Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá
Ilustraciones
- Autores:
-
Castillo Giraldo, Soraya
- Tipo de recurso:
- Fecha de publicación:
- 2023
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- eng
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/83955
- Palabra clave:
- 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología
Humedad de suelos
Respuesta hidrológica
Crecientes
Precipitación detonante
Humedad del suelo
Monitoreo en tiempo real
Riesgo por inundación
Hydrological response
Floods
Triggering rainfall
Soil moisture
Real-time monitoring
Flood risk
- Rights
- openAccess
- License
- Atribución-NoComercial-SinDerivadas 4.0 Internacional
id |
UNACIONAL2_d4e686b4a230f31943c285fdfba9830d |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/83955 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
dc.title.spa.fl_str_mv |
Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá |
dc.title.translated.none.fl_str_mv |
Analysis of the influence of rainfall and antecedent conditions on the hydrograph generation at event scale in the Aburra Valley watershed |
title |
Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá |
spellingShingle |
Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá 550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología Humedad de suelos Respuesta hidrológica Crecientes Precipitación detonante Humedad del suelo Monitoreo en tiempo real Riesgo por inundación Hydrological response Floods Triggering rainfall Soil moisture Real-time monitoring Flood risk |
title_short |
Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá |
title_full |
Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá |
title_fullStr |
Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá |
title_full_unstemmed |
Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá |
title_sort |
Análisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de Aburrá |
dc.creator.fl_str_mv |
Castillo Giraldo, Soraya |
dc.contributor.advisor.none.fl_str_mv |
Botero Fernández, Verónica |
dc.contributor.author.none.fl_str_mv |
Castillo Giraldo, Soraya |
dc.contributor.orcid.spa.fl_str_mv |
https://orcid.org/0000-0002-2968-8860 |
dc.contributor.cvlac.spa.fl_str_mv |
Castillo Giraldo, Soraya |
dc.contributor.scopus.spa.fl_str_mv |
Castillo Giraldo, Soraya Castillo Giraldo, Soraya |
dc.contributor.researchgate.spa.fl_str_mv |
Castillo Giraldo, Soraya |
dc.contributor.googlescholar.spa.fl_str_mv |
Castillo Giraldo, Soraya |
dc.subject.ddc.spa.fl_str_mv |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología |
topic |
550 - Ciencias de la tierra::551 - Geología, hidrología, meteorología Humedad de suelos Respuesta hidrológica Crecientes Precipitación detonante Humedad del suelo Monitoreo en tiempo real Riesgo por inundación Hydrological response Floods Triggering rainfall Soil moisture Real-time monitoring Flood risk |
dc.subject.lemb.none.fl_str_mv |
Humedad de suelos |
dc.subject.proposal.spa.fl_str_mv |
Respuesta hidrológica Crecientes Precipitación detonante Humedad del suelo Monitoreo en tiempo real Riesgo por inundación |
dc.subject.proposal.eng.fl_str_mv |
Hydrological response Floods Triggering rainfall Soil moisture Real-time monitoring Flood risk |
description |
Ilustraciones |
publishDate |
2023 |
dc.date.accessioned.none.fl_str_mv |
2023-06-01T21:03:36Z |
dc.date.available.none.fl_str_mv |
2023-06-01T21:03:36Z |
dc.date.issued.none.fl_str_mv |
2023-05-23 |
dc.type.spa.fl_str_mv |
Trabajo de grado - Maestría |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/masterThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TM |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/83955 |
dc.identifier.instname.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.identifier.reponame.spa.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
dc.identifier.repourl.spa.fl_str_mv |
https://repositorio.unal.edu.co/ |
url |
https://repositorio.unal.edu.co/handle/unal/83955 https://repositorio.unal.edu.co/ |
identifier_str_mv |
Universidad Nacional de Colombia Repositorio Institucional Universidad Nacional de Colombia |
dc.language.iso.spa.fl_str_mv |
eng |
language |
eng |
dc.relation.indexed.spa.fl_str_mv |
LaReferencia |
dc.relation.references.spa.fl_str_mv |
Ali, G., Tetzlaff, D., Mcdonnell, J. J., Soulsby, C., Carey, S., Laudon, H., Mcguire, K., Buttle, J., Seibert, J., and Shanley, J. (2015). Comparison of threshold hydrologic response across northern catchments. Hydrological Processes, 29:3575–3591. Ambroise, B. (2004). Variable ‘active’ versus ‘contributing’ areas or periods: a necessary distinction. Hydrological Processes, 18:1149–1155. Ares, M. G., Varni, M., and Chagas, C. (2020). Runoff response of a small agricultural basin in the argentine pampas considering connectivity aspects. Hydrological Processes, 34:3102–3119. Aristizabal, E. and Yokota, S. (2008). Geomorphological evolution of the aburr´a valley, northern colombian andes, and implications for landslide occurrence. Bartlett, M. S., Parolari, A. J., McDonnell, J. J., and Porporato, A. (2016). Beyond the scscn method: A theoretical framework for spatially lumped rainfall-runoff response. Water Resources Research, 52:4608–4627. Bhaskar, N. R., French, M. N., and Kyiamah, G. K. (2000). Characterization of flash floods in eastern kentucky. Journal of Hydrologic Engineering, 5:327–331. Blume, T. and van Meerveld, H. J. (2015). From hillslope to stream: methods to investigate subsurface connectivity. Wiley Interdisciplinary Reviews: Water, 2:177–198 Caballero, J. H., Rend´on, A., Gallego, J. J., and Uasapud, N. V. (2016). Inter-andean cauca river canyon. World Geomorphological Landscapes, pages 155–166. Chang, X., Nie, F., Wang, S., Yang, Y., Zhou, X., and Zhang, C. (2016). Compound rank-k projections for bilinear analysis. IEEE Transactions on Neural Networks and Learning Systems, 27:1502–1513. Coopersmith, E. J., Cosh, M. H., Starks, P. J., Bosch, D. D., Collins, C. H., Seyfried, M., Livingston, S., and Prueger, J. (2021). Understanding temporal stability: a longterm analysis of usda ars watersheds. https://doi.org/10.1080/17538947.2021.1943550, 14:1243–1254. Dorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiov´a, A., Sanchis-Dufau, A., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M. (2013). Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone Journal, 12:1–21. Emmanuel, I., Andrieu, H., Leblois, E., Janey, N., and Payrastre, O. (2015). Influence of rainfall spatial variability on rainfall–runoff modelling: Benefit of a simulation approach? Journal of Hydrology, 531:337–348 Fortesa, J., Latron, J., Garc´ıa-Comendador, J., Tom`as-Burguera, M., Company, J., Calsamiglia, A., and Estrany, J. (2020). Multiple temporal scales assessment in the hydrological response of small mediterranean-climate catchments. Water 2020, Vol. 12, Page 299, 12:299. Graham, C. B., Woods, R. A., and McDonnell, J. J. (2010). Hillslope threshold response to rainfall: (1) a field based forensic approach. Journal of Hydrology, 393:65–76. Hao, R. N., Xu, Y. P., and Chiang, Y. M. (2021). Identification of the controlling factors for hydrological responses by artificial neural networks. Hydrological Processes, 35:e14420. Horton, R. E. (1933). The rˆole of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union, 14:446–460. Houze, R. A., Rasmussen, K. L., Zuluaga, M. D., and Brodzik, S. R. (2015). The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the tropical rainfall measuring mission satellite. Reviews of Geophysics, 53:994–1021. Jadidoleslam, N., Mantilla, R., Krajewski, W. F., and Goska, R. (2019). Investigating the role of antecedent smap satellite soil moisture, radar rainfall and modis vegetation on runoff production in an agricultural region. Journal of Hydrology, 579:124210. Kim, J., Johnson, L., Cifelli, R., Thorstensen, A., and Chandrasekar, V. (2019). Assessment of antecedent moisture condition on flood frequency: An experimental study in napa river basin, ca. Journal of Hydrology: Regional Studies, 26:100629. Liu, F. and Deng, Y. (2021). Determine the number of unknown targets in open world based on elbow method. IEEE Transactions on Fuzzy Systems, 29:986–995. Marchi, L., Borga, M., Preciso, E., and Gaume, E. (2010). Characterisation of selected extreme flash floods in europe and implications for flood risk management. Journal of Hydrology, 394:118–133. Marin, R. J., Garc´ıa, E. F., and Aristiz´abal, E. (2020). Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides. Engineering Geology, 278:105855 Nord, G., Boudevillain, B., Berne, A., Branger, F., Braud, I., Dramais, G., G´erard, S., Coz, J. L., Legoˆut, C., Molini´e, G., Baelen, J. V., Vandervaere, J. P., Andrieu, J., Aubert, C., Calianno, M., Delrieu, G., Grazioli, J., Hachani, S., Horner, I., Huza, J., Boursicaud, R. L., Raupach, T. H., Teuling, A. J., Uber, M., Vincendon, B., and Wijbrans, A. (2017). A high space-time resolution dataset linking meteorological forcing and hydro-sedimentary response in a mesoscale mediterranean catchment (auzon) of the ard`eche region, france. Earth System Science Data, 9:221–249. Ospina, S., Zapata, E., Velasquez, N., Ortiz, C. D. H., Sep´ulveda, J., Henao, M. Z. Z., Guzm´an, G., Ospina, S., Zapata, E., Velasquez, N., Ortiz, C. D. H., Sep´ulveda, J., Henao, M. Z. Z., and Guzm´an, G. (2019). A high-resolution model for the assessment and forecasting of wildfire susceptibility. AGUFM, 2019:NH43C–0946. Pathiraja, S., Westra, S., and Sharma, A. (2012). Why continuous simulation? the role of antecedent moisture in design flood estimation. Water Resources Research, 48:6534 Penna, D., Meerveld, H. J. T.-V., Gobbi, A., Borga, M., and Fontana, G. D. (2011). The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15:689–702 Rose, L. A., Karwan, D. L., and Godsey, S. E. (2018). Concentration–discharge relationships describe solute and sediment mobilization, reaction, and transport at event and longer timescales. Hydrological Processes, 32:2829–2844. Shahapure, K. R. and Nicholas, C. (2020). Cluster quality analysis using silhouette score. Proceedings - 2020 IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020, pages 747–748. Sumargo, E., McMillan, H., Weihs, R., Ellis, C. J., Wilson, A. M., and Ralph, F. M. (2021). A soil moisture monitoring network to assess controls on runoff generation during atmospheric river events. Hydrological Processes, 35:e13998. Turnbull, L., Wainwright, J., and Brazier, R. E. (2008). A conceptual framework for understanding semi-arid land degradation: ecohydrological interactions across multiple-space and time scales. Ecohydrology, 1:23–34. Uber, M., Vandervaere, J. P., Zin, I., Braud, I., Heistermann, M., Legoˆut, C., Molini´e, G., and Nord, G. (2018). How does initial soil moisture influence the hydrological response? a case study from southern france. Hydrology and Earth System Sciences, 22:6127–6146. Venkatesh, B., Lakshman, N., Purandara, B. K., and Reddy, V. B. (2011). Analysis of observed soil moisture patterns under different land covers in western ghats, india. Journal of Hydrology, 397:281–294. Wang, Y., Gao, L., Huang, S., and Peng, X. (2022). Combined effects of rainfall types and antecedent soil moisture on runoff generation at a hillslope of red soil region. European Journal of Soil Science, 73:e13274. Yang, Y., Zhang, J., Bao, Z., Ao, T., Wang, G., Wu, H., Wang, J., Yang, Y. ., Zhang, J. ., Bao, Z. ., Ao, T. ., Wang, G. ., Wu, H. ., Wang, J., and Alexakis, D. D. (2021). Evaluation of multi-source soil moisture datasets over central and eastern agricultural area of china using in situ monitoring network. Remote Sensing 2021, Vol. 13, Page 1175, 13:1175. |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial-SinDerivadas 4.0 Internacional http://creativecommons.org/licenses/by-nc-nd/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.extent.spa.fl_str_mv |
85 páginas |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
dc.publisher.spa.fl_str_mv |
Universidad Nacional de Colombia |
dc.publisher.program.spa.fl_str_mv |
Medellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos |
dc.publisher.faculty.spa.fl_str_mv |
Facultad de Minas |
dc.publisher.place.spa.fl_str_mv |
Medellín, Colombia |
dc.publisher.branch.spa.fl_str_mv |
Universidad Nacional de Colombia - Sede Medellín |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/83955/2/1104430828_2023.pdf https://repositorio.unal.edu.co/bitstream/unal/83955/1/license.txt https://repositorio.unal.edu.co/bitstream/unal/83955/3/1104430828_2023.pdf.jpg |
bitstream.checksum.fl_str_mv |
bbfbc915f0becf634cd0510bcca38f90 eb34b1cf90b7e1103fc9dfd26be24b4a f892786eb6d6c81bd9985b6e2187ae66 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814089629783031808 |
spelling |
Atribución-NoComercial-SinDerivadas 4.0 Internacionalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Botero Fernández, Verónicafc34ffdf2e652779f0b91dc4f2364ba5600Castillo Giraldo, Sorayac7d1f0db44c654e9a2917cd0bed27aa6https://orcid.org/0000-0002-2968-8860Castillo Giraldo, SorayaCastillo Giraldo, SorayaCastillo Giraldo, SorayaCastillo Giraldo, SorayaCastillo Giraldo, Soraya2023-06-01T21:03:36Z2023-06-01T21:03:36Z2023-05-23https://repositorio.unal.edu.co/handle/unal/83955Universidad Nacional de ColombiaRepositorio Institucional Universidad Nacional de Colombiahttps://repositorio.unal.edu.co/IlustracionesLa respuesta hidrológica (HR) de los cauces a eventos de precipitación, es reportada como un proceso de importante variabilidad debido a los múltiples y complejos factores controladores que lo influencian. Este trabajo explora dicha variabilidad en las sub-cuencas del valle de Aburrá (AV), enfocándose en los dos factores con mayor dominio en la HR a escala de evento: la precipitación detonante y las condiciones de humedad antecedentes. Para ello se comparó información hidrológica de nivel y precipitación de radar, con una resolución temporal fina, en 58 sub-cuencas dentro del área de estudio. A su vez, esta información fue contrastada con las principales características físicas de las subcuencas. Se realizaron también análisis de los registros de la primera red de humedad del suelo (SM) in-situ de la zona, que incluyó 7 sub-cuencas del AV, en comparación con la información de eventos de precipitación y crecientes. El análisis de los eventos de tormentas en el AV, exhibió una relación creciente entre las magnitudes de la precipitación acumulada y el nivel máximo alcanzado por las crecientes. El estudio sugiere que la manifestación de dicha relación es susceptible al tamaño de la muestra de eventos y a la metodología usada para identificar los mismos; al analizar con menos cantidad de eventos, las magnitudes de precipitaciones y crecientes no presentaron relaciones observables. Por otro lado, se encontró que al final de las temporadas de lluvia en el AV se necesitan menores magnitudes de lluvia para detonar crecientes, mientras que al final de las temporadas secas son necesarios eventos de precipitación de mayor acumulado. En contraste, los patrones encontrados respecto al rol de la precipitación en la HR, no presentaron relaciones observables con las principales características físicas de las sub-cuencas de interés. Respecto a la humedad del suelo, los análisis manifestaron relaciones crecientes entre los picos de SM y de las crecientes durante eventos de precipitación. Adicionalmente, se encontraron relaciones de umbral entre la precipitación acumulada y humedad del suelo máxima durante eventos de lluvia, así como entre las magnitudes pico de humedad del suelo y de las crecientes; ambos comportamientos de umbral asociadas a valores de similares SM. Estos hallazgos sugieren que al superar cierto umbral de humedad del suelo, los eventos de creciente más relevantes pueden presentar mayor probabilidad de ocurrencia. En general, los resultados de este estudio pusieron de manifiesto el rol de ambos factores controladores de la HR, la precipitación y las condiciones de humedad antecedente, en las subcuencas del Valle de Aburrá. Estos sugieren que el monitoreo de ambos factores es potencialmente útil para el entendimiento y la alerta temprana de eventos de creciente en el área de estudio. (Texto tomado de la fuente)The hydrological response (HR) of watersheds to storm events, is recognized as a quite variable process due to the multiple and complex controlling factors that can influence it. This work aims to explore this variability in the sub-basins within the Aburr´a Valley (AV) watershed, focused on the two most dominant factors regarding the HR: the triggering rainfall and the antecedent moisture conditions. To achieve this, we compared the hydrological information of water level and radar-derived precipitation, at a fine temporal scale, within 58 sub-basins in the study area. At the same time, these records were contrasted with the main physical features of the sub-basins. We also fulfilled an analysis of the first soil moisture network records in the zone, which include 7 of the AV sub-basins, in comparison to the precipitation and flood events. The analysis of the storm events within the AV exhibited an increasing relationship between the magnitudes of accumulated precipitation and the peak level reached by the floods. The study suggests that the display of that relationship is susceptible to the sizes of the events samples, as well as to the methodology used to identify them; in analysis with much fewer events, the magnitudes of rainfall and floods did not show perceptible relationships. On the other hand, it was found that at the end of the AV rainfall seasons, less rainfall is needed to trigger floods, while at the end of dry seasons, greater accumulated precipitation events are needed to trigger floods of similar magnitudes. In contrast, the patterns regarding the role of precipitation on the HR did not exhibit an observable relationship with the main physical features of the studied sub-basins. In regard to soil moisture, the analysis showed increasing relationships between the peaks of SM and floods during rainfall events. Additionally, threshold relationships were found between the accumulated precipitation and the peak soil moisture during events, as well as between the peak magnitudes of soil moisture and flood events; both threshold behaviors were found associated with similar SM values. These findings suggest that the most relevant flood events can be more probable if the soil moisture exceeds a certain threshold. In general, the results of this study exhibited the role of both HR controlling factors, rainfall and antecedent moisture conditions. They suggest the monitoring of both factors to be potentially useful for the understanding and the early warning of flood events within the study area.MaestríaMagister en Ingeniería - Recursos HidráulicosÁrea Curricular de Medio Ambiente85 páginasapplication/pdfengUniversidad Nacional de ColombiaMedellín - Minas - Maestría en Ingeniería - Recursos HidráulicosFacultad de MinasMedellín, ColombiaUniversidad Nacional de Colombia - Sede Medellín550 - Ciencias de la tierra::551 - Geología, hidrología, meteorologíaHumedad de suelosRespuesta hidrológicaCrecientesPrecipitación detonanteHumedad del sueloMonitoreo en tiempo realRiesgo por inundaciónHydrological responseFloodsTriggering rainfallSoil moistureReal-time monitoringFlood riskAnálisis de la influencia de la precipitación y las condiciones de humedad antecedente sobre la formación del hidrograma durante eventos de tormenta el Valle de AburráAnalysis of the influence of rainfall and antecedent conditions on the hydrograph generation at event scale in the Aburra Valley watershedTrabajo de grado - Maestríainfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/acceptedVersionTexthttp://purl.org/redcol/resource_type/TMLaReferenciaAli, G., Tetzlaff, D., Mcdonnell, J. J., Soulsby, C., Carey, S., Laudon, H., Mcguire, K., Buttle, J., Seibert, J., and Shanley, J. (2015). Comparison of threshold hydrologic response across northern catchments. Hydrological Processes, 29:3575–3591.Ambroise, B. (2004). Variable ‘active’ versus ‘contributing’ areas or periods: a necessary distinction. Hydrological Processes, 18:1149–1155.Ares, M. G., Varni, M., and Chagas, C. (2020). Runoff response of a small agricultural basin in the argentine pampas considering connectivity aspects. Hydrological Processes, 34:3102–3119.Aristizabal, E. and Yokota, S. (2008). Geomorphological evolution of the aburr´a valley, northern colombian andes, and implications for landslide occurrence.Bartlett, M. S., Parolari, A. J., McDonnell, J. J., and Porporato, A. (2016). Beyond the scscn method: A theoretical framework for spatially lumped rainfall-runoff response. Water Resources Research, 52:4608–4627.Bhaskar, N. R., French, M. N., and Kyiamah, G. K. (2000). Characterization of flash floods in eastern kentucky. Journal of Hydrologic Engineering, 5:327–331.Blume, T. and van Meerveld, H. J. (2015). From hillslope to stream: methods to investigate subsurface connectivity. Wiley Interdisciplinary Reviews: Water, 2:177–198Caballero, J. H., Rend´on, A., Gallego, J. J., and Uasapud, N. V. (2016). Inter-andean cauca river canyon. World Geomorphological Landscapes, pages 155–166.Chang, X., Nie, F., Wang, S., Yang, Y., Zhou, X., and Zhang, C. (2016). Compound rank-k projections for bilinear analysis. IEEE Transactions on Neural Networks and Learning Systems, 27:1502–1513.Coopersmith, E. J., Cosh, M. H., Starks, P. J., Bosch, D. D., Collins, C. H., Seyfried, M., Livingston, S., and Prueger, J. (2021). Understanding temporal stability: a longterm analysis of usda ars watersheds. https://doi.org/10.1080/17538947.2021.1943550, 14:1243–1254.Dorigo, W., Xaver, A., Vreugdenhil, M., Gruber, A., Hegyiov´a, A., Sanchis-Dufau, A., Zamojski, D., Cordes, C., Wagner, W., and Drusch, M. (2013). Global automated quality control of in situ soil moisture data from the international soil moisture network. Vadose Zone Journal, 12:1–21.Emmanuel, I., Andrieu, H., Leblois, E., Janey, N., and Payrastre, O. (2015). Influence of rainfall spatial variability on rainfall–runoff modelling: Benefit of a simulation approach? Journal of Hydrology, 531:337–348Fortesa, J., Latron, J., Garc´ıa-Comendador, J., Tom`as-Burguera, M., Company, J., Calsamiglia, A., and Estrany, J. (2020). Multiple temporal scales assessment in the hydrological response of small mediterranean-climate catchments. Water 2020, Vol. 12, Page 299, 12:299.Graham, C. B., Woods, R. A., and McDonnell, J. J. (2010). Hillslope threshold response to rainfall: (1) a field based forensic approach. Journal of Hydrology, 393:65–76.Hao, R. N., Xu, Y. P., and Chiang, Y. M. (2021). Identification of the controlling factors for hydrological responses by artificial neural networks. Hydrological Processes, 35:e14420.Horton, R. E. (1933). The rˆole of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union, 14:446–460.Houze, R. A., Rasmussen, K. L., Zuluaga, M. D., and Brodzik, S. R. (2015). The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the tropical rainfall measuring mission satellite. Reviews of Geophysics, 53:994–1021.Jadidoleslam, N., Mantilla, R., Krajewski, W. F., and Goska, R. (2019). Investigating the role of antecedent smap satellite soil moisture, radar rainfall and modis vegetation on runoff production in an agricultural region. Journal of Hydrology, 579:124210.Kim, J., Johnson, L., Cifelli, R., Thorstensen, A., and Chandrasekar, V. (2019). Assessment of antecedent moisture condition on flood frequency: An experimental study in napa river basin, ca. Journal of Hydrology: Regional Studies, 26:100629.Liu, F. and Deng, Y. (2021). Determine the number of unknown targets in open world based on elbow method. IEEE Transactions on Fuzzy Systems, 29:986–995.Marchi, L., Borga, M., Preciso, E., and Gaume, E. (2010). Characterisation of selected extreme flash floods in europe and implications for flood risk management. Journal of Hydrology, 394:118–133.Marin, R. J., Garc´ıa, E. F., and Aristiz´abal, E. (2020). Effect of basin morphometric parameters on physically-based rainfall thresholds for shallow landslides. Engineering Geology, 278:105855Nord, G., Boudevillain, B., Berne, A., Branger, F., Braud, I., Dramais, G., G´erard, S., Coz, J. L., Legoˆut, C., Molini´e, G., Baelen, J. V., Vandervaere, J. P., Andrieu, J., Aubert, C., Calianno, M., Delrieu, G., Grazioli, J., Hachani, S., Horner, I., Huza, J., Boursicaud, R. L., Raupach, T. H., Teuling, A. J., Uber, M., Vincendon, B., and Wijbrans, A. (2017). A high space-time resolution dataset linking meteorological forcing and hydro-sedimentary response in a mesoscale mediterranean catchment (auzon) of the ard`eche region, france. Earth System Science Data, 9:221–249.Ospina, S., Zapata, E., Velasquez, N., Ortiz, C. D. H., Sep´ulveda, J., Henao, M. Z. Z., Guzm´an, G., Ospina, S., Zapata, E., Velasquez, N., Ortiz, C. D. H., Sep´ulveda, J., Henao, M. Z. Z., and Guzm´an, G. (2019). A high-resolution model for the assessment and forecasting of wildfire susceptibility. AGUFM, 2019:NH43C–0946.Pathiraja, S., Westra, S., and Sharma, A. (2012). Why continuous simulation? the role of antecedent moisture in design flood estimation. Water Resources Research, 48:6534Penna, D., Meerveld, H. J. T.-V., Gobbi, A., Borga, M., and Fontana, G. D. (2011). The influence of soil moisture on threshold runoff generation processes in an alpine headwater catchment. Hydrology and Earth System Sciences, 15:689–702Rose, L. A., Karwan, D. L., and Godsey, S. E. (2018). Concentration–discharge relationships describe solute and sediment mobilization, reaction, and transport at event and longer timescales. Hydrological Processes, 32:2829–2844.Shahapure, K. R. and Nicholas, C. (2020). Cluster quality analysis using silhouette score. Proceedings - 2020 IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020, pages 747–748.Sumargo, E., McMillan, H., Weihs, R., Ellis, C. J., Wilson, A. M., and Ralph, F. M. (2021). A soil moisture monitoring network to assess controls on runoff generation during atmospheric river events. Hydrological Processes, 35:e13998.Turnbull, L., Wainwright, J., and Brazier, R. E. (2008). A conceptual framework for understanding semi-arid land degradation: ecohydrological interactions across multiple-space and time scales. Ecohydrology, 1:23–34.Uber, M., Vandervaere, J. P., Zin, I., Braud, I., Heistermann, M., Legoˆut, C., Molini´e, G., and Nord, G. (2018). How does initial soil moisture influence the hydrological response? a case study from southern france. Hydrology and Earth System Sciences, 22:6127–6146.Venkatesh, B., Lakshman, N., Purandara, B. K., and Reddy, V. B. (2011). Analysis of observed soil moisture patterns under different land covers in western ghats, india. Journal of Hydrology, 397:281–294.Wang, Y., Gao, L., Huang, S., and Peng, X. (2022). Combined effects of rainfall types and antecedent soil moisture on runoff generation at a hillslope of red soil region. European Journal of Soil Science, 73:e13274.Yang, Y., Zhang, J., Bao, Z., Ao, T., Wang, G., Wu, H., Wang, J., Yang, Y. ., Zhang, J. ., Bao, Z. ., Ao, T. ., Wang, G. ., Wu, H. ., Wang, J., and Alexakis, D. D. (2021). Evaluation of multi-source soil moisture datasets over central and eastern agricultural area of china using in situ monitoring network. Remote Sensing 2021, Vol. 13, Page 1175, 13:1175.Público generalORIGINAL1104430828_2023.pdf1104430828_2023.pdfTesis de Maestría en Ingeniería - Recursos Hidráulicosapplication/pdf23355895https://repositorio.unal.edu.co/bitstream/unal/83955/2/1104430828_2023.pdfbbfbc915f0becf634cd0510bcca38f90MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-85879https://repositorio.unal.edu.co/bitstream/unal/83955/1/license.txteb34b1cf90b7e1103fc9dfd26be24b4aMD51THUMBNAIL1104430828_2023.pdf.jpg1104430828_2023.pdf.jpgGenerated Thumbnailimage/jpeg4993https://repositorio.unal.edu.co/bitstream/unal/83955/3/1104430828_2023.pdf.jpgf892786eb6d6c81bd9985b6e2187ae66MD53unal/83955oai:repositorio.unal.edu.co:unal/839552023-08-08 23:03:42.982Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.coUEFSVEUgMS4gVMOJUk1JTk9TIERFIExBIExJQ0VOQ0lBIFBBUkEgUFVCTElDQUNJw5NOIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KCkxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgbG9zIGRlcmVjaG9zIHBhdHJpbW9uaWFsZXMgZGUgYXV0b3IsIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEsIGxpbWl0YWRhIHkgZ3JhdHVpdGEgc29icmUgbGEgb2JyYSBxdWUgc2UgaW50ZWdyYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsLCBiYWpvIGxvcyBzaWd1aWVudGVzIHTDqXJtaW5vczoKCgphKQlMb3MgYXV0b3JlcyB5L28gbG9zIHRpdHVsYXJlcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBzb2JyZSBsYSBvYnJhIGNvbmZpZXJlbiBhIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHVuYSBsaWNlbmNpYSBubyBleGNsdXNpdmEgcGFyYSByZWFsaXphciBsb3Mgc2lndWllbnRlcyBhY3RvcyBzb2JyZSBsYSBvYnJhOiBpKSByZXByb2R1Y2lyIGxhIG9icmEgZGUgbWFuZXJhIGRpZ2l0YWwsIHBlcm1hbmVudGUgbyB0ZW1wb3JhbCwgaW5jbHV5ZW5kbyBlbCBhbG1hY2VuYW1pZW50byBlbGVjdHLDs25pY28sIGFzw60gY29tbyBjb252ZXJ0aXIgZWwgZG9jdW1lbnRvIGVuIGVsIGN1YWwgc2UgZW5jdWVudHJhIGNvbnRlbmlkYSBsYSBvYnJhIGEgY3VhbHF1aWVyIG1lZGlvIG8gZm9ybWF0byBleGlzdGVudGUgYSBsYSBmZWNoYSBkZSBsYSBzdXNjcmlwY2nDs24gZGUgbGEgcHJlc2VudGUgbGljZW5jaWEsIHkgaWkpIGNvbXVuaWNhciBhbCBww7pibGljbyBsYSBvYnJhIHBvciBjdWFscXVpZXIgbWVkaW8gbyBwcm9jZWRpbWllbnRvLCBlbiBtZWRpb3MgYWzDoW1icmljb3MgbyBpbmFsw6FtYnJpY29zLCBpbmNsdXllbmRvIGxhIHB1ZXN0YSBhIGRpc3Bvc2ljacOzbiBlbiBhY2Nlc28gYWJpZXJ0by4gQWRpY2lvbmFsIGEgbG8gYW50ZXJpb3IsIGVsIGF1dG9yIHkvbyB0aXR1bGFyIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgcGFyYSBxdWUsIGVuIGxhIHJlcHJvZHVjY2nDs24geSBjb211bmljYWNpw7NuIGFsIHDDumJsaWNvIHF1ZSBsYSBVbml2ZXJzaWRhZCByZWFsaWNlIHNvYnJlIGxhIG9icmEsIGhhZ2EgbWVuY2nDs24gZGUgbWFuZXJhIGV4cHJlc2EgYWwgdGlwbyBkZSBsaWNlbmNpYSBDcmVhdGl2ZSBDb21tb25zIGJham8gbGEgY3VhbCBlbCBhdXRvciB5L28gdGl0dWxhciBkZXNlYSBvZnJlY2VyIHN1IG9icmEgYSBsb3MgdGVyY2Vyb3MgcXVlIGFjY2VkYW4gYSBkaWNoYSBvYnJhIGEgdHJhdsOpcyBkZWwgUmVwb3NpdG9yaW8gSW5zdGl0dWNpb25hbCwgY3VhbmRvIHNlYSBlbCBjYXNvLiBFbCBhdXRvciB5L28gdGl0dWxhciBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBwb2Ryw6EgZGFyIHBvciB0ZXJtaW5hZGEgbGEgcHJlc2VudGUgbGljZW5jaWEgbWVkaWFudGUgc29saWNpdHVkIGVsZXZhZGEgYSBsYSBEaXJlY2Npw7NuIE5hY2lvbmFsIGRlIEJpYmxpb3RlY2FzIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLiAKCmIpIAlMb3MgYXV0b3JlcyB5L28gdGl0dWxhcmVzIGRlIGxvcyBkZXJlY2hvcyBwYXRyaW1vbmlhbGVzIGRlIGF1dG9yIHNvYnJlIGxhIG9icmEgY29uZmllcmVuIGxhIGxpY2VuY2lhIHNlw7FhbGFkYSBlbiBlbCBsaXRlcmFsIGEpIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8gcG9yIGVsIHRpZW1wbyBkZSBwcm90ZWNjacOzbiBkZSBsYSBvYnJhIGVuIHRvZG9zIGxvcyBwYcOtc2VzIGRlbCBtdW5kbywgZXN0byBlcywgc2luIGxpbWl0YWNpw7NuIHRlcnJpdG9yaWFsIGFsZ3VuYS4KCmMpCUxvcyBhdXRvcmVzIHkvbyB0aXR1bGFyZXMgZGUgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciBtYW5pZmllc3RhbiBlc3RhciBkZSBhY3VlcmRvIGNvbiBxdWUgbGEgcHJlc2VudGUgbGljZW5jaWEgc2Ugb3RvcmdhIGEgdMOtdHVsbyBncmF0dWl0bywgcG9yIGxvIHRhbnRvLCByZW51bmNpYW4gYSByZWNpYmlyIGN1YWxxdWllciByZXRyaWJ1Y2nDs24gZWNvbsOzbWljYSBvIGVtb2x1bWVudG8gYWxndW5vIHBvciBsYSBwdWJsaWNhY2nDs24sIGRpc3RyaWJ1Y2nDs24sIGNvbXVuaWNhY2nDs24gcMO6YmxpY2EgeSBjdWFscXVpZXIgb3RybyB1c28gcXVlIHNlIGhhZ2EgZW4gbG9zIHTDqXJtaW5vcyBkZSBsYSBwcmVzZW50ZSBsaWNlbmNpYSB5IGRlIGxhIGxpY2VuY2lhIENyZWF0aXZlIENvbW1vbnMgY29uIHF1ZSBzZSBwdWJsaWNhLgoKZCkJUXVpZW5lcyBmaXJtYW4gZWwgcHJlc2VudGUgZG9jdW1lbnRvIGRlY2xhcmFuIHF1ZSBwYXJhIGxhIGNyZWFjacOzbiBkZSBsYSBvYnJhLCBubyBzZSBoYW4gdnVsbmVyYWRvIGxvcyBkZXJlY2hvcyBkZSBwcm9waWVkYWQgaW50ZWxlY3R1YWwsIGluZHVzdHJpYWwsIG1vcmFsZXMgeSBwYXRyaW1vbmlhbGVzIGRlIHRlcmNlcm9zLiBEZSBvdHJhIHBhcnRlLCAgcmVjb25vY2VuIHF1ZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhY3TDumEgY29tbyB1biB0ZXJjZXJvIGRlIGJ1ZW5hIGZlIHkgc2UgZW5jdWVudHJhIGV4ZW50YSBkZSBjdWxwYSBlbiBjYXNvIGRlIHByZXNlbnRhcnNlIGFsZ8O6biB0aXBvIGRlIHJlY2xhbWFjacOzbiBlbiBtYXRlcmlhIGRlIGRlcmVjaG9zIGRlIGF1dG9yIG8gcHJvcGllZGFkIGludGVsZWN0dWFsIGVuIGdlbmVyYWwuIFBvciBsbyB0YW50bywgbG9zIGZpcm1hbnRlcyAgYWNlcHRhbiBxdWUgY29tbyB0aXR1bGFyZXMgw7puaWNvcyBkZSBsb3MgZGVyZWNob3MgcGF0cmltb25pYWxlcyBkZSBhdXRvciwgYXN1bWlyw6FuIHRvZGEgbGEgcmVzcG9uc2FiaWxpZGFkIGNpdmlsLCBhZG1pbmlzdHJhdGl2YSB5L28gcGVuYWwgcXVlIHB1ZWRhIGRlcml2YXJzZSBkZSBsYSBwdWJsaWNhY2nDs24gZGUgbGEgb2JyYS4gIAoKZikJQXV0b3JpemFuIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgaW5jbHVpciBsYSBvYnJhIGVuIGxvcyBhZ3JlZ2Fkb3JlcyBkZSBjb250ZW5pZG9zLCBidXNjYWRvcmVzIGFjYWTDqW1pY29zLCBtZXRhYnVzY2Fkb3Jlcywgw61uZGljZXMgeSBkZW3DoXMgbWVkaW9zIHF1ZSBzZSBlc3RpbWVuIG5lY2VzYXJpb3MgcGFyYSBwcm9tb3ZlciBlbCBhY2Nlc28geSBjb25zdWx0YSBkZSBsYSBtaXNtYS4gCgpnKQlFbiBlbCBjYXNvIGRlIGxhcyB0ZXNpcyBjcmVhZGFzIHBhcmEgb3B0YXIgZG9ibGUgdGl0dWxhY2nDs24sIGxvcyBmaXJtYW50ZXMgc2Vyw6FuIGxvcyByZXNwb25zYWJsZXMgZGUgY29tdW5pY2FyIGEgbGFzIGluc3RpdHVjaW9uZXMgbmFjaW9uYWxlcyBvIGV4dHJhbmplcmFzIGVuIGNvbnZlbmlvLCBsYXMgbGljZW5jaWFzIGRlIGFjY2VzbyBhYmllcnRvIENyZWF0aXZlIENvbW1vbnMgeSBhdXRvcml6YWNpb25lcyBhc2lnbmFkYXMgYSBzdSBvYnJhIHBhcmEgbGEgcHVibGljYWNpw7NuIGVuIGVsIFJlcG9zaXRvcmlvIEluc3RpdHVjaW9uYWwgVU5BTCBkZSBhY3VlcmRvIGNvbiBsYXMgZGlyZWN0cmljZXMgZGUgbGEgUG9sw610aWNhIEdlbmVyYWwgZGUgbGEgQmlibGlvdGVjYSBEaWdpdGFsLgoKCmgpCVNlIGF1dG9yaXphIGEgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEgY29tbyByZXNwb25zYWJsZSBkZWwgdHJhdGFtaWVudG8gZGUgZGF0b3MgcGVyc29uYWxlcywgZGUgYWN1ZXJkbyBjb24gbGEgbGV5IDE1ODEgZGUgMjAxMiBlbnRlbmRpZW5kbyBxdWUgc2UgZW5jdWVudHJhbiBiYWpvIG1lZGlkYXMgcXVlIGdhcmFudGl6YW4gbGEgc2VndXJpZGFkLCBjb25maWRlbmNpYWxpZGFkIGUgaW50ZWdyaWRhZCwgeSBzdSB0cmF0YW1pZW50byB0aWVuZSB1bmEgZmluYWxpZGFkIGhpc3TDs3JpY2EsIGVzdGFkw61zdGljYSBvIGNpZW50w61maWNhIHNlZ8O6biBsbyBkaXNwdWVzdG8gZW4gbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMuCgoKClBBUlRFIDIuIEFVVE9SSVpBQ0nDk04gUEFSQSBQVUJMSUNBUiBZIFBFUk1JVElSIExBIENPTlNVTFRBIFkgVVNPIERFIE9CUkFTIEVOIEVMIFJFUE9TSVRPUklPIElOU1RJVFVDSU9OQUwgVU5BTC4KClNlIGF1dG9yaXphIGxhIHB1YmxpY2FjacOzbiBlbGVjdHLDs25pY2EsIGNvbnN1bHRhIHkgdXNvIGRlIGxhIG9icmEgcG9yIHBhcnRlIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgZGUgc3VzIHVzdWFyaW9zIGRlIGxhIHNpZ3VpZW50ZSBtYW5lcmE6CgphLglDb25jZWRvIGxpY2VuY2lhIGVuIGxvcyB0w6lybWlub3Mgc2XDsWFsYWRvcyBlbiBsYSBwYXJ0ZSAxIGRlbCBwcmVzZW50ZSBkb2N1bWVudG8sIGNvbiBlbCBvYmpldGl2byBkZSBxdWUgbGEgb2JyYSBlbnRyZWdhZGEgc2VhIHB1YmxpY2FkYSBlbiBlbCBSZXBvc2l0b3JpbyBJbnN0aXR1Y2lvbmFsIGRlIGxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhIHkgcHVlc3RhIGEgZGlzcG9zaWNpw7NuIGVuIGFjY2VzbyBhYmllcnRvIHBhcmEgc3UgY29uc3VsdGEgcG9yIGxvcyB1c3VhcmlvcyBkZSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSAgYSB0cmF2w6lzIGRlIGludGVybmV0LgoKCgpQQVJURSAzIEFVVE9SSVpBQ0nDk04gREUgVFJBVEFNSUVOVE8gREUgREFUT1MgUEVSU09OQUxFUy4KCkxhIFVuaXZlcnNpZGFkIE5hY2lvbmFsIGRlIENvbG9tYmlhLCBjb21vIHJlc3BvbnNhYmxlIGRlbCBUcmF0YW1pZW50byBkZSBEYXRvcyBQZXJzb25hbGVzLCBpbmZvcm1hIHF1ZSBsb3MgZGF0b3MgZGUgY2Fyw6FjdGVyIHBlcnNvbmFsIHJlY29sZWN0YWRvcyBtZWRpYW50ZSBlc3RlIGZvcm11bGFyaW8sIHNlIGVuY3VlbnRyYW4gYmFqbyBtZWRpZGFzIHF1ZSBnYXJhbnRpemFuIGxhIHNlZ3VyaWRhZCwgY29uZmlkZW5jaWFsaWRhZCBlIGludGVncmlkYWQgeSBzdSB0cmF0YW1pZW50byBzZSByZWFsaXphIGRlIGFjdWVyZG8gYWwgY3VtcGxpbWllbnRvIG5vcm1hdGl2byBkZSBsYSBMZXkgMTU4MSBkZSAyMDEyIHkgZGUgbGEgUG9sw610aWNhIGRlIFRyYXRhbWllbnRvIGRlIERhdG9zIFBlcnNvbmFsZXMgZGUgbGEgVW5pdmVyc2lkYWQgTmFjaW9uYWwgZGUgQ29sb21iaWEuIFB1ZWRlIGVqZXJjZXIgc3VzIGRlcmVjaG9zIGNvbW8gdGl0dWxhciBhIGNvbm9jZXIsIGFjdHVhbGl6YXIsIHJlY3RpZmljYXIgeSByZXZvY2FyIGxhcyBhdXRvcml6YWNpb25lcyBkYWRhcyBhIGxhcyBmaW5hbGlkYWRlcyBhcGxpY2FibGVzIGEgdHJhdsOpcyBkZSBsb3MgY2FuYWxlcyBkaXNwdWVzdG9zIHkgZGlzcG9uaWJsZXMgZW4gd3d3LnVuYWwuZWR1LmNvIG8gZS1tYWlsOiBwcm90ZWNkYXRvc19uYUB1bmFsLmVkdS5jbyIKClRlbmllbmRvIGVuIGN1ZW50YSBsbyBhbnRlcmlvciwgYXV0b3Jpem8gZGUgbWFuZXJhIHZvbHVudGFyaWEsIHByZXZpYSwgZXhwbMOtY2l0YSwgaW5mb3JtYWRhIGUgaW5lcXXDrXZvY2EgYSBsYSBVbml2ZXJzaWRhZCBOYWNpb25hbCBkZSBDb2xvbWJpYSBhIHRyYXRhciBsb3MgZGF0b3MgcGVyc29uYWxlcyBkZSBhY3VlcmRvIGNvbiBsYXMgZmluYWxpZGFkZXMgZXNwZWPDrWZpY2FzIHBhcmEgZWwgZGVzYXJyb2xsbyB5IGVqZXJjaWNpbyBkZSBsYXMgZnVuY2lvbmVzIG1pc2lvbmFsZXMgZGUgZG9jZW5jaWEsIGludmVzdGlnYWNpw7NuIHkgZXh0ZW5zacOzbiwgYXPDrSBjb21vIGxhcyByZWxhY2lvbmVzIGFjYWTDqW1pY2FzLCBsYWJvcmFsZXMsIGNvbnRyYWN0dWFsZXMgeSB0b2RhcyBsYXMgZGVtw6FzIHJlbGFjaW9uYWRhcyBjb24gZWwgb2JqZXRvIHNvY2lhbCBkZSBsYSBVbml2ZXJzaWRhZC4gCgo= |