Bayesian Analysis of Multivariate Threshold Autoregressive Models with Missing Data

In some fields, we are forced to work with missing data in multivariate time series, unfortunately the analysis in this context cannot be done as in the case of complete data. Bayesian analysis of multivariate thresholds autoregressive models(MTAR) with exogenous inputs and missing data is carried o...

Full description

Autores:
Calderón Villanueva, Sergio Alejandro
Tipo de recurso:
Doctoral thesis
Fecha de publicación:
2014
Institución:
Universidad Nacional de Colombia
Repositorio:
Universidad Nacional de Colombia
Idioma:
spa
OAI Identifier:
oai:repositorio.unal.edu.co:unal/52159
Acceso en línea:
https://repositorio.unal.edu.co/handle/unal/52159
http://bdigital.unal.edu.co/46427/
Palabra clave:
51 Matemáticas / Mathematics
Bayesian Analysis
Bayesian variable selection
Monte Carlo Markov Chain
Missing data
Multivariate threshold autoregressive model
Análisis Bayesiano
Selección Bayesiana de variables
Cadenas de Markov Monte Carlo
Datos Faltantes
Modelos multivariados autoregressivos de umbrales
Rights
openAccess
License
Atribución-NoComercial 4.0 Internacional
Description
Summary:In some fields, we are forced to work with missing data in multivariate time series, unfortunately the analysis in this context cannot be done as in the case of complete data. Bayesian analysis of multivariate thresholds autoregressive models(MTAR) with exogenous inputs and missing data is carried out. MCMC methods are used to obtain samples from the marginal posterior distributions, including threshold values and missing data. In order to identify autoregressive orders, we adapt the Bayesian variable selection method to the MTAR models. The number of regimes is estimated using marginal likelihood and product space strategies. The forecasting of the output vector is implemented finding its predictive distributions. Simulation experiments and real data examples are presented.