Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data
In some fields, we are forced to work with missing data in multivariate time series, unfortunately the analysis in this context cannot be done as in the case of complete data. Bayesian analysis of multivariate thresholds autoregressive models(MTAR) with exogenous inputs and missing data is carried o...
- Autores:
-
Calderón Villanueva, Sergio Alejandro
- Tipo de recurso:
- Doctoral thesis
- Fecha de publicación:
- 2014
- Institución:
- Universidad Nacional de Colombia
- Repositorio:
- Universidad Nacional de Colombia
- Idioma:
- spa
- OAI Identifier:
- oai:repositorio.unal.edu.co:unal/52159
- Acceso en línea:
- https://repositorio.unal.edu.co/handle/unal/52159
http://bdigital.unal.edu.co/46427/
- Palabra clave:
- 51 Matemáticas / Mathematics
Bayesian Analysis
Bayesian variable selection
Monte Carlo Markov Chain
Missing data
Multivariate threshold autoregressive model
Análisis Bayesiano
Selección Bayesiana de variables
Cadenas de Markov Monte Carlo
Datos Faltantes
Modelos multivariados autoregressivos de umbrales
- Rights
- openAccess
- License
- Atribución-NoComercial 4.0 Internacional
id |
UNACIONAL2_d4cfea2b00c60f6175c53ee052cc0f1a |
---|---|
oai_identifier_str |
oai:repositorio.unal.edu.co:unal/52159 |
network_acronym_str |
UNACIONAL2 |
network_name_str |
Universidad Nacional de Colombia |
repository_id_str |
|
spelling |
Atribución-NoComercial 4.0 InternacionalDerechos reservados - Universidad Nacional de Colombiahttp://creativecommons.org/licenses/by-nc/4.0/info:eu-repo/semantics/openAccesshttp://purl.org/coar/access_right/c_abf2Nieto Sánchez, Fabio HumbertoCalderón Villanueva, Sergio Alejandro81edca0c-f970-46a5-9d45-23c56251bf6a3002019-06-29T13:40:12Z2019-06-29T13:40:12Z2014-10https://repositorio.unal.edu.co/handle/unal/52159http://bdigital.unal.edu.co/46427/In some fields, we are forced to work with missing data in multivariate time series, unfortunately the analysis in this context cannot be done as in the case of complete data. Bayesian analysis of multivariate thresholds autoregressive models(MTAR) with exogenous inputs and missing data is carried out. MCMC methods are used to obtain samples from the marginal posterior distributions, including threshold values and missing data. In order to identify autoregressive orders, we adapt the Bayesian variable selection method to the MTAR models. The number of regimes is estimated using marginal likelihood and product space strategies. The forecasting of the output vector is implemented finding its predictive distributions. Simulation experiments and real data examples are presented.Resumen. En algunos campos, nos vemos forzados a trabajar con datos faltantes en series de tiempo multivaridas, desafortunadamente el análisis en este contexto no puede ser hecho como en caso completo. El análisis de modelos multivaridos autoregresivos de umbrales(MTAR) con entradas exógenas y datos faltantes es llevado a cabo vía el enfoque Bayesiano. Los métodos MCMC son usados para obtener muestras de las distribuciones marginales aposteriori, incluyendo los valores de los umbrales y los datos faltantes. Con el objetivo de identificar los órdenes autoregresivos, el método Bayesiano de selección de variables es adaptado para modelos MTAR. El número de regímenes es estimado usando la versimilitud marginal y las estrategias de espacio producto. El pronóstico para el vector de salida es implementado encontrando sus densidades predictivas. Experimentos de simulación y ejemplos con datos reales son presentados.Doctoradoapplication/pdfspaUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de EstadísticaDepartamento de EstadísticaCalderón Villanueva, Sergio Alejandro (2014) Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data. Doctorado thesis, Universidad Nacional de Colombia.51 Matemáticas / MathematicsBayesian AnalysisBayesian variable selectionMonte Carlo Markov ChainMissing dataMultivariate threshold autoregressive modelAnálisis BayesianoSelección Bayesiana de variablesCadenas de Markov Monte CarloDatos FaltantesModelos multivariados autoregressivos de umbralesBayesian Analysis of Multivariate Threshold Autoregressive Models with Missing DataTrabajo de grado - Doctoradoinfo:eu-repo/semantics/doctoralThesisinfo:eu-repo/semantics/acceptedVersionhttp://purl.org/coar/resource_type/c_db06Texthttp://purl.org/redcol/resource_type/TDORIGINAL1832255.2014.pdfapplication/pdf2765786https://repositorio.unal.edu.co/bitstream/unal/52159/1/1832255.2014.pdf0c0de7b4317a4bfce6047b3a0a4c486cMD51THUMBNAIL1832255.2014.pdf.jpg1832255.2014.pdf.jpgGenerated Thumbnailimage/jpeg4029https://repositorio.unal.edu.co/bitstream/unal/52159/2/1832255.2014.pdf.jpg78b3d33e7a8ed1e71b332de9c957176cMD52unal/52159oai:repositorio.unal.edu.co:unal/521592024-02-29 23:09:06.118Repositorio Institucional Universidad Nacional de Colombiarepositorio_nal@unal.edu.co |
dc.title.spa.fl_str_mv |
Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data |
title |
Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data |
spellingShingle |
Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data 51 Matemáticas / Mathematics Bayesian Analysis Bayesian variable selection Monte Carlo Markov Chain Missing data Multivariate threshold autoregressive model Análisis Bayesiano Selección Bayesiana de variables Cadenas de Markov Monte Carlo Datos Faltantes Modelos multivariados autoregressivos de umbrales |
title_short |
Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data |
title_full |
Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data |
title_fullStr |
Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data |
title_full_unstemmed |
Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data |
title_sort |
Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data |
dc.creator.fl_str_mv |
Calderón Villanueva, Sergio Alejandro |
dc.contributor.author.spa.fl_str_mv |
Calderón Villanueva, Sergio Alejandro |
dc.contributor.spa.fl_str_mv |
Nieto Sánchez, Fabio Humberto |
dc.subject.ddc.spa.fl_str_mv |
51 Matemáticas / Mathematics |
topic |
51 Matemáticas / Mathematics Bayesian Analysis Bayesian variable selection Monte Carlo Markov Chain Missing data Multivariate threshold autoregressive model Análisis Bayesiano Selección Bayesiana de variables Cadenas de Markov Monte Carlo Datos Faltantes Modelos multivariados autoregressivos de umbrales |
dc.subject.proposal.spa.fl_str_mv |
Bayesian Analysis Bayesian variable selection Monte Carlo Markov Chain Missing data Multivariate threshold autoregressive model Análisis Bayesiano Selección Bayesiana de variables Cadenas de Markov Monte Carlo Datos Faltantes Modelos multivariados autoregressivos de umbrales |
description |
In some fields, we are forced to work with missing data in multivariate time series, unfortunately the analysis in this context cannot be done as in the case of complete data. Bayesian analysis of multivariate thresholds autoregressive models(MTAR) with exogenous inputs and missing data is carried out. MCMC methods are used to obtain samples from the marginal posterior distributions, including threshold values and missing data. In order to identify autoregressive orders, we adapt the Bayesian variable selection method to the MTAR models. The number of regimes is estimated using marginal likelihood and product space strategies. The forecasting of the output vector is implemented finding its predictive distributions. Simulation experiments and real data examples are presented. |
publishDate |
2014 |
dc.date.issued.spa.fl_str_mv |
2014-10 |
dc.date.accessioned.spa.fl_str_mv |
2019-06-29T13:40:12Z |
dc.date.available.spa.fl_str_mv |
2019-06-29T13:40:12Z |
dc.type.spa.fl_str_mv |
Trabajo de grado - Doctorado |
dc.type.driver.spa.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
dc.type.version.spa.fl_str_mv |
info:eu-repo/semantics/acceptedVersion |
dc.type.coar.spa.fl_str_mv |
http://purl.org/coar/resource_type/c_db06 |
dc.type.content.spa.fl_str_mv |
Text |
dc.type.redcol.spa.fl_str_mv |
http://purl.org/redcol/resource_type/TD |
format |
http://purl.org/coar/resource_type/c_db06 |
status_str |
acceptedVersion |
dc.identifier.uri.none.fl_str_mv |
https://repositorio.unal.edu.co/handle/unal/52159 |
dc.identifier.eprints.spa.fl_str_mv |
http://bdigital.unal.edu.co/46427/ |
url |
https://repositorio.unal.edu.co/handle/unal/52159 http://bdigital.unal.edu.co/46427/ |
dc.language.iso.spa.fl_str_mv |
spa |
language |
spa |
dc.relation.ispartof.spa.fl_str_mv |
Universidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística Departamento de Estadística |
dc.relation.references.spa.fl_str_mv |
Calderón Villanueva, Sergio Alejandro (2014) Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data. Doctorado thesis, Universidad Nacional de Colombia. |
dc.rights.spa.fl_str_mv |
Derechos reservados - Universidad Nacional de Colombia |
dc.rights.coar.fl_str_mv |
http://purl.org/coar/access_right/c_abf2 |
dc.rights.license.spa.fl_str_mv |
Atribución-NoComercial 4.0 Internacional |
dc.rights.uri.spa.fl_str_mv |
http://creativecommons.org/licenses/by-nc/4.0/ |
dc.rights.accessrights.spa.fl_str_mv |
info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Atribución-NoComercial 4.0 Internacional Derechos reservados - Universidad Nacional de Colombia http://creativecommons.org/licenses/by-nc/4.0/ http://purl.org/coar/access_right/c_abf2 |
eu_rights_str_mv |
openAccess |
dc.format.mimetype.spa.fl_str_mv |
application/pdf |
institution |
Universidad Nacional de Colombia |
bitstream.url.fl_str_mv |
https://repositorio.unal.edu.co/bitstream/unal/52159/1/1832255.2014.pdf https://repositorio.unal.edu.co/bitstream/unal/52159/2/1832255.2014.pdf.jpg |
bitstream.checksum.fl_str_mv |
0c0de7b4317a4bfce6047b3a0a4c486c 78b3d33e7a8ed1e71b332de9c957176c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositorio Institucional Universidad Nacional de Colombia |
repository.mail.fl_str_mv |
repositorio_nal@unal.edu.co |
_version_ |
1814090243310092288 |