Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia

Ilustraciones, tablas

Autores:
Roncancio Duque, Néstor Javier
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2024
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
eng
OAI Identifier:
oai:repositorio.unal.edu.co:unal/86409
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/86409
https://repositorio.unal.edu.co/
Palabra clave:
570 - Biología::577 - Ecología
Flora microbiana
Microbial flora
Flora intestinal
Intestinal flora
Interacción biológica
Biological interaction
Población animal
Animal population
Ecología de las poblaciones
Population ecology
Relación interespecífica
Interspecific relationships
Cattle
Dissimilarity index
Fragmentation
Gut microbiota
Landscape epidemiology
Wildlife
Protozoa
Ganado
Indice de dissimilaridad
Fragmentación
Microbiota intestinal
Protozoarios
Vida silvestre
Rights
openAccess
License
Atribución-NoComercial-SinDerivadas 4.0 Internacional
id UNACIONAL2_d538edc6c424f5e91f3f3f5e0fafb0f4
oai_identifier_str oai:repositorio.unal.edu.co:unal/86409
network_acronym_str UNACIONAL2
network_name_str Universidad Nacional de Colombia
repository_id_str
dc.title.eng.fl_str_mv Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia
dc.title.translated.spa.fl_str_mv Efecto de la estructura del paisaje sobre la diversidad de la microbiota y protozoarios intestinales enre los mamíferos silvestres y domésticos en algunas regiones de Colombia
title Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia
spellingShingle Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia
570 - Biología::577 - Ecología
Flora microbiana
Microbial flora
Flora intestinal
Intestinal flora
Interacción biológica
Biological interaction
Población animal
Animal population
Ecología de las poblaciones
Population ecology
Relación interespecífica
Interspecific relationships
Cattle
Dissimilarity index
Fragmentation
Gut microbiota
Landscape epidemiology
Wildlife
Protozoa
Ganado
Indice de dissimilaridad
Fragmentación
Microbiota intestinal
Protozoarios
Vida silvestre
title_short Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia
title_full Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia
title_fullStr Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia
title_full_unstemmed Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia
title_sort Effect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of Colombia
dc.creator.fl_str_mv Roncancio Duque, Néstor Javier
dc.contributor.advisor.none.fl_str_mv López Álvarez, Diana Carolina
dc.contributor.author.none.fl_str_mv Roncancio Duque, Néstor Javier
dc.contributor.researchgroup.spa.fl_str_mv Biodiversidad y Conservación
Bioinformática
Ecología y Conservación de Fauna Silvestre
dc.contributor.orcid.spa.fl_str_mv 0000-0001-8575-8272
dc.contributor.cvlac.spa.fl_str_mv Roncancio Duque, Nestor Javier
dc.contributor.scopus.spa.fl_str_mv 57200223135
dc.contributor.googlescholar.spa.fl_str_mv Roncancio Duque, Nestor
dc.subject.ddc.spa.fl_str_mv 570 - Biología::577 - Ecología
topic 570 - Biología::577 - Ecología
Flora microbiana
Microbial flora
Flora intestinal
Intestinal flora
Interacción biológica
Biological interaction
Población animal
Animal population
Ecología de las poblaciones
Population ecology
Relación interespecífica
Interspecific relationships
Cattle
Dissimilarity index
Fragmentation
Gut microbiota
Landscape epidemiology
Wildlife
Protozoa
Ganado
Indice de dissimilaridad
Fragmentación
Microbiota intestinal
Protozoarios
Vida silvestre
dc.subject.agrovoc.none.fl_str_mv Flora microbiana
Microbial flora
Flora intestinal
Intestinal flora
Interacción biológica
Biological interaction
Población animal
Animal population
Ecología de las poblaciones
Population ecology
Relación interespecífica
Interspecific relationships
dc.subject.proposal.eng.fl_str_mv Cattle
Dissimilarity index
Fragmentation
Gut microbiota
Landscape epidemiology
Wildlife
Protozoa
dc.subject.proposal.spa.fl_str_mv Ganado
Indice de dissimilaridad
Fragmentación
Microbiota intestinal
Protozoarios
Vida silvestre
description Ilustraciones, tablas
publishDate 2024
dc.date.accessioned.none.fl_str_mv 2024-07-05T19:36:04Z
dc.date.available.none.fl_str_mv 2024-07-05T19:36:04Z
dc.date.issued.none.fl_str_mv 2024-06-27
dc.type.spa.fl_str_mv Trabajo de grado - Doctorado
dc.type.driver.spa.fl_str_mv info:eu-repo/semantics/doctoralThesis
dc.type.version.spa.fl_str_mv info:eu-repo/semantics/acceptedVersion
dc.type.coar.spa.fl_str_mv http://purl.org/coar/resource_type/c_db06
dc.type.content.spa.fl_str_mv Text
dc.type.redcol.spa.fl_str_mv http://purl.org/redcol/resource_type/TD
format http://purl.org/coar/resource_type/c_db06
status_str acceptedVersion
dc.identifier.uri.none.fl_str_mv https://repositorio.unal.edu.co/handle/unal/86409
dc.identifier.instname.spa.fl_str_mv Universidad Nacional de Colombia
dc.identifier.reponame.spa.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
dc.identifier.repourl.spa.fl_str_mv https://repositorio.unal.edu.co/
url https://repositorio.unal.edu.co/handle/unal/86409
https://repositorio.unal.edu.co/
identifier_str_mv Universidad Nacional de Colombia
Repositorio Institucional Universidad Nacional de Colombia
dc.language.iso.spa.fl_str_mv eng
language eng
dc.relation.references.spa.fl_str_mv Aguirre, A. A. (2009). Wild canids as sentinels of ecological health: A conservation medicine perspective. Parasites & Vectors, 2(Suppl 1), S7. https://doi.org/10.1186/1756-3305-2-S1-S
Aguirre, A. A., Ostfeld, R. S., Tabor, G. M., House, C., & Pearl, M. C. (2002). Conservation medicine: Ecological health in practice. Oxford University Press
Artois, M., Bengis, R., Delahay, R. J., Duchêne, M.-J., Duff, J. P., Ferroglio, E., Gortazar, C., Hutchings, M. R., Kock, R. A., Leighton, F. A., Mörner, T., & Smith, G. C. (2009). Wildlife Disease Surveillance and Monitoring. In R. J. Delahay, G. C. Smith, & M. R. Hutchings (Eds.), Management of Disease in Wild Mammals (pp. 187–213). Springer Japan. https://doi.org/10.1007/978-4-431-77134-0_1
Chapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: How will anthropogenic change affect host‐parasite interactions? Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 14(4), 134–144.
Charlier, J., Van Der Voort, M., Kenyon, F., Skuce, P., & Vercruysse, J. (2014). Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30(7), 361–367. https://doi.org/10.1016/j.pt.2014.04.009
Clayton, D. H., & Moore, J. (1997). Host-parasite evolution: General principles and avian models. (No Title).
Delahay, R., & Delahay, R. J. (Eds.). (2009). Management of disease in wild mammals (1. ed). Springer.
Jenkins, E. J., Simon, A., Bachand, N., & Stephen, C. (2015). Wildlife parasites in a One Health world. Trends in Parasitology, 31(5), 174–180. https://doi.org/10.1016/j.pt.2015.01.002
Nunn, C., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford University Press, USA.
Rashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282
Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305
Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546
Smith, K. F., Behrens, M., Schloegel, L. M., Marano, N., Burgiel, S., & Daszak, P. (2009). Reducing the risks of the wildlife trade. Science, 324(5927), 594–595. https://doi.org/10.1126/science.1174460
Solórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0
Uribe, M., Payán, E., Brabec, J., Vélez, J., Taubert, A., Chaparro-Gutiérrez, J. J., & Hermosilla, C. (2021). Intestinal Parasites of Neotropical Wild Jaguars, Pumas, Ocelots, and Jaguarundis in Colombia: Old Friends Brought Back from Oblivion and New Insights. Pathogens, 10(7), 822. https://doi.org/10.3390/pathogens10070822
Wisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64
Bard, S. M., & Cain III, J. W. (2019). Pathogen prevalance in American black bears (Ursus americanus amblyceps) of the Jemez Mountains, New Mexico, USA. Journal of Wildlife Diseases, 55(4), 745–754.
Baruch-Mordo, S., Wilson, K. R., Lewis, D. L., Broderick, J., Mao, J. S., & Breck, S. W. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: Implications to management of human-bear conflicts. PloS One, 9(1), e85122.
Borka-Vitális, L., Domokos, C., Földvári, G., & Majoros, G. (2017). Endoparasites of brown bears in Eastern Transylvania, Romania. Ursus, 28(1), 20–30.
Brena, P., Gauthier, D., Humeau, A., Baurier, F., Dej, F., Lemberger, K., Chollet, J.-Y., & Decors, A. (2018). How Can Computer Tools Improve Early Warnings for Wildlife Diseases? In How Information Systems Can Help in Alarm/Alert Detection (pp. 241–256). Elsevier.
Bronson, E., Spiker, H., & Driscoll, C. P. (2014). Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA. Journal of Wildlife Diseases, 50(4), 829–836.
Chica Cardenas, L. A. (2021). Estimating the andean bear diet through DNA metabarcoding and its relationships to the gut microbiome [Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/58061
Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 345(1311), 101–118.
Cruz Hurtado, S. S. M., & Muñoz Huamaní, M. (2016). Identificación de parásitos gastrointestinales de carnívoros en cautiverio criados en el centro recreacional municipal del Cerrito de la Libertad de Huancayo.
Diamond, J. (2016). Sociedades comparadas: Un pequeño libro sobre grandes temas. Debate.
Dubey, J., & Jones, J. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology, 38(11), 1257–1278
Elbroch, L. M., Lendrum, P. E., Allen, M. L., & Wittmer, H. U. (2015). Nowhere to hide: Pumas, black bears, and competition refuges. Behavioral Ecology, 26(1), 247–254
Figueroa, J. (2015). New records of parasites in free-ranging Andean bears from Peru. Ursus, 26(1), 21–27. https://doi.org/10.2192/URSUS-D-14-00034.1
Francis, E. K., & Šlapeta, J. (2022). A new diagnostic approach to fast-track and increase the accessibility of gastrointestinal nematode identification from faeces: FECPAKG2 egg nemabiome metabarcoding. International Journal for Parasitology, 52(6), 331–342. https://doi.org/10.1016/j.ijpara.2022.01.002
García Marín, J. F., Royo, L. J., Oleaga, A., Gayo, E., Alarcia, O., Pinto, D., Martínez, I. Z., González, P., Balsera, R., & Marcos, J. L. (2018). Canine adenovirus type 1 (CA dV‐1) in free‐ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population? Transboundary and Emerging Diseases, 65(6), 2049–2056.
Gilbert, B. (1989). Behavioral plasticity and bear-human conflicts. 1–8.
Goldstein, I., Paisley, S., Wallace, R., Jorgenson, J. P., Cuesta, F., & Castellanos, A. (2006). Andean bear–livestock conflicts: A review. Ursus, 17(1), 8–15.
Goldstein, I. R. (2002). Andean bear-cattle interactions and tree nest use in Bolivia and Venezuela. Ursus, 369–372.
Han, B. A., Kramer, A. M., & Drake, J. M. (2016). Global Patterns of Zoonotic Disease in Mammals. Trends in Parasitology, 32(7), 565–577. https://doi.org/10.1016/j.pt.2016.04.007
Ishibashi, Y., Oi, T., Arimoto, I., Fujii, T., Mamiya, K., Nishi, N., Sawada, S., Tado, H., & Yamada, T. (2017). Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. Conservation Genetics, 18(2), 247–260.
Jorgenson, J. P., & Sandoval-A, S. (2005). Andean bear management needs and interactions with humans in Colombia. Ursus, 16(1), 108–116.
Kattan, G., Hernández, O. L., Goldstein, I., Rojas, V., Murillo, O., Gómez, C., Restrepo, H., & Cuesta, F. (2004). Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx, 38(2), 155–163.
Kindschuh, S. R., Cain III, J. W., Daniel, D., & Peyton, M. A. (2016). Efficacy of GPS cluster analysis for predicting carnivory sites of a wide‐ranging omnivore: The American black bear. Ecosphere, 7(10), e01513.
King, J. S., Jenkins, D. J., Ellis, J. T., Fleming, P., Windsor, P. A., & Šlapeta, J. (2011). Implications of wild dog ecology on the sylvatic and domestic life cycle of Neospora caninum in Australia. The Veterinary Journal, 188(1), 24–33.
Lesmerises, R., Rebouillat, L., Dussault, C., & St-Laurent, M.-H. (2015). Linking GPS telemetry surveys and scat analyses helps explain variability in black bear foraging strategies. PLoS One, 10(7), e0129857.
Longmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections.
Mackenstedt, U., Jenkins, D., & Romig, T. (2015). The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. International Journal for Parasitology: Parasites and Wildlife, 4(1), 71–79.
Mata, A. P., Pérez, H. G., & Parra, J. G. (2016). Morphological molecular description of Baylisascaris venezuelensis, n. Sp. From a natural infection in the South American spectacled bear Tremarctos ornatus Cuvier, 1825 in Venezuela. Neotrop Helminthol, 10, 85–103.
McCullough, D. R. (1982). Behavior, bears, and humans. Wildlife Society Bulletin, 27–33
Monsalve-Buriticá, S. (2019). Enfermedades emergentes y reemergentes de origen viral o bacteriano en Colombia. Fondo Editorial Biogénesis, 49–62.
Navarro M., D., Chávez V., A., Pinedo V., R., & Muñoz D., K. (2015). Factores de Riesgo Asociados a la Seroprevalencia de Toxoplasma gondii en Mamíferos del Orden Carnivora y Primates Mantenidos en Cautiverio. Revista de Investigaciones Veterinarias Del Perú, 26(3), 497. https://doi.org/10.15381/rivep.v26i3.11175
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295.
Oniki-Willis, Y., & Willis, E. O. (2018). Tick (Acarina) diversity from South American birds and mammals. Atualidades Ornitológicas, 206.
Palmer, M. W. (1991). Estimating species richness: The second-order jackknife reconsidered. Ecology (Durham), 72(4), 1512–1513.
Parra-Romero, A., Zamudio-López, J., Camargo-Cárdenas, J. E., Palacios-Medina, C. R., Torres, L., Castro, E., Espíndola, J., Meneses, H., Vera-Villamizar, L., Moreno-Gutiérrez, S., López-Velandia, O., Saenz, F., Rodríguez, M., Franco, N., Clavijo-Ríos, C., Rivera-Torres, C., López-Orjuela, H., Pachón-Bejarano, G., Jimenez-Palomo, G., … Márquez, R. (2019). Ocupación del oso andino (Tremarctos ornatus) en la región centro-norte de la Cordillera Oriental de Colombia. PNN de Colombia, CAR Cundinamarca, Corpoboyacá, Corporinoquía, Corpochivor, Cormacarena, Corpoguavio, ABCA y WCS.
Patz, J., Githeko, A., McCarty, J., Hussein, S., Confalonieri, U., & De Wet, N. (2003). Climate change and infectious diseases. Climate Change and Human Health: Risks and Responses, 2, 103–132.
Peña-Quistial, M. G., Benavides-Montaño, J. A., Duque, N. J. R., & Benavides-Montaño, G. A. (2020). Prevalence and associated risk factors of Intestinal parasites in rural high-mountain communities of the Valle del Cauca—Colombia. PLoS Neglected Tropical Diseases, 14(10), e0008734.
Peyton, B. (1999). Spectacled bear conservation action plan. Bears: Status Survey and Conservation Action Plan, 157–164.
Quintero, L. R., Pulido-Villamarín, A., Parra-Romero, Á., Castañeda-Salazar, R., Pérez-Torres, J., & Vela-Vargas, I. M. (2023). Andean bear gastrointestinal parasites in Chingaza Massif, Colombia. Ursus, 2023(34e4). https://doi.org/10.2192/URSUS-D21-00020.1
Sasmal, I., Gould, N. P., Schuler, K. L., Chang, Y.-F., Thachil, A., Strules, J., Olfenbuttel, C., Datta, S., & DePerno, C. S. (2019). Leptospirosis in urban and suburban american black bears (ursus americanus) in western north carolina, usa. Journal of Wildlife Diseases, 55(1), 74–83.
Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B., & Gänzle, M. (2011). Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One, 6(12), e27905.
Semblante, G. U., Phan, H. V., Hai, F. I., Xu, Z.-Q., Price, W. E., & Nghiem, L. D. (2017). The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process. Science of The Total Environment, 607–608, 558–567. https://doi.org/10.1016/j.scitotenv.2017.06.253
Shaheen, M. N. F. (2022). The concept of one health applied to the problem of zoonotic diseases. Reviews in Medical Virology, 32(4). https://doi.org/10.1002/rmv.2326
Smith, K. F., Acevedo‐Whitehouse, K., & Pedersen, A. B. (2009). The role of infectious diseases in biological conservation. Animal Conservation, 12(1), 1–12.
Smith, K. F., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349–1357.
Stensvold, C. R., Jirků-Pomajbíková, K., Tams, K. W., Jokelainen, P., Berg, R. P. K. D., Marving, E., Petersen, R. F., Andersen, L. O., Angen, Ø., & Nielsen, H. V. (2021). Parasitic Intestinal Protists of Zoonotic Relevance Detected in Pigs by Metabarcoding and Real-Time PCR. Microorganisms, 9(6), 1189. https://doi.org/10.3390/microorganisms9061189
Stephenson, N., Higley, J. M., Sajecki, J. L., Chomel, B. B., Brown, R. N., & Foley, J. E. (2015). Demographic characteristics and infectious diseases of a population of American black bears in Humboldt County, California. Vector-Borne and Zoonotic Diseases, 15(2), 116–123.
Ujvari, B., & Belov, K. (2011). Major histocompatibility complex (MHC) markers in conservation biology. International Journal of Molecular Sciences, 12(8), 5168–5186.
Velez-Liendo, X., & García-Rangel, S. (2018). Tremarctos ornatus. The IUCN Red List of Threatened Species 2017: E.T22066A123792952. https://www.iucnredlist.org/species/22066/123792952
Westmoreland, L. S., Stoskopf, M. K., & Maggi, R. G. (2016). Prevalence of Anaplasma phagocytophilum in North Carolina eastern black bears (Ursus americanus). Journal of Wildlife Diseases, 52(4), 968–970.
Wisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64.
Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0
Wu, J., Han, J.-Q., Shi, L.-Q., Zou, Y., Li, Z., Yang, J.-F., Huang, C.-Q., & Zou, F.-C. (2018). Prevalence, genotypes, and risk factors of Enterocytozoon bieneusi in Asiatic black bear (Ursus thibetanus) in Yunnan Province, Southwestern China. Parasitology Research, 117(4), 1139–1145.
Wultsch, C., Waits, L. P., Hallerman, E. M., & Kelly, M. J. (2015). Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildlife Society Bulletin, 39(2), 403–412. https://doi.org/10.1002/wsb.540
Zárate Rodríguez, P. T., Collazos-Escobar, L. F., & Benavides-Montaño, J. A. (2022). Endoparasites Infecting Domestic Animals and Spectacled Bears (Tremarctos ornatus) in the Rural High Mountains of Colombia. Veterinary Sciences, 9(10), 537. https://doi.org/10.3390/vetsci9100537
Zhang, L., Yang, X., Wu, H., Gu, X., Hu, Y., & Wei, F. (2011). The parasites of giant pandas: Individual-based measurement in wild animals. Journal of Wildlife Diseases, 47(1), 164–171
Acosta Z, M., Tantaleán V, M., & Serrano-Martínez, E. (2015). Identificación de Parásitos Gastrointestinales por Coproscopía en Carnívoros Silvestres del Zoológico Parque de las Leyendas, Lima, Perú . In Revista de Investigaciones Veterinarias del Perú (Vol. 26, pp. 282–290). scielo
Antil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S., Bhagat, P., Gupta, R., Sood, U., Lal, R., & Toteja, R. (2023). DNA barcoding, an effective tool for species identification: A review. Molecular Biology Reports, 50(1), 761–775. https://doi.org/10.1007/s11033-022-08015-7
Aristizabal-Duque, S., Orozco Jimenez, L., Zapata Escobar, C., & Palacio-Baena, J. (2018). Conservation genetics of otters: Review about the use of noninvasive samples. Therya, 9, 85–93. https://doi.org/10.12933/therya-18-515
Arnemo, J. M., Ahlqvist, P., Andersen, R., Berntsen, F., Ericsson, G., Odden, J., Brunberg, S., Segerström, P., & Swenson, J. E. (2006). Risk of capture-related mortality in large free-ranging mammals: Experiences from Scandinavia. Wildlife Biology, 12(1), 109–113. https://doi.org/10.2981/0909-6396(2006)12[109:ROCMIL]2.0.CO;2
Budel, J. C. C., Hess, M. K., Bilton, T. P., Henry, H., Dodds, K. G., Janssen, P. H., McEwan, J. C., & Rowe, S. J. (2022). Low-cost sam-ple preservation methods for high-throughput processing of rumen microbiomes. Animal Microbiome, 4(1), 39. https://doi.org/10.1186/s42523-022-00190-z
Burnham, C. M., McKenney, E. A., Heugten, K. A., Minter, L. J., & Trivedi, S. (2023). Effect of fecal preservation method on captive southern white rhinoceros gut microbiome. Wildlife Society Bulletin, 47(2), e1436. https://doi.org/10.1002/wsb.1436
Camacho-Sanchez, M., Burraco, P., Gomez-Mestre, I., & Leonard, J. A. (2013). Preservation of RNA and DNA from mammal sam-ples under field conditions. Molecular Ecology Resources, 13(4), 663–673. https://doi.org/10.1111/1755-0998.12108
Choo, J., Leong, L., & Rogers, G. (2015). Sample storage conditions signficantly influence faecal microbiome profiles. Scientific Reports, 5, 16350. https://doi.org/10.1038/srep16350
Fox, J., Marquez, M., & Bouchet-Valat, M. (2023). Rcmdr: R Commander. R Package Version 2.9-0.
Frantzen, M. A., Silk, J. B., Ferguson, J. W., Wayne, R. K., & Kohn, M. H. (1998). Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology, 7(10), 1423–1428. https://doi.org/10.1046/j.1365-294x.1998.00449.x
Freed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1.
Gill, S. R., Pop, M., Deboy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science (New York, N.Y.), 312(5778), 1355–1359. https://doi.org/10.1126/science.1124234
Gonzales, F. N., Neira-Llerena, J., Llerena, G., & Zeballos, H. (2016). Small vertebrates in the spectacled bear_s diet (Tremarctos ornatus Cuvier, 1825) in the north of Peru . In Revista Peruana de Biología (Vol. 23, pp. 61–66). scielo
Gorzelak, M. A., Gill, S. K., Tasnim, N., Ahmadi-Vand, Z., Jay, M., & Gibson, D. L. (2015). Methods for Improving Human Gut Microbiome Data by Reducing Variability through Sample Processing and Storage of Stool. PLOS ONE, 10(8), e0134802.
Iker, B. C., Bright, K. R., Pepper, I. L., Gerba, C. P., & Kitajima, M. (2013). Evaluation of commercial kits for the extraction and puri-fication of viral nucleic acids from environmental and fecal samples. Journal of Virological Methods, 191(1), 24–30. https://doi.org/10.1016/j.jviromet.2013.03.011
Jedlicka, J. A., Vo, A.-T. E., & Almeida, R. P. P. (2017). Molecular scatology and high-throughput sequencing reveal predominately herbivorous insects in the diets of adult and nestling Western Bluebirds (Sialia mexicana) in California vineyards. The Auk, 134(1), 116–127. https://doi.org/10.1642/AUK-16-103.1
Jin, S. S., Amnon, A., L., M. J., R., A. K., Zech, X. Z., Greg, H., & Rob, K. (2016). Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems, 1(3), 10.1128/msystems.00021-16. https://doi.org/10.1128/msystems.00021-16
Krogsgaard, L. R., Andersen, L. O. ’Brien, Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syn-drome. Clinical and Translational Gastroenterology, 9(6), 161. https://doi.org/10.1038/s41424-018-0027-2
Kumar, G., & Bhadury, P. (2022). Effect of different fixatives on yield of DNA from human fecal samples. IOP SciNotes, 3(2), 24002. https://doi.org/10.1088/2633-1357/ac6d2e
Longmire, J., Maltbie, M., & Baker, R. J. (1997). Use of ‘Lysis Buffer’ in DNA isolation and its implication for museum collections /.
Matysik, S., Le Roy, C. I., Liebisch, G., & Claus, S. P. (2016). Metabolomics of fecal samples: A practical consideration. Trends in Food Science & Technology, 57, 244–255. https://doi.org/10.1016/j.tifs.2016.05.011
Menu, E., Mary, C., Toga, I., Raoult, D., Ranque, S., & Bittar, F. (2018). Evaluation of two DNA extraction methods for the PCR-based detection of eukaryotic enteric pathogens in fecal samples. BMC Research Notes, 11(1), 206. https://doi.org/10.1186/s13104-018-3300-2
Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of micro-organisms by drying; a review. Journal of Mi-crobiological Methods, 66(2), 183–193. https://doi.org/10.1016/j.mimet.2006.02.017
Morgan, L. R., Marsh, K. J., Tolleson, D. R., & Youngentob, K. N. (2021). The Application of NIRS to Determine Animal Physiolog-ical Traits for Wildlife Management and Conservation. In Remote Sensing (Vol. 13, Issue 18). https://doi.org/10.3390/rs13183699
Ngcamphalala, P. I., Lamb, J., & Mukaratirwa, S. (2019). Molecular identification of hookworm isolates from stray dogs, humans and selected wildlife from South Africa. Journal of Helminthology, 94, e39. https://doi.org/10.1017/S0022149X19000130
Pabón, J., Zea, J., León, G., Hurtado, G., González, O., & Montealegre, J. (2001). La atmósfera, eltiempo y el clima. In P. Leyva (Ed.), El medio ambiente en Colombia. (pp. 35–91). Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM.
Papaiakovou, M., Pilotte, N., Baumer, B., Grant, J., Asbjornsdottir, K., Schaer, F., Hu, Y., Aroian, R., Walson, J., & Williams, S. A. (2018). A comparative analysis of preservation techniques for the optimal molecular detection of hookworm DNA in a human fecal specimen. PLoS Neglected Tropical Diseases, 12(1), e0006130. https://doi.org/10.1371/journal.pntd.0006130
Plimpton, L. D., Henger, C. S., Munshi-South, J., Tufts, D., Kross, S., & Diuk-Wasser, M. (2021). Use of molecular scatology to assess the diet of feral cats living in urban colonies. Journal of Urban Ecology, 7(1), juab022. https://doi.org/10.1093/jue/juab022
Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12). https://doi.org/10.3390/microorganisms9122546
Seutin, G., White, B., & Boag, P. (1991). Seutin G, White BN, Boag PT.. Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69: 82-90. Canadian Journal of Zoology, 69, 82–90. https://doi.org/10.1139/z91-013
van der Reis, A. L., Beckley, L. E., Olivar, M. P., & Jeffs, A. G. (2023). Nanopore short-read sequencing: A quick, cost-effective and accurate method for DNA metabarcoding. Environmental DNA, 5(2), 282–296. https://doi.org/10.1002/edn3.374
Villamizar, X., Higuera, A., Herrera, G., Vasquez-A, L. R., Buitron, L., Muñoz, L. M., Gonzalez-C, F. E., Lopez, M. C., Giraldo, J. C., & Ramírez, J. D. (2019). Molecular and descriptive epidemiology of intestinal protozoan parasites of children and their pets in Cauca, Colombia: A cross-sectional study. BMC Infectious Diseases, 19(1), 190. https://doi.org/10.1186/s12879-019-3810-0
Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0
Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Bi-ology, 15(3), R46. https://doi.org/10.1186/gb-2014-15-3-r46
Wu, C., Chen, T., Xu, W., Zhang, T., Pei, Y., Yang, Y., Zhang, F., Guo, H., Wang, Q., Wang, L., & Zhao, B. (2021). The maintenance of microbial community in human fecal samples by a cost effective preservation buffer. Scientific Reports, 11(1), 13453. https://doi.org/10.1038/s41598-021-92869-7
Wultsch, C., Waits, L. P., Hallerman, E. M., & Kelly, M. J. (2015). Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildlife Society Bulletin, 39(2), 403–412. https://doi.org/10.1002/wsb.540
Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 89(6), 670–679. https://doi.org/10.1002/bit.20347
Arce-Peña, N. P., Arroyo-Rodríguez, V., Dias, P. A. D., Franch-Pardo, I., & Andresen, E. (2019). Linking changes in landscape structure to population changes of an endangered primate. Landscape Ecology, 34(11), 2687–2701. https://doi.org/10.1007/s10980-019-00914-8
Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., & Clément, K. (2021). Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 160(2), 573–599. https://doi.org/10.1053/j.gastro.2020.10.05
Arshad, M. A., Hassan, F., Rehman, M. S., Huws, S. A., Cheng, Y., & Din, A. U. (2021). Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. Animal Nutrition, 7(3), 883–895. https://doi.org/10.1016/j.aninu.2021.03.004
Avramenko, R. W., Redman, E. M., Lewis, R., Yazwinski, T. A., Wasmuth, J. D., & Gilleard, J. S. (2015). Exploring the Gastrointestinal “Nemabiome”: Deep Amplicon Sequencing to Quantify the Species Composition of Parasitic Nematode Communities. PLOS ONE, 10(12), e0143559. https://doi.org/10.1371/journal.pone.0143559
Bard, S. M., & Cain, J. W. (2019). PATHOGEN PREVALANCE IN AMERICAN BLACK BEARS (URSUS AMERICANUS AMBLYCEPS) OF THE JEMEZ MOUNTAINS, NEW MEXICO, USA. Journal of Wildlife Diseases, 55(4), 745. https://doi.org/10.7589/2018-12-286
Belvoncikova, P., Splichalova, P., Videnska, P., & Gardlik, R. (2022). The Human Mycobiome: Colonization, Composition and the Role in Health and Disease. Journal of Fungi, 8(10), 1046. https://doi.org/10.3390/jof8101046
Berrilli, F., Di Cave, D., Cavallero, S., & D’Amelio, S. (2012). Interactions between parasites and microbial communities in the human gut. Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00141
Blum, W. E. H., Zechmeister-Boltenstern, S., & Keiblinger, K. M. (2019). Does Soil Contribute to the Human Gut Microbiome? Microorganisms, 7(9), 287. https://doi.org/10.3390/microorganisms7090287
BonDurant, R. H. (1997). Pathogenesis, Diagnosis, and Management of Trichomoniasis in Cattle. Veterinary Clinics of North America: Food Animal Practice, 13(2), 345–361. https://doi.org/10.1016/S0749-0720(15)30346-7
Broom, D. M. (2019). Animal welfare complementing or conflicting with other sustainability issues. Applied Animal Behaviour Science, 219, 104829. https://doi.org/10.1016/j.applanim.2019.06.010
Broom, D. M., Galindo, F. A., & Murgueitio, E. (2013). Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proceedings of the Royal Society B: Biological Sciences, 280(1771), 20132025. https://doi.org/10.1098/rspb.2013.2025
Buret, A. G., Motta, J.-P., Allain, T., Ferraz, J., & Wallace, J. L. (2019). Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: A role for iron? Journal of Biomedical Science, 26(1), 1. https://doi.org/10.1186/s12929-018-0495-4
Calo-Mata, P., Ageitos, J. M., Böhme, K., & Barros-Velázquez, J. (2016). Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. In T. G. Villa & M. Vinas (Eds.), New Weapons to Control Bacterial Growth (pp. 281–314). Springer International Publishing. https://doi.org/10.1007/978-3-319-28368-5_12
Chen, S., Luo, S., & Yan, C. (2021). Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals, 12(1), 93. https://doi.org/10.3390/ani12010093
Collántes-Fernández, E., Fort, M. C., Ortega-Mora, L. M., & Schares, G. (2018). Trichomonas. In M. Florin-Christensen & L. Schnittger (Eds.), Parasitic Protozoa of Farm Animals and Pets (pp. 313–388). Springer International Publishing. https://doi.org/10.1007/978-3-319-70132-5_14
Da Silveira, A. W., De Oliveira, G. G., Menezes Santos, L., da Silva Azuaga, L. B., Macedo Coutinho, C. R., Echeverria, J. T., Antunes, T. R., do Nascimento Ramos, C. A., & Izabel de Souza, A. (2017). Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi. Journal of Wildlife Diseases, 53(2), 411–413. https://doi.org/10.7589/2016-06-149
Danneskiold-Samsøe, N. B., Dias de Freitas Queiroz Barros, H., Santos, R., Bicas, J. L., Cazarin, C. B. B., Madsen, L., Kristiansen, K., Pastore, G. M., Brix, S., & Maróstica Júnior, M. R. (2019). Interplay between food and gut microbiota in health and disease. Food Research International, 115, 23–31. https://doi.org/10.1016/j.foodres.2018.07.043
De Passillé, A., & Rushen, J. (2005). Food safety and environmental issues in animal welfare. Revue Scientifique et Technique-Office International Des Épizooties, 24(2), 757
de Thoisy, B., Michel, J.-C., Vogel, I., & Vié, J.-C. (2000). A SURVEY OF HEMOPARASITE INFECTIONS IN FREE-RANGING MAMMALS AND REPTILES IN FRENCH GUIANA. Journal of Parasitology, 86(5), 1035–1040. https://doi.org/10.1645/0022-3395(2000)086[1035:ASOHII]2.0.CO;2
Dworecka-Kaszak, B., Dąbrowska, I., & Kaszak, I. (2016). The mycobiome – a friendly cross-talk between fungal colonizers and their host. Annals of Parasitology, 62(3), 175–184. https://doi.org/10.17420/ap6203.51
Echeverría, G., Reyna-Bello, A., Minda-Aluisa, E., Celi-Erazo, M., Olmedo, L., García, H. A., Garcia-Bereguiain, M. A., & de Waard, J. H. (2019). Serological evidence of Coxiella burnetii infection in cattle and farm workers: Is Q fever an underreported zoonotic disease in Ecuador? Infection and Drug Resistance, Volume 12, 701–706. https://doi.org/10.2147/IDR.S195940
Eriksson, M., & Lindstrom, B. (2008). A salutogenic interpretation of the Ottawa Charter. Health Promotion International, 23(2), 190–199. https://doi.org/10.1093/heapro/dan014
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.
Fisher, M. C., Henk, Daniel. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. https://doi.org/10.1038/nature10947
Fox, J., Bouchet-Valat, M., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Grosjean, P., Heiberger, R., & Pour, K. K. (2015). Package ‘Rcmdr’.
Frankish, C. J., Green, L. W., Ratner, P. A., Chomik, T., & Larsen, C. (1996). Health impact assessment as a tool for population health promotion and public policy. A Report Submitted to the Health Promotion Division of Health Canada. Institute of Health Promotion Research, University of British Columbia.
Freed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1 [Preprint]. https://doi.org/10.17504/protocols.io.bfy3jpyn
Gerace, E., Presti, V. D. M. L., & Biondo, C. (2019). Cryptosporidium infection: Epidemiology, pathogenesis, and differential diagnosis. European Journal of Microbiology and Immunology, 9(4), 119–123. https://doi.org/10.1556/1886.2019.00019
Hatam-Nahavandi, K., Calero-Bernal, R., Rahimi, M. T., Pagheh, A. S., Zarean, M., Dezhkam, A., & Ahmadpour, E. (2021). Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Scientific Reports, 11(1), 9509. https://doi.org/10.1038/s41598-021-89031-8
He, Y., Maltecca, C., & Tiezzi, F. (2021). Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals, 11(6), 1833. https://doi.org/10.3390/ani11061833
IDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100 000 (Periodo 2018) [Map]. IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales. http://www.siac.gov.co/catalogo-de-mapas
Ikawa, K., Aoki, M., Ichikawa, M., & Itagaki, T. (2011). The first detection of Babesia species DNA from Japanese black bears (Ursus thibetanus japonicus) in Japan. Parasitology International, 60(2), 220–222. https://doi.org/10.1016/j.parint.2011.02.005
Instituto Geográfico Agustín Codazzi (Igac). (2023). Datos abiertos Igac.
Jackson, H. B., & Fahrig, L. (2012). What size is a biologically relevant landscape? Landscape Ecology, 27(7), 929–941. https://doi.org/10.1007/s10980-012-9757-9
Jakob-Hoff, R. M., MacDiarmid, S. C., Lees, C., Miller, P. S., Travis, D., & Kock, R. (2014). Manual of procedures for wildlife disease risk analysis (Vol. 2014). World Organisation for Animal Health Paris, France.
Jinnai, M., Kawabuchi-Kurata, T., Tsuji, M., Nakajima, R., Hirata, H., Fujisawa, K., Shiraki, H., Asakawa, M., Nasuno, T., & Ishihara, C. (2010). Molecular evidence of the multiple genotype infection of a wild Hokkaido brown bear (Ursus arctos yesoensis) by Babesia sp. UR1. Veterinary Parasitology, 173(1–2), 128–133. https://doi.org/10.1016/j.vetpar.2010.06.018
Kohl, K. D. (2012). Diversity and function of the avian gut microbiota. Journal of Comparative Physiology B, 182(5), 591–602. https://doi.org/10.1007/s00360-012-0645-z
Kohler, W. (2004). Infectious Diseases Transmissible from Animals to Humans. International Journal of Medical Microbiology, 293(7/8), 548.
Krogsgaard, L. R., Andersen, L. O., Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), e161. https://doi.org/10.1038/s41424-018-0027-2
Laha, R., Das, M., & Sen, A. (2015). Morphology, epidemiology, and phylogeny of Babesia: An overview. Tropical Parasitology, 5(2), 94.
Lange, K., Buerger, M., Stallmach, A., & Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 34(3), 260–268. https://doi.org/10.1159/000443360
Lantz, E. L., Lonsdorf, E. V., Heintz, M. R., Murray, C. M., Lipende, I., Travis, D. A., & Santymire, R. M. (2018). Non‐invasive quantification of immunoglobulin A in chimpanzees ( Pan troglodytes schweinfurthii ) at Gombe National Park, Tanzania. American Journal of Primatology, 80(1), e22558. https://doi.org/10.1002/ajp.22558
Lausch, A. (2002). Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5
Leung, J. M., Graham, A. L., & Knowles, S. C. L. (2018). Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Frontiers in Microbiology, 9, 843. https://doi.org/10.3389/fmicb.2018.00843
Li, X., Nguyen, T., Xiao, C., Levy, A., Akagi, Y., Silkie, S., & Atwill, E. R. (2020). Prevalence and Genotypes of Cryptosporidium in Wildlife Populations Co-Located in a Protected Watershed in the Pacific Northwest, 2013 to 2016. Microorganisms, 8(6), 914. https://doi.org/10.3390/microorganisms8060914
Limon, J. J., Skalski, J. H., & Underhill, D. M. (2017). Commensal Fungi in Health and Disease. Cell Host & Microbe, 22(2), 156–165. https://doi.org/10.1016/j.chom.2017.07.002
Longmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections.
Lovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409
Luo, J., Cheng, Y., Guo, L., Wang, A., Lu, M., & Xu, L. (2021). Variation of gut microbiota caused by an imbalance diet is detrimental to bugs’ survival. Science of The Total Environment, 771, 144880. https://doi.org/10.1016/j.scitotenv.2020.144880
Mancera, K. F., Zarza, H., de Buen, L. L., García, A. A. C., Palacios, F. M., & Galindo, F. (2018). Integrating links between tree coverage and cattle welfare in silvopastoral systems evaluation. Agronomy for Sustainable Development, 38(2), 19. https://doi.org/10.1007/s13593-018-0497-3
Mans, B. J., Pienaar, R., & Latif, A. A. (2015). A review of Theileria diagnostics and epidemiology. International Journal for Parasitology: Parasites and Wildlife, 4(1), 104–118. https://doi.org/10.1016/j.ijppaw.2014.12.006
McCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge University Press.
Miralles-Wilhelm, F. (2021). Nature-based solutions in agriculture: Sustainable management and conservation of land, water and biodiversity. Food & Agriculture Org.
Navarro M., D., Chávez V., A., Pinedo V., R., & Muñoz D., K. (2015). Factores de Riesgo Asociados a la Seroprevalencia de Toxoplasma gondii en Mamíferos del Orden Carnivora y Primates Mantenidos en Cautiverio. Revista de Investigaciones Veterinarias Del Perú, 26(3), 497. https://doi.org/10.15381/rivep.v26i3.11175
O’Callaghan, T. F., Ross, R. P., Stanton, C., & Clarke, G. (2016). The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 56, S44–S55. https://doi.org/10.1016/j.domaniend.2016.05.003
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295.
Olias, P., Schade, B., & Mehlhorn, H. (2011). Molecular pathology, taxonomy and epidemiology of Besnoitia species (Protozoa: Sarcocystidae). Infection, Genetics and Evolution, 11(7), 1564–1576. https://doi.org/10.1016/j.meegid.2011.08.006
Ostfeld, R., Glass, G., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20(6), 328–336. https://doi.org/10.1016/j.tree.2005.03.009
Parajuli, A., Hui, N., Puhakka, R., Oikarinen, S., Grönroos, M., Selonen, V. A. O., Siter, N., Kramna, L., Roslund, M. I., Vari, H. K., Nurminen, N., Honkanen, H., Hintikka, J., Sarkkinen, H., Romantschuk, M., Kauppi, M., Valve, R., Cinek, O., Laitinen, O. H., … Sinkkonen, A. (2020). Yard vegetation is associated with gut microbiota composition. Science of The Total Environment, 713, 136707. https://doi.org/10.1016/j.scitotenv.2020.136707
Park, H., Yeo, S., Arellano, K., Kim, H. R., & Holzapfel, W. (2018). Role of the gut microbiota in health and disease. Probiotics and Prebiotics in Animal Health and Food Safety, 35–62.
Perry, R. W., Thill, R. E., & Leslie Jr, D. M. (2007). Selection of roosting habitat by forest bats in a diverse forested landscape. Forest Ecology and Management, 238(1–3), 156–166.
Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13–14.
Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. A. (2008). Identifying factors associated with the spatial distribution of disease. Spatial Analysis in Epidemiology, 81–109. https://doi.org/10.1093/acprof:oso/9780198509882.003.0007
Phillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Frontiers in Ecology and Evolution, 6, 148. https://doi.org/10.3389/fevo.2018.00148
Rashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282
Rizzetto, L., De Filippo, C., & Cavalieri, D. (2014). Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. European Journal of Immunology, 44(11), 3166–3181. https://doi.org/10.1002/eji.201344403
Roncancio-Duque, N., García-Ariza, J. E., Rivera-Franco, N., Gonzalez-Ríos, A. M., & López-Alvarez, D. (2024). Comparison of DNA quantity and quality from fecal samples of mammals transported in ethanol or lysis buffer. One Health, 18, 100731. https://doi.org/10.1016/j.onehlt.2024.100731
Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305
Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546
Rulli, M. C., D’Odorico, P., Galli, N., & Hayman, D. T. S. (2021). Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nature Food, 2(6), 409–416. https://doi.org/10.1038/s43016-021-00285-x
Ryan, U., Zahedi, A., & Paparini, A. (2016). Cryptosporidium in humans and animals—A one health approach to prophylaxis. Parasite Immunology, 38(9), 535–547. https://doi.org/10.1111/pim.12350
Sánchez-Romero, R., Balvanera, P., Castillo, A., Mora, F., García-Barrios, L. E., & González-Esquivel, C. E. (2021). Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: An integrated analysis. Forest Ecology and Management, 479, 118506. https://doi.org/10.1016/j.foreco.2020.118506
Sauvaitre, T., Etienne-Mesmin, L., Sivignon, A., Mosoni, P., Courtin, C. M., Van de Wiele, T., & Blanquet-Diot, S. (2021). Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: Towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 45(2), fuaa052. https://doi.org/10.1093/femsre/fuaa052
Skinner, D., Mitcham, J. R., Starkey, L. A., Noden, B. H., Fairbanks, W. S., & Little, S. E. (2017). PREVALENCE OF BABESIA SPP., EHRLICHIA SPP., AND TICK INFESTATIONS IN OKLAHOMA BLACK BEARS ( URSUS AMERICANUS ). Journal of Wildlife Diseases, 53(4), 781–787. https://doi.org/10.7589/2017-02-029
Sokal, R. R., Rohlf, F. J., & Rohlf, J. F. (1995). Biometry. Macmillan.
Solórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0
Song, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, Q., Chen, Y., & Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 140, 109858. https://doi.org/10.1016/j.foodres.2020.109858
Stensvold, C. R., & van der Giezen, M. (2018). Associations between Gut Microbiota and Common Luminal Intestinal Parasites. Trends in Parasitology, 34(5), 369–377. https://doi.org/10.1016/j.pt.2018.02.004
van der Linden, A., de Olde, E. M., Mostert, P. F., & de Boer, I. J. M. (2020). A review of European models to assess the sustainability performance of livestock production systems. Agricultural Systems, 182, 102842. https://doi.org/10.1016/j.agsy.2020.102842
Williams, A. R., Myhill, L. J., Stolzenbach, S., Nejsum, P., Mejer, H., Nielsen, D. S., & Thamsborg, S. M. (2021). Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Veterinary Research, 17(1), 62. https://doi.org/10.1186/s12917-021-02752-w
Worsley, S. F., Davies, C. S., Mannarelli, M.-E., Hutchings, M. I., Komdeur, J., Burke, T., Dugdale, H. L., & Richardson, D. S. (2021). Gut microbiome composition, not alpha diversity, is associated with survival in a natural vertebrate population. Animal Microbiome, 3(1), 84. https://doi.org/10.1186/s42523-021-00149-6
Yabsley, M. J., Murphy, S. M., & Cunningham, M. W. (2006). Molecular Detection and Characterization of Cytauxzoon felis and a Babesia Species in Cougars from Florida. Journal of Wildlife Diseases, 42(2), 366–374. https://doi.org/10.7589/0090-3558-42.2.366
Yoo, J., Groer, M., Dutra, S., Sarkar, A., & McSkimming, D. (2020). Gut Microbiota and Immune System Interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587
Acevedo-Whitehouse, K., & Duffus, A. L. J. (2009). Effects of environmental change on wildlife health. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3429–3438. https://doi.org/10.1098/rstb.2009.0128
Aguirre, A. A. (2009). Wild canids as sentinels of ecological health: A conservation medicine perspective. Parasites & Vectors, 2(Suppl 1), S7. https://doi.org/10.1186/1756-3305-2-S1-S7
Aguirre, A. A., Ostfeld, R. S., Tabor, G. M., House, C., & Pearl, M. C. (2002). Conservation medicine: Ecological health in practice. Oxford University Press.
Arce-Peña, N. P., Arroyo-Rodríguez, V., Dias, P. A. D., Franch-Pardo, I., & Andresen, E. (2019). Linking changes in landscape structure to population changes of an endangered primate. Landscape Ecology, 34(11), 2687–2701. https://doi.org/10.1007/s10980-019-00914-8
Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., & Clément, K. (2021). Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 160(2), 573–599. https://doi.org/10.1053/j.gastro.2020.10.057
Artois, M., Bengis, R., Delahay, R. J., Duchêne, M.-J., Duff, J. P., Ferroglio, E., Gortazar, C., Hutchings, M. R., Kock, R. A., Leighton, F. A., Mörner, T., & Smith, G. C. (2009). Wildlife Disease Surveillance and Monitoring. In R. J. Delahay, G. C. Smith, & M. R. Hutchings (Eds.), Management of Disease in Wild Mammals (pp. 187–213). Springer Japan. https://doi.org/10.1007/978-4-431-77134-0_10
Barrett, L. G., Thrall, P. H., Burdon, J. J., & Linde, C. C. (2008). Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends in Ecology & Evolution, 23(12), 678–685. https://doi.org/10.1016/j.tree.2008.06.017
Baruch-Mordo, S., Wilson, K. R., Lewis, D. L., Broderick, J., Mao, J. S., & Breck, S. W. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: Implications to management of human-bear conflicts. PloS One, 9(1), e85122.
Becker, D. J., Streicker, D. G., & Altizer, S. (2015). Linking anthropogenic resources to wildlife–pathogen dynamics: A review and meta‐analysis. Ecology Letters, 18(5), 483–495. https://doi.org/10.1111/ele.12428
Begon, M., & Townsend, C. R. (2021). Ecology: From individuals to ecosystems. John Wiley & Sons
Belvoncikova, P., Splichalova, P., Videnska, P., & Gardlik, R. (2022). The Human Mycobiome: Colonization, Composition and the Role in Health and Disease. Journal of Fungi, 8(10), 1046. https://doi.org/10.3390/jof8101046
Biek, R., & Real, L. A. (2010). The landscape genetics of infectious disease emergence and spread. Molecular Ecology, 19(17), 3515–3531. https://doi.org/10.1111/j.1365-294X.2010.04679.x
Blum, W. E. H., Zechmeister-Boltenstern, S., & Keiblinger, K. M. (2019). Does Soil Contribute to the Human Gut Microbiome? Microorganisms, 7(9), 287. https://doi.org/10.3390/microorganisms7090287
Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V. M., Vandewoestijne, S., Baguette, M., Barton, K., Benton, T. G., Chaput‐Bardy, A., Clobert, J., Dytham, C., … Travis, J. M. J. (2012). Costs of dispersal. Biological Reviews, 87(2), 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x
Borcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R (Vol. 2). Springer.
Bronson, E., Spiker, H., & Driscoll, C. P. (2014). Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA. Journal of Wildlife Diseases, 50(4), 829–836.
Buret, A. G., Motta, J.-P., Allain, T., Ferraz, J., & Wallace, J. L. (2019). Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: A role for iron? Journal of Biomedical Science, 26(1), 1. https://doi.org/10.1186/s12929-018-0495-4
Bustamante-Manrique, S. (2023). Efeito da restrição de hábitat no comportamento de bugios (Alouatta spp.).
Bustamante-Manrique, S., Botero-Henao, N., Castaño, J. H., & Link, A. (2021). Activity budget, home range and diet of the Colombian night monkey (Aotus lemurinus) in peri-urban forest fragments. Primates, 62(3), 529–536. https://doi.org/10.1007/s10329-021-00895-w
Calo-Mata, P., Ageitos, J. M., Böhme, K., & Barros-Velázquez, J. (2016). Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. In T. G. Villa & M. Vinas (Eds.), New Weapons to Control Bacterial Growth (pp. 281–314). Springer International Publishing. https://doi.org/10.1007/978-3-319-28368-5_12
Chapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: How will anthropogenic change affect host‐parasite interactions? Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 14(4), 134–144.
Charlier, J., Van Der Voort, M., Kenyon, F., Skuce, P., & Vercruysse, J. (2014). Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30(7), 361–367. https://doi.org/10.1016/j.pt.2014.04.009
Chen, S., Luo, S., & Yan, C. (2021). Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals, 12(1), 93. https://doi.org/10.3390/ani12010093
Clayton, D. H., & Moore, J. (1997). Host-parasite evolution: General principles and avian models. (No Title).
Da Silveira, A. W., De Oliveira, G. G., Menezes Santos, L., da Silva Azuaga, L. B., Macedo Coutinho, C. R., Echeverria, J. T., Antunes, T. R., do Nascimento Ramos, C. A., & Izabel de Souza, A. (2017). Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi. Journal of Wildlife Diseases, 53(2), 411–413. https://doi.org/10.7589/2016-06-149
Danneskiold-Samsøe, N. B., Dias de Freitas Queiroz Barros, H., Santos, R., Bicas, J. L., Cazarin, C. B. B., Madsen, L., Kristiansen, K., Pastore, G. M., Brix, S., & Maróstica Júnior, M. R. (2019). Interplay between food and gut microbiota in health and disease. Food Research International, 115, 23–31. https://doi.org/10.1016/j.foodres.2018.07.043
Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging Infectious Diseases of Wildlife—Threats to Biodiversity and Human Health. Science, 287(5452), 443–449. https://doi.org/10.1126/science.287.5452.443
Deem, S. L. (2015). Conservation medicine to one health: The role of zoologic veterinarians. In Fowler’s Zoo and Wild Animal Medicine, Volume 8 (pp. 698–703). Elsevier.
Delahay, R., & Delahay, R. J. (Eds.). (2009). Management of disease in wild mammals (1. ed). Springer.
Dubey, J., & Jones, J. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology, 38(11), 1257–1278.
Dworecka-Kaszak, B., Dąbrowska, I., & Kaszak, I. (2016). The mycobiome – a friendly cross-talk between fungal colonizers and their host. Annals of Parasitology, 62(3), 175–184. https://doi.org/10.17420/ap6203.51
Echeverría, G., Reyna-Bello, A., Minda-Aluisa, E., Celi-Erazo, M., Olmedo, L., García, H. A., Garcia-Bereguiain, M. A., & de Waard, J. H. (2019). Serological evidence of Coxiella burnetii infection in cattle and farm workers: Is Q fever an underreported zoonotic disease in Ecuador? Infection and Drug Resistance, Volume 12, 701–706. https://doi.org/10.2147/IDR.S195940
Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.x
Fehlmann, G., O’riain, M. J., FÜrtbauer, I., & King, A. J. (2020). Behavioral Causes, Ecological Consequences, and Management Challenges Associated with Wildlife Foraging in Human-Modified Landscapes. BioScience, biaa129. https://doi.org/10.1093/biosci/biaa129
Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.
Fisher, M. C., Henk, Daniel. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. https://doi.org/10.1038/nature10947
Fletcher, S. M., Stark, D., Harkness, J., & Ellis, J. (2012). Enteric Protozoa in the Developed World: A Public Health Perspective. Clinical Microbiology Reviews, 25(3), 420–449. https://doi.org/10.1128/CMR.05038-11
Fountain‐Jones, N. M., Craft, M. E., Funk, W. C., Kozakiewicz, C., Trumbo, D. R., Boydston, E. E., Lyren, L. M., Crooks, K., Lee, J. S., VandeWoude, S., & Carver, S. (2017). Urban landscapes can change virus gene flow and evolution in a fragmentation‐sensitive carnivore. Molecular Ecology, 26(22), 6487–6498. https://doi.org/10.1111/mec.14375
Fox, J., Bouchet-Valat, M., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Grosjean, P., Heiberger, R., & Pour, K. K. (2015). Package ‘Rcmdr’
Freed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1 [Preprint]. https://doi.org/10.17504/protocols.io.bfy3jpyn
Gale, P., Drew, T., Phipps, L. P., David, G., & Wooldridge, M. (2009). The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: A review. Journal of Applied Microbiology, 106(5), 1409–1423. https://doi.org/10.1111/j.1365-2672.2008.04036.x
García Marín, J. F., Royo, L. J., Oleaga, A., Gayo, E., Alarcia, O., Pinto, D., Martínez, I. Z., González, P., Balsera, R., & Marcos, J. L. (2018). Canine adenovirus type 1 (CA dV‐1) in free‐ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population? Transboundary and Emerging Diseases, 65(6), 2049–2056.
Giraldo, P., Gómez-Posada, C., Martínez, J., & Kattan, G. (2007). Resource Use and Seed Dispersal by Red Howler Monkeys ( Alouatta seniculus ) in a Colombian Andean Forest. Neotropical Primates, 14(2), 55–64. https://doi.org/10.1896/044.014.0202
Hatam-Nahavandi, K., Calero-Bernal, R., Rahimi, M. T., Pagheh, A. S., Zarean, M., Dezhkam, A., & Ahmadpour, E. (2021). Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Scientific Reports, 11(1), 9509. https://doi.org/10.1038/s41598-021-89031-8
He, Y., Maltecca, C., & Tiezzi, F. (2021). Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals, 11(6), 1833. https://doi.org/10.3390/ani11061833
IDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100 000 (Periodo 2018) [Map]. IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales. http://www.siac.gov.co/catalogo-de-mapas
IDEAM (Instituto de Hidrología, M. y E. A. de C. (2017). Resultados Monitoreo de la deforestación 2017.
Imam, T. (2011). The complexities in the classification of protozoa: A challenge to parasitologists. Bayero Journal of Pure and Applied Sciences, 2(2), 159–164. https://doi.org/10.4314/bajopas.v2i2.63805
Ishibashi, Y., Oi, T., Arimoto, I., Fujii, T., Mamiya, K., Nishi, N., Sawada, S., Tado, H., & Yamada, T. (2017). Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. Conservation Genetics, 18(2), 247–260.
Jackson, H. B., & Fahrig, L. (2012). What size is a biologically relevant landscape? Landscape Ecology, 27(7), 929–941. https://doi.org/10.1007/s10980-012-9757-9
Jakob-Hoff, R. M., MacDiarmid, S. C., Lees, C., Miller, P. S., Travis, D., & Kock, R. (2014). Manual of procedures for wildlife disease risk analysis (Vol. 2014). World Organisation for Animal Health Paris, France.
Jenkins, E. J., Simon, A., Bachand, N., & Stephen, C. (2015). Wildlife parasites in a One Health world. Trends in Parasitology, 31(5), 174–180. https://doi.org/10.1016/j.pt.2015.01.002
Jensen, S. K., Aars, J., Lydersen, C., Kovacs, K. M., & Åsbakk, K. (2010). The prevalence of Toxoplasma gondii in polar bears and their marine mammal prey: Evidence for a marine transmission pathway? Polar Biology, 33(5), 599–606. https://doi.org/10.1007/s00300-009-0735-x
Jin, Y., Wu, S., Zeng, Z., & Fu, Z. (2017). Effects of environmental pollutants on gut microbiota. Environmental Pollution, 222, 1–9. https://doi.org/10.1016/j.envpol.2016.11.045
Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., Hudson, P., Jolles, A., Jones, K. E., Mitchell, C. E., Myers, S. S., Bogich, T., & Ostfeld, R. S. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647–652. https://doi.org/10.1038/nature09575
Klain, V., Mentz, M. B., Bustamante-Manrique, S., & Bicca-Marques, J. C. (2023). Landscape structure has a weak influence on the parasite richness of an arboreal folivorous–frugivorous primate in anthropogenic landscapes. Landscape Ecology, 38(5), 1237–1247. https://doi.org/10.1007/s10980-023-01603-3
Kohler, W. (2004). Infectious Diseases Transmissible from Animals to Humans. International Journal of Medical Microbiology, 293(7/8), 548.
Kowalewski, M. M., Garber, P. A., Cortés-Ortiz, L., Urbani, B., & Youlatos, D. (Eds.). (2015). Howler monkeys: Behavior, ecology and conservation. Springer.
Krogsgaard, L. R., Andersen, L. O., Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), e161. https://doi.org/10.1038/s41424-018-0027-2
Lange, K., Buerger, M., Stallmach, A., & Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 34(3), 260–268. https://doi.org/10.1159/000443360
Lausch, A. (2002). Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5
Leeming, E. R., Johnson, A. J., Spector, T. D., & Le Roy, C. I. (2019). Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 11(12), 2862. https://doi.org/10.3390/nu11122862
Limon, J. J., Skalski, J. H., & Underhill, D. M. (2017). Commensal Fungi in Health and Disease. Cell Host & Microbe, 22(2), 156–165. https://doi.org/10.1016/j.chom.2017.07.002
Longmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections
Lovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409
Lu, J., Rincon, N., Wood, D. E., Breitwieser, F. P., Pockrandt, C., Langmead, B., Salzberg, S. L., & Steinegger, M. (2022). Metagenome analysis using the Kraken software suite. Nature Protocols, 17(12), 2815–2839. https://doi.org/10.1038/s41596-022-00738-y
Luo, J., Cheng, Y., Guo, L., Wang, A., Lu, M., & Xu, L. (2021). Variation of gut microbiota caused by an imbalance diet is detrimental to bugs’ survival. Science of The Total Environment, 771, 144880. https://doi.org/10.1016/j.scitotenv.2020.144880
Mackenstedt, U., Jenkins, D., & Romig, T. (2015). The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. International Journal for Parasitology: Parasites and Wildlife, 4(1), 71–79
Martínez-Mota, R., Pozo-Montuy, G., Bonilla Sánchez, Y. M., & Gillespie, T. R. (2018). Effects of anthropogenic stress on the presence of parasites in a threatened population of black howler monkeys (Alouatta pigra). Therya, 9(2), 161–169. https://doi.org/10.12933/therya-18-572
Mazmanian, S. K., & Lee, Y. K. (2014). Interplay between Intestinal Microbiota and Host Immune System. Journal of Bacteriology and Virology, 44(1), 1. https://doi.org/10.4167/jbv.2014.44.1.1
McCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge University Press.
McKenzie, V. J., Song, S. J., Delsuc, F., Prest, T. L., Oliverio, A. M., Korpita, T. M., Alexiev, A., Amato, K. R., Metcalf, J. L., Kowalewski, M., Avenant, N. L., Link, A., Di Fiore, A., Seguin-Orlando, A., Feh, C., Orlando, L., Mendelson, J. R., Sanders, J., & Knight, R. (2017). The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 57(4), 690–704. https://doi.org/10.1093/icb/icx090
Miller, S., Zieger, U., Ganser, C., Satterlee, S. A., Bankovich, B., Amadi, V., Hariharan, H., Stone, D., & Wisely, S. M. (2015). INFLUENCE OF LAND USE AND CLIMATE ON SALMONELLA CARRIER STATUS IN THE SMALL INDIAN MONGOOSE ( HERPESTES AUROPUNCTATUS ) IN GRENADA, WEST INDIES. Journal of Wildlife Diseases, 51(1), 60–68. https://doi.org/10.7589/2014-02-046
Molina Benavides, R. A., Campos Gaona, R., Sánchez Guerrero, H., Giraldo Patiño, L., & Atzori, A. S. (2019). Sustainable Feedbacks of Colombian Paramos Involving Livestock, Agricultural Activities, and Sustainable Development Goals of the Agenda 2030. Systems, 7(4), 52. https://doi.org/10.3390/systems7040052
Monsalve-Buriticá, S. (2019). Enfermedades emergentes y reemergentes de origen viral o bacteriano en Colombia. Fondo Editorial Biogénesis, 49–62.
Montilla, S. O., Mopán-Chilito, A. M., Murcia, L. N. S., Triana, J. D. M., Ruiz, O. M. C., Montoya-Cepeda, J., Gutierrez-Barreto, D. A., Holguín-Vivas, J. A., Agámez, C. J., Pérez-Grisales, L. J., Cruz-Moncada, M., Corredor-Durango, N. J., Díaz, E. A. C., Cardona-Cardona, A. H., Franco-Pérez, E., Rivera-Ospina, A. M., & Link, A. (2021). Activity Patterns, Diet and Home Range of Night Monkeys (Aotus griseimembra and Aotus lemurinus) in Tropical Lowland and Mountain Forests of Central Colombia. International Journal of Primatology, 42(1), 130–153. https://doi.org/10.1007/s10764-020-00192-1
Muehlenbein, M. P. (2006). Intestinal parasite infections and fecal steroid levels in wild chimpanzees. American Journal of Physical Anthropology, 130(4), 546–550. https://doi.org/10.1002/ajpa.20391
Nourani, L., Zakeri, S., & Dinparast Djadid, N. (2020). Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas—A review. Infection, Genetics and Evolution, 81, 104244. https://doi.org/10.1016/j.meegid.2020.104244
Nunn, C., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford University Press, USA.
O’Callaghan, T. F., Ross, R. P., Stanton, C., & Clarke, G. (2016). The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 56, S44–S55. https://doi.org/10.1016/j.domaniend.2016.05.003
Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295.
Ostfeld, R., Glass, G., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20(6), 328–336. https://doi.org/10.1016/j.tree.2005.03.009
Ottman, N., Smidt, H., De Vos, W. M., & Belzer, C. (2012). The function of our microbiota: Who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00104
Palma, A. C., Vélez, A., Gómez‐Posada, C., López, H., Zárate, D. A., & Stevenson, P. R. (2011). Use of space, activity patterns, and foraging behavior of red howler monkeys ( Alouatta seniculus ) in an Andean forest fragment in Colombia. American Journal of Primatology, 73(10), 1062–1071. https://doi.org/10.1002/ajp.20973
Pang, K.-L., Hassett, B. T., Shaumi, A., Guo, S.-Y., Sakayaroj, J., Chiang, M. W.-L., Yang, C.-H., & Jones, E. B. G. (2021). Pathogenic fungi of marine animals: A taxonomic perspective. Fungal Biology Reviews, 38, 92–106. https://doi.org/10.1016/j.fbr.2021.03.008
Parajuli, A., Hui, N., Puhakka, R., Oikarinen, S., Grönroos, M., Selonen, V. A. O., Siter, N., Kramna, L., Roslund, M. I., Vari, H. K., Nurminen, N., Honkanen, H., Hintikka, J., Sarkkinen, H., Romantschuk, M., Kauppi, M., Valve, R., Cinek, O., Laitinen, O. H., … Sinkkonen, A. (2020). Yard vegetation is associated with gut microbiota composition. Science of The Total Environment, 713, 136707. https://doi.org/10.1016/j.scitotenv.2020.136707
Park, H., Yeo, S., Arellano, K., Kim, H. R., & Holzapfel, W. (2018). Role of the gut microbiota in health and disease. Probiotics and Prebiotics in Animal Health and Food Safety, 35–62.
Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13–14.
Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. A. (2008). Identifying factors associated with the spatial distribution of disease. Spatial Analysis in Epidemiology, 81–109. https://doi.org/10.1093/acprof:oso/9780198509882.003.0007
Phillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Frontiers in Ecology and Evolution, 6, 148. https://doi.org/10.3389/fevo.2018.00148
Qin, W., Song, P., Lin, G., Huang, Y., Wang, L., Zhou, X., Li, S., & Zhang, T. (2020). Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Frontiers in Microbiology, 11, 125. https://doi.org/10.3389/fmicb.2020.00125
Rashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282
Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G., Gasbarrini, A., & Mele, M. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014
Rizzetto, L., De Filippo, C., & Cavalieri, D. (2014). Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. European Journal of Immunology, 44(11), 3166–3181. https://doi.org/10.1002/eji.201344403
Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305
Roncancio Duque, N. J. (2021). Effect of landscape modification on primate assemblages of the Magdalena River Valley, Colombia. Caldasia, 43(2), 261–273. https://doi.org/10.15446/caldasia.v43n2.84845
Roncancio Duque, N. J., Rojas Días, V., Ríos Franco, C. A., Gómez-Posada, C., Gutiérrez-Chacón, C., Giraldo, P., Velasco, J. A., & Franco, P. (2012). Plan de conservación y manejo del tití gris (Saguinus leucopus). 45.
Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546
Rondón, S., León, C., Link, A., & González, C. (2019). Prevalence of Plasmodium parasites in non-human primates and mosquitoes in areas with different degrees of fragmentation in Colombia. Malaria Journal, 18(1), 1–10.
Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8
Ryan, U., Zahedi, A., & Paparini, A. (2016). Cryptosporidium in humans and animals—A one health approach to prophylaxis. Parasite Immunology, 38(9), 535–547. https://doi.org/10.1111/pim.12350
Sauvaitre, T., Etienne-Mesmin, L., Sivignon, A., Mosoni, P., Courtin, C. M., Van de Wiele, T., & Blanquet-Diot, S. (2021). Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: Towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 45(2), fuaa052. https://doi.org/10.1093/femsre/fuaa052
Schurer, J., Mosites, E., Li, C., Meschke, S., & Rabinowitz, P. (2016). Community-based surveillance of zoonotic parasites in a ‘One Health’ world: A systematic review. One Health, 2, 166–174. https://doi.org/10.1016/j.onehlt.2016.11.002
Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B., & Gänzle, M. (2011). Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One, 6(12), e27905
Seabolt, M. H., Konstantinidis, K. T., & Roellig, D. M. (2021). Hidden Diversity within Common Protozoan Parasites as Revealed by a Novel Genomotyping Scheme. Applied and Environmental Microbiology, 87(6), e02275-20. https://doi.org/10.1128/AEM.02275-20
Simon, A., Rousseau, A. N., Savary, S., Bigras-Poulin, M., & Ogden, N. H. (2013). Hydrological modelling of Toxoplasma gondii oocysts transport to investigate contaminated snowmelt runoff as a potential source of infection for marine mammals in the Canadian Arctic. Journal of Environmental Management, 127, 150–161. https://doi.org/10.1016/j.jenvman.2013.04.031
Smith, K. F., Behrens, M., Schloegel, L. M., Marano, N., Burgiel, S., & Daszak, P. (2009). Reducing the risks of the wildlife trade. Science, 324(5927), 594–595. https://doi.org/10.1126/science.1174460
Smith, K. F., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349–1357.
Sokal, R. R., Rohlf, F. J., & Rohlf, J. F. (1995). Biometry. Macmillan
Solórzano-García, B., Gasca-Pineda, J., Poulin, R., & Pérez-Ponce de León, G. (2017). Lack of genetic structure in pinworm populations from New World primates in forest fragments. International Journal for Parasitology, 47(14), 941–950. https://doi.org/10.1016/j.ijpara.2017.06.008
Solórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0
Solórzano-García, B., White, J. M., & Shedden, A. (2023). Parasitism in heterogeneous landscapes: Association between conserved habitats and gastrointestinal parasites in populations of wild mammals. Acta Tropica, 237, 106751. https://doi.org/10.1016/j.actatropica.2022.106751
Song, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, Q., Chen, Y., & Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 140, 109858. https://doi.org/10.1016/j.foodres.2020.109858
Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2018). OpenBUGS version 3.0. 2
Stensvold, C. R., Jirků-Pomajbíková, K., Tams, K. W., Jokelainen, P., Berg, R. P. K. D., Marving, E., Petersen, R. F., Andersen, L. O., Angen, Ø., & Nielsen, H. V. (2021). Parasitic Intestinal Protists of Zoonotic Relevance Detected in Pigs by Metabarcoding and Real-Time PCR. Microorganisms, 9(6), 1189. https://doi.org/10.3390/microorganisms9061189
Thompson, R. C. A. (2013). Parasite zoonoses and wildlife: One health, spillover and human activity. International Journal for Parasitology, 43(12–13), 1079–1088. https://doi.org/10.1016/j.ijpara.2013.06.007
Ujvari, B., & Belov, K. (2011). Major histocompatibility complex (MHC) markers in conservation biology. International Journal of Molecular Sciences, 12(8), 5168–5186.
Uribe, M., Payán, E., Brabec, J., Vélez, J., Taubert, A., Chaparro-Gutiérrez, J. J., & Hermosilla, C. (2021). Intestinal Parasites of Neotropical Wild Jaguars, Pumas, Ocelots, and Jaguarundis in Colombia: Old Friends Brought Back from Oblivion and New Insights. Pathogens, 10(7), 822. https://doi.org/10.3390/pathogens10070822
van der Linden, A., de Olde, E. M., Mostert, P. F., & de Boer, I. J. M. (2020). A review of European models to assess the sustainability performance of livestock production systems. Agricultural Systems, 182, 102842. https://doi.org/10.1016/j.agsy.2020.102842
Van Voorhis, W. C., Hulverson, M. A., Choi, R., Huang, W., Arnold, S. L. M., Schaefer, D. A., Betzer, D. P., Vidadala, R. S. R., Lee, S., Whitman, G. R., Barrett, L. K., Maly, D. J., Riggs, M. W., Fan, E., Kennedy, T. J., Tzipori, S., Doggett, J. S., Winzer, P., Anghel, N., … Ojo, K. K. (2021). One health therapeutics: Target-Based drug development for cryptosporidiosis and other apicomplexa diseases. Veterinary Parasitology, 289, 109336. https://doi.org/10.1016/j.vetpar.2020.109336
VanWormer, E., Miller, M. A., Conrad, P. A., Grigg, M. E., Rejmanek, D., Carpenter, T. E., & Mazet, J. A. K. (2014). Using Molecular Epidemiology to Track Toxoplasma gondii from Terrestrial Carnivores to Marine Hosts: Implications for Public Health and Conservation. PLoS Neglected Tropical Diseases, 8(5), e2852. https://doi.org/10.1371/journal.pntd.0002852
Vijay, A., & Valdes, A. M. (2022). Role of the gut microbiome in chronic diseases: A narrative review. European Journal of Clinical Nutrition, 76(4), 489–501. https://doi.org/10.1038/s41430-021-00991-6
Williams, A. R., Myhill, L. J., Stolzenbach, S., Nejsum, P., Mejer, H., Nielsen, D. S., & Thamsborg, S. M. (2021). Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Veterinary Research, 17(1), 62. https://doi.org/10.1186/s12917-021-02752-w
Wisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64
Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0
Xiao, L., & Fayer, R. (2008). Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. International Journal for Parasitology, 38(11), 1239–1255. https://doi.org/10.1016/j.ijpara.2008.03.006
Yoo, J., Groer, M., Dutra, S., Sarkar, A., & McSkimming, D. (2020). Gut Microbiota and Immune System Interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587
dc.rights.coar.fl_str_mv http://purl.org/coar/access_right/c_abf2
dc.rights.license.spa.fl_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.uri.spa.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rights.accessrights.spa.fl_str_mv info:eu-repo/semantics/openAccess
rights_invalid_str_mv Atribución-NoComercial-SinDerivadas 4.0 Internacional
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://purl.org/coar/access_right/c_abf2
eu_rights_str_mv openAccess
dc.format.extent.spa.fl_str_mv xvi, 132 páginas
dc.format.mimetype.spa.fl_str_mv application/pdf
dc.coverage.tgn.none.fl_str_mv http://vocab.getty.edu/page/tgn/1000050
dc.publisher.spa.fl_str_mv Universidad Nacional de Colombia
dc.publisher.program.spa.fl_str_mv Palmira - Ciencias Agropecuarias - Doctorado en Ciencias Agrarias
dc.publisher.department.spa.fl_str_mv Doctorado en Ciencias Agrarias
dc.publisher.faculty.spa.fl_str_mv Facultad de Ciencias Agropecuarias
dc.publisher.place.spa.fl_str_mv Palmira, Valle del Cauca, Colombia
dc.publisher.branch.spa.fl_str_mv Universidad Nacional de Colombia - Sede Palmira
institution Universidad Nacional de Colombia
bitstream.url.fl_str_mv https://repositorio.unal.edu.co/bitstream/unal/86409/1/license.txt
https://repositorio.unal.edu.co/bitstream/unal/86409/3/75093305.2024.pdf
https://repositorio.unal.edu.co/bitstream/unal/86409/4/75093305.2024.pdf.jpg
bitstream.checksum.fl_str_mv eb34b1cf90b7e1103fc9dfd26be24b4a
f7d081df2a43e5c4eb5ed63d7f0f1f79
f9e00d39901aedbf53e204c17a654c99
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositorio Institucional Universidad Nacional de Colombia
repository.mail.fl_str_mv repositorio_nal@unal.edu.co
_version_ 1814089392694755328
spelling Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2López Álvarez, Diana Carolina1ab298e9492bfd0c4b69bb243416b257Roncancio Duque, Néstor Javierf68080f80bc5ab2fb9ae2f173bf280a3Biodiversidad y ConservaciónBioinformáticaEcología y Conservación de Fauna Silvestre0000-0001-8575-8272Roncancio Duque, Nestor Javier57200223135Roncancio Duque, Nestor2024-07-05T19:36:04Z2024-07-05T19:36:04Z2024-06-27https://repositorio.unal.edu.co/handle/unal/86409Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/Ilustraciones, tablasConcerning the gut microbiota, the hypothesis posits that increased microbial diversity contributes significantly to enhanced functionality across various associated processes. The intestinal microbiota exhibits high susceptibility to diverse forms of stress, and the impact of such stressors can be profound, affecting both its composition and function. A comprehensive understanding of how distinct forms of stress influence the intestinal microbiota is imperative for the developing strategies aimed at preserving gastrointestinal health and, consequently, the overall well-being of individuals. Conversely, parasites constitute integral components within natural processes that could determine population regulation and maintain ecosystem balance. However, both natural and anthropogenic changes can disrupt these ecological processes. Among infectious diseases, those induced by protozoa are prominent contributors to human morbidity and mortality. The environmental changes exacerbate interactions among wildlife, domestic animals, and humans, thereby intensifying transmission rates between species. Thus, the objective of this study was to investigate the associations, including relationships and similarities, between landscape configuration influenced by human activities and the diversity of intestinal microbiota, as well as the abundance of gastrointestinal parasites, among wild and domestic mammals in Colombia. Taxonomic determination was achieved through metabarcoding with primers targeting the rRNA 18S gene and Nanopore sequencing, with a primary focus on detecting protozoa. A total of 148 samples were collected from six wildlife mammals and three domestic mammals across 29 focal landscapes in Colombia. Microscopy was also employed to validate certain agents. To describe the epidemiological landscape, taxa richness in gut microbiota, as well as the prevalence, mean intensity, and mean abundance of protozoa, were estimated. Bayesian Beta and Poisson regressions were employed to assess the relationship between landscape metrics and dissimilarity, gut and protozoa diversity, and the abundance of specific target protozoa. The study identified several new species within the six assessed host species. A predominant proportion of phyla Ascomycota, Pseudomonadota, Basidiomicota, and Apicomplexa were observed, reflecting a healthy intestinal microbiota and a potential predominance of certain negative elements. Comparisons between canines and equines, as well as between tapirs and bears among terrestrial mammals, indicated greater similarity in both gut microbiota and protozoa. In primates, the red howler monkey exhibited closer proximity to bovines and equines than to other primates. The findings indicated that a higher proportion of natural vegetation coverage correlated with increased similarity in gut microbiota among wild and domestic mammals. Additionally, higher proportions of natural vegetation coverage, presence of water bodies, number of forest patches, and irregularities in forest shapes were associated with greater diversity (both richness and evenness) in gut microbiota and intestinal protozoa across different scales. (Texto tomado de la fuente)Con relación a la microbiota intestinal, la hipótesis postula que un aumento en la diversidad microbiana contribuye significativamente a una mejor funcionalidad en varios procesos asociados con ella. La microbiota intestinal muestra una alta susceptibilidad a diversas formas de estrés, y el impacto de tales factores estresantes puede ser profundo, afectando tanto su composición como su función. Una comprensión integral de cómo distintas formas de estrés afectan a la microbiota intestinal es imperativa para el desarrollo de estrategias destinadas a preservar la salud gastrointestinal y, por ende, el bienestar general de los individuos. Por otro lado, los parásitos constituyen componentes integrales dentro de procesos naturales que podrían determinar la regulación poblacional y mantienen el equilibrio del ecosistema. Sin embargo, tanto los cambios naturales como los antropogénicos pueden perturbar estos procesos ecológicos. Entre las enfermedades infecciosas, aquellas inducidas por protozoos son contribuyentes destacados a la morbilidad y mortalidad humanas. Los cambios ambientales exacerban las interacciones entre la vida silvestre, los animales domésticos y los humanos, intensificando así las tasas de transmisión entre especies. Por tanto, el objetivo de este estudio fue investigar las asociaciones, incluyendo relaciones y similitudes, de la estructura del paisaje, influenciada por actividades humanas, la diversidad de la microbiota intestinal y la abundancia de protozoarios gastrointestinales entre mamíferos silvestres y domésticos en Colombia. La determinación taxonómica se hizo mediante metabarcoding con cebadores dirigidos al gen rRNA 18S y secuenciación Nanopore, con un enfoque principal en la detección de protozoos. Se recopilaron un total de 148 muestras de seis mamíferos silvestres y tres mamíferos domésticos en 29 paisajes focales en Colombia. También se empleó la microscopía para validar algunos agentes. Para describir epidemiológicamente las muestras, se estimaron la riqueza de taxones en la microbiota intestinal, así como la prevalencia, intensidad media y abundancia media de los protozoarios. Se utilizaron regresiones Beta y Poisson bayesianas para evaluar la relación entre las métricas del paisaje y la disimilitud, la diversidad de la microbiota intestinal y de protozoarios, y la abundancia de protozoarios específicos. El estudio identificó varias especies no reportadas previamente en las seis especies silvestres hospedadoras evaluadas. Se observó una proporción predominante de los phylum Ascomycota, Pseudomonadota, Basidiomicota y Apicomplexa, reflejando por un lado una microbiota intestinal saludable, aunque también la posible predominancia de ciertos elementos negativos. Las comparaciones entre caninos y equinos, así como entre tapires y osos entre los mamíferos terrestres, indicaron una mayor similitud tanto en la microbiota intestinal como en los protozoarios. En primates, el mono aullador rojo mostró una proximidad más cercana a los bovinos y equinos que a otros primates. Los hallazgos indicaron que una mayor proporción de cobertura vegetal natural estaba relacionada con una mayor similitud en la microbiota intestinal entre mamíferos silvestres y domésticos. Además, mayores proporciones de cobertura vegetal natural, presencia de cuerpos de agua, número de parches de bosque e irregularidades en la forma de los bosques se asociaron con una mayor diversidad (tanto en riqueza como en equidad) en la microbiota intestinal y de protozoarios intestinales a diferentes escalas.DoctoradoDoctor en Ciencias AgrariasThe objective of this study was to investigate the associations, including relationships and similarities, between landscape configuration influenced by human activities and the diversity of intestinal microbiota, as well as the abundance of gastrointestinal parasites, among wild and domestic mammals in Colombia. Taxonomic determination was achieved through metabarcoding with primers targeting the rRNA 18S gene and Nanopore sequencing, with a primary focus on detecting protozoa. A total of 148 samples were collected from six wildlife mammals and three domestic mammals across 29 focal landscapes in Colombia. Microscopy was also employed to validate certain agents. To describe the epidemiological landscape, taxa richness in gut microbiota, as well as the prevalence, mean intensity, and mean abundance of protozoa, were estimated. Bayesian Beta and Poisson regressions were employed to assess the relationship between landscape metrics and dissimilarity, gut and protozoa diversity, and the abundance of specific target protozoa.Ciencias Agropecuarias.Sede Palmiraxvi, 132 páginasapplication/pdfengUniversidad Nacional de ColombiaPalmira - Ciencias Agropecuarias - Doctorado en Ciencias AgrariasDoctorado en Ciencias AgrariasFacultad de Ciencias AgropecuariasPalmira, Valle del Cauca, ColombiaUniversidad Nacional de Colombia - Sede Palmira570 - Biología::577 - EcologíaFlora microbianaMicrobial floraFlora intestinalIntestinal floraInteracción biológicaBiological interactionPoblación animalAnimal populationEcología de las poblacionesPopulation ecologyRelación interespecíficaInterspecific relationshipsCattleDissimilarity indexFragmentationGut microbiotaLandscape epidemiologyWildlifeProtozoaGanadoIndice de dissimilaridadFragmentaciónMicrobiota intestinalProtozoariosVida silvestreEffect of landscape structure on the diversity of microbiota and intestinal protozoa between wild and domestic mammals in some regions of ColombiaEfecto de la estructura del paisaje sobre la diversidad de la microbiota y protozoarios intestinales enre los mamíferos silvestres y domésticos en algunas regiones de ColombiaTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDhttp://vocab.getty.edu/page/tgn/1000050Aguirre, A. A. (2009). Wild canids as sentinels of ecological health: A conservation medicine perspective. Parasites & Vectors, 2(Suppl 1), S7. https://doi.org/10.1186/1756-3305-2-S1-SAguirre, A. A., Ostfeld, R. S., Tabor, G. M., House, C., & Pearl, M. C. (2002). Conservation medicine: Ecological health in practice. Oxford University PressArtois, M., Bengis, R., Delahay, R. J., Duchêne, M.-J., Duff, J. P., Ferroglio, E., Gortazar, C., Hutchings, M. R., Kock, R. A., Leighton, F. A., Mörner, T., & Smith, G. C. (2009). Wildlife Disease Surveillance and Monitoring. In R. J. Delahay, G. C. Smith, & M. R. Hutchings (Eds.), Management of Disease in Wild Mammals (pp. 187–213). Springer Japan. https://doi.org/10.1007/978-4-431-77134-0_1Chapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: How will anthropogenic change affect host‐parasite interactions? Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 14(4), 134–144.Charlier, J., Van Der Voort, M., Kenyon, F., Skuce, P., & Vercruysse, J. (2014). Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30(7), 361–367. https://doi.org/10.1016/j.pt.2014.04.009Clayton, D. H., & Moore, J. (1997). Host-parasite evolution: General principles and avian models. (No Title).Delahay, R., & Delahay, R. J. (Eds.). (2009). Management of disease in wild mammals (1. ed). Springer.Jenkins, E. J., Simon, A., Bachand, N., & Stephen, C. (2015). Wildlife parasites in a One Health world. Trends in Parasitology, 31(5), 174–180. https://doi.org/10.1016/j.pt.2015.01.002Nunn, C., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford University Press, USA.Rashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546Smith, K. F., Behrens, M., Schloegel, L. M., Marano, N., Burgiel, S., & Daszak, P. (2009). Reducing the risks of the wildlife trade. Science, 324(5927), 594–595. https://doi.org/10.1126/science.1174460Solórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0Uribe, M., Payán, E., Brabec, J., Vélez, J., Taubert, A., Chaparro-Gutiérrez, J. J., & Hermosilla, C. (2021). Intestinal Parasites of Neotropical Wild Jaguars, Pumas, Ocelots, and Jaguarundis in Colombia: Old Friends Brought Back from Oblivion and New Insights. Pathogens, 10(7), 822. https://doi.org/10.3390/pathogens10070822Wisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64Bard, S. M., & Cain III, J. W. (2019). Pathogen prevalance in American black bears (Ursus americanus amblyceps) of the Jemez Mountains, New Mexico, USA. Journal of Wildlife Diseases, 55(4), 745–754.Baruch-Mordo, S., Wilson, K. R., Lewis, D. L., Broderick, J., Mao, J. S., & Breck, S. W. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: Implications to management of human-bear conflicts. PloS One, 9(1), e85122.Borka-Vitális, L., Domokos, C., Földvári, G., & Majoros, G. (2017). Endoparasites of brown bears in Eastern Transylvania, Romania. Ursus, 28(1), 20–30.Brena, P., Gauthier, D., Humeau, A., Baurier, F., Dej, F., Lemberger, K., Chollet, J.-Y., & Decors, A. (2018). How Can Computer Tools Improve Early Warnings for Wildlife Diseases? In How Information Systems Can Help in Alarm/Alert Detection (pp. 241–256). Elsevier.Bronson, E., Spiker, H., & Driscoll, C. P. (2014). Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA. Journal of Wildlife Diseases, 50(4), 829–836.Chica Cardenas, L. A. (2021). Estimating the andean bear diet through DNA metabarcoding and its relationships to the gut microbiome [Universidad de los Andes]. https://repositorio.uniandes.edu.co/handle/1992/58061Colwell, R. K., & Coddington, J. A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 345(1311), 101–118.Cruz Hurtado, S. S. M., & Muñoz Huamaní, M. (2016). Identificación de parásitos gastrointestinales de carnívoros en cautiverio criados en el centro recreacional municipal del Cerrito de la Libertad de Huancayo.Diamond, J. (2016). Sociedades comparadas: Un pequeño libro sobre grandes temas. Debate.Dubey, J., & Jones, J. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology, 38(11), 1257–1278Elbroch, L. M., Lendrum, P. E., Allen, M. L., & Wittmer, H. U. (2015). Nowhere to hide: Pumas, black bears, and competition refuges. Behavioral Ecology, 26(1), 247–254Figueroa, J. (2015). New records of parasites in free-ranging Andean bears from Peru. Ursus, 26(1), 21–27. https://doi.org/10.2192/URSUS-D-14-00034.1Francis, E. K., & Šlapeta, J. (2022). A new diagnostic approach to fast-track and increase the accessibility of gastrointestinal nematode identification from faeces: FECPAKG2 egg nemabiome metabarcoding. International Journal for Parasitology, 52(6), 331–342. https://doi.org/10.1016/j.ijpara.2022.01.002García Marín, J. F., Royo, L. J., Oleaga, A., Gayo, E., Alarcia, O., Pinto, D., Martínez, I. Z., González, P., Balsera, R., & Marcos, J. L. (2018). Canine adenovirus type 1 (CA dV‐1) in free‐ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population? Transboundary and Emerging Diseases, 65(6), 2049–2056.Gilbert, B. (1989). Behavioral plasticity and bear-human conflicts. 1–8.Goldstein, I., Paisley, S., Wallace, R., Jorgenson, J. P., Cuesta, F., & Castellanos, A. (2006). Andean bear–livestock conflicts: A review. Ursus, 17(1), 8–15.Goldstein, I. R. (2002). Andean bear-cattle interactions and tree nest use in Bolivia and Venezuela. Ursus, 369–372.Han, B. A., Kramer, A. M., & Drake, J. M. (2016). Global Patterns of Zoonotic Disease in Mammals. Trends in Parasitology, 32(7), 565–577. https://doi.org/10.1016/j.pt.2016.04.007Ishibashi, Y., Oi, T., Arimoto, I., Fujii, T., Mamiya, K., Nishi, N., Sawada, S., Tado, H., & Yamada, T. (2017). Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. Conservation Genetics, 18(2), 247–260.Jorgenson, J. P., & Sandoval-A, S. (2005). Andean bear management needs and interactions with humans in Colombia. Ursus, 16(1), 108–116.Kattan, G., Hernández, O. L., Goldstein, I., Rojas, V., Murillo, O., Gómez, C., Restrepo, H., & Cuesta, F. (2004). Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx, 38(2), 155–163.Kindschuh, S. R., Cain III, J. W., Daniel, D., & Peyton, M. A. (2016). Efficacy of GPS cluster analysis for predicting carnivory sites of a wide‐ranging omnivore: The American black bear. Ecosphere, 7(10), e01513.King, J. S., Jenkins, D. J., Ellis, J. T., Fleming, P., Windsor, P. A., & Šlapeta, J. (2011). Implications of wild dog ecology on the sylvatic and domestic life cycle of Neospora caninum in Australia. The Veterinary Journal, 188(1), 24–33.Lesmerises, R., Rebouillat, L., Dussault, C., & St-Laurent, M.-H. (2015). Linking GPS telemetry surveys and scat analyses helps explain variability in black bear foraging strategies. PLoS One, 10(7), e0129857.Longmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections.Mackenstedt, U., Jenkins, D., & Romig, T. (2015). The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. International Journal for Parasitology: Parasites and Wildlife, 4(1), 71–79.Mata, A. P., Pérez, H. G., & Parra, J. G. (2016). Morphological molecular description of Baylisascaris venezuelensis, n. Sp. From a natural infection in the South American spectacled bear Tremarctos ornatus Cuvier, 1825 in Venezuela. Neotrop Helminthol, 10, 85–103.McCullough, D. R. (1982). Behavior, bears, and humans. Wildlife Society Bulletin, 27–33Monsalve-Buriticá, S. (2019). Enfermedades emergentes y reemergentes de origen viral o bacteriano en Colombia. Fondo Editorial Biogénesis, 49–62.Navarro M., D., Chávez V., A., Pinedo V., R., & Muñoz D., K. (2015). Factores de Riesgo Asociados a la Seroprevalencia de Toxoplasma gondii en Mamíferos del Orden Carnivora y Primates Mantenidos en Cautiverio. Revista de Investigaciones Veterinarias Del Perú, 26(3), 497. https://doi.org/10.15381/rivep.v26i3.11175Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295.Oniki-Willis, Y., & Willis, E. O. (2018). Tick (Acarina) diversity from South American birds and mammals. Atualidades Ornitológicas, 206.Palmer, M. W. (1991). Estimating species richness: The second-order jackknife reconsidered. Ecology (Durham), 72(4), 1512–1513.Parra-Romero, A., Zamudio-López, J., Camargo-Cárdenas, J. E., Palacios-Medina, C. R., Torres, L., Castro, E., Espíndola, J., Meneses, H., Vera-Villamizar, L., Moreno-Gutiérrez, S., López-Velandia, O., Saenz, F., Rodríguez, M., Franco, N., Clavijo-Ríos, C., Rivera-Torres, C., López-Orjuela, H., Pachón-Bejarano, G., Jimenez-Palomo, G., … Márquez, R. (2019). Ocupación del oso andino (Tremarctos ornatus) en la región centro-norte de la Cordillera Oriental de Colombia. PNN de Colombia, CAR Cundinamarca, Corpoboyacá, Corporinoquía, Corpochivor, Cormacarena, Corpoguavio, ABCA y WCS.Patz, J., Githeko, A., McCarty, J., Hussein, S., Confalonieri, U., & De Wet, N. (2003). Climate change and infectious diseases. Climate Change and Human Health: Risks and Responses, 2, 103–132.Peña-Quistial, M. G., Benavides-Montaño, J. A., Duque, N. J. R., & Benavides-Montaño, G. A. (2020). Prevalence and associated risk factors of Intestinal parasites in rural high-mountain communities of the Valle del Cauca—Colombia. PLoS Neglected Tropical Diseases, 14(10), e0008734.Peyton, B. (1999). Spectacled bear conservation action plan. Bears: Status Survey and Conservation Action Plan, 157–164.Quintero, L. R., Pulido-Villamarín, A., Parra-Romero, Á., Castañeda-Salazar, R., Pérez-Torres, J., & Vela-Vargas, I. M. (2023). Andean bear gastrointestinal parasites in Chingaza Massif, Colombia. Ursus, 2023(34e4). https://doi.org/10.2192/URSUS-D21-00020.1Sasmal, I., Gould, N. P., Schuler, K. L., Chang, Y.-F., Thachil, A., Strules, J., Olfenbuttel, C., Datta, S., & DePerno, C. S. (2019). Leptospirosis in urban and suburban american black bears (ursus americanus) in western north carolina, usa. Journal of Wildlife Diseases, 55(1), 74–83.Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B., & Gänzle, M. (2011). Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One, 6(12), e27905.Semblante, G. U., Phan, H. V., Hai, F. I., Xu, Z.-Q., Price, W. E., & Nghiem, L. D. (2017). The role of microbial diversity and composition in minimizing sludge production in the oxic-settling-anoxic process. Science of The Total Environment, 607–608, 558–567. https://doi.org/10.1016/j.scitotenv.2017.06.253Shaheen, M. N. F. (2022). The concept of one health applied to the problem of zoonotic diseases. Reviews in Medical Virology, 32(4). https://doi.org/10.1002/rmv.2326Smith, K. F., Acevedo‐Whitehouse, K., & Pedersen, A. B. (2009). The role of infectious diseases in biological conservation. Animal Conservation, 12(1), 1–12.Smith, K. F., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349–1357.Stensvold, C. R., Jirků-Pomajbíková, K., Tams, K. W., Jokelainen, P., Berg, R. P. K. D., Marving, E., Petersen, R. F., Andersen, L. O., Angen, Ø., & Nielsen, H. V. (2021). Parasitic Intestinal Protists of Zoonotic Relevance Detected in Pigs by Metabarcoding and Real-Time PCR. Microorganisms, 9(6), 1189. https://doi.org/10.3390/microorganisms9061189Stephenson, N., Higley, J. M., Sajecki, J. L., Chomel, B. B., Brown, R. N., & Foley, J. E. (2015). Demographic characteristics and infectious diseases of a population of American black bears in Humboldt County, California. Vector-Borne and Zoonotic Diseases, 15(2), 116–123.Ujvari, B., & Belov, K. (2011). Major histocompatibility complex (MHC) markers in conservation biology. International Journal of Molecular Sciences, 12(8), 5168–5186.Velez-Liendo, X., & García-Rangel, S. (2018). Tremarctos ornatus. The IUCN Red List of Threatened Species 2017: E.T22066A123792952. https://www.iucnredlist.org/species/22066/123792952Westmoreland, L. S., Stoskopf, M. K., & Maggi, R. G. (2016). Prevalence of Anaplasma phagocytophilum in North Carolina eastern black bears (Ursus americanus). Journal of Wildlife Diseases, 52(4), 968–970.Wisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64.Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0Wu, J., Han, J.-Q., Shi, L.-Q., Zou, Y., Li, Z., Yang, J.-F., Huang, C.-Q., & Zou, F.-C. (2018). Prevalence, genotypes, and risk factors of Enterocytozoon bieneusi in Asiatic black bear (Ursus thibetanus) in Yunnan Province, Southwestern China. Parasitology Research, 117(4), 1139–1145.Wultsch, C., Waits, L. P., Hallerman, E. M., & Kelly, M. J. (2015). Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildlife Society Bulletin, 39(2), 403–412. https://doi.org/10.1002/wsb.540Zárate Rodríguez, P. T., Collazos-Escobar, L. F., & Benavides-Montaño, J. A. (2022). Endoparasites Infecting Domestic Animals and Spectacled Bears (Tremarctos ornatus) in the Rural High Mountains of Colombia. Veterinary Sciences, 9(10), 537. https://doi.org/10.3390/vetsci9100537Zhang, L., Yang, X., Wu, H., Gu, X., Hu, Y., & Wei, F. (2011). The parasites of giant pandas: Individual-based measurement in wild animals. Journal of Wildlife Diseases, 47(1), 164–171Acosta Z, M., Tantaleán V, M., & Serrano-Martínez, E. (2015). Identificación de Parásitos Gastrointestinales por Coproscopía en Carnívoros Silvestres del Zoológico Parque de las Leyendas, Lima, Perú . In Revista de Investigaciones Veterinarias del Perú (Vol. 26, pp. 282–290). scieloAntil, S., Abraham, J. S., Sripoorna, S., Maurya, S., Dagar, J., Makhija, S., Bhagat, P., Gupta, R., Sood, U., Lal, R., & Toteja, R. (2023). DNA barcoding, an effective tool for species identification: A review. Molecular Biology Reports, 50(1), 761–775. https://doi.org/10.1007/s11033-022-08015-7Aristizabal-Duque, S., Orozco Jimenez, L., Zapata Escobar, C., & Palacio-Baena, J. (2018). Conservation genetics of otters: Review about the use of noninvasive samples. Therya, 9, 85–93. https://doi.org/10.12933/therya-18-515Arnemo, J. M., Ahlqvist, P., Andersen, R., Berntsen, F., Ericsson, G., Odden, J., Brunberg, S., Segerström, P., & Swenson, J. E. (2006). Risk of capture-related mortality in large free-ranging mammals: Experiences from Scandinavia. Wildlife Biology, 12(1), 109–113. https://doi.org/10.2981/0909-6396(2006)12[109:ROCMIL]2.0.CO;2Budel, J. C. C., Hess, M. K., Bilton, T. P., Henry, H., Dodds, K. G., Janssen, P. H., McEwan, J. C., & Rowe, S. J. (2022). Low-cost sam-ple preservation methods for high-throughput processing of rumen microbiomes. Animal Microbiome, 4(1), 39. https://doi.org/10.1186/s42523-022-00190-zBurnham, C. M., McKenney, E. A., Heugten, K. A., Minter, L. J., & Trivedi, S. (2023). Effect of fecal preservation method on captive southern white rhinoceros gut microbiome. Wildlife Society Bulletin, 47(2), e1436. https://doi.org/10.1002/wsb.1436Camacho-Sanchez, M., Burraco, P., Gomez-Mestre, I., & Leonard, J. A. (2013). Preservation of RNA and DNA from mammal sam-ples under field conditions. Molecular Ecology Resources, 13(4), 663–673. https://doi.org/10.1111/1755-0998.12108Choo, J., Leong, L., & Rogers, G. (2015). Sample storage conditions signficantly influence faecal microbiome profiles. Scientific Reports, 5, 16350. https://doi.org/10.1038/srep16350Fox, J., Marquez, M., & Bouchet-Valat, M. (2023). Rcmdr: R Commander. R Package Version 2.9-0.Frantzen, M. A., Silk, J. B., Ferguson, J. W., Wayne, R. K., & Kohn, M. H. (1998). Empirical evaluation of preservation methods for faecal DNA. Molecular Ecology, 7(10), 1423–1428. https://doi.org/10.1046/j.1365-294x.1998.00449.xFreed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1.Gill, S. R., Pop, M., Deboy, R. T., Eckburg, P. B., Turnbaugh, P. J., Samuel, B. S., Gordon, J. I., Relman, D. A., Fraser-Liggett, C. M., & Nelson, K. E. (2006). Metagenomic analysis of the human distal gut microbiome. Science (New York, N.Y.), 312(5778), 1355–1359. https://doi.org/10.1126/science.1124234Gonzales, F. N., Neira-Llerena, J., Llerena, G., & Zeballos, H. (2016). Small vertebrates in the spectacled bear_s diet (Tremarctos ornatus Cuvier, 1825) in the north of Peru . In Revista Peruana de Biología (Vol. 23, pp. 61–66). scieloGorzelak, M. A., Gill, S. K., Tasnim, N., Ahmadi-Vand, Z., Jay, M., & Gibson, D. L. (2015). Methods for Improving Human Gut Microbiome Data by Reducing Variability through Sample Processing and Storage of Stool. PLOS ONE, 10(8), e0134802.Iker, B. C., Bright, K. R., Pepper, I. L., Gerba, C. P., & Kitajima, M. (2013). Evaluation of commercial kits for the extraction and puri-fication of viral nucleic acids from environmental and fecal samples. Journal of Virological Methods, 191(1), 24–30. https://doi.org/10.1016/j.jviromet.2013.03.011Jedlicka, J. A., Vo, A.-T. E., & Almeida, R. P. P. (2017). Molecular scatology and high-throughput sequencing reveal predominately herbivorous insects in the diets of adult and nestling Western Bluebirds (Sialia mexicana) in California vineyards. The Auk, 134(1), 116–127. https://doi.org/10.1642/AUK-16-103.1Jin, S. S., Amnon, A., L., M. J., R., A. K., Zech, X. Z., Greg, H., & Rob, K. (2016). Preservation Methods Differ in Fecal Microbiome Stability, Affecting Suitability for Field Studies. mSystems, 1(3), 10.1128/msystems.00021-16. https://doi.org/10.1128/msystems.00021-16Krogsgaard, L. R., Andersen, L. O. ’Brien, Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syn-drome. Clinical and Translational Gastroenterology, 9(6), 161. https://doi.org/10.1038/s41424-018-0027-2Kumar, G., & Bhadury, P. (2022). Effect of different fixatives on yield of DNA from human fecal samples. IOP SciNotes, 3(2), 24002. https://doi.org/10.1088/2633-1357/ac6d2eLongmire, J., Maltbie, M., & Baker, R. J. (1997). Use of ‘Lysis Buffer’ in DNA isolation and its implication for museum collections /.Matysik, S., Le Roy, C. I., Liebisch, G., & Claus, S. P. (2016). Metabolomics of fecal samples: A practical consideration. Trends in Food Science & Technology, 57, 244–255. https://doi.org/10.1016/j.tifs.2016.05.011Menu, E., Mary, C., Toga, I., Raoult, D., Ranque, S., & Bittar, F. (2018). Evaluation of two DNA extraction methods for the PCR-based detection of eukaryotic enteric pathogens in fecal samples. BMC Research Notes, 11(1), 206. https://doi.org/10.1186/s13104-018-3300-2Morgan, C. A., Herman, N., White, P. A., & Vesey, G. (2006). Preservation of micro-organisms by drying; a review. Journal of Mi-crobiological Methods, 66(2), 183–193. https://doi.org/10.1016/j.mimet.2006.02.017Morgan, L. R., Marsh, K. J., Tolleson, D. R., & Youngentob, K. N. (2021). The Application of NIRS to Determine Animal Physiolog-ical Traits for Wildlife Management and Conservation. In Remote Sensing (Vol. 13, Issue 18). https://doi.org/10.3390/rs13183699Ngcamphalala, P. I., Lamb, J., & Mukaratirwa, S. (2019). Molecular identification of hookworm isolates from stray dogs, humans and selected wildlife from South Africa. Journal of Helminthology, 94, e39. https://doi.org/10.1017/S0022149X19000130Pabón, J., Zea, J., León, G., Hurtado, G., González, O., & Montealegre, J. (2001). La atmósfera, eltiempo y el clima. In P. Leyva (Ed.), El medio ambiente en Colombia. (pp. 35–91). Instituto de Hidrología, Meteorología y Estudios Ambientales, IDEAM.Papaiakovou, M., Pilotte, N., Baumer, B., Grant, J., Asbjornsdottir, K., Schaer, F., Hu, Y., Aroian, R., Walson, J., & Williams, S. A. (2018). A comparative analysis of preservation techniques for the optimal molecular detection of hookworm DNA in a human fecal specimen. PLoS Neglected Tropical Diseases, 12(1), e0006130. https://doi.org/10.1371/journal.pntd.0006130Plimpton, L. D., Henger, C. S., Munshi-South, J., Tufts, D., Kross, S., & Diuk-Wasser, M. (2021). Use of molecular scatology to assess the diet of feral cats living in urban colonies. Journal of Urban Ecology, 7(1), juab022. https://doi.org/10.1093/jue/juab022Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12). https://doi.org/10.3390/microorganisms9122546Seutin, G., White, B., & Boag, P. (1991). Seutin G, White BN, Boag PT.. Preservation of avian blood and tissue samples for DNA analyses. Can J Zool 69: 82-90. Canadian Journal of Zoology, 69, 82–90. https://doi.org/10.1139/z91-013van der Reis, A. L., Beckley, L. E., Olivar, M. P., & Jeffs, A. G. (2023). Nanopore short-read sequencing: A quick, cost-effective and accurate method for DNA metabarcoding. Environmental DNA, 5(2), 282–296. https://doi.org/10.1002/edn3.374Villamizar, X., Higuera, A., Herrera, G., Vasquez-A, L. R., Buitron, L., Muñoz, L. M., Gonzalez-C, F. E., Lopez, M. C., Giraldo, J. C., & Ramírez, J. D. (2019). Molecular and descriptive epidemiology of intestinal protozoan parasites of children and their pets in Cauca, Colombia: A cross-sectional study. BMC Infectious Diseases, 19(1), 190. https://doi.org/10.1186/s12879-019-3810-0Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0Wood, D. E., & Salzberg, S. L. (2014). Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Bi-ology, 15(3), R46. https://doi.org/10.1186/gb-2014-15-3-r46Wu, C., Chen, T., Xu, W., Zhang, T., Pei, Y., Yang, Y., Zhang, F., Guo, H., Wang, Q., Wang, L., & Zhao, B. (2021). The maintenance of microbial community in human fecal samples by a cost effective preservation buffer. Scientific Reports, 11(1), 13453. https://doi.org/10.1038/s41598-021-92869-7Wultsch, C., Waits, L. P., Hallerman, E. M., & Kelly, M. J. (2015). Optimizing collection methods for noninvasive genetic sampling of neotropical felids. Wildlife Society Bulletin, 39(2), 403–412. https://doi.org/10.1002/wsb.540Yu, Y., Lee, C., Kim, J., & Hwang, S. (2005). Group-specific primer and probe sets to detect methanogenic communities using quantitative real-time polymerase chain reaction. Biotechnology and Bioengineering, 89(6), 670–679. https://doi.org/10.1002/bit.20347Arce-Peña, N. P., Arroyo-Rodríguez, V., Dias, P. A. D., Franch-Pardo, I., & Andresen, E. (2019). Linking changes in landscape structure to population changes of an endangered primate. Landscape Ecology, 34(11), 2687–2701. https://doi.org/10.1007/s10980-019-00914-8Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., & Clément, K. (2021). Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 160(2), 573–599. https://doi.org/10.1053/j.gastro.2020.10.05Arshad, M. A., Hassan, F., Rehman, M. S., Huws, S. A., Cheng, Y., & Din, A. U. (2021). Gut microbiome colonization and development in neonatal ruminants: Strategies, prospects, and opportunities. Animal Nutrition, 7(3), 883–895. https://doi.org/10.1016/j.aninu.2021.03.004Avramenko, R. W., Redman, E. M., Lewis, R., Yazwinski, T. A., Wasmuth, J. D., & Gilleard, J. S. (2015). Exploring the Gastrointestinal “Nemabiome”: Deep Amplicon Sequencing to Quantify the Species Composition of Parasitic Nematode Communities. PLOS ONE, 10(12), e0143559. https://doi.org/10.1371/journal.pone.0143559Bard, S. M., & Cain, J. W. (2019). PATHOGEN PREVALANCE IN AMERICAN BLACK BEARS (URSUS AMERICANUS AMBLYCEPS) OF THE JEMEZ MOUNTAINS, NEW MEXICO, USA. Journal of Wildlife Diseases, 55(4), 745. https://doi.org/10.7589/2018-12-286Belvoncikova, P., Splichalova, P., Videnska, P., & Gardlik, R. (2022). The Human Mycobiome: Colonization, Composition and the Role in Health and Disease. Journal of Fungi, 8(10), 1046. https://doi.org/10.3390/jof8101046Berrilli, F., Di Cave, D., Cavallero, S., & D’Amelio, S. (2012). Interactions between parasites and microbial communities in the human gut. Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00141Blum, W. E. H., Zechmeister-Boltenstern, S., & Keiblinger, K. M. (2019). Does Soil Contribute to the Human Gut Microbiome? Microorganisms, 7(9), 287. https://doi.org/10.3390/microorganisms7090287BonDurant, R. H. (1997). Pathogenesis, Diagnosis, and Management of Trichomoniasis in Cattle. Veterinary Clinics of North America: Food Animal Practice, 13(2), 345–361. https://doi.org/10.1016/S0749-0720(15)30346-7Broom, D. M. (2019). Animal welfare complementing or conflicting with other sustainability issues. Applied Animal Behaviour Science, 219, 104829. https://doi.org/10.1016/j.applanim.2019.06.010Broom, D. M., Galindo, F. A., & Murgueitio, E. (2013). Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proceedings of the Royal Society B: Biological Sciences, 280(1771), 20132025. https://doi.org/10.1098/rspb.2013.2025Buret, A. G., Motta, J.-P., Allain, T., Ferraz, J., & Wallace, J. L. (2019). Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: A role for iron? Journal of Biomedical Science, 26(1), 1. https://doi.org/10.1186/s12929-018-0495-4Calo-Mata, P., Ageitos, J. M., Böhme, K., & Barros-Velázquez, J. (2016). Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. In T. G. Villa & M. Vinas (Eds.), New Weapons to Control Bacterial Growth (pp. 281–314). Springer International Publishing. https://doi.org/10.1007/978-3-319-28368-5_12Chen, S., Luo, S., & Yan, C. (2021). Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals, 12(1), 93. https://doi.org/10.3390/ani12010093Collántes-Fernández, E., Fort, M. C., Ortega-Mora, L. M., & Schares, G. (2018). Trichomonas. In M. Florin-Christensen & L. Schnittger (Eds.), Parasitic Protozoa of Farm Animals and Pets (pp. 313–388). Springer International Publishing. https://doi.org/10.1007/978-3-319-70132-5_14Da Silveira, A. W., De Oliveira, G. G., Menezes Santos, L., da Silva Azuaga, L. B., Macedo Coutinho, C. R., Echeverria, J. T., Antunes, T. R., do Nascimento Ramos, C. A., & Izabel de Souza, A. (2017). Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi. Journal of Wildlife Diseases, 53(2), 411–413. https://doi.org/10.7589/2016-06-149Danneskiold-Samsøe, N. B., Dias de Freitas Queiroz Barros, H., Santos, R., Bicas, J. L., Cazarin, C. B. B., Madsen, L., Kristiansen, K., Pastore, G. M., Brix, S., & Maróstica Júnior, M. R. (2019). Interplay between food and gut microbiota in health and disease. Food Research International, 115, 23–31. https://doi.org/10.1016/j.foodres.2018.07.043De Passillé, A., & Rushen, J. (2005). Food safety and environmental issues in animal welfare. Revue Scientifique et Technique-Office International Des Épizooties, 24(2), 757de Thoisy, B., Michel, J.-C., Vogel, I., & Vié, J.-C. (2000). A SURVEY OF HEMOPARASITE INFECTIONS IN FREE-RANGING MAMMALS AND REPTILES IN FRENCH GUIANA. Journal of Parasitology, 86(5), 1035–1040. https://doi.org/10.1645/0022-3395(2000)086[1035:ASOHII]2.0.CO;2Dworecka-Kaszak, B., Dąbrowska, I., & Kaszak, I. (2016). The mycobiome – a friendly cross-talk between fungal colonizers and their host. Annals of Parasitology, 62(3), 175–184. https://doi.org/10.17420/ap6203.51Echeverría, G., Reyna-Bello, A., Minda-Aluisa, E., Celi-Erazo, M., Olmedo, L., García, H. A., Garcia-Bereguiain, M. A., & de Waard, J. H. (2019). Serological evidence of Coxiella burnetii infection in cattle and farm workers: Is Q fever an underreported zoonotic disease in Ecuador? Infection and Drug Resistance, Volume 12, 701–706. https://doi.org/10.2147/IDR.S195940Eriksson, M., & Lindstrom, B. (2008). A salutogenic interpretation of the Ottawa Charter. Health Promotion International, 23(2), 190–199. https://doi.org/10.1093/heapro/dan014Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.Fisher, M. C., Henk, Daniel. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. https://doi.org/10.1038/nature10947Fox, J., Bouchet-Valat, M., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Grosjean, P., Heiberger, R., & Pour, K. K. (2015). Package ‘Rcmdr’.Frankish, C. J., Green, L. W., Ratner, P. A., Chomik, T., & Larsen, C. (1996). Health impact assessment as a tool for population health promotion and public policy. A Report Submitted to the Health Promotion Division of Health Canada. Institute of Health Promotion Research, University of British Columbia.Freed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1 [Preprint]. https://doi.org/10.17504/protocols.io.bfy3jpynGerace, E., Presti, V. D. M. L., & Biondo, C. (2019). Cryptosporidium infection: Epidemiology, pathogenesis, and differential diagnosis. European Journal of Microbiology and Immunology, 9(4), 119–123. https://doi.org/10.1556/1886.2019.00019Hatam-Nahavandi, K., Calero-Bernal, R., Rahimi, M. T., Pagheh, A. S., Zarean, M., Dezhkam, A., & Ahmadpour, E. (2021). Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Scientific Reports, 11(1), 9509. https://doi.org/10.1038/s41598-021-89031-8He, Y., Maltecca, C., & Tiezzi, F. (2021). Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals, 11(6), 1833. https://doi.org/10.3390/ani11061833IDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100 000 (Periodo 2018) [Map]. IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales. http://www.siac.gov.co/catalogo-de-mapasIkawa, K., Aoki, M., Ichikawa, M., & Itagaki, T. (2011). The first detection of Babesia species DNA from Japanese black bears (Ursus thibetanus japonicus) in Japan. Parasitology International, 60(2), 220–222. https://doi.org/10.1016/j.parint.2011.02.005Instituto Geográfico Agustín Codazzi (Igac). (2023). Datos abiertos Igac.Jackson, H. B., & Fahrig, L. (2012). What size is a biologically relevant landscape? Landscape Ecology, 27(7), 929–941. https://doi.org/10.1007/s10980-012-9757-9Jakob-Hoff, R. M., MacDiarmid, S. C., Lees, C., Miller, P. S., Travis, D., & Kock, R. (2014). Manual of procedures for wildlife disease risk analysis (Vol. 2014). World Organisation for Animal Health Paris, France.Jinnai, M., Kawabuchi-Kurata, T., Tsuji, M., Nakajima, R., Hirata, H., Fujisawa, K., Shiraki, H., Asakawa, M., Nasuno, T., & Ishihara, C. (2010). Molecular evidence of the multiple genotype infection of a wild Hokkaido brown bear (Ursus arctos yesoensis) by Babesia sp. UR1. Veterinary Parasitology, 173(1–2), 128–133. https://doi.org/10.1016/j.vetpar.2010.06.018Kohl, K. D. (2012). Diversity and function of the avian gut microbiota. Journal of Comparative Physiology B, 182(5), 591–602. https://doi.org/10.1007/s00360-012-0645-zKohler, W. (2004). Infectious Diseases Transmissible from Animals to Humans. International Journal of Medical Microbiology, 293(7/8), 548.Krogsgaard, L. R., Andersen, L. O., Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), e161. https://doi.org/10.1038/s41424-018-0027-2Laha, R., Das, M., & Sen, A. (2015). Morphology, epidemiology, and phylogeny of Babesia: An overview. Tropical Parasitology, 5(2), 94.Lange, K., Buerger, M., Stallmach, A., & Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 34(3), 260–268. https://doi.org/10.1159/000443360Lantz, E. L., Lonsdorf, E. V., Heintz, M. R., Murray, C. M., Lipende, I., Travis, D. A., & Santymire, R. M. (2018). Non‐invasive quantification of immunoglobulin A in chimpanzees ( Pan troglodytes schweinfurthii ) at Gombe National Park, Tanzania. American Journal of Primatology, 80(1), e22558. https://doi.org/10.1002/ajp.22558Lausch, A. (2002). Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5Leung, J. M., Graham, A. L., & Knowles, S. C. L. (2018). Parasite-Microbiota Interactions With the Vertebrate Gut: Synthesis Through an Ecological Lens. Frontiers in Microbiology, 9, 843. https://doi.org/10.3389/fmicb.2018.00843Li, X., Nguyen, T., Xiao, C., Levy, A., Akagi, Y., Silkie, S., & Atwill, E. R. (2020). Prevalence and Genotypes of Cryptosporidium in Wildlife Populations Co-Located in a Protected Watershed in the Pacific Northwest, 2013 to 2016. Microorganisms, 8(6), 914. https://doi.org/10.3390/microorganisms8060914Limon, J. J., Skalski, J. H., & Underhill, D. M. (2017). Commensal Fungi in Health and Disease. Cell Host & Microbe, 22(2), 156–165. https://doi.org/10.1016/j.chom.2017.07.002Longmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collections.Lovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409Luo, J., Cheng, Y., Guo, L., Wang, A., Lu, M., & Xu, L. (2021). Variation of gut microbiota caused by an imbalance diet is detrimental to bugs’ survival. Science of The Total Environment, 771, 144880. https://doi.org/10.1016/j.scitotenv.2020.144880Mancera, K. F., Zarza, H., de Buen, L. L., García, A. A. C., Palacios, F. M., & Galindo, F. (2018). Integrating links between tree coverage and cattle welfare in silvopastoral systems evaluation. Agronomy for Sustainable Development, 38(2), 19. https://doi.org/10.1007/s13593-018-0497-3Mans, B. J., Pienaar, R., & Latif, A. A. (2015). A review of Theileria diagnostics and epidemiology. International Journal for Parasitology: Parasites and Wildlife, 4(1), 104–118. https://doi.org/10.1016/j.ijppaw.2014.12.006McCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge University Press.Miralles-Wilhelm, F. (2021). Nature-based solutions in agriculture: Sustainable management and conservation of land, water and biodiversity. Food & Agriculture Org.Navarro M., D., Chávez V., A., Pinedo V., R., & Muñoz D., K. (2015). Factores de Riesgo Asociados a la Seroprevalencia de Toxoplasma gondii en Mamíferos del Orden Carnivora y Primates Mantenidos en Cautiverio. Revista de Investigaciones Veterinarias Del Perú, 26(3), 497. https://doi.org/10.15381/rivep.v26i3.11175O’Callaghan, T. F., Ross, R. P., Stanton, C., & Clarke, G. (2016). The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 56, S44–S55. https://doi.org/10.1016/j.domaniend.2016.05.003Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295.Olias, P., Schade, B., & Mehlhorn, H. (2011). Molecular pathology, taxonomy and epidemiology of Besnoitia species (Protozoa: Sarcocystidae). Infection, Genetics and Evolution, 11(7), 1564–1576. https://doi.org/10.1016/j.meegid.2011.08.006Ostfeld, R., Glass, G., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20(6), 328–336. https://doi.org/10.1016/j.tree.2005.03.009Parajuli, A., Hui, N., Puhakka, R., Oikarinen, S., Grönroos, M., Selonen, V. A. O., Siter, N., Kramna, L., Roslund, M. I., Vari, H. K., Nurminen, N., Honkanen, H., Hintikka, J., Sarkkinen, H., Romantschuk, M., Kauppi, M., Valve, R., Cinek, O., Laitinen, O. H., … Sinkkonen, A. (2020). Yard vegetation is associated with gut microbiota composition. Science of The Total Environment, 713, 136707. https://doi.org/10.1016/j.scitotenv.2020.136707Park, H., Yeo, S., Arellano, K., Kim, H. R., & Holzapfel, W. (2018). Role of the gut microbiota in health and disease. Probiotics and Prebiotics in Animal Health and Food Safety, 35–62.Perry, R. W., Thill, R. E., & Leslie Jr, D. M. (2007). Selection of roosting habitat by forest bats in a diverse forested landscape. Forest Ecology and Management, 238(1–3), 156–166.Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13–14.Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. A. (2008). Identifying factors associated with the spatial distribution of disease. Spatial Analysis in Epidemiology, 81–109. https://doi.org/10.1093/acprof:oso/9780198509882.003.0007Phillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Frontiers in Ecology and Evolution, 6, 148. https://doi.org/10.3389/fevo.2018.00148Rashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282Rizzetto, L., De Filippo, C., & Cavalieri, D. (2014). Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. European Journal of Immunology, 44(11), 3166–3181. https://doi.org/10.1002/eji.201344403Roncancio-Duque, N., García-Ariza, J. E., Rivera-Franco, N., Gonzalez-Ríos, A. M., & López-Alvarez, D. (2024). Comparison of DNA quantity and quality from fecal samples of mammals transported in ethanol or lysis buffer. One Health, 18, 100731. https://doi.org/10.1016/j.onehlt.2024.100731Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546Rulli, M. C., D’Odorico, P., Galli, N., & Hayman, D. T. S. (2021). Land-use change and the livestock revolution increase the risk of zoonotic coronavirus transmission from rhinolophid bats. Nature Food, 2(6), 409–416. https://doi.org/10.1038/s43016-021-00285-xRyan, U., Zahedi, A., & Paparini, A. (2016). Cryptosporidium in humans and animals—A one health approach to prophylaxis. Parasite Immunology, 38(9), 535–547. https://doi.org/10.1111/pim.12350Sánchez-Romero, R., Balvanera, P., Castillo, A., Mora, F., García-Barrios, L. E., & González-Esquivel, C. E. (2021). Management strategies, silvopastoral practices and socioecological drivers in traditional livestock systems in tropical dry forests: An integrated analysis. Forest Ecology and Management, 479, 118506. https://doi.org/10.1016/j.foreco.2020.118506Sauvaitre, T., Etienne-Mesmin, L., Sivignon, A., Mosoni, P., Courtin, C. M., Van de Wiele, T., & Blanquet-Diot, S. (2021). Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: Towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 45(2), fuaa052. https://doi.org/10.1093/femsre/fuaa052Skinner, D., Mitcham, J. R., Starkey, L. A., Noden, B. H., Fairbanks, W. S., & Little, S. E. (2017). PREVALENCE OF BABESIA SPP., EHRLICHIA SPP., AND TICK INFESTATIONS IN OKLAHOMA BLACK BEARS ( URSUS AMERICANUS ). Journal of Wildlife Diseases, 53(4), 781–787. https://doi.org/10.7589/2017-02-029Sokal, R. R., Rohlf, F. J., & Rohlf, J. F. (1995). Biometry. Macmillan.Solórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0Song, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, Q., Chen, Y., & Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 140, 109858. https://doi.org/10.1016/j.foodres.2020.109858Stensvold, C. R., & van der Giezen, M. (2018). Associations between Gut Microbiota and Common Luminal Intestinal Parasites. Trends in Parasitology, 34(5), 369–377. https://doi.org/10.1016/j.pt.2018.02.004van der Linden, A., de Olde, E. M., Mostert, P. F., & de Boer, I. J. M. (2020). A review of European models to assess the sustainability performance of livestock production systems. Agricultural Systems, 182, 102842. https://doi.org/10.1016/j.agsy.2020.102842Williams, A. R., Myhill, L. J., Stolzenbach, S., Nejsum, P., Mejer, H., Nielsen, D. S., & Thamsborg, S. M. (2021). Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Veterinary Research, 17(1), 62. https://doi.org/10.1186/s12917-021-02752-wWorsley, S. F., Davies, C. S., Mannarelli, M.-E., Hutchings, M. I., Komdeur, J., Burke, T., Dugdale, H. L., & Richardson, D. S. (2021). Gut microbiome composition, not alpha diversity, is associated with survival in a natural vertebrate population. Animal Microbiome, 3(1), 84. https://doi.org/10.1186/s42523-021-00149-6Yabsley, M. J., Murphy, S. M., & Cunningham, M. W. (2006). Molecular Detection and Characterization of Cytauxzoon felis and a Babesia Species in Cougars from Florida. Journal of Wildlife Diseases, 42(2), 366–374. https://doi.org/10.7589/0090-3558-42.2.366Yoo, J., Groer, M., Dutra, S., Sarkar, A., & McSkimming, D. (2020). Gut Microbiota and Immune System Interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587Acevedo-Whitehouse, K., & Duffus, A. L. J. (2009). Effects of environmental change on wildlife health. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1534), 3429–3438. https://doi.org/10.1098/rstb.2009.0128Aguirre, A. A. (2009). Wild canids as sentinels of ecological health: A conservation medicine perspective. Parasites & Vectors, 2(Suppl 1), S7. https://doi.org/10.1186/1756-3305-2-S1-S7Aguirre, A. A., Ostfeld, R. S., Tabor, G. M., House, C., & Pearl, M. C. (2002). Conservation medicine: Ecological health in practice. Oxford University Press.Arce-Peña, N. P., Arroyo-Rodríguez, V., Dias, P. A. D., Franch-Pardo, I., & Andresen, E. (2019). Linking changes in landscape structure to population changes of an endangered primate. Landscape Ecology, 34(11), 2687–2701. https://doi.org/10.1007/s10980-019-00914-8Aron-Wisnewsky, J., Warmbrunn, M. V., Nieuwdorp, M., & Clément, K. (2021). Metabolism and Metabolic Disorders and the Microbiome: The Intestinal Microbiota Associated With Obesity, Lipid Metabolism, and Metabolic Health—Pathophysiology and Therapeutic Strategies. Gastroenterology, 160(2), 573–599. https://doi.org/10.1053/j.gastro.2020.10.057Artois, M., Bengis, R., Delahay, R. J., Duchêne, M.-J., Duff, J. P., Ferroglio, E., Gortazar, C., Hutchings, M. R., Kock, R. A., Leighton, F. A., Mörner, T., & Smith, G. C. (2009). Wildlife Disease Surveillance and Monitoring. In R. J. Delahay, G. C. Smith, & M. R. Hutchings (Eds.), Management of Disease in Wild Mammals (pp. 187–213). Springer Japan. https://doi.org/10.1007/978-4-431-77134-0_10Barrett, L. G., Thrall, P. H., Burdon, J. J., & Linde, C. C. (2008). Life history determines genetic structure and evolutionary potential of host–parasite interactions. Trends in Ecology & Evolution, 23(12), 678–685. https://doi.org/10.1016/j.tree.2008.06.017Baruch-Mordo, S., Wilson, K. R., Lewis, D. L., Broderick, J., Mao, J. S., & Breck, S. W. (2014). Stochasticity in natural forage production affects use of urban areas by black bears: Implications to management of human-bear conflicts. PloS One, 9(1), e85122.Becker, D. J., Streicker, D. G., & Altizer, S. (2015). Linking anthropogenic resources to wildlife–pathogen dynamics: A review and meta‐analysis. Ecology Letters, 18(5), 483–495. https://doi.org/10.1111/ele.12428Begon, M., & Townsend, C. R. (2021). Ecology: From individuals to ecosystems. John Wiley & SonsBelvoncikova, P., Splichalova, P., Videnska, P., & Gardlik, R. (2022). The Human Mycobiome: Colonization, Composition and the Role in Health and Disease. Journal of Fungi, 8(10), 1046. https://doi.org/10.3390/jof8101046Biek, R., & Real, L. A. (2010). The landscape genetics of infectious disease emergence and spread. Molecular Ecology, 19(17), 3515–3531. https://doi.org/10.1111/j.1365-294X.2010.04679.xBlum, W. E. H., Zechmeister-Boltenstern, S., & Keiblinger, K. M. (2019). Does Soil Contribute to the Human Gut Microbiome? Microorganisms, 7(9), 287. https://doi.org/10.3390/microorganisms7090287Bonte, D., Van Dyck, H., Bullock, J. M., Coulon, A., Delgado, M., Gibbs, M., Lehouck, V., Matthysen, E., Mustin, K., Saastamoinen, M., Schtickzelle, N., Stevens, V. M., Vandewoestijne, S., Baguette, M., Barton, K., Benton, T. G., Chaput‐Bardy, A., Clobert, J., Dytham, C., … Travis, J. M. J. (2012). Costs of dispersal. Biological Reviews, 87(2), 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.xBorcard, D., Gillet, F., & Legendre, P. (2011). Numerical ecology with R (Vol. 2). Springer.Bronson, E., Spiker, H., & Driscoll, C. P. (2014). Serosurvey for selected pathogens in free-ranging American black bears (Ursus americanus) in Maryland, USA. Journal of Wildlife Diseases, 50(4), 829–836.Buret, A. G., Motta, J.-P., Allain, T., Ferraz, J., & Wallace, J. L. (2019). Pathobiont release from dysbiotic gut microbiota biofilms in intestinal inflammatory diseases: A role for iron? Journal of Biomedical Science, 26(1), 1. https://doi.org/10.1186/s12929-018-0495-4Bustamante-Manrique, S. (2023). Efeito da restrição de hábitat no comportamento de bugios (Alouatta spp.).Bustamante-Manrique, S., Botero-Henao, N., Castaño, J. H., & Link, A. (2021). Activity budget, home range and diet of the Colombian night monkey (Aotus lemurinus) in peri-urban forest fragments. Primates, 62(3), 529–536. https://doi.org/10.1007/s10329-021-00895-wCalo-Mata, P., Ageitos, J. M., Böhme, K., & Barros-Velázquez, J. (2016). Intestinal Microbiota: First Barrier Against Gut-Affecting Pathogens. In T. G. Villa & M. Vinas (Eds.), New Weapons to Control Bacterial Growth (pp. 281–314). Springer International Publishing. https://doi.org/10.1007/978-3-319-28368-5_12Chapman, C. A., Gillespie, T. R., & Goldberg, T. L. (2005). Primates and the ecology of their infectious diseases: How will anthropogenic change affect host‐parasite interactions? Evolutionary Anthropology: Issues, News, and Reviews: Issues, News, and Reviews, 14(4), 134–144.Charlier, J., Van Der Voort, M., Kenyon, F., Skuce, P., & Vercruysse, J. (2014). Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30(7), 361–367. https://doi.org/10.1016/j.pt.2014.04.009Chen, S., Luo, S., & Yan, C. (2021). Gut Microbiota Implications for Health and Welfare in Farm Animals: A Review. Animals, 12(1), 93. https://doi.org/10.3390/ani12010093Clayton, D. H., & Moore, J. (1997). Host-parasite evolution: General principles and avian models. (No Title).Da Silveira, A. W., De Oliveira, G. G., Menezes Santos, L., da Silva Azuaga, L. B., Macedo Coutinho, C. R., Echeverria, J. T., Antunes, T. R., do Nascimento Ramos, C. A., & Izabel de Souza, A. (2017). Natural Infection of the South American Tapir ( Tapirus terrestris ) by Theileria equi. Journal of Wildlife Diseases, 53(2), 411–413. https://doi.org/10.7589/2016-06-149Danneskiold-Samsøe, N. B., Dias de Freitas Queiroz Barros, H., Santos, R., Bicas, J. L., Cazarin, C. B. B., Madsen, L., Kristiansen, K., Pastore, G. M., Brix, S., & Maróstica Júnior, M. R. (2019). Interplay between food and gut microbiota in health and disease. Food Research International, 115, 23–31. https://doi.org/10.1016/j.foodres.2018.07.043Daszak, P., Cunningham, A. A., & Hyatt, A. D. (2000). Emerging Infectious Diseases of Wildlife—Threats to Biodiversity and Human Health. Science, 287(5452), 443–449. https://doi.org/10.1126/science.287.5452.443Deem, S. L. (2015). Conservation medicine to one health: The role of zoologic veterinarians. In Fowler’s Zoo and Wild Animal Medicine, Volume 8 (pp. 698–703). Elsevier.Delahay, R., & Delahay, R. J. (Eds.). (2009). Management of disease in wild mammals (1. ed). Springer.Dubey, J., & Jones, J. (2008). Toxoplasma gondii infection in humans and animals in the United States. International Journal for Parasitology, 38(11), 1257–1278.Dworecka-Kaszak, B., Dąbrowska, I., & Kaszak, I. (2016). The mycobiome – a friendly cross-talk between fungal colonizers and their host. Annals of Parasitology, 62(3), 175–184. https://doi.org/10.17420/ap6203.51Echeverría, G., Reyna-Bello, A., Minda-Aluisa, E., Celi-Erazo, M., Olmedo, L., García, H. A., Garcia-Bereguiain, M. A., & de Waard, J. H. (2019). Serological evidence of Coxiella burnetii infection in cattle and farm workers: Is Q fever an underreported zoonotic disease in Ecuador? Infection and Drug Resistance, Volume 12, 701–706. https://doi.org/10.2147/IDR.S195940Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters, 14(2), 101–112. https://doi.org/10.1111/j.1461-0248.2010.01559.xFehlmann, G., O’riain, M. J., FÜrtbauer, I., & King, A. J. (2020). Behavioral Causes, Ecological Consequences, and Management Challenges Associated with Wildlife Foraging in Human-Modified Landscapes. BioScience, biaa129. https://doi.org/10.1093/biosci/biaa129Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315.Fisher, M. C., Henk, Daniel. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., & Gurr, S. J. (2012). Emerging fungal threats to animal, plant and ecosystem health. Nature, 484(7393), 186–194. https://doi.org/10.1038/nature10947Fletcher, S. M., Stark, D., Harkness, J., & Ellis, J. (2012). Enteric Protozoa in the Developed World: A Public Health Perspective. Clinical Microbiology Reviews, 25(3), 420–449. https://doi.org/10.1128/CMR.05038-11Fountain‐Jones, N. M., Craft, M. E., Funk, W. C., Kozakiewicz, C., Trumbo, D. R., Boydston, E. E., Lyren, L. M., Crooks, K., Lee, J. S., VandeWoude, S., & Carver, S. (2017). Urban landscapes can change virus gene flow and evolution in a fragmentation‐sensitive carnivore. Molecular Ecology, 26(22), 6487–6498. https://doi.org/10.1111/mec.14375Fox, J., Bouchet-Valat, M., Andronic, L., Ash, M., Boye, T., Calza, S., Chang, A., Grosjean, P., Heiberger, R., & Pour, K. K. (2015). Package ‘Rcmdr’Freed, N., & Silander, O. (2020). DNA quantification using the Qubit fluorometer v1 [Preprint]. https://doi.org/10.17504/protocols.io.bfy3jpynGale, P., Drew, T., Phipps, L. P., David, G., & Wooldridge, M. (2009). The effect of climate change on the occurrence and prevalence of livestock diseases in Great Britain: A review. Journal of Applied Microbiology, 106(5), 1409–1423. https://doi.org/10.1111/j.1365-2672.2008.04036.xGarcía Marín, J. F., Royo, L. J., Oleaga, A., Gayo, E., Alarcia, O., Pinto, D., Martínez, I. Z., González, P., Balsera, R., & Marcos, J. L. (2018). Canine adenovirus type 1 (CA dV‐1) in free‐ranging European brown bear (Ursus arctos arctos): A threat for Cantabrian population? Transboundary and Emerging Diseases, 65(6), 2049–2056.Giraldo, P., Gómez-Posada, C., Martínez, J., & Kattan, G. (2007). Resource Use and Seed Dispersal by Red Howler Monkeys ( Alouatta seniculus ) in a Colombian Andean Forest. Neotropical Primates, 14(2), 55–64. https://doi.org/10.1896/044.014.0202Hatam-Nahavandi, K., Calero-Bernal, R., Rahimi, M. T., Pagheh, A. S., Zarean, M., Dezhkam, A., & Ahmadpour, E. (2021). Toxoplasma gondii infection in domestic and wild felids as public health concerns: A systematic review and meta-analysis. Scientific Reports, 11(1), 9509. https://doi.org/10.1038/s41598-021-89031-8He, Y., Maltecca, C., & Tiezzi, F. (2021). Potential Use of Gut Microbiota Composition as a Biomarker of Heat Stress in Monogastric Species: A Review. Animals, 11(6), 1833. https://doi.org/10.3390/ani11061833IDEAM. (2021). Mapa de Coberturas de la Tierra. Metodología CORINE Land Cover adaptada para Colombia, escala 1:100 000 (Periodo 2018) [Map]. IDEAM–Instituto de Hidrología Meteorología y Estudios Ambientales. http://www.siac.gov.co/catalogo-de-mapasIDEAM (Instituto de Hidrología, M. y E. A. de C. (2017). Resultados Monitoreo de la deforestación 2017.Imam, T. (2011). The complexities in the classification of protozoa: A challenge to parasitologists. Bayero Journal of Pure and Applied Sciences, 2(2), 159–164. https://doi.org/10.4314/bajopas.v2i2.63805Ishibashi, Y., Oi, T., Arimoto, I., Fujii, T., Mamiya, K., Nishi, N., Sawada, S., Tado, H., & Yamada, T. (2017). Loss of allelic diversity in the MHC class II DQB gene in western populations of the Japanese black bear Ursus thibetanus japonicus. Conservation Genetics, 18(2), 247–260.Jackson, H. B., & Fahrig, L. (2012). What size is a biologically relevant landscape? Landscape Ecology, 27(7), 929–941. https://doi.org/10.1007/s10980-012-9757-9Jakob-Hoff, R. M., MacDiarmid, S. C., Lees, C., Miller, P. S., Travis, D., & Kock, R. (2014). Manual of procedures for wildlife disease risk analysis (Vol. 2014). World Organisation for Animal Health Paris, France.Jenkins, E. J., Simon, A., Bachand, N., & Stephen, C. (2015). Wildlife parasites in a One Health world. Trends in Parasitology, 31(5), 174–180. https://doi.org/10.1016/j.pt.2015.01.002Jensen, S. K., Aars, J., Lydersen, C., Kovacs, K. M., & Åsbakk, K. (2010). The prevalence of Toxoplasma gondii in polar bears and their marine mammal prey: Evidence for a marine transmission pathway? Polar Biology, 33(5), 599–606. https://doi.org/10.1007/s00300-009-0735-xJin, Y., Wu, S., Zeng, Z., & Fu, Z. (2017). Effects of environmental pollutants on gut microbiota. Environmental Pollution, 222, 1–9. https://doi.org/10.1016/j.envpol.2016.11.045Keesing, F., Belden, L. K., Daszak, P., Dobson, A., Harvell, C. D., Holt, R. D., Hudson, P., Jolles, A., Jones, K. E., Mitchell, C. E., Myers, S. S., Bogich, T., & Ostfeld, R. S. (2010). Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature, 468(7324), 647–652. https://doi.org/10.1038/nature09575Klain, V., Mentz, M. B., Bustamante-Manrique, S., & Bicca-Marques, J. C. (2023). Landscape structure has a weak influence on the parasite richness of an arboreal folivorous–frugivorous primate in anthropogenic landscapes. Landscape Ecology, 38(5), 1237–1247. https://doi.org/10.1007/s10980-023-01603-3Kohler, W. (2004). Infectious Diseases Transmissible from Animals to Humans. International Journal of Medical Microbiology, 293(7/8), 548.Kowalewski, M. M., Garber, P. A., Cortés-Ortiz, L., Urbani, B., & Youlatos, D. (Eds.). (2015). Howler monkeys: Behavior, ecology and conservation. Springer.Krogsgaard, L. R., Andersen, L. O., Johannesen, T. B., Engsbro, A. L., Stensvold, C. R., Nielsen, H. V., & Bytzer, P. (2018). Characteristics of the bacterial microbiome in association with common intestinal parasites in irritable bowel syndrome. Clinical and Translational Gastroenterology, 9(6), e161. https://doi.org/10.1038/s41424-018-0027-2Lange, K., Buerger, M., Stallmach, A., & Bruns, T. (2016). Effects of Antibiotics on Gut Microbiota. Digestive Diseases, 34(3), 260–268. https://doi.org/10.1159/000443360Lausch, A. (2002). Applicability of landscape metrics for the monitoring of landscape change: Issues of scale, resolution and interpretability. Ecological Indicators, 2(1–2), 3–15. https://doi.org/10.1016/S1470-160X(02)00053-5Leeming, E. R., Johnson, A. J., Spector, T. D., & Le Roy, C. I. (2019). Effect of Diet on the Gut Microbiota: Rethinking Intervention Duration. Nutrients, 11(12), 2862. https://doi.org/10.3390/nu11122862Limon, J. J., Skalski, J. H., & Underhill, D. M. (2017). Commensal Fungi in Health and Disease. Cell Host & Microbe, 22(2), 156–165. https://doi.org/10.1016/j.chom.2017.07.002Longmire, J. L., Maltbie, M., & Baker, R. J. (1997). Use of" lysis buffer" in DNA isolation and its implication for museum collectionsLovarelli, D., Bacenetti, J., & Guarino, M. (2020). A review on dairy cattle farming: Is precision livestock farming the compromise for an environmental, economic and social sustainable production? Journal of Cleaner Production, 262, 121409. https://doi.org/10.1016/j.jclepro.2020.121409Lu, J., Rincon, N., Wood, D. E., Breitwieser, F. P., Pockrandt, C., Langmead, B., Salzberg, S. L., & Steinegger, M. (2022). Metagenome analysis using the Kraken software suite. Nature Protocols, 17(12), 2815–2839. https://doi.org/10.1038/s41596-022-00738-yLuo, J., Cheng, Y., Guo, L., Wang, A., Lu, M., & Xu, L. (2021). Variation of gut microbiota caused by an imbalance diet is detrimental to bugs’ survival. Science of The Total Environment, 771, 144880. https://doi.org/10.1016/j.scitotenv.2020.144880Mackenstedt, U., Jenkins, D., & Romig, T. (2015). The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. International Journal for Parasitology: Parasites and Wildlife, 4(1), 71–79Martínez-Mota, R., Pozo-Montuy, G., Bonilla Sánchez, Y. M., & Gillespie, T. R. (2018). Effects of anthropogenic stress on the presence of parasites in a threatened population of black howler monkeys (Alouatta pigra). Therya, 9(2), 161–169. https://doi.org/10.12933/therya-18-572Mazmanian, S. K., & Lee, Y. K. (2014). Interplay between Intestinal Microbiota and Host Immune System. Journal of Bacteriology and Virology, 44(1), 1. https://doi.org/10.4167/jbv.2014.44.1.1McCarthy, M. A. (2007). Bayesian Methods for Ecology. Cambridge University Press.McKenzie, V. J., Song, S. J., Delsuc, F., Prest, T. L., Oliverio, A. M., Korpita, T. M., Alexiev, A., Amato, K. R., Metcalf, J. L., Kowalewski, M., Avenant, N. L., Link, A., Di Fiore, A., Seguin-Orlando, A., Feh, C., Orlando, L., Mendelson, J. R., Sanders, J., & Knight, R. (2017). The Effects of Captivity on the Mammalian Gut Microbiome. Integrative and Comparative Biology, 57(4), 690–704. https://doi.org/10.1093/icb/icx090Miller, S., Zieger, U., Ganser, C., Satterlee, S. A., Bankovich, B., Amadi, V., Hariharan, H., Stone, D., & Wisely, S. M. (2015). INFLUENCE OF LAND USE AND CLIMATE ON SALMONELLA CARRIER STATUS IN THE SMALL INDIAN MONGOOSE ( HERPESTES AUROPUNCTATUS ) IN GRENADA, WEST INDIES. Journal of Wildlife Diseases, 51(1), 60–68. https://doi.org/10.7589/2014-02-046Molina Benavides, R. A., Campos Gaona, R., Sánchez Guerrero, H., Giraldo Patiño, L., & Atzori, A. S. (2019). Sustainable Feedbacks of Colombian Paramos Involving Livestock, Agricultural Activities, and Sustainable Development Goals of the Agenda 2030. Systems, 7(4), 52. https://doi.org/10.3390/systems7040052Monsalve-Buriticá, S. (2019). Enfermedades emergentes y reemergentes de origen viral o bacteriano en Colombia. Fondo Editorial Biogénesis, 49–62.Montilla, S. O., Mopán-Chilito, A. M., Murcia, L. N. S., Triana, J. D. M., Ruiz, O. M. C., Montoya-Cepeda, J., Gutierrez-Barreto, D. A., Holguín-Vivas, J. A., Agámez, C. J., Pérez-Grisales, L. J., Cruz-Moncada, M., Corredor-Durango, N. J., Díaz, E. A. C., Cardona-Cardona, A. H., Franco-Pérez, E., Rivera-Ospina, A. M., & Link, A. (2021). Activity Patterns, Diet and Home Range of Night Monkeys (Aotus griseimembra and Aotus lemurinus) in Tropical Lowland and Mountain Forests of Central Colombia. International Journal of Primatology, 42(1), 130–153. https://doi.org/10.1007/s10764-020-00192-1Muehlenbein, M. P. (2006). Intestinal parasite infections and fecal steroid levels in wild chimpanzees. American Journal of Physical Anthropology, 130(4), 546–550. https://doi.org/10.1002/ajpa.20391Nourani, L., Zakeri, S., & Dinparast Djadid, N. (2020). Dynamics of prevalence and distribution pattern of avian Plasmodium species and its vectors in diverse zoogeographical areas—A review. Infection, Genetics and Evolution, 81, 104244. https://doi.org/10.1016/j.meegid.2020.104244Nunn, C., & Altizer, S. M. (2006). Infectious diseases in primates: Behavior, ecology and evolution. Oxford University Press, USA.O’Callaghan, T. F., Ross, R. P., Stanton, C., & Clarke, G. (2016). The gut microbiome as a virtual endocrine organ with implications for farm and domestic animal endocrinology. Domestic Animal Endocrinology, 56, S44–S55. https://doi.org/10.1016/j.domaniend.2016.05.003Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’hara, R., Simpson, G. L., Solymos, P., Stevens, M. H. H., & Wagner, H. (2013). Package ‘vegan’. Community Ecology Package, Version, 2(9), 1–295.Ostfeld, R., Glass, G., & Keesing, F. (2005). Spatial epidemiology: An emerging (or re-emerging) discipline. Trends in Ecology & Evolution, 20(6), 328–336. https://doi.org/10.1016/j.tree.2005.03.009Ottman, N., Smidt, H., De Vos, W. M., & Belzer, C. (2012). The function of our microbiota: Who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2. https://doi.org/10.3389/fcimb.2012.00104Palma, A. C., Vélez, A., Gómez‐Posada, C., López, H., Zárate, D. A., & Stevenson, P. R. (2011). Use of space, activity patterns, and foraging behavior of red howler monkeys ( Alouatta seniculus ) in an Andean forest fragment in Colombia. American Journal of Primatology, 73(10), 1062–1071. https://doi.org/10.1002/ajp.20973Pang, K.-L., Hassett, B. T., Shaumi, A., Guo, S.-Y., Sakayaroj, J., Chiang, M. W.-L., Yang, C.-H., & Jones, E. B. G. (2021). Pathogenic fungi of marine animals: A taxonomic perspective. Fungal Biology Reviews, 38, 92–106. https://doi.org/10.1016/j.fbr.2021.03.008Parajuli, A., Hui, N., Puhakka, R., Oikarinen, S., Grönroos, M., Selonen, V. A. O., Siter, N., Kramna, L., Roslund, M. I., Vari, H. K., Nurminen, N., Honkanen, H., Hintikka, J., Sarkkinen, H., Romantschuk, M., Kauppi, M., Valve, R., Cinek, O., Laitinen, O. H., … Sinkkonen, A. (2020). Yard vegetation is associated with gut microbiota composition. Science of The Total Environment, 713, 136707. https://doi.org/10.1016/j.scitotenv.2020.136707Park, H., Yeo, S., Arellano, K., Kim, H. R., & Holzapfel, W. (2018). Role of the gut microbiota in health and disease. Probiotics and Prebiotics in Animal Health and Food Safety, 35–62.Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018). Package ‘performanceanalytics’. R Team Cooperation, 3, 13–14.Pfeiffer, D. U., Robinson, T. P., Stevenson, M., Stevens, K. B., Rogers, D. J., & Clements, A. C. A. (2008). Identifying factors associated with the spatial distribution of disease. Spatial Analysis in Epidemiology, 81–109. https://doi.org/10.1093/acprof:oso/9780198509882.003.0007Phillips, J. N., Berlow, M., & Derryberry, E. P. (2018). The Effects of Landscape Urbanization on the Gut Microbiome: An Exploration Into the Gut of Urban and Rural White-Crowned Sparrows. Frontiers in Ecology and Evolution, 6, 148. https://doi.org/10.3389/fevo.2018.00148Qin, W., Song, P., Lin, G., Huang, Y., Wang, L., Zhou, X., Li, S., & Zhang, T. (2020). Gut Microbiota Plasticity Influences the Adaptability of Wild and Domestic Animals in Co-inhabited Areas. Frontiers in Microbiology, 11, 125. https://doi.org/10.3389/fmicb.2020.00125Rashid, M., Rashid, M. I., Akbar, H., Ahmad, L., Hassan, M. A., Ashraf, K., Saeed, K., & Gharbi, M. (2019). A systematic review on modelling approaches for economic losses studies caused by parasites and their associated diseases in cattle. Parasitology, 146(2), 129–141. https://doi.org/10.1017/S0031182018001282Rinninella, E., Raoul, P., Cintoni, M., Franceschi, F., Miggiano, G., Gasbarrini, A., & Mele, M. (2019). What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms, 7(1), 14. https://doi.org/10.3390/microorganisms7010014Rizzetto, L., De Filippo, C., & Cavalieri, D. (2014). Richness and diversity of mammalian fungal communities shape innate and adaptive immunity in health and disease. European Journal of Immunology, 44(11), 3166–3181. https://doi.org/10.1002/eji.201344403Rodríguez-Vivas, R. I., Grisi, L., Pérez de León, A. A., Silva Villela, H., Torres-Acosta, J. F. de J., Fragoso Sánchez, H., Romero Salas, D., Rosario Cruz, R., Saldierna, F., & García Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8(1), 61. https://doi.org/10.22319/rmcp.v8i1.4305Roncancio Duque, N. J. (2021). Effect of landscape modification on primate assemblages of the Magdalena River Valley, Colombia. Caldasia, 43(2), 261–273. https://doi.org/10.15446/caldasia.v43n2.84845Roncancio Duque, N. J., Rojas Días, V., Ríos Franco, C. A., Gómez-Posada, C., Gutiérrez-Chacón, C., Giraldo, P., Velasco, J. A., & Franco, P. (2012). Plan de conservación y manejo del tití gris (Saguinus leucopus). 45.Rondón, S., Cavallero, S., Renzi, E., Link, A., González, C., & D’Amelio, S. (2021). Parasites of Free-Ranging and Captive American Primates: A Systematic Review. Microorganisms, 9(12), 2546. https://doi.org/10.3390/microorganisms9122546Rondón, S., León, C., Link, A., & González, C. (2019). Prevalence of Plasmodium parasites in non-human primates and mosquitoes in areas with different degrees of fragmentation in Colombia. Malaria Journal, 18(1), 1–10.Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., & Tuohy, K. (2018). Gut microbiota functions: Metabolism of nutrients and other food components. European Journal of Nutrition, 57(1), 1–24. https://doi.org/10.1007/s00394-017-1445-8Ryan, U., Zahedi, A., & Paparini, A. (2016). Cryptosporidium in humans and animals—A one health approach to prophylaxis. Parasite Immunology, 38(9), 535–547. https://doi.org/10.1111/pim.12350Sauvaitre, T., Etienne-Mesmin, L., Sivignon, A., Mosoni, P., Courtin, C. M., Van de Wiele, T., & Blanquet-Diot, S. (2021). Tripartite relationship between gut microbiota, intestinal mucus and dietary fibers: Towards preventive strategies against enteric infections. FEMS Microbiology Reviews, 45(2), fuaa052. https://doi.org/10.1093/femsre/fuaa052Schurer, J., Mosites, E., Li, C., Meschke, S., & Rabinowitz, P. (2016). Community-based surveillance of zoonotic parasites in a ‘One Health’ world: A systematic review. One Health, 2, 166–174. https://doi.org/10.1016/j.onehlt.2016.11.002Schwab, C., Cristescu, B., Northrup, J. M., Stenhouse, G. B., & Gänzle, M. (2011). Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears. PLoS One, 6(12), e27905Seabolt, M. H., Konstantinidis, K. T., & Roellig, D. M. (2021). Hidden Diversity within Common Protozoan Parasites as Revealed by a Novel Genomotyping Scheme. Applied and Environmental Microbiology, 87(6), e02275-20. https://doi.org/10.1128/AEM.02275-20Simon, A., Rousseau, A. N., Savary, S., Bigras-Poulin, M., & Ogden, N. H. (2013). Hydrological modelling of Toxoplasma gondii oocysts transport to investigate contaminated snowmelt runoff as a potential source of infection for marine mammals in the Canadian Arctic. Journal of Environmental Management, 127, 150–161. https://doi.org/10.1016/j.jenvman.2013.04.031Smith, K. F., Behrens, M., Schloegel, L. M., Marano, N., Burgiel, S., & Daszak, P. (2009). Reducing the risks of the wildlife trade. Science, 324(5927), 594–595. https://doi.org/10.1126/science.1174460Smith, K. F., Sax, D. F., & Lafferty, K. D. (2006). Evidence for the role of infectious disease in species extinction and endangerment. Conservation Biology, 20(5), 1349–1357.Sokal, R. R., Rohlf, F. J., & Rohlf, J. F. (1995). Biometry. MacmillanSolórzano-García, B., Gasca-Pineda, J., Poulin, R., & Pérez-Ponce de León, G. (2017). Lack of genetic structure in pinworm populations from New World primates in forest fragments. International Journal for Parasitology, 47(14), 941–950. https://doi.org/10.1016/j.ijpara.2017.06.008Solórzano-García, B., & Pérez-Ponce de León, G. (2018). Parasites of Neotropical Primates: A Review. International Journal of Primatology, 39(2), 155–182. https://doi.org/10.1007/s10764-018-0031-0Solórzano-García, B., White, J. M., & Shedden, A. (2023). Parasitism in heterogeneous landscapes: Association between conserved habitats and gastrointestinal parasites in populations of wild mammals. Acta Tropica, 237, 106751. https://doi.org/10.1016/j.actatropica.2022.106751Song, Q., Wang, Y., Huang, L., Shen, M., Yu, Y., Yu, Q., Chen, Y., & Xie, J. (2021). Review of the relationships among polysaccharides, gut microbiota, and human health. Food Research International, 140, 109858. https://doi.org/10.1016/j.foodres.2020.109858Spiegelhalter, D., Thomas, A., Best, N., & Lunn, D. (2018). OpenBUGS version 3.0. 2Stensvold, C. R., Jirků-Pomajbíková, K., Tams, K. W., Jokelainen, P., Berg, R. P. K. D., Marving, E., Petersen, R. F., Andersen, L. O., Angen, Ø., & Nielsen, H. V. (2021). Parasitic Intestinal Protists of Zoonotic Relevance Detected in Pigs by Metabarcoding and Real-Time PCR. Microorganisms, 9(6), 1189. https://doi.org/10.3390/microorganisms9061189Thompson, R. C. A. (2013). Parasite zoonoses and wildlife: One health, spillover and human activity. International Journal for Parasitology, 43(12–13), 1079–1088. https://doi.org/10.1016/j.ijpara.2013.06.007Ujvari, B., & Belov, K. (2011). Major histocompatibility complex (MHC) markers in conservation biology. International Journal of Molecular Sciences, 12(8), 5168–5186.Uribe, M., Payán, E., Brabec, J., Vélez, J., Taubert, A., Chaparro-Gutiérrez, J. J., & Hermosilla, C. (2021). Intestinal Parasites of Neotropical Wild Jaguars, Pumas, Ocelots, and Jaguarundis in Colombia: Old Friends Brought Back from Oblivion and New Insights. Pathogens, 10(7), 822. https://doi.org/10.3390/pathogens10070822van der Linden, A., de Olde, E. M., Mostert, P. F., & de Boer, I. J. M. (2020). A review of European models to assess the sustainability performance of livestock production systems. Agricultural Systems, 182, 102842. https://doi.org/10.1016/j.agsy.2020.102842Van Voorhis, W. C., Hulverson, M. A., Choi, R., Huang, W., Arnold, S. L. M., Schaefer, D. A., Betzer, D. P., Vidadala, R. S. R., Lee, S., Whitman, G. R., Barrett, L. K., Maly, D. J., Riggs, M. W., Fan, E., Kennedy, T. J., Tzipori, S., Doggett, J. S., Winzer, P., Anghel, N., … Ojo, K. K. (2021). One health therapeutics: Target-Based drug development for cryptosporidiosis and other apicomplexa diseases. Veterinary Parasitology, 289, 109336. https://doi.org/10.1016/j.vetpar.2020.109336VanWormer, E., Miller, M. A., Conrad, P. A., Grigg, M. E., Rejmanek, D., Carpenter, T. E., & Mazet, J. A. K. (2014). Using Molecular Epidemiology to Track Toxoplasma gondii from Terrestrial Carnivores to Marine Hosts: Implications for Public Health and Conservation. PLoS Neglected Tropical Diseases, 8(5), e2852. https://doi.org/10.1371/journal.pntd.0002852Vijay, A., & Valdes, A. M. (2022). Role of the gut microbiome in chronic diseases: A narrative review. European Journal of Clinical Nutrition, 76(4), 489–501. https://doi.org/10.1038/s41430-021-00991-6Williams, A. R., Myhill, L. J., Stolzenbach, S., Nejsum, P., Mejer, H., Nielsen, D. S., & Thamsborg, S. M. (2021). Emerging interactions between diet, gastrointestinal helminth infection, and the gut microbiota in livestock. BMC Veterinary Research, 17(1), 62. https://doi.org/10.1186/s12917-021-02752-wWisely, S. M., Howard, J., Williams, S. A., Bain, O., Santymire, R. M., Bardsley, K. D., & Williams, E. S. (2008). An unidentified filarial species and its impact on fitness in wild populations of the black-footed ferret (Mustela nigripes). Journal of Wildlife Diseases, 44(1), 53–64Wood, D. E., Lu, J., & Langmead, B. (2019). Improved metagenomic analysis with Kraken 2. Genome Biology, 20(1), 257. https://doi.org/10.1186/s13059-019-1891-0Xiao, L., & Fayer, R. (2008). Molecular characterisation of species and genotypes of Cryptosporidium and Giardia and assessment of zoonotic transmission. International Journal for Parasitology, 38(11), 1239–1255. https://doi.org/10.1016/j.ijpara.2008.03.006Yoo, J., Groer, M., Dutra, S., Sarkar, A., & McSkimming, D. (2020). Gut Microbiota and Immune System Interactions. Microorganisms, 8(10), 1587. https://doi.org/10.3390/microorganisms8101587Andean Bear Conservation Alliance (ABCA), the Cleveland Metroparks Zoo Wildlife Conservation ProgramRewildEstudiantesInvestigadoresPúblico generalLICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/86409/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51ORIGINAL75093305.2024.pdf75093305.2024.pdfTesis Doctorado en Ciencias Agrariasapplication/pdf2496596https://repositorio.unal.edu.co/bitstream/unal/86409/3/75093305.2024.pdff7d081df2a43e5c4eb5ed63d7f0f1f79MD53THUMBNAIL75093305.2024.pdf.jpg75093305.2024.pdf.jpgGenerated Thumbnailimage/jpeg5521https://repositorio.unal.edu.co/bitstream/unal/86409/4/75093305.2024.pdf.jpgf9e00d39901aedbf53e204c17a654c99MD54unal/86409oai:repositorio.unal.edu.co:unal/864092024-08-25 23:12:07.769Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo=