysis by conventional methods difficult. For chemistry, it is still a challenge to develop techniques that yield reliable results in short times, taking into account each of the parameters so that, at the time of performing the operation, the chosen method is optimal, reliable, efficient and not present Errors in procedures that may generate incorrect results. This work is done in order to compile the instrumental analytical techniques currently used for the quantification and detection of glyphosate. The parameters that should be relevant for the determination of glyphosate and its main metabolite AMPA (aminomethylphosphonic acid) and processes associated with chromatographic techniques, ranging from routes of contaminant degradation, sample treatment procedures, chemical derivatization reactions, are described. use of columns and detectors. Likewise, analysis methodologies are presented that involve other more advanced techniques, these being a favorable alternative for the detection of this herbicide.Maestría103application/pdfspa632 - Lesiones, enfermedades, plagas vegetales338 - ProducciónAMPAherbicidaglifosatocromatografíaderivatizaciónAMPAherbicidechromatographyderivatizationglyphosateMétodos analíticos para la determinación de Glifosato en matrices ambientalesDocumento de trabajoinfo:eu-repo/semantics/workingPaperinfo:eu-repo/semantics/publishedVersionhttp://purl.org/coar/resource_type/c_8042http://purl.org/coar/version/c_970fb48d4fbd8a85Texthttp://purl.org/redcol/resource_type/WPBogotá - Ciencias - Maestría en Ciencias - QuímicaDepartamento de QuímicaUniversidad Nacional de Colombia - Sede BogotáH. Anson Moye and A. Boning, “A versatile fluorogenic labelling reagent for primary and secondary amines: 9-fluorenylmethyl chloroformate,” Anal. Lett., vol. 12, no. 1, pp. 25–35, 1979.J.Tarazona., D. Court-Marques., M. Tiramani., H. Reich., R. Pfeil., F. Istace, “Glyphosate toxicity and carcinogenicity: a review of the scientific basis of the European Union assessment and its differences with IARC,” Arch. Toxicol., vol. 91, no. 8, pp. 2723–2743, 2017.S. Powles and C. Preston, “Evolved Glyphosate Resistance in Plants: Biochemical and Genetic Basis of Resistance,” Weed Technol., vol. 20, no. 02, pp. 282–289, 2006.E. Perry, D. Hennessy, and G. Moschini, “Product concentration and usage: Behavioral effects in the glyphosate market,” J. Econ. Behav. Organ., vol. 158, no. 20156702322954, pp. 543–559, 2019.K. Qian, T. Tang, T. Shi, F. Wang, J. Li, and Y. Cao, “Residue determination of glyphosate in environmental water samples with high-performance liquid chromatography and UV detection after derivatization with 4-chloro-3,5-dinitrobenzotrifluoride,” Anal. Chim. Acta, vol. 635, no. 2, pp. 222–226, Mar. 2009.C. Maqueda, T. Undabeytia, J. Villaverde, and E. Morillo, “Behaviour of glyphosate in a reservoir and the surrounding agricultural soils,” Sci. Total Environ., vol. 593–594, pp. 787–795, 2017.E. Bolaños, “La suspensión del glifosato en la erradicación de cultivos ilícitos en Colombia: ¿Una solución humanitaria o un cambio para que todo siga igual?,”Tesis de Pregrado, Universidad Católica de Colombia,Bogotá, 2008.K. Guyton., D. Loomis., Y. Grosse., F. El Ghissassi., L. Benbrahim-Tallaa., N. Guh., C. Scoccianti., H. Mattock., K. Straif, K, “Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate,” Lancet Oncol., vol. 16, no. 5, pp. 490–491, 2015.A. Connolly, K. Jones, K.S. Galea, I. Basinas, L. Kenny, P. McGowan, M. Coggins, “Exploring the half-life of glyphosate in human urine samples,” Int. J. Hyg. Environ. Health, no. July, pp. 0–1, 2018.A. Van Bruggen., Van Bruggen, M.M. He., K. Shin., V. Mai., K.C. Jeong., M.R. Finckh, and J.G. Morris, Environmental “Environmental and health effects of the herbicide glyphosate,” Sci. Total Environ., vol. 616–617, pp. 255–268, 2018.L. Sun., D. Kong, W. Gu, X. Guo, W. Tao, Z. Shan, Y. Wang and N. Wang “Determination of glyphosate in soil/sludge by high performance liquid chromatography,” J. Chromatogr. A, vol. 1502, pp. 8–13, Jun. 2017.Y. Liao, J. M. Berthion, I. Colet, M. Merlo, A. Nougadère, and R. Hu, “Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry,” J. Chromatogr. A, vol. 1549, pp. 31–38, 2018.FAO, “Glyphosate, N-(phosphonomethyl)glycine: specifications and evaluations for plant protection products,” Food Agric. Organ. United Nations, p. 33, 2000.E.Çetin, S. Şahan, A. Ülgen, and U. Şahin, “DLLME-spectrophotometric determination of glyphosate residue in legumes,” Food Chem., vol. 230, pp. 567–571, 2017.D. J. Padilla, “Estudio de líquidos iónicos como solventes de extracción en el análisis de glifosato en agua,” Tesis de maestría, Universidad Autónoma de Nuevo Leon, Monterrey, Nuevo Leon, 2014.R. Rojas-Rodríguez, “Desarrollo de métodos para la reducción de la contaminación por plaguicidas en aguas subterráneas mediante la adición de residuos orgánicos a los suelos, Tesis doctoral, Escuela Técnica Superior de Ingenieros, Universidad de Sevilla, Sevilla, 2015.A. M. Rojano, “Plataformas analíticas en metabolómica y su aplicación para el estudio de la resistencia‒sensibilidad a herbicidas,” Tesis Doctoral, Departamento de Química Agrícola y Edafología, Universidad de Córdoba, Córdoba, 2012.H. Rodríguez, J. Guerrero, and R. Castro, “Determinación de residuos de glifosato y de su metabolito ácido Aminometilfosfónico en aguas mediante Cromatografía Liquida de Alta Eficiencia con derivación postcolumna y detección por fluorescencia,” Rev. Col. Química, vol. 31, no. 1, p. 12, 2002.T. V. Nedelkoska and G. K. C. Low, “High-performance liquid chromatographic determination of glyphosate in water and plant material after pre-column derivatisation with 9-fluorenylmethyl chloroformate,” Anal. Chim. Acta, vol. 511, no. 1, pp. 145–153, 2004.E. Mallat and D. Barceló, “Analysis and degradation study of glyphosate and of aminomethylphosphonic acid in natural waters by means of polymeric and ion-exchange solid-phase extraction columns followed by ion chromatography-post-column derivatization with fluorescence detection,” J. Chromatogr. A, vol. 823, no. 1–2, pp. 129–136, 1998.M. Piriyapittaya, S. Jayanta, S. Mitra, and N. Leepipatpiboon, “Micro-scale membrane extraction of glyphosate and aminomethylphosphonic acid in water followed by high-performance liquid chromatography and post-column derivatization with fluorescence detector,” J. Chromatogr. A, vol. 1189, no. 1–2, pp. 483–492, 2008.J. Patsias, A. Papadopoulou, and E. Papadopoulou-Mourkidou, “Automated trace level determination of glyphosate and aminomethyl phosphonic acid in water by on-line anion-exchange solid-phase extraction followed by cation-exchange liquid chromatography and post-column derivatization,” J. Chromatogr. A, vol. 932, no. 1–2, pp. 83–90, Oct. 2001.R. Colin, E. Le Fur, C. Charrêteur, C. Dufau, and J.-J. Péron, “Determination of glyphosate herbicide and (aminomethyl)phosphonic acid (AMPA) in water by liquid chromatography and fluorescence detection. Part II: Direct determination using pre-column derivatization with NBD-Cl,” Analusis, vol. 28, no. 9, pp. 819–824, Nov. 2000.M. Sun, H. Li, and D. P. Jaisi, “Degradation of glyphosate and bioavailability of phosphorus derived from glyphosate in a soil-water system,” Water Res., vol. 163, p. 114840, 2019.W. C. Koskinen, L. J. Marek, and K. E. Hall, “Analysis of glyphosate and aminomethylphosphonic acid in water, plant materials and soil,” Pest Manag. Sci., vol. 72, no. 3, pp. 423–432, 2016.M. Ibáñez, Ó. J. Pozo, J. V. Sancho, F. J. López, and F. Hernández, “Residue determination of glyphosate, glufosinate and aminomethylphosphonic acid in water and soil samples by liquid chromatography coupled to electrospray tandem mass spectrometry,” J. Chromatogr. A, vol. 1081, no. 2, pp. 145–155, 2005.I. Hanke, H. Singer, and J. Hollender, “Ultratrace-level determination of glyphosate, aminomethylphosphonic acid and glufosinate in natural waters by solid-phase extraction followed by liquid chromatography-tandem mass spectrometry: Performance tuning of derivatization, enrichment and detection,” Anal. Bioanal. Chem., vol. 391, no. 6, pp. 2265–2276, 2008.E. Okada, T. Coggan, T. Anumol, B. Clarke, and G. Allinson, “A simple and rapid direct injection method for the determination of glyphosate and AMPA in environmental water samples,” Anal. Bioanal. Chem., vol. 411, no. 3, pp. 715–724, 2019.R. J. Vreeken, P. Speksnijder, I. Bobeldijk-Pastorova, and T. H. M. Noij, “Selective analysis of the herbicides glyphosate and aminomethylphosphonic acid in water by on-line solid-phase extraction-high- performance liquid chromatography-electrospray ionization mass spectrometry,” J. Chromatogr. A, vol. 794, no. 1–2, pp. 187–199, 1998.T. Poiger, I. J. Buerge, A. Bächli, M. D. Müller, and M. E. Balmer, “Occurrence of the herbicide glyphosate and its metabolite AMPA in surface waters in Switzerland determined with on-line solid phase extraction LC-MS/MS,” Environ. Sci. Pollut. Res., vol. 24, no. 2, pp. 1588–1596, 2017.C. E. Ramirez, S. Bellmund, and P. R. Gardinali, “A simple method for routine monitoring of glyphosate and its main metabolite in surface waters using lyophilization and LC-FLD + MS/MS. Case study: Canals with influence on Biscayne National Park,” Sci. Total Environ., vol. 496, pp. 389–401, 2014.C. Losada, Desenvolupament de metodes de preconcentracio emprant membranes liquides supotades i extracció en fase sólid per a la detreminació de Iherbicida glifosat i el seu metabólit ampa en aigües natural. Departamento de Quimica, Universitat de Girona, Girona, 2004.M. Herrera, “Implementación de una metodología para la determinación de glifosato en muestras de agua,” Tesis de Pregrado, Escuela de Química, Universidad Industrial de Santander, Bucaramanga, 2011.IARC Director, “IARC response to criticisms of the Monographs and the glyphosate evaluation,” no. March 2015, p. 10, 2018.W. A. Battaglin, M. T. Meyer, K. M. Kuivila, and J. E. Dietze, “Glyphosate and its degradation product ampa occur frequently and widely in u.s. soils, surface water, groundwater, and precipitation.,” J. Am. Water Resour. Assoc., vol. 50, no. 2, pp. 275–290, 2014.P. Laitinen, S. Rämö, U. Nikunen, L. Jauhiainen, K. Siimes, and E. Turtola, “Glyphosate and phosphorus leaching and residues in boreal sandy soil,” Plant Soil, vol. 323, no. 1, pp. 267–283, 2009.K. Grunewald, W. Schmidt, C. Unger and G. Hanschmann, “Behavior of glyphosate and aminomethylphosphonic acid (AMPA) in soils and water of reservoir Radeburg II catchment (Saxony/Germany),” J. plant Nutr. soil Sci., vol. 164, pp. 65–70, 2001.G. Johal and D. M. Huber, “Glyphosate effects on diseases of plants,” Eur. J. Agron., vol. 31, no. 3, pp. 144–152, 2009.S. H.Bai and S. M. Ogbourne, “Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination,” Environ. Sci. Pollut. Res., vol. 23, no. 19, pp. 18988–19001, 2016.R. Mesnage and M. N. Antoniou, Roundup Ready! Glyphosate and the Current Controversy Over the World’s Leading Herbicide. Elsevier Inc., 2017.A. M. Rojano-Delgado, J. Ruiz-Jiménez, M. D. L. De Castro, and R. De Prado, “Determination of glyphosate and its metabolites in plant material by reversed-polarity CE with indirect absorptiometric detection,” Electrophoresis, vol. 31, no. 8, pp. 1423–1430, 2010.M. Sun, J. Alikhani, A. Massoudieh, R. Greiner, D.P. Jaisi, "Phytate degradation by different phosphohydrolase enzymes: contrasting kinetics, decay rates, pathways, and isotope effects". Soil Sci. Soc. Am. vol. 81 no.1, pp. 61-75, 2009.E. A. Oliveira Pereira, V. Freitas Melo, G. Abate, and J. C. Masini, “Determination of glyphosate and aminomethylphosphonic acid by sequential-injection reversed-phase chromatography: method improvements and application in adsorption studies,” Anal. Bioanal. Chem., vol. 411, no. 11, pp. 2317–2326, 2019.F. Cortés, Herbicida, “Identificacion del herbicida glifosato propiedades y toxicidad 1.,” pp. 1–51, 2000.S. K. Konar and D. N. Roy, “Method for the determination of residues of the herbicide glyphosate and its principal metabolite, aminomethylphosphonic acid, in plant materials by nitrogen-selective gas chromatography,” Anal. Chim. Acta, vol. 229, pp. 277–280, 1990.Y. Liao, J. M. Berthion, I. Colet, M. Merlo, A. Nougadère, and R. Hu, “Validation and application of analytical method for glyphosate and glufosinate in foods by liquid chromatography-tandem mass spectrometry,” J. Chromatogr. A, vol. 1549, pp. 31–38, May 2018.M. Dickeduisberg, H.-H. Steinmann, and L. Theuvsen, “Erhebungen zum Einsatz von Glyphosat im deutschen Ackerbau,” 25 th Ger. Conf. Weed Biol. Weed Control. March 13-15, 2012, Braunschweig, Ger., no. 2010, pp. 2010–2013, 2012.A. L. Valle, F. C. C. Mello, R. P. Alves-Balvedi, L. P. Rodrigues, and L. R. Goulart, “Glyphosate detection: methods, needs aValle, A. L., Mello, F. C. C., Alves-Balvedi, R. P., Rodrigues, L. P., & Goulart, L. R. (2019). Glyphosate detection: methods, needs and challenges. Environmental Chemistry Letters, 17(1), 291–317. https://doi.org/10.,” Environ. Chem. Lett., vol. 17, no. 1, pp. 291–317, 2019.S. Wang, B. Liu, D. Yuan, and J. Ma, “A simple method for the determination of glyphosate and aminomethylphosphonic acid in seawater matrix with high performance liquid chromatography and fluorescence detection,” Talanta, vol. 161, no. September, pp. 700–706, 2016.V. Fauvelle, N. Montero, J. F. Mueller, A. Banks, N. Mazzella, and S. L. Kaserzon, “Glyphosate and AMPA passive sampling in freshwater using a microporous polyethylene diffusion sampler,” Chemosphere, vol. 188, pp. 241–248, 2017.J. Valls, “Extracción en fase sólida (SPE) para tratamiento de muestras de alimentos para análisis por cromatografía”, Tesis Doctoral, Universidad Central de Venezuela, Caracas, 2004.M. Camino and A. Virginia, “Aspectos Ambientales del Uso de Glifosato,” Instituto Nacional de Tecnología Agropecuaria, Balcarce - Argentina, p. 114, 2010.G. Islas, “Determinación de glifosato y ácido aminometilfosfónico en suelos mediante HPLC con derivatización pre-columna,” Tesis de Maestría, Instituto de Ciencias Básicas en Ingeniería, Universidad Autónoma del estado de Hidalgo, Hidalgo, 2013.J. Sheals, S. Sjöberg, and P. Persson, “Adsorption of glyphosate on goethite: Molecular characterization of surface complexes,” Environ. Sci. Technol., vol. 36, no. 14, pp. 3090–3095, 2002.F. Pedemonte , “Problemática del uso de glifosato,” Univ. Nac. Agrar. La Molina, 2017.Organización Mundial de la Salud, “Anexo B: Clasificación Toxicológica de los Plaguicidas,” pp. 245–247, 2010.S. H. Bai and S. M. Ogbourne, “Glyphosate: environmental contamination, toxicity and potential risks to human health via food contamination,” Environ. Sci. Pollut. Res., vol. 23, no. 19, pp. 18988–19001, 2016.J.Corley, “Best practices in establishing detection and quantification limits for pesticide residues in foods,” Handb. Residue Anal. Methods Agrochem., vol. 409, no. 23 pp. 59–75, 2003.L. Mamy, E. Barriuso, and B. Gabrielle, “Environmental fate of herbicides trifluralin, metazachlor, metamitron and sulcotrione compared with that of glyphosate, a substitute broad spectrum herbicide for different glyphosate-resistant crops,” Pest Manag. Sci., vol. 61, no. 9, pp. 905–916, 2005.L. Piola, “Ensayos ecotoxicológicos para la evaluación del impacto de plaguicidas en suelos agrícolas de Argentina,” p. 162, 2011.S. González, “Programa de erradicación de cultivos ilícitos mediante aspersión aérea de glifosato: hacia la clasificación de la política y su debate,” p. 41, 2006.T. C. Sparks and R. Nauen, “IRAC: Mode of action classification and insecticide resistance management,” Pestic. Biochem. Physiol., vol. 121, pp. 122–128, 2015.A. Rico, O. Scoppetta and J. Alzate, “Verdades científicas sobre glifosato y salud pública,” Revista Semana, vol. 1, Bogotá, Nov -2016.C. Campuzano, L. Feijoó, K. Manzur, M. Palacio, J. Rendón, and J. Zapata, “Efectos de la intoxicación por glifosato en la población agrícola: revisión de tema,” Rev. CES Salud Pública, vol. 8, no. 1, pp. 121–133, 2017.ICA, “Registros nacionales marzo de 2018,” Inst. Colomb. Agropecu., 2018.G. M. Williams, R. Kroes, and I. C. Munro, “Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans,” Regul. Toxicol. Pharmacol., vol. 31, no. 2 I, pp. 117–165, 2000.M. Tsui and L. Chu, “Comparative Toxicity of Glyphosate-Based Herbicides: Aqueous and Sediment Porewater Exposures,” Arch. Environ. Contam. Toxicol., vol. 46, no. 3, pp. 316–323, 2004.M. Bustos, “Destino ambiental del glifosato en una zona arrocera del Tolima- Colombia,” Tesis Doctoral, Universidad Nacional de Colombia, Bogotá, 2012.M. Ibáñez, Ó. Pozo, J. Sancho, F. López, and F. Hernández, “Re-evaluation of glyphosate determination in water by liquid chromatography coupled to electrospray tandem mass spectrometry,” J. Chromatogr. A, vol. 1134, no. 1–2, pp. 51–55, 2006.Y. Sun, C. Wang, Q. Wen, G. Wang, H. Wang, Q. Qu and X. Hu, “Determination of glyphosate and aminomethylphosphonic acid in water by LC using a new labeling reagent, 4-methoxybenzenesulfonyl fluoride,” Chromatographia, vol. 72, no. 7–8, pp. 679–686, 2010.Y. Zhu, F. Zhang, C. Tong, W. Liu, " Determination of glyphosate by ion chromatography" J. Chromatogr. A, vol. 1589, pp. 116–121, 1999.O. Botggaard and A. Gimsing, “Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review,” Pest Manag. Sci., vol. 64, no. April, pp. 441–456, 2008.B.H. Zainudin, S. Salleh, R. Mohamed, K.C. Yap, H. Muhamad, "Development, validation and determination of multiclass pesticide residues in cocoa beans using gas chromatography and liquid chromatography tandem mass spectrometry", Food Chem. vol. 172 pp. 585–595, 2015.V. G. Amelin, D. S. Bol’shakov, and A. V. Tretiakov, “Determination of glyphosate and aminomethylphosphonic acid in surface water and vegetable oil by capillary zone electrophoresis,” J. Anal. Chem., vol. 67, no. 4, pp. 386–391, 2012.T. J. Rose, L. van Zwieten, A. Claassens, C. Scanlan, and M. T. Rose, “Phytotoxicity of soilborne glyphosate residues is influenced by the method of phosphorus fertiliser application,” Plant Soil, vol. 422, no. 1–2, pp. 455–465, 2018.S. Bott, T. Tesfamariam, A. Kania, E. Birceyudum, A. Nergiz, R. Volker, NGünter Neumann “Phytotoxicity of glyphosate soil residues re-mobilised by phosphate fertilisation,” Plant Soil, vol. 342, no. 1–2, pp. 249–263, 2011.K. Herrmann and L. Weaver, “the Shikimate Pathway,” Annu. Rev. Plant Physiol. Plant Mol. Biol., vol. 50, no. 1, pp. 473–503, 1999.B.Li X.Deng, D.Guo, and S.Jin, “Determination of Glyphosate and Aminomethylphosphonic Acid Residues in Foods Using High Performance Liquid Chromatography-Mass Spectrometry/Mass Spectrometry,” Chinese J. Chromatogr., vol. 25, no. 4, pp. 486–490, 2007.M. Tu, C. Hurd, and J. Randall, "Weed Control Methods Handbook : Tools & Techniques for Use in Natural Areas", no. April. pp. 15- 50, 2001.M. Molinillo, R. Varela, J. Galindo, and F. A. Mac, “Allelopathy – a natural alternative for weed control,” Pest Manag. Sci., vol. 348, no. April 2006, pp. 327–348, 2007.M. Bernal, K. Solomon, and G. Carrasquilla, "Toxicity of formulated glyphosate (glyphos) and cosmo-flux to larval Colombian frogs". Laboratory acute toxicity. J Toxicol Environ Hlth. no. 72, pp.961–965, 2009.R. Annett, H. Habibi, and A. Hontela, “Impact of glyphosate and glyphosate-based herbicides on the freshwater environment,” J. Appl. Toxicol., vol. 34, no. 5, pp. 458–479, 2014.L. Sikorski, M. Baciak, A. Bęś, and B. Adomas, “The effects of glyphosate-based herbicide formulations on Lemna minor, a non-target species,” Aquat. Toxicol., vol. 209, no. January, pp. 70–80, 2019.J. Gill, N. Sethi, and A. Mohan, “Analysis of the glyphosate herbicide in water, soil and food using derivatising agents,” Environ. Chem. Lett., vol. 15, no. 1, pp. 85–100, 2017.M. Arregui, Beldoménico H, and A. Cassano. Alberto, “Informe acerca del grado de toxicidad del glifosato,” Tesis de Pregrado, Universidad Nacional del Litoral, Santa fe, 2010.G. Kishore and G. Jacob, “Degradation of glyphosate by Pseudomonas sp. PG2982 via a sarcosine intermediate.,” J. Biol. Chem., vol. 262, no. 25, pp. 12164–12168, 1987.C. M. Liu, P. A. McLean, C. C. Sookdeo, and F. C. Cannon, “Degradation of the herbicide glyphosate by members of the family Rhizobiaceae,” Appl. Environ. Microbiol., vol. 57, no. 6, pp. 1799–1804, 1991.S. V. Kononova and M. A. Nesmeyanova, “Phosphonates and their degradation by microorganisms,” Biochem., vol. 67, no. 1, pp. 184–195, 2002.G. S. Jacob, J. R. Garbow, L. E. Hallas, N. M. Kimack, G. M. Kishore, and J. Schaeffer, “Metabolism of glyophosate in Pseudomonas sp. strain LBr,” Appl. Environ. Microbiol., vol. 54, no. 12, pp. 2953–2958, 1988.Commission regulation (EU) No 293/2013 of 20 March 2013 “maximum residue levels for emamectin benzoate, etofenprox, etoxazole, flutriafol, glyphosate, phosmet, pyraclostrobin, spinosad and spirotetramat in or on certain products" vol. 10, no. 2, pp. 1–30, 2013.J. García, “Límites maximos de residuos de plaguicidas en productos alimenticios de origen vegetal: Situación en Costa Rica,” Agron. Costarric., vol. 16, no. 1, pp. 153–162, 1992.P. Taylor, C. A. Harris, and C. P. Gaston, “Effects of refining predicted chronic dietary intakes of pesticide residues : a case study using glyphosate Effects of refining predicted chronic dietary intakes of pesticide residues : a case study using glyphosate,” Food Addit. Contam., no. July 2013, pp. 37–41, 2007.B. Lajin and W. Goessler, “Direct speciation analysis of organophosphorus environmental pollutants in water by HPLC-ICPMS/MS,” Talanta, vol. 196, no. October 2018, pp. 357–361, 2019.C. Coutinho, L. Coutinho, L. H. Mazo, S. L. Nixdorf, C. A. P. Camara, and F. M. Lanças, “Direct determination of glyphosate using hydrophilic interaction chromatography with coulometric detection at copper microelectrode,” Anal. Chim. Acta, vol. 592, no. 1, pp. 30–35, 2007.C. Hidalgo, “Simplificación del tratamiento de muestra en el análisis de residuos de herbicidas en aguas mediante aplicación de las técnicas cromatográficas acopladas LC-LC y SPE-LC,” Tesis de Maestría, Universitat Jaume I, Castelló,1999.S. Viera Santana and J. Santana Rodríguez, “Técnicas analíticas avanzadas para la extracción y preconcentración de contaminantes emergentes en muestras líquidas,” Rev. la Acad. Canar. Ciencias = Folia Canar. Acad. Sci., vol. 25, no. 2, pp. 77–95, 2013.Y. Tao, B. Chen, B. (Helen) Zhang, Z. (Joy) Zhu, and Q. Cai, Occurrence, Impact, Analysis and Treatment of Metformin and Guanylurea in Coastal Aquatic Environments of Canada, USA and Europe, 1st ed., vol. 81. Elsevier Ltd., 2018.J. Sanchís, L. Kantiani, M. Llorca, F. Rubio, A. Ginebreda, J. Fraile, T. Garrido, M. Farre, “Determination of glyphosate in groundwater samples using an ultrasensitive immunoassay and confirmation by on-line solid-phase extraction followed by liquid chromatography coupled to tandem mass spectrometry,” Anal. Bioanal. Chem., vol. 402, no. 7, pp. 2335–2345, 2012.C. Ortiz, “Simplificación del tratamiento de muestra en el análisis de residuos de herbicidas en aguas mediante aplicación de las técnicas cromatográficas acopladas LC-LC y SPE-LC", Tesis Doctoral, Universitat Jaume I, Castelló de la Plana,1999.M. Corbera, “Desenvolupament de metodologia analítica per a la determinació de glifosat I adjuvants,” Tesis Doctoral, Departamento de Quimica, Universitat de Girona, Girona, 2007.M. Kruger, W. Schledorn, A. Schrodl, H. Hoppe, W. Lutz and A. Shehata, "Detection of glyphosate residues in animals and humans", J Environ Anal Toxicol vol 4 pp.210-215, 2014.Nagatomi Y, Yoshioka T, Yanagisawa M, Uyama A and Mochizuki N, "Simultaneous LC-MS/MS analysis of glyphosate, glufosinate, and their metabolic products in beer, barley tea, and their ingredients". Biosci Biotechnol Biochem, vol 77, pp.2218–2221, 2013.L. C. Schrübbers, M. Masís-Mora, E. Carazo Rojas, B. E. Valverde, J. H. Christensen, and N. Cedergreen, “Analysis of glyphosate and aminomethylphosphonic acid in leaves from Coffea arabica using high performance liquid chromatography with quadrupole mass spectrometry detection,” Talanta, vol. 146, pp. 609–620, 2016.S. H. Tseng, Y. W. Lo, P. C. Chang, S. S. Chou, and H. M. Chang, “Simultaneous quantification of glyphosate, glufosinate, and their major metabolites in rice and soybean sprouts by gas chromatography with pulsed flame photometric detector,” J. Agric. Food Chem., vol. 52, no. 13, pp. 4057–4063, 2004.M. S. Garba, Jamilu; Abd Wahid, Samsuri; Othman Radziah; Ahmad Hamdani, “Simplified method for derivatization of extractable glyphosate and aminomethylphosphonic acid and their determination by high performance liquid chromatography,” Environ. Res. Technol., vol. 1, no. 2, pp. 19–30, 2018.M. De Fátima Alpendurada, “Solid-phase microextraction: A promising technique for sample preparation in environmental analysis,” J. Chromatogr. A, vol. 889, no. 1–2, pp. 3–14, 2000.H. P. Ahokas, J. Kuronen, and Y. Wang, “Extraction Liquid-liquid and aqueous two-phase extraction,” Programme in Chemical, Biochemical and Materials Engineering. University School of Chemical Technology. 2017.Z. Berk and Z. Berk, “Chapter 11 – Extraction,” Food Process Eng. Technol., pp. 287–309, 2013.E. L. Delmonico, J. Bertozzi, N. E. de Souza, and C. C. Oliveira, “Determinação de glifosato e ácido aminometilfosfônico para verificar a qualidade da água de abastecimento público utilizando EFS e CLAE,” Acta Sci. - Technol., vol. 36, no. 3, pp. 513–519, 2014.M. Faria, "Glyphosate, neurological diseases and the scientific method" Surg Neurol vol. 6, pp.132–137, 2015.L. Carretta, A. Cardinali, E. Marotta, G. Zanin, and R. Masin, “A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub μg/L level,” J. Chromatogr. A, vol. 1600, pp. 65–72, 2019.O. Pindado, R. Pérez, S. García, A. Barrado, M. Sevillano, and D. González, “Desarrollo de metodologías para la determinación de componentes orgánicos del Aerosol atmosférico,” ACS Natl. Meet. B. Abstr., 2006.A. Jones, S. Pravadali-Cekic, G. R. Dennis, and R. A. Shalliker, “Post column derivatisation analyses review. Is post-column derivatisation incompatible with modern HPLC columns?,” Anal. Chim. Acta, vol. 889, pp. 58–70, 2015.C. Zacharis and P.Tzanavaras, “Liquid chromatography coupled to on-line post column derivatization for the determination of organic compounds: A review on instrumentation and chemistries,” Anal. Chim. Acta, vol. 798, pp. 1–24, 2013.D. R. Knapp, “Handbook of Analytical Derivatization Reactions,” Environ. Health Perspect., vol. 103 Suppl, no. 9, p. 741, 1979.H. Monica, “Implementacion de una metodología para la determinacion de glifosato en muestras de agua,” Universidad Industrial de Santander, 2011. tesis de pregrado.E. A. Hogendoorn, R. Huls, E. Dijkman, and R. Hoogerbrugge, “Microwave assisted solvent extraction and coupled-column reversed-phase liquid chromatography with UV detection,” J. Chromatogr. A, vol. 938, no. 1–2, pp. 23–33, 2001.F. Fang, R. Wei, and X. Liu, “Novel pre-column derivatisation reagent for glyphosate by high-performance liquid chromatography and ultraviolet detection,” Int. J. Environ. Anal. Chem., vol. 94, no. 7, pp. 661–667, 2014.C. C. Hsu and C. W. Whang, “Microscale solid phase extraction of glyphosate and aminomethylphosphonic acid in water and guava fruit extract using alumina-coated iron oxide nanoparticles followed by capillary electrophoresis and electrochemiluminescence detection,” J. Chromatogr. A, vol. 1216, no. 49, pp. 8575–8580, 2009.Z. H. Kudzin, D. K. Gralak, J. Drabowicz, and J. Łuczak, “Novel approach for the simultaneous analysis of glyphosate and its metabolites,” J. Chromatogr. A, vol. 947, no. 1, pp. 129–141, 2002.P. Husek and P. Simek, “Alkyl Chloroformates in Sample Derivatization Strategies for GC Analysis. Review on a Decade Use of the Reagents as Esterifying Agents,” vol. 2, pp. 23–43, 2006.M. G. Cikalo, D. M. Goodall, and W. Matthews, “Analysis of glyphosate using capillary electrophoresis with indirect detection,” J. Chromatogr. A, vol. 745, no. 1–2, pp. 189–200, 1996.WHO, “Glyphosate: Environmental Health Criteria 159,” World Heal. Organ., p. 181, 1994.J. Ding, H. Guo, W. Liu, W. Zhang, and J. Wang, “Current progress on the detection of glyphosate in environmental samples,” J. Sci. Appl. Biomed., vol. 03, no. 06, pp. 88–95, 2015.Y. Ishida, “Tecniques derivatization,” Br. J. Psychiatry, vol. 111, no. 479, pp. 1009–1010, 1965.W. Bashe and T. Baker, “METHOD 547: Determination of glypfosate in drinking water by direct-aqueous injection HPLC, post-column derivatization and fluorescence detection,” J. Inf. Process. Manag., vol. 4, no. 12, pp. 19-21,28, 1990.M. C. G. Alvarezcoque, M. J. M. Hernández, R. M. V Camañas, and C. M. Fernández, “Formation and Instability of Ortho-Phthalaldehyde Derivatives of Amino-Acids,” Anal. Biochem., vol. 178, no. 1, pp. 1–7, 1989.M. Rigobello-Masini, E. A. O. Pereira, G. Abate, and J. C. Masini, “Solid-Phase Extraction of Glyphosate in the Analyses of Environmental, Plant, and Food Samples,” Chromatographia, vol. 82, no. 8, pp. 1121–1138, 2019.P. Barat, “Improved method for the determination of glyphosate in water,” vol. 697, pp. 363–369, 1995.R. Gilbert, G. Gonzalez, L. Hawel, and C. Byus, “An ion-exchange chromatography procedure for the isolation and concentration of basic amino acids and polyamines from complex biological samples prior to high-performance liquid chromatography,” Anal. Biochem., vol. 199, no. 1, pp. 86–92, 1991.I. Molnár-Perl, “Advancement in the derivatizations of the amino groups with the o-phthaldehyde-thiol and with the 9-fluorenylmethyloxycarbonyl chloride reagents,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 879, no. 17–18, pp. 1241–1269, 2011.A. Jámbor and I. Molnár-Perl, “Amino acid analysis by high-performance liquid chromatography after derivatization with 9-fluorenylmethyloxycarbonyl chloride. Literature overview and further study,” J. Chromatogr. A, vol. 1216, no. 15, pp. 3064–3077, 2009.T. Arkan and I. Molnár-Perl, “The role of derivatization techniques in the analysis of glyphosate and aminomethyl-phosphonic acid by chromatography,” Microchem. J., vol. 121, pp. 99–106, 2015.T. Shi, T. Tang, K. Qian, F. Wang, J. Li, and Y. Cao, “High-performance liquid chromatographic method for determination of amino acids by precolumn derivatization with 4-chloro-3,5-dinitrobenzotrifluoride,” Anal. Chim. Acta, vol. 654, no. 2, pp. 154–161, 2009.Q. Lin, L. Che, J. Guo, and R. Wang, “Use of 4-chloro-3, 5-dinitrobenzotrifluoride (CNBF) Derivatization and Ultrahigh-performance Liquid Chromatography Tandem Mass Spectrometry for the Determination of 20 Free Amino Acids in Chinese Jujube Date,” Food Anal. Methods, vol. 7, no. 3, pp. 571–579, 2014.I. Durán, T. Galeano, and M. Alexandre, “Simultaneous fluorimetric determination of glyphosate and its metabolite, aminomethylphosphonic acid, in water, previous derivatization with NBD-Cl and by partial least squares calibration (PLS),” Talanta, vol. 65, no. 1, pp. 7–14, Jan. 2005.L. Carretta, A. Cardinali, E. Marotta, G. Zanin, and R. Masin, “A new rapid procedure for simultaneous determination of glyphosate and AMPA in water at sub μg/L level,” J. Chromatogr. A, vol. 1600, pp. 65–72, Aug. 2019.S. A. Cohen and D. P. Michaud, “Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N- hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography,” Analytical Biochemistry, vol. 211, no. 2. pp. 279–287, 1993.J. Hernández, “Nuevas metodologías de análisis de pesticidas por electroforesis capilar,” Universidad de La Laguna, 2006.X. Wei, X. Gao, L. Zhao, X. Peng, L. Zhou, J. Wang and Q. Pu, “Fast and interference-free determination of glyphosate and glufosinate residues through electrophoresis in disposable microfluidic chips,” J. Chromatogr. A, vol. 1281, pp. 148–154, 2013.L. P. Olguín, H. Magadán, and M. Rodríguez, “Metodos en biotecnología,” Inst. Biotecnol., pp. 3–45, 2004.A. Technologies, “Guía de selección de columnas Agilent J & W para GC,” Introd. a la Cromatogr. gases básica, p. 148, 2000.C. Stalikas and C. Konidari, “Analytical methods to determine phosphonic and amino acid group-containing pesticides.,” J. Chromatogr. A, vol. 907, pp. 1–19, 2001.Catálogo Agilents: “LC y LC / MS Su recurso imprescindible para columnas y consumibles LC Y LC / MS.”J. Sancho, F. López, F. Hernández, E.Hogendoorn, and P. van Zoonen, “Rapid determination of glufosinate in environmental water samples using 9- fluorenylmethoxycarbonyl precolumn derivatization, large-volume injection and coupled-column liquid chromatography,” J. Chromatogr. A, vol. 678, no. 1, pp. 59–67, 1994.A. Valle, F. Mello, R. Alves-Balvedi, L. Rodrigues, and L. Goulart, “Glyphosate detection: methods, needs and challenges,” Environ. Chem. Lett., vol. 17, no. 1, pp. 291–317, 2019.J. Hu, C. Chen, and J. Li, “A simple method for the determination of glyphosate residues in soil by capillary gas chromatography with nitrogen phosphorus,” J. Anal. Chem., vol. 63, no. 4, pp. 371–375, 2008.E. Tammekivi, S. Vahur, O. Kekisev, L. Toom, K. Herodesa and I. Leito, “Comparison of derivatization methods for the quantitative gas chromatographic analysis of oils,” Anal. Methods, vol. 11, no. 28, pp. 3514–3522, 2019.C. F. Poole, “Ionization-based detectors for gas chromatography,” J. Chromatogr. A, vol. 1421, pp. 137–153, 2015.L. S. Ettre, “The Invention, Development and Triumph of the Flame Ionization Detector,” LC GC Eur., vol. 15, no. 6, pp. 364–373, 2002.C. W. Gehrke, “9. The Flame Photometric Detector (FPD),” J. Chromatogr. Libr., vol. 4, no. C, pp. 145–164, 1976.M. Godula, J. Hajšlová, and K. Alterová, “Pulsed splitless injection and the extent of matrix effects in the analysis of pesticides,” HRC J. High Resolut. Chromatogr., vol. 22, no. 7, pp. 395–402, 1999.S. García and R. Pérez, “Aplicaciones de la Cromatografía Líquida con Detector de Diodos y Fluorescencia al Análisis de Contaminantes Medioambientales,” Inf. técnicos Ciemat, pp. 37–53, 2012.P. Mercurio, F. Flores, J. F. Mueller, S. Carter, and A. P. Negri, “Glyphosate persistence in seawater,” Mar. Pollut. Bull., vol. 85, no. 2, pp. 385–390, 2014.H. Kataoka, S. Ryu, N. Sakiyama, and M. Makita, “Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot.,” J. Chromatogr. A, vol. 726, no. 1–2, pp. 253–258, 1996.E. Soboleva and Á. Ambrus, “Application of a system suitability test for quality assurance and performance optimisation of a gas chromatographic system for pesticide residue analysis,” J. Chromatogr. A, vol. 1027, no. 1–2, pp. 55–65, 2004.H. Kataoka, S. Ryu, N. Sakiyama, and M. Makita, “Simple and rapid determination of the herbicides glyphosate and glufosinate in river water, soil and carrot samples by gas chromatography with flame photometric detection,” J. Chromatogr. A, vol. 726, no. 1–2, pp. 253–258, 1996.A. L. Pérez, G. Tibaldo, G. H. Sánchez, G. G. Siano, N. R. Marsili, and A. V. Schenone, “A novel fluorimetric method for glyphosate and AMPA determination with NBD-Cl and MCR-ALS,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 214, pp. 119–128, May 2019.E. Pinto, A. Soares, and I. Ferreira, “Quantitative analysis of glyphosate, glufosinate and AMPA in irrigation water by: In situ derivatization-dispersive liquid-liquid microextraction combined with UPLC-MS/MS,” Anal. Methods, vol. 10, no. 5, pp. 554–561, 2018.R. Hanczko, Á. Korös, F. Tóth, and I. Molnár-Perl, “Behavior and characteristics of biogenic amines, ornithine and lysine derivatized with the o-phthalaldehyde-ethanethiol-fluorenylmethyl chloroformate reagent,” J. Chromatogr. A, vol. 1087, no. 1–2, pp. 210–222, 2005.L. D. Demonte, N. Michlig, M. Gaggiotti, C. G. Adam, H. R. Beldoménico, and M. R. Repetti, “Determination of glyphosate, AMPA and glufosinate in dairy farm water from Argentina using a simplified UHPLC-MS/MS method,” Sci. Total Environ., vol. 645, pp. 34–43, Dec. 2018.C. Druart, O. Delhomme, A. De Vaufleury, E. Ntcho, and M. Millet, “Optimization of extraction procedure and chromatographic separation of glyphosate, glufosinate and aminomethylphosphonic acid in soil,” Anal. Bioanal. Chem., vol. 399, no. 4, pp. 1725–1732, 2011.H. Aboul-Enein and X. Sun, “Determination of glyphosate herbicide and (aminomethyl)phosphonic acid (AMPA) in water by liquid chromatography and fluorescence detection. Part II: Direct determination using pre-column derivatization with NBD-Cl,” Analusis, vol. 28, no. 9, pp. 819–824, 2000.S. Kawai, B. Uno, and M. Tomita, “Determination of glyphosate and its major metabolite aminomethylphosphonic acid by high-performance liquid chromatography after derivatization with p-toluenesulphonyl chloride,” J. Chromatogr. A, vol. 540, no. C, pp. 411–415, 1991.j. Chow and J. Orenberg, “Comparison of automated pre-column and post-column analysis of amino acid oligomers,” J. Chromatogr., vol. 386, no. 9, pp. 243–249, 1987.M. Alvarezcoque, M. Hernandez, R. Camanas, and C. Fernandez, “Formation and Instability of Ortho-Phthalaldehyde Derivatives of Amino-Acids,” Anal. Biochem., vol. 178, no. 1, pp. 1–7, 1989.Y. Zhang, Y. Zhang, Q. Qu, G. Wang, and C. Wang, “Determination of glyphosate and aminomethylphosphonic acid in soybean samples by high performance liquid chromatography using a novel fluorescent labeling reagent,” Anal. Methods, vol. 5, no. 22, pp. 6465–6472, 2013.A. L. Pérez, G. Tibaldo, G. H. Sánchez, G. G. Siano, N. R. Marsili, and A. V. Schenone, “A novel fluorimetric method for glyphosate and AMPA determination with NBD-Cl and MCR-ALS,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 214, pp. 119–128, 2019.Y. Zhu, F. Zhang, C. Tong, and W. Liu, “Determination of glyphosate by ion chromatography,” J. Chromatogr. A, vol. 850, no. 1–2, pp. 297–301, 1999.H. M. Qiu, J. J. Geng, C. Han, and H. Q. Ren, “Determination of phosphite, phosphate, glyphosate and aminomethylphosphonic acid by two-dimensional ion chromatography system coupled with capillary ion chromatography,” Fenxi Huaxue/ Chinese J. Anal. Chem., vol. 41, no. 12, pp. 1910–1914, 2013.A. Botero, M. Ibáñez, J. Sancho, and F. Hernández, “Improvements in the analytical methodology for the residue determination of the herbicide glyphosate in soils by liquid chromatography coupled to mass spectrometry,” J. Chromatogr. A, vol. 1292, pp. 132–141, 2013.R. Bandu, H. Soo, J. Won Lee, Y. Woo, S. Hee, H. Jin, K. Pyo, “Liquid chromatography electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) study for the identification and characterization of in vivo metabolites of cisplatin in rat kidney cancer tissues: Online Hydrogen/Deuterium (H/D) exchange study,” PLoS One, vol. 10, no. 8, pp. 1–27, 2015.A. Ammann, “Inductively coupled plasma mass spectrometry (ICP MS): A versatile tool,” J. Mass Spectrom., vol. 42, no. 4, pp. 419–427, 2007.D. Skoog, F. Holler, and S. Crouch, “The easy guide to: Inductively Coupled Plasma Mass Spectrometery (ICP-MS),” Princ. Instrum. Anal., no. December, pp. 1–11, 2007.Y. Kazui, Y. Seto, and H. Inoue, “Phosphorus-specific determination of glyphosate, glufosinate, and their hydrolysis products in biological samples by liquid chromatography-inductively coupled plasma-mass spectrometry,” Forensic Toxicol., vol. 32, no. 2, pp. 317–322, 2014.D. Skoog, F. Holler, and S. Crouch, “The easy guide to: Inductively Coupled Plasma Mass Spectrometery (ICP-MS),” Princ. Instrum. Anal., no. December, pp. 1–11, 2007.N. Sugiyama, “Application note Agilent: The accurate measurement of selenium in twelve diverse reference materials using on-line isotope dilution with the 8800 Triple Quadrupole ICP-MS in MS / MS mode,” pp. 1–8, 2012.K. Minakata, I. Yamagishi, H. Nozawa, K. Gonmori, K. Hasegawa, M. Suzuki, . Horio, K. Watanabe, O. Suzuki “Simultaneous determination of coinage metals, copper, silver, and gold in tissues using electrospray ionization tandem mass spectrometry,” Forensic Toxicol., vol. 30, no. 2, pp. 149–155, 2012.M. Sousa, A. Silva, S. Araújo, and R. Rigotto, “Evaluation of the atmospheric contamination level for the use of herbicide glyphosate in the northeast region of Brazil,” 2019.R. Osatinsky, “¿Que es la electroforesis capilar?,” Bioquímica y Patol. Clínica, vol. 71, no. 2, pp. 60–66, 2007.Dale Baker and John Wiley, Capillary electrophoresis, vol. 53, no. 9. New York, 1995.J. Fritsch and K. I, “Electrophoresis,” Spiritual. Educ., pp. 141–142, 2010.S. Moldoveanu and V. David, Chapter 6 Solvent Extraction, no. January. 2015.L. Goodwin, J. R. Startin, B. J. Keely, and D. M. Goodall, “Analysis of glyphosate and glufosinate by capillary electrophoresis-mass spectrometry utilising a sheathless microelectrospray interface,” J. Chromatogr. A, vol. 1004, no. 1–2, pp. 107–119, 2003.F. Rubio, L. J. Veldhuis, B. S. Clegg, J. R. Fleeker, and J. C. Hall, “Comparison of a direct ELISA and an HPLC method for glyphosate determinations in water,” J. Agric. Food Chem., vol. 51, no. 3, pp. 691–696, 2003.S. Clegg, G. Stephenson, and C. Hall, “Development of an Enzyme-Linked Immunosorbent Assay for the Detection of Glyphosate,” J. Agric. Food Chem., vol. 47, no. 14, pp. 5031–5037, 1999.V. L. De Elisa and E. Guzmán-vázquez, “V. Las pruebas de Elisa,” Gac. Med. Mex., vol. 140, no. 3, pp. 48–49, 2004.D. A. d’Avignon and X. Ge, “In vivo NMR investigations of glyphosate influences on plant metabolism,” J. Magn. Reson., vol. 292, pp. 59–72, 2018.R. Garrido, H. Vélez, and V. Vérez, “Resonancia magnética nuclear: Nuevas aplicaciones en la cuantificación y la evaluación de intermediarios de vacunas basadas en polisacáridos,” Vaccimonitor, vol. 22, no. 1, pp. 35–42, 2013.A. S. Marfunin, “4. Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR) 4.1 The Principle of the Phenomenon and Types of Interaction in,” 1979.T. S. Al-Deen, D. B. Hibbert, J. M. Hook, and R. J. Wells, “An uncertainty budget for the determination of the purity of glyphosate by quantitative nuclear magnetic resonance (QNMR) spectroscopy,” Accredit. Qual. Assur., vol. 9, no. 1–2, pp. 55–63, 2004.B. Cartigny, N. Azaroual, M. Imbenotte, D. Mathieu, G. Vermeersch, J.P. Goulle, M. Lhermitte “Determination of glyphosate in biological fluids by 1H and 31P NMR spectroscopy,” Forensic Sci. Int., vol. 143, no. 2–3, pp. 141–145, 2004.R. De Góes, M. Muller, and J. Fabris, “Spectroscopic detection of glyphosate in water assisted by laser-ablated silver nanoparticles,” Sensors (Switzerland), vol. 17, no. 5, 2017.D. Gutiérrez, E. Montero, N. Murillo, and L. Rojas, “Uso de la espectroscopia Raman en el análisis de fragmentos de pintura automotriz como evidencia forense,” Rev. Tecnol. en Marcha, vol. 29, no. 8, p. 57, 2016.J. Chalmers, E. Howell, and M. Hargreaeves, Infrared and raman spectroscopy in forensic science. 2012.R. E. Littleford, D. Graham, W. E. Smith, and I. Khan, Raman Spectroscopy—Surface-Enhanced, no. June. Elsevier Inc., 2018.H. Wei, S. M. Hossein Abtahi, and P. J. Vikesland, “Plasmonic colorimetric and SERS sensors for environmental analysis,” Environ. Sci. Nano, vol. 2, no. 2, pp. 120–135, 2015.F. Celis, M. Garcia, G. Diaz-Fleming, and M. Campos-Vallette, “A review of raman, SURFACE-enhanced raman scattering (SERS) and related spectroscopic techniques applied to biomolecules in biomaterials,” J. Chil. Chem. Soc., vol. 62, no. 3, pp. 3627–3632, 2017.R. E. Littleford, D. Graham, W. E. Smith, and I. Khan, Raman Spectroscopy—Surface-Enhanced, no. June. Elsevier Inc., 2018.M. L. Xu et al., “Indirect glyphosate detection based on ninhydrin reaction and surface-enhanced Raman scattering spectroscopy,” Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 197, pp. 78–82, 2018.CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805https://repositorio.unal.edu.co/bitstream/unal/77955/6/license_rdfdab767be7a093b539031785b3bf95490MD56ORIGINAL1023906433.2020.pdf1023906433.2020.pdfapplication/pdf2317475https://repositorio.unal.edu.co/bitstream/unal/77955/4/1023906433.2020.pdfd16e3c27918df93ddec7d849fe021b97MD54LICENSElicense.txtlicense.txttext/plain; charset=utf-83895https://repositorio.unal.edu.co/bitstream/unal/77955/5/license.txte2f63a891b6ceb28c3078128251851bfMD55THUMBNAIL1023906433.2020.pdf.jpg1023906433.2020.pdf.jpgGenerated Thumbnailimage/jpeg4300https://repositorio.unal.edu.co/bitstream/unal/77955/7/1023906433.2020.pdf.jpgbe4bba067086d60ca6a5a36728ea62d4MD57unal/77955oai:repositorio.unal.edu.co:unal/779552024-07-09 23:20:01.719Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUExBTlRJTExBIERFUMOTU0lUTwoKQ29tbyBlZGl0b3IgZGUgZXN0ZSDDrXRlbSwgdXN0ZWQgcHVlZGUgbW92ZXJsbyBhIHJldmlzacOzbiBzaW4gYW50ZXMgcmVzb2x2ZXIgbG9zIHByb2JsZW1hcyBpZGVudGlmaWNhZG9zLCBkZSBsbyBjb250cmFyaW8sIGhhZ2EgY2xpYyBlbiBHdWFyZGFyIHBhcmEgZ3VhcmRhciBlbCDDrXRlbSB5IHNvbHVjaW9uYXIgZXN0b3MgcHJvYmxlbWFzIG1hcyB0YXJkZS4KCk5PVEFTOgoqU0kgTEEgVEVTSVMgQSBQVUJMSUNBUiBBRFFVSVJJw5MgQ09NUFJPTUlTT1MgREUgQ09ORklERU5DSUFMSURBRCBFTiBFTCBERVNBUlJPTExPIE8gUEFSVEVTIERFTCBET0NVTUVOVE8uIFNJR0EgTEEgRElSRUNUUklaIERFIExBIFJFU09MVUNJw5NOIDAyMyBERSAyMDE1LCBQT1IgTEEgQ1VBTCBTRSBFU1RBQkxFQ0UgRUwgUFJPQ0VESU1JRU5UTyBQQVJBIExBIFBVQkxJQ0FDScOTTiBERSBURVNJUyBERSBNQUVTVFLDjUEgWSBET0NUT1JBRE8gREUgTE9TIEVTVFVESUFOVEVTIERFIExBIFVOSVZFUlNJREFEIE5BQ0lPTkFMIERFIENPTE9NQklBIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU4sIEVYUEVESURBIFBPUiBMQSBTRUNSRVRBUsONQSBHRU5FUkFMLgoqTEEgVEVTSVMgQSBQVUJMSUNBUiBERUJFIFNFUiBMQSBWRVJTScOTTiBGSU5BTCBBUFJPQkFEQS4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igc3UgcHJvcGlvIGF1dG9yOiBBbCBhdXRvYXJjaGl2YXIgZXN0ZSBncnVwbyBkZSBhcmNoaXZvcyBkaWdpdGFsZXMgeSBzdXMgbWV0YWRhdG9zLCBZbyBnYXJhbnRpem8gYWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTiBlbCBkZXJlY2hvIGEgYWxtYWNlbmFybG9zIHkgbWFudGVuZXJsb3MgZGlzcG9uaWJsZXMgZW4gbMOtbmVhIGRlIG1hbmVyYSBncmF0dWl0YS4gRGVjbGFybyBxdWUgZGljaG8gbWF0ZXJpYWwgZXMgZGUgbWkgcHJvcGllZGFkIGludGVsZWN0dWFsIHkgcXVlIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU4gbm8gYXN1bWUgbmluZ3VuYSByZXNwb25zYWJpbGlkYWQgc2kgaGF5IGFsZ3VuYSB2aW9sYWNpw7NuIGEgbG9zIGRlcmVjaG9zIGRlIGF1dG9yIGFsIGRpc3RyaWJ1aXIgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuIChTZSByZWNvbWllbmRhIGEgdG9kb3MgbG9zIGF1dG9yZXMgYSBpbmRpY2FyIHN1cyBkZXJlY2hvcyBkZSBhdXRvciBlbiBsYSBww6FnaW5hIGRlIHTDrXR1bG8gZGUgc3UgZG9jdW1lbnRvLikgRGUgbGEgbWlzbWEgbWFuZXJhLCBhY2VwdG8gbG9zIHTDqXJtaW5vcyBkZSBsYSBzaWd1aWVudGUgbGljZW5jaWE6IExvcyBhdXRvcmVzIG8gdGl0dWxhcmVzIGRlbCBkZXJlY2hvIGRlIGF1dG9yIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gY29uZmllcmVuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgdW5hIGxpY2VuY2lhIG5vIGV4Y2x1c2l2YSwgbGltaXRhZGEgeSBncmF0dWl0YSBzb2JyZSBsYSBvYnJhIHF1ZSBzZSBpbnRlZ3JhIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwsIHF1ZSBzZSBhanVzdGEgYSBsYXMgc2lndWllbnRlcyBjYXJhY3RlcsOtc3RpY2FzOiBhKSBFc3RhcsOhIHZpZ2VudGUgYSBwYXJ0aXIgZGUgbGEgZmVjaGEgZW4gcXVlIHNlIGluY2x1eWUgZW4gZWwgcmVwb3NpdG9yaW8sIHF1ZSBzZXLDoW4gcHJvcnJvZ2FibGVzIGluZGVmaW5pZGFtZW50ZSBwb3IgZWwgdGllbXBvIHF1ZSBkdXJlIGVsIGRlcmVjaG8gcGF0cmltb25pYWwgZGVsIGF1dG9yLiBFbCBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgbGljZW5jaWEgc29saWNpdMOhbmRvbG8gYSBsYSBVbml2ZXJzaWRhZC4gYikgTG9zIGF1dG9yZXMgYXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBwdWJsaWNhciBsYSBvYnJhIGVuIGVsIGZvcm1hdG8gcXVlIGVsIHJlcG9zaXRvcmlvIGxvIHJlcXVpZXJhIChpbXByZXNvLCBkaWdpdGFsLCBlbGVjdHLDs25pY28gbyBjdWFscXVpZXIgb3RybyBjb25vY2lkbyBvIHBvciBjb25vY2VyKSB5IGNvbm9jZW4gcXVlIGRhZG8gcXVlIHNlIHB1YmxpY2EgZW4gSW50ZXJuZXQgcG9yIGVzdGUgaGVjaG8gY2lyY3VsYSBjb24gdW4gYWxjYW5jZSBtdW5kaWFsLiBjKSBMb3MgYXV0b3JlcyBhY2VwdGFuIHF1ZSBsYSBhdXRvcml6YWNpw7NuIHNlIGhhY2UgYSB0w610dWxvIGdyYXR1aXRvLCBwb3IgbG8gdGFudG8sIHJlbnVuY2lhbiBhIHJlY2liaXIgZW1vbHVtZW50byBhbGd1bm8gcG9yIGxhIHB1YmxpY2FjacOzbiwgZGlzdHJpYnVjacOzbiwgY29tdW5pY2FjacOzbiBww7pibGljYSB5IGN1YWxxdWllciBvdHJvIHVzbyBxdWUgc2UgaGFnYSBlbiBsb3MgdMOpcm1pbm9zIGRlIGxhIHByZXNlbnRlIGxpY2VuY2lhIHkgZGUgbGEgbGljZW5jaWEgQ3JlYXRpdmUgQ29tbW9ucyBjb24gcXVlIHNlIHB1YmxpY2EuIGQpIExvcyBhdXRvcmVzIG1hbmlmaWVzdGFuIHF1ZSBzZSB0cmF0YSBkZSB1bmEgb2JyYSBvcmlnaW5hbCBzb2JyZSBsYSBxdWUgdGllbmVuIGxvcyBkZXJlY2hvcyBxdWUgYXV0b3JpemFuIHkgcXVlIHNvbiBlbGxvcyBxdWllbmVzIGFzdW1lbiB0b3RhbCByZXNwb25zYWJpbGlkYWQgcG9yIGVsIGNvbnRlbmlkbyBkZSBzdSBvYnJhIGFudGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgeSBhbnRlIHRlcmNlcm9zLiBFbiB0b2RvIGNhc28gbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgc2UgY29tcHJvbWV0ZSBhIGluZGljYXIgc2llbXByZSBsYSBhdXRvcsOtYSBpbmNsdXllbmRvIGVsIG5vbWJyZSBkZWwgYXV0b3IgeSBsYSBmZWNoYSBkZSBwdWJsaWNhY2nDs24uIGUpIExvcyBhdXRvcmVzIGF1dG9yaXphbiBhIGxhIFVuaXZlcnNpZGFkIHBhcmEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyDDrW5kaWNlcyB5IGJ1c2NhZG9yZXMgcXVlIGVzdGltZW4gbmVjZXNhcmlvcyBwYXJhIHByb21vdmVyIHN1IGRpZnVzacOzbi4gZikgTG9zIGF1dG9yZXMgYWNlcHRhbiBxdWUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcHVlZGEgY29udmVydGlyIGVsIGRvY3VtZW50byBhIGN1YWxxdWllciBtZWRpbyBvIGZvcm1hdG8gcGFyYSBwcm9ww7NzaXRvcyBkZSBwcmVzZXJ2YWNpw7NuIGRpZ2l0YWwuIFNJIEVMIERPQ1VNRU5UTyBTRSBCQVNBIEVOIFVOIFRSQUJBSk8gUVVFIEhBIFNJRE8gUEFUUk9DSU5BRE8gTyBBUE9ZQURPIFBPUiBVTkEgQUdFTkNJQSBPIFVOQSBPUkdBTklaQUNJw5NOLCBDT04gRVhDRVBDScOTTiBERSBMQSBVTklWRVJTSURBRCBOQUNJT05BTCBERSBDT0xPTUJJQSwgTE9TIEFVVE9SRVMgR0FSQU5USVpBTiBRVUUgU0UgSEEgQ1VNUExJRE8gQ09OIExPUyBERVJFQ0hPUyBZIE9CTElHQUNJT05FUyBSRVFVRVJJRE9TIFBPUiBFTCBSRVNQRUNUSVZPIENPTlRSQVRPIE8gQUNVRVJETy4KUGFyYSB0cmFiYWpvcyBkZXBvc2l0YWRvcyBwb3Igb3RyYXMgcGVyc29uYXMgZGlzdGludGFzIGEgc3UgYXV0b3I6IERlY2xhcm8gcXVlIGVsIGdydXBvIGRlIGFyY2hpdm9zIGRpZ2l0YWxlcyB5IG1ldGFkYXRvcyBhc29jaWFkb3MgcXVlIGVzdG95IGFyY2hpdmFuZG8gZW4gZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCBVTikgZXMgZGUgZG9taW5pbyBww7pibGljby4gU2kgbm8gZnVlc2UgZWwgY2FzbywgYWNlcHRvIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIHBvciBjdWFscXVpZXIgaW5mcmFjY2nDs24gZGUgZGVyZWNob3MgZGUgYXV0b3IgcXVlIGNvbmxsZXZlIGxhIGRpc3RyaWJ1Y2nDs24gZGUgZXN0b3MgYXJjaGl2b3MgeSBtZXRhZGF0b3MuCkFsIGhhY2VyIGNsaWMgZW4gZWwgc2lndWllbnRlIGJvdMOzbiwgdXN0ZWQgaW5kaWNhIHF1ZSBlc3TDoSBkZSBhY3VlcmRvIGNvbiBlc3RvcyB0w6lybWlub3MuCg==